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Abstract

Diffusion models have emerged as a dominant family of generative models for image, video, and
audio generation. Deep Equilibrium (DEQ) models are architectures that compute their internal
representations by solving for a fixed point in their forward pass. While seemingly distinct, this thesis
explores methods that lie at their intersection, as well as broader applications of DEQs in solving partial
differential equations (PDEs) and improving out-of-distribution (OOD) generalization on algorithmic
tasks.

For diffusion models, we address the challenge of slow sampling. By reformulating the denoising
diffusion implicit model (DDIM) as a DEQ, we enable parallel sampling and efficient model inversion
through implicit gradients. Additionally, we demonstrate how DEQ-based architectures allow for
parameter-efficient distillation of diffusion models, achieving single-pass image generation. We will
also look into an application of flows, a family of generative models closely related to diffusion models,
in solving linear inverse problems in fewer model evaluations.

In the context of PDEs, we investigate the architectural design space of neural operators for steady state
PDEs. Neural operators take as input a PDE in some family, and output its solution. We demonstrate
that weight-tied networks and DEQs are effective architectural choices and provide strong inductive
bias for neural operators for steady-state PDEs.

Finally, we examine an interesting capability of DEQs to generalize on harder tasks at test-time by
leveraging more compute. We find that this ability of DEQs to generalize on harder tasks strongly
correlates with the path independence of the system—its tendency to converge to the same steady-
state behavior regardless of initialization, given enough computation. This motivates use of path
independence as a general modeling principle to facilitate scalable test-time usage.

This thesis presents practical methods to enhance the efficiency and utility of diffusion and DEQ
models across generative modeling, PDEs, and algorithmic tasks.
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Chapter 1

Introduction

Over the past decade, deep learning has led to transformative breakthroughs in multiple domains,
pushing the boundaries in various domains such as generative modeling, natural language under-
standing, and autonomous decision-making. State-of-the-art generative models, such as diffusion
models [Song and Ermon, 2019, Song et al., 2020b, Ho et al., 2020] and generative adversarial networks
(GANs) [Goodfellow et al., 2014], can synthesize high-fidelity images, videos, and audio with impres-
sive realism. Large-scale language models (LLMs) [Brown et al., 2020b, Hoffmann et al., 2022, OpenAI,
2023, Team et al., 2023, Touvron et al., 2023, Anthropic, 2024, Yang et al., 2024] have significantly
advanced natural language processing (NLP), excelling in tasks such as text generation, machine trans-
lation, and reasoning. These advancements have enabled the development of systems and tools such
as conversational agents, code-generation tools [Guo et al., 2024, Hui et al., 2024], and autonomous
decision-making agents [Gao et al., 2024, Yao et al., 2022, Shinn et al., 2023, Liu et al., 2023b]. Addition-
ally, deep learning has accelerated research in scientific applications, such as climate modeling [Doury
et al., 2023, Rasp et al., 2018, Scher, 2018], protein structure prediction [Jumper et al., 2021], drug
discovery [Pandey et al., 2022, Gupta et al., 2021b], astrophysics [Zhao et al., 2023, Leung and Bovy,
2024], medical imaging [Suganyadevi et al., 2022, Aggarwal et al., 2021], material science [Choudhary
et al., 2022, Mishin, 2021], and computational fluid dynamics [Vinuesa and Brunton, 2022, Kochkov
et al., 2021]. Furthermore, deep reinforcement learning has achieved superhuman performance in
various domains by leveraging neural networks to approximate optimal policies [Granter et al., 2017,
Silver et al., 2017, Schrittwieser et al., 2020, Berner et al., 2019]. Similarly, deep learning has dramatically
improved robot learning, enabling robots to perceive, reason, and act in real-world environments [Ahn
et al., 2022].

Despite these successes, deep learning remains constrained by several fundamental limitations. One
of the primary challenges in deep generative models such as diffusion models is efficiency. While
diffusion models have set new benchmarks for image [Dhariwal and Nichol, 2021, Karras et al.,
2022, 2024, Baldridge et al., 2024] and video generation quality [Brooks et al., 2024, Veo-Team et al.,
2024], they suffer from slow sampling efficiency due to their iterative nature. This limitation becomes
particularly severe in applications such as video generation, where generating a temporally consistent
sequence requires producing a large number of high-resolution frames in real time. As a result, over
the past couple of years, there have been widespread efforts to accelerate sampling through methods
such as distillation [Salimans and Ho, 2022, Luhman and Luhman, 2021, Nguyen and Tran, 2023, Wang
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et al., 2024b, Kohler et al., 2024] and consistency models [Song et al., 2023, Song and Dhariwal, 2023].

In the case of LLMs, despite their impressive performance on many NLP tasks, these models strug-
gle with mathematical reasoning [Mirzadeh et al., 2024, Toshniwal et al., 2024], logical extrapola-
tion [Williams and Huckle, 2024, Wan et al., 2024], and generalization from simpler to more complex
problem domains [Ding et al., 2024]. While they exhibit strong performance on in-distribution tasks,
they often fail to systematically generalize to out-of-distribution problems, highlighting a funda-
mental gap in their reasoning and abstraction capabilities. Additionally, LLMs are prone to hallu-
cination [Huang et al., 2024, Li et al., 2024], where they generate factually incorrect or misleading
information, posing challenges in high-stakes applications such as medical diagnosis, legal analysis,
and scientific discovery.

Furthermore, the application of deep learning in scientific research faces significant data-related
challenges. Many scientific domains, such as materials science, genomics, and climate modeling, rely
on datasets that are inherently small, noisy, and highly imbalanced. Unlike internet-scale datasets used
for training foundation models, scientific datasets often suffer from data scarcity, making it difficult for
deep learning models to generalize effectively [Xu et al., 2023a, Dubois et al., 2022, Stephany and Earls,
2024]. This limitation highlights the need for more robust models to improve performance in low-data
regimes.

This thesis aims to address a subset of the limitations stated above. We will broadly focus on two
models: 1) deep equilibrium models (DEQ) [Bai et al., 2019] which are architectures that compute
their internal representations by solving for a fixed point in their forward pass, and 2) diffusion
models [Song and Ermon, 2019, Song et al., 2020b, Ho et al., 2020] which are a type of generative model
that generate new samples through an iterative denoising process. In recent years, diffusion models
have become a dominant approach in generative modeling. However, their high computational cost
and slow sampling speed remain significant bottlenecks as described in the previous paragraphs.
Simultaneously, DEQs have emerged as an alternative to traditional deep networks, offering adaptive
test-time depth and memory efficiency. While diffusion models and DEQs may appear fundamentally
different, this thesis explores their intersection and the broader applications of DEQs in generative
modeling, solving partial differential equations (PDEs), and improving algorithmic generalization.

This thesis is motivated by three key challenges:

• Slow sampling in diffusion models: Traditional sampling methods require sequential evalua-
tions, limiting their practical utility in real-time generation.

• Architectural design for solving PDEs: Neural operators for steady-state PDEs lack structured
inductive biases, affecting their efficiency and generalization.

• Test-time generalization in deep learning: Regular non-weight tied neural networks struggle to
generalize on harder problems at test time.

This thesis introduces approaches to address the above challenges and is divided into three parts as
described below.

The first part focuses on methods for efficient sampling with diffusion models and flows, as well as
their application in solving inverse problems. Chapter 3 introduces an approach for parallel sampling
of diffusion models through the lens of DEQs. At the core of this approach is reformulating the widely
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used Denoising Diffusion Implicit Model (DDIM) [Song et al., 2020a] as a joint, multivariate fixed
point system. This enables use of additional compute to distribute the workload across multiple GPUs
during sampling, resulting in speedups. Another advantage of this formulation is that it enables
efficient model inversion through use of implicit gradients.

While parallel sampling is a training-free approach for faster sampling of diffusion models, we also
introduce a training-based approach for one-step sampling of diffusion models in Chapter 4. Inspired
by prior work in distillation [Salimans and Ho, 2022, Luhman and Luhman, 2021], we propose a
parameter-efficient distillation technique for single-step image generation. The core idea is to do
an offline distillation of diffusion models by training another model to directly predict images from
Gaussian noise. These noise/image pairs are obtained from a pre-trained diffusion model [Karras
et al., 2022]. We find that the architecture of the distilled model plays a crucial role in the quality of
the distillation, and we leverage a DEQ-based model. This model, called Generative Equilibrium
Transformer (GET), uses the standard ViT [Dosovitskiy et al., 2021] backbone, and has weight-tied
transformer layers. This enables adaptive computation in the forward pass. An advantage of this is
that we can improve image quality by using more (lightweight) iterations in the forward pass.

Next, we switch our focus to an application of efficient sampling with flows in solving linear inverse
problems. Given noisy measurements generated by a known degradation model, solving an inverse
problem involves recovering a clean signal from the given noisy measurements. Many interesting im-
age processing tasks can be cast as an inverse problem such as deblurring, super-resolution, inpainting
and JPEG restoration. We will focus on methods that use pretrained diffusion and flow models to
solve these problems, and avoid training/fine-tuning a model on image pairs. Existing training-free
approaches for solving inverse problems that are based on diffusion models often need hundreds to
thousands of steps for a good quality solution. We hypothesize that one of the factors that contributes
to this inefficiency is the curvature of the diffusion sampling paths. This motivates us to consider
alternate ODE parameterizations that have less curvature.

CNF (hereafter denoted flow model) has the ability to model arbitrary probability paths, and includes
diffusion probability paths as a special case. As we will see in Chapter 5, there are certain parametriza-
tions of flow models [Lipman et al., 2022, Liu et al., 2022b, Chen et al., 2018] that have less curvature
than the diffusion ODE. We propose a method that leverages pre-trained conditional optimal transport
flow models to solve inverse problems in a fewer number of steps, thereby improving its efficiency
in terms of number of steps as well as qualitative and quantiative performance in terms of quality of
solutions.

In the second part of this thesis, we switch our focus to the problem of solving steady-state partial
differential equations (PDEs). PDEs are ubiquitous in scientific domains as they model a wide range of
processes in science and engineering. However solving PDEs is challenging because most PDEs do
not accept a closed form solution and many existing approaches that use classical numerical methods
to solve them can be slow and expensive. Recently, machine learning-based approaches, particularly
neural operators, have emerged as a promising alternative. Neural operators learn learn solution to
a family of PDEs and are invariant to grid discretization, unlike previous machine learning based
approaches such as physics-inspired neural networks (PINN) [Raissi et al., 2017].

Despite their advantages, neural operators do not inherently encode the structural knowledge of the
PDEs they are designed to solve. This can limit their generalization and efficiency. In Chapter 6 we
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address this limitation by exploring the architectural design space of steady-state PDE solvers, with a
particular focus on Deep Equilibrium Models (DEQs). We show that weight-tied architectures, such as
DEQs, introduce an inductive bias that aligns naturally with the structure of steady-state PDEs. By
leveraging this property, we propose a DEQ-based neural operator that outperforms conventional,
non-weight-tied architectures in solving steady-state PDEs.

In the third part of this thesis, we turn our attention to the problem of algorithmic generalization,
focusing on scenarios where models are expected to generalize to harder instances of problems they
encountered during training. Many real-world tasks, such as mathematical reasoning, games like
Sudoku and chess, and puzzles like maze solving, fall into this category. While humans naturally
generalize from easy to hard problems by leveraging prior knowledge and increasing cognitive effort
by thinking for longer, this remains a fundamental challenge for machine learning models, including
large language models.

Recent approaches have attempted to improve generalization to harder problem instances, particularly
in language models and algorithmic reasoning tasks. Methods such as chain-of-thought prompt-
ing [Wei et al., 2022] encourage models to generate intermediate reasoning steps, while least-to-most
prompting enables decomposition of complex problems into simpler subproblems. Other techniques,
such as memory-of-thought [Li and Qiu, 2023] and tree-of-thought prompting [Yao et al., 2023], explore
persistent memory retention and structured reasoning paths to enhance problem-solving capabilities.
Additionally, architectural innovations, including retrieval-augmented models [Tran et al., 2024, Wang
et al., 2024a] and memory-augmented networks [Ko et al., 2024, Jin et al., 2024], have demonstrated
promising improvements by integrating external memory and long-term reasoning structures. Despite
these advances, a significant performance gap persists when it comes to reliably solving harder tasks
at test time.

In this work, we explore a different architectural approach—leveraging weight-tying as a mechanism
to enhance test-time generalization. One effective strategy for solving increasingly difficult problems
is to allow models to allocate more computational resources at test time, refining their solutions
through iterative updates. This aligns with how humans tend to think longer and explore more
possibilities when faced with a difficult problem. In Chapter 7, we demonstrate that weight-tied
architectures, particularly deep equilibrium models, naturally support this form of adaptive test-
time computation, enabling models to iteratively refine their outputs and generalize better to harder
problems at test-time. We show that a necessary condition to ensure this test-time generalization with
weight-tied architectures is path-independence of the model—the tendency of model to converge to
the same steady-state behaviour regardless of initialization, given enough computation. Through
extensive experiments on many types of problems, we demonstrate that deep equilibrium models can
successfully exploit additional test-time computation when they learn path independent solutions,
making them a compelling architectural choice for improving algorithmic generalization.

While we have tried to address some of the limitations of the modern deep learning, there are many
exciting directions to advance the field. Addressing these limitations requires continued advancements
in algorithmic efficiency, data-efficient learning paradigms, and more interpretable and reliable AI
models. Bridging the gap between current deep learning architectures and truly generalizable AI
systems remains an open challenge with significant implications for both fundamental research and
real-world applications.
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Chapter 2

Background

This thesis explores a diverse set of topics, such as diffusion models, flow matching models, deep
equilibrium models, and neural operators. In this chapter, we review relevant literature from prior
works. While this is not an exhaustive literature review, we summarize important concepts and topics
that are used in this thesis. Revisiting this chapter will be useful for reviewing relevant topics whenever
the reader begins a new section.

2.1 Deep Equilibrium Models

Equilibrium models [Liao et al., 2018, Bai et al., 2019, Revay et al., 2020, Winston and Kolter, 2020]
compute internal representations by solving for a fixed point in their forward pass. Specifically,
consider a deep feedforward network with L layers :

z[i+1] = f [i]θ

(
z[i]; x

)
for i = 0, . . . , L− 1 (2.1)

where x ∈ Rnx is the input injection, z[i] ∈ Rnz is the hidden state of ith layer with z[0] = 0, and
f [i]θ : Rnx×nz 7→ Rnz is the feature transformation of ith layer, parametrized by θ.

Suppose that the above model is weight-tied, i.e., f [i]θ = fθ , ∀i, and limi→∞ fθ

(
z[i]; x

)
exists and its

value is z⋆. Further, assume that for this z⋆, we have fθ (z⋆; x) = z⋆. Then, equilibrium models can be
interpreted as the infinite-depth limit of the above network such that

f ∞
θ (z⋆; x) = z⋆. (2.2)

Under certain conditions1, and for certain classes of fθ
2, the output z⋆ of the above weight-tied network

is a fixed point.

A simple way to solve for this fixed point is to use fixed point iterations, i.e., repeatedly apply the
update z[t+1] = fθ(z[t]; x) some fixed number of times, and backpropagate through the network

1The fixed point can be reached if the dynamical system is globally contractive. This is usually not true in practice for most
choices of fθ , and divergence is possible.

2Bai et al. [2019] state that fθ needs to be stable and constrained. In general, by Banach’s fixed point theorem, global
convergence is guaranteed if fθ is contractive over its input domain.
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to compute gradients. However, this can be computationally expensive. Deep equilibrium (DEQ)
models [Bai et al., 2019] explicitly solve for z⋆ through iterative root finding methods like Broyden’s
method [Broyden, 1965], Newton’s method, Anderson acceleration [Anderson, 1965]. DEQs use the
implicit function theorem to differentiate directly through the fixed point z⋆ at equilibrium, thus
requiring constant memory to backpropagate through an infinite-depth network. Bai et al. [2019]
provide the expression for the implicit gradient used for backpropagation in DEQs as

∂L
∂θ

=
∂L
∂z⋆

∂z⋆

∂θ
=

∂L
∂z⋆

(
I − ∂ fθ(z⋆; x)

∂z⋆

)−1 ∂ fθ(z⋆; x)
∂θ

, (2.3)

where L is the loss objective. Thus, the backward gradient of DEQs uses constant memory, even for
”infinite” layers of fθ . This is unlike regular weight-tied networks, where the memory required for
backpropagation grows linearly with the depth of the network. There are alternative formulations of
equilibrium models [Winston and Kolter, 2020] that guarantee the existence of a unique equilibrium
point. However, designing fθ for these formulations can be challenging, and in this thesis we will use
the formulation by Bai et al. [2019].

Challenges of training DEQs. Computing the inverse of the Jacobian is intractable for high-dimensional
feature maps. Bai et al. [2019] suggest computing the solution to the following linear fixed point system

v⊤ = v⊤
∂ fθ(z⋆; x)

∂z⋆
+

∂L
∂z⋆

, (2.4)

which involves a vector-Jacobian product, and therefore can be computed efficiently by leveraging
standard autograd packages. Thus, backward pass of DEQ can also be solved by using root finding
methods. However, prior works [Bai et al., 2021] have noted training instability issues that arise due
to ill-conditioned Jacobians while training DEQs. Some ways to tackle this training instability issue
are using Jacobian regularization [Bai et al., 2021] and fixed-point correction [Bai et al., 2022] during
training, and architectural modifications such as use of spectral normalization [Miyato et al., 2018],
weight decay, and recurrent dropout [Gal and Ghahramani, 2016] in the layers of DEQ.

Approximate implicit gradients. We can also use inexact implicit gradients that avoid computing the
inverse of Jacobian in the backward pass of DEQs, and therefore have more stable and faster training.
Fung et al. [2022] propose that the backward pass of the DEQ can be approximated as

∂L
∂θ
≈ ∂L

∂z⋆
∂ fθ(z⋆; x)

∂θ

which replaces the inverse Jacobian term in Eq. (2.3) with an identity. Geng et al. [2021b] propose
approximating inverse Jacobian term [Geng et al., 2021b] with a few-step gradient, called phantom
gradient, based on the damped unrolling of DEQ at its fixed point. Specifically, it considers the
following fixed-point iteration at equilibrium

z[i+1] = λ fθ(z[i]; x) + (1− λ)z[i], (2.5)

where λ is an appropriate damping factor. Note that in this case, the gradients for the backward pass
can be computed by using standard autograd packages.
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2.2 Generative Models

2.2.1 Diffusion Models

Consider a data distribution pdata(x0) from which we draw i.i.d. samples, then the diffusion process
{xt}T

t=0 for t ∈ [0, T] is given by an Itô SDE [Song et al., 2020b]:

dxt = f(xt, t)dt + g(t)dw, (2.6)

where w is the standard Wiener process, f(·, t) : Rd → Rd is the drifting coefficient, g(·) : R→ R is
the diffusion coefficient, and x0 ∼ pdata and xT ∼ N (0, I). Samples can be generated by starting from
x(T) and then solving the reverse-time SDE [Anderson, 1982] given by

dxt =
[
f(x, t)− g(t)2∇xt log pt(xt)

]
dt + g(t)dw, (2.7)

where w is the standard Wiener process for time t = T to t = 0. All diffusion processes have a
corresponding deterministic process known as the probability flow ODE (PF-ODE) [Song et al., 2020b]
whose trajectories share the same marginal probability densities as the SDE. This ODE can be written
as

dxt =

[
f(xt, t)− 1

2
g(t)2∇xt log pt(xt)

]
dt. (2.8)

The quantity ∇xt log pt(xt) is also known as the score function. Diffusion models, also known as score
matching models, are trained to minimize the following score matching loss

LSM := Et,p0(x0),pt(xt |x0)

[
λt||sθ(xt)−∇xt log pt(xt|x0)||22

]
, (2.9)

where λt is an appropriate weighting function. Different choices of the drifting coefficient f(·, t) and
the diffusion coefficient g(·) result in the so-called Variance Preserving (VP) and Variance Exploding
SDEs. We note that the drifting coefficient f(xt, t) is of the form f(xt, t) = f(t)xt in these formulations.
Inspired by this, and assuming a particular choice of scaling factor as well as diffusion perturbation
kernel pt(xt|x0), Karras et al. [2022] consider the following equivalent parametrization of PF-ODE

dxt = −σ̇(t)σ(t)∇xt log p(xt, σ(t))dt, (2.10)

where σ(t) is the noise schedule of diffusion process, and ∇xt log p(xt, σ(t)) represents the score
function. Karras et al. [2022] also show that the optimal choice of σ(t) in Eq. (2.10) is σ(t) = t. Thus,
PF-ODE can be simplified to dx/dt = −t∇x log p(xt, σ(t)) = (xt − Dθ(xt; t))/t, where Dθ(·, t) is a
denoiser function parametrized with a neural network that minimizes the expected L2 denoising error
for samples drawn from pdata. Samples can be efficiently generated from this ODE through numerical
methods like Euler’s method, Runge-Kutta method, and Heun’s second-order solver [Ascher and
Petzold, 1998].

2.2.1.1 Formulations of Diffusion Models

We will now describe two formulations of diffusion models that are widely used in the literature.
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Variance Preserving (VP) Formulation. Song et al. [2020b] define VP-SDE as

dxt = −
1
2

β(t)xtdt +
√

β(t)dωt. (2.11)

which is obtained by setting f(x, t) = − 1
2 β(t)xt, g(t) =

√
β(t) in Eq. (2.6). Here, β(t) = βmin +

t(βmax − βmin). In practice, βmax = 20 and βmin = 0.1, and t ∼ [ϵ, 1] where ϵ is set to a small values
such as 10−5.

Variance Exploding (VE) Formulation. Song et al. [2020b] define VE-SDE as

dxt = σmin

(
σmax

σmin

)t
√

2 log
(

σmax

σmin

)
dωt. (2.12)

which is obtained by setting f(x, t) = 0, g(t) = σmin

(
σmax

σmin

)t
√

2 log
(

σmax

σmin

)
in Eq. (2.6). In practice,

σmin = 0.01 and σmax = 50 for CIFAR-10.

2.2.1.2 Discrete-time Diffusion Models

So far in this section, we have considered the continuous-time formulation of the diffusion models and
derived them from the score matching perspective. We will now consider an equivalent formulation of
diffusion models as proposed by Ho et al. [2020].

Given samples from a target distribution x0 ∼ q(x0), the diffusion process [Ho et al., 2020] is a Markov
chain that adds Gaussian noises to the data to generate latent states x1, ..., xT in the same sample space
as x0

q(x1:T |x0) =
T

∏
t=1

q(xt|xt−1), where q(xt|xt−1) = N
(√

αt

αt−1
xt−1,

(
1− αt

αt−1

)
I
)

, (2.13)

where α1:T ∈ (0, 1]T is a fixed decreasing sequence of hyperparameters. This diffusion process is also
known as a forward process and it has the following property:

q(xt|x0) :=
∫

q(x1:t|x0)dx1:t−1 = N (xt;
√

αtx0, (1− αt)I) (2.14)

This parametrization of diffusion model is also known as Denoising Diffusion Probabilitic Model
(DDPM) [Ho et al., 2020]. Given this diffusion process, the generative process is given by the following
latent variable model

pθ(x) =
∫

pθ(x0:T)dx1:T , where pθ(x0:T) := pθ(xT)∏ pθ(xt−1|xt). (2.15)

The parameters θ are learned by using a surrogate variational lower bound [Ho et al., 2020] given by

L = Eq[− log pθ(x0|x1) + ∑
t

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt) + DKL(q(xT |x0)||p(xT)]. (2.16)

The above objective can be further simplified to

L :=
T

∑
t=1

Eq(x0),ϵt∼N (0,I)

[
||ϵ(t)θ (

√
αtx0 +

√
1− αtϵt)− ϵt||22

]
, (2.17)
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where ϵ
(t)
θ (xt) is an estimator trained to predict the noise given a noisy state xt. After training, samples

can be generated by a reverse Markov chain, i.e., first sampling xT ∼ p(xT) = N (0, I), and then
repeatedly sampling xt−1 till we reach x0. We note that the diffusion denoising objective Eq. (2.17)
and the score matching objective Eq. (2.9) are equivalent (up to a scaling factor) [Karras et al., 2022,
Hyvärinen and Dayan, 2005, Vincent, 2011]. Finally, we note that DDPM is discretization of VP-
SDE [Song et al., 2020b].

2.2.2 Continuous Normalizing Flows

A Continuous Normalizing Flow (CNF) [Chen et al., 2018] is a time-dependent diffeomorphic map
ϕt : [0, 1]×Rd → Rd that is defined by the ODE:

d
dt

ϕt(x) = vt(ϕt(x)); ϕ0(x) = x (2.18)

where x ∈ Rd and vt : [0, 1]×Rd → Rd is a time-dependent vector field that is usually parametrized
with a neural network. The generative process of a CNF involves sampling from a simple prior
distribution x0 ∼ p0(x0) (e.g. standard Gaussian distribution) and then solving the initial value
problem defined by the ODE in Eq. (2.18) to obtain a sample from the target distribution x1 ∼ p1(x1).
Thus, a CNF reshapes a simple prior distribution p0 to a more complex distribution pt, via a push-
forward equation based on the instantaneous change of variables formula.

pt = [ϕ]∗p0 (2.19)

[ϕ]∗p0(x) = p0(ϕ
−1
t (x))det

[
∂ϕ−1

t
∂x

(x)

]
(2.20)

CNFs are usually trained by optimizing the maximum likelihood objective. As shown in Chen
et al. [2018], the exact likelihood computation can be done via relatively cheap operations despite the
Jacobian term. Specifically, from the continuity equation [Villani et al., 2009, Chen et al., 2018], we have

d
dt

log pt(ϕt(x)) + div(vt(ϕt(x))) = 0. (2.21)

Integrating the above over t ∈ [0, 1] gives us a way to calculate log probability along with the flow
trajectory,

log p1(ϕ1(x))− log p0(ϕ0(x)) = −
∫ 1

0
div(vt(ϕt(x)))dt. (2.22)

One drawback of the above approach is that it requires restricting the architecture of the neural network
to constrain the Jacobian term. FFJORD [Grathwohl et al., 2018] improves upon this by proposing a
method that uses Hutchinson’s trace estimator to compute log density, and allows CNFs with free-form
Jacobians, thereby removing any restrictions on the architecture. Specfically, we can write Eq. (2.22) as

log p1(ϕ1(x))− log p0(ϕ0(x)) = −Ez

∫ 1

0
z⊤Dvt(ϕt(x))zdt. (2.23)

where z is sampled from a distribution such that E[zz⊤] = I. The usual choices are the standard Gaus-
sian distribution and Rademacher distribution. This approach has difficulties for high-dimensional
images where the trace estimator is noisy. Flow Matching provides an alternative, scalable approach to
training CNFs with arbitrary architectures.
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2.2.3 Flow Matching Models

Suppose we have samples from an unknown data distribution x1 ∼ q(x1). Let pt denote a probability
path from the prior distribution p0 to the data distribution p1 that is approximately equal to q. Flow
Matching loss is defined as

LFM = Et,pt(x)∥vt(x; θ)− ut(x)∥2 (2.24)

where ut(x) is a vector field that generates the probability path pt(x), and θ denotes trainable param-
eters of the CNF. In practice, we usually do not have any prior knowledge on pt and ut, and thus
this objective is intractable. Inspired by diffusion models, Lipman et al. [2022] propose Conditional
Flow Matching, where both the probability paths and the vector fields are conditioned on the sample
x1 ∼ q(x1). The exact objective for Conditional Flow matching is given by

LCFM = Et,q(x1),pt(x|x1)
∥vt(x; θ)− ut(x|x1)∥2 (2.25)

where, pt(x|x1) denotes a conditional probability path, and ut(x|x1) denotes the corresponding condi-
tional vector field that generates the conditional probability path. Interestingly, both the loss objectives
in Eq. (2.25) and Eq. (2.24) have identical gradients w.r.t. θ. More importantly, past research has proven
that ut(x) = E[ut(x|x1)|xt = x]. The optimal solution to the conditional Flow Matching recovers ut(x)
and therefore vt(x; θ) generates the desired probability path pt(x).Thus, we can train a CNF without
access to the marginal vector field ut(x) or probability path pt(x). Compared to the prior approaches
to train flow models, Flow Matching allows simulation-free training with unbiased gradients, and
scales easily to high dimensions.

2.3 Neural Operators and Partial Differential Equations

2.3.1 Partial Differential Equations

A partial differential equation (PDE) is a differential equation that contains partial derivatives of an
unknown function u(x1, . . . , xn, t) of multiple independent variables (spatial variables x1, . . . , xn and
possibly time t), along with its partial derivatives. A general PDE can be written as

F

(
x1, . . . , xn, u,

∂u
∂x1

, . . . ,
∂u
∂xn

,
∂u
∂t

,
∂2u
∂x2

1
,

∂2u
∂x1∂x2

, . . . , t

)
= 0, (2.26)

where x1, . . . , xn are independent spatial variables and t is the (optional) time variable. The above
is often known as the governing equation of PDE. To obtain a well-posed problem, a PDE must be
supplemented with initial conditions and/or boundary conditions. For a PDE involving time t, an
initial condition specifies the value of u at time t = 0:

u(x1, . . . , xn, t) = f (x1, . . . , xn, t) (x1, . . . , xn) ∈ Ω. (2.27)

Boundary conditions specify constraints on u at the domain boundary ∂Ω. Some examples of boundary
condition are:

1. Dirichlet Boundary Condition:

u(x1, . . . , xn, t) = g(x1, . . . , xn, t), (x1, . . . , xn) ∈ ∂Ω. (2.28)
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where g is a known function defined on ∂Ω.

2. Neumann Boundary Condition:

∂u(x1, . . . , xn, t)
∂n

= h(x1, . . . , xn, t), (x1, . . . , xn) ∈ ∂Ω. (2.29)

where n is normal to the boundary ∂Ω and h is a given scalar function.

3. Periodic Boundary Condition:
u(x + L, t) = u(x, t) (2.30)

where L is the periodicity.

Partial differential equations (PDEs) are encountered in various physical, biological, and engineering
applications. Below are some PDEs categorized based on their nature.

1. Heat equation is used to model heat conduction, diffusion of substances and Brownian motion.
A simple 1D heat equation with Dirichlet boundary conditions can be written as

∂u
∂t

= α
∂2u
∂t2 ; u(x, 0) = f (x); u(0, t) = 0. (2.31)

2. Wave equation is used to model waves such as electromagnetic waves and sound. 1D wave
equation can with fixed ends can be written as

∂2u
∂t2 = c2 ∂2u

∂x2 ; u(x, 0) = f (x);
∂u(x, 0)

∂t
= g(x) u(0, t) = 0; u(0, L) = 0. (2.32)

3. Laplace equation is used to model steady-state heat conduction, electrostatics, and fluid flow. 2D
Laplace equation is given by

∂2u
∂x2 +

∂2u
∂y2 = 0 (2.33)

We can define appropriate boundary conditions such as Dirichlet and Neumann over the domain.

2.3.2 Solving PDEs with Neural Operators

Classical techniques to solve PDEs can broadly be categorized into analytical methods that provide
exact closed-form solutions and numerical methods that provide approximate solutions. The choice
of method depends on the type of PDE, boundary/initial conditions, and complexity. In practice,
most PDEs do not admit a closed form solution, and are solved using a variety of classical numerical
methods such as finite element [LeVeque, 2007], finite volume [Moukalled et al., 2016], and spectral
methods [Kopriva, 2009, Boyd, 2001]. These classical methods rely on discretizing the domain into a
very fine mesh. Thus, these methods are often very computationally expensive, both as the ambient
dimension grows, and as the threshold of desired accuracy increases. In addition, these methods also
solve one specific instance of a PDE, and do not generalize across different instances. This motivates
use of data-driven approaches to solve PDEs. These methods use machine learning to learn solutions
to PDE directly from data. However, obtaining high quality data remains a challenge, as this data is
usually obtained by leveraging numerical solvers which can take days to months for high quality data.
Another challenge with these approaches is generalization to different instances of PDEs and levels of
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grid discretization. As an example, Physics-informed neural networks (PINNs) [Raissi et al., 2017]
struggle to learn a solution as dimensions increase, and also do not generalize well across different
problem setups. This motivates operator learning for solving PDEs.

Operators are mapping between two infinite dimensional function spaces. In this sense, operators
generalize the concept of functions. Some examples of frequently encountered operators are integral
and differential operators. We will consider PDEs of form

L(a(x), u(x)) = f (x), ∀x ∈ Ω, (2.34)

where u : Ω→ Rdu , a : Ω→ Rda and f : Ω→ Rd f are functions defined over the domain Ω, and L is
a (possibly non-linear) operator. A natural operator that arises from this PDE is G† := L−1 f to map the
parameter to solution a 7→ u. The goal of operator learning for PDEs is to approximate this operator
G† with a neural network. In practice, these are usually implemented as a multi-layer neural network,
where each layer is an operator defined over a function space.

There are many instantiations of neural operators depending on the application domain such as Graph
Neural Operator (GNO) [Li et al., 2020b], Fourier Neural Operator (FNO) [Li et al., 2020a] and Low
Rank Neural Operator (LNO) [Gupta et al., 2021a]. In this thesis, we will explore a specific neural oper-
ator called Fourier Neural Operator (FNO). Neural operators are universal approximators [Kovachki
et al., 2023] and discretization-invariant i.e., they can be evaluated at any input and output point that
belong to the domain Ω.

2.3.2.1 Neural Operator

Li et al. [2020b,a] define a neural operator Gθ : Rdu → Rdu as an iterative architecture of form

Gθ := Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ P (2.35)

where P : L2(Ω; Rdu)→ L2(Rdv ; Rdv) and Q : L2(Rdv ; Rdv)→ L2(Rdv ; Rdu) are projection operators,
and Ll : L2(Rdv ; Rdv)→ L2(Rdv ; Rdv) for l ∈ [L] is the lth operator layer. Li et al. [2020b,a] define this
operator layer as

Ll (vl) = σ (Wlvl + bl +Kl(a; ϕ)vl)) . (2.36)

Here σ is a non-linear activation function, Wl , bl are the lth layer weight matrix and bias terms, and
Kl is the lth integral kernel operator. This integral operator is parametrized with a neural network
(assume the parameters to be ϕ). Intuitively, integral kernel operator is the function space analog of
the weight matrix in a standard feed-forward network since they are infinite-dimensional mapping
from one function space to another. Different definitions of kernel integral operators lead to different
instantiations of neural operators [Kovachki et al., 2023].

2.3.2.2 Fourier Neural Operator

In this thesis, we follow Li et al. [2020a] and assume that the integral kernel operator is defined as

(Kl(a; ϕ)vl)(x) :=
∫

D
κ(x, y, a(x), a(y); ϕ)vt(y)dy, ∀x ∈ D (2.37)
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where κϕ is a kernel function. Li et al. [2020a] further remove the dependence on a and impose the
condition κϕ(x, y) = κϕ(x− y) which indicates that this is a convolution operator. Therefore, applying
convolution theorem gives

(Kl(a; ϕ)vl)(x) := F−1(F (κϕ) · F (vt))(x); ∀x ∈ D, (2.38)

where F and F−1 are the Fourier transform and the inverse Fourier transform. More specficially,
FNO Li et al. [2020a] is defined as follows,

Kl(vl)(x) = F−1
(

Rϕ,l · (Fvl)
)
(x) ∀x ∈ Ω, (2.39)

with Rϕ,l representing the learnable weight-matrix in the Fourier domain. Therefore, the set of trainable
parameters is a collection of all the weight matrices and biases, i.e., θ := {Wl , bl , Rϕ,l , · · · , W1, b1, Rϕ,1}.
This can be efficiently computed using FFT. Li et al. [2020a] show that in practice, few Fourier modes
can be dropped, which results in quasi-linear complexity.
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Part I

Efficient Generative Models: Insights
from Deep Equilibrium, Diffusion and

Flow Models
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Chapter 3

Deep Equilibrium Approaches to
Diffusion Models

Diffusion models are extremely effective in generating high-quality images, with generated samples
often surpassing the quality of those produced by other generative models such as Generative Adver-
sarial Networks (GANs)[Goodfellow et al., 2014] under several metrics. One distinguishing feature of
these models, however, is that they typically require long sampling chains to produce high-fidelity
images. This presents a challenge not only from the lenses of sampling time, but also from the inherent
difficulty in backpropagating through these chains in order to accomplish tasks such as model inver-
sion, i.e., approximately finding latent states that generate known images. In this chapter, we look
at diffusion models through a different perspective, that of a (deep) equilibrium (DEQ) fixed point
model [Bai et al., 2019]. Specifically, we extend the recent denoising diffusion implicit model (DDIM)
[Song et al., 2020a], and model the entire sampling chain as a joint, multivariate fixed point system.
We formally introduce this in detail in Sec. 3.2.

This setup provides an elegant unification of diffusion and equilibrium models, and shows benefits in
1) parallel sampling of images, as it replaces the fully serial typical sampling process with a parallel one;
and 2) model inversion (discussed in Sec. 3.3), where we can leverage fast gradients in the DEQ setting
to much more quickly find the noise that generates a given image. The approach is also orthogonal and
thus complementary to other methods used to reduce the sampling time, or improve model inversion.
This chapter is based on Pokle et al. [2022].

3.1 Preliminaries

In this section, we will discuss some concepts of diffusion models that are relevant to this chapter. For
a detailed background on deep equilibrium models and diffusion models, we point the readers to
Sec. 2.1 and Sec. 2.2.1.
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3.1.1 Discrete-time Diffusion Models

Diffusion models [Ho et al., 2020, Sohl-Dickstein et al., 2015, Dhariwal and Nichol, 2021, Song et al.,
2020a] or score-based generative models [Song et al., 2020b, Song and Ermon, 2019] progressively
perturb images with an increasing amount of Gaussian noise until it leads to a standard Gaussian
distribution. The images can be generated by reversing this process by first sampling a noise sample
from a standard Gaussian and then sequentially denoising it to generate images. As noted in [Song
et al., 2020a, Ho et al., 2020, Dhariwal and Nichol, 2021], the length T of a diffusion process is usually
large (e.g., T = 1000) as it better approximates the Gaussian conditional distributions in the generative
process which is represented with a stochastic differential equation (See Sec. 6.1). However, due to
the large value of T, sampling from diffusion models can be visibly slower compared to other deep
generative models such as GANs [Goodfellow et al., 2014]. This is an active area of research, and
many approaches are being proposed to enable faster sampling. In this thesis, we will look into two
primary approaches for faster sampling of diffusion models: parallel sampling of diffusion models in
this chapter and diffusion distillation in the next chapter.

Non Markovian forward process. Song et al. [2020a] propose an alternate non-Markovian inference
distribution that leads to a “shorter” and deterministic generative process, i.e., denoising diffusion
implicit model (DDIM). DDIM shares the same forward process as DDPM and, therefore, can be
trained similarly to DDPM, using the variational lower bound shown in Eq. (2.16). However, for
sampling, DDIM constructs a nearly non-stochastic scheme that can sample faster from the learned
data distribution without introducing additional noises. Specifically, the scheme to generate a sample
xt−1 given xt is:

xt−1 =
√

αt−1

(
xt −
√

1− αtϵ
(t)
θ (xt)√

αt

)
+
√

1− αt−1 − σ2
t · ϵ

(t)
θ (xt) + σtϵt (3.1)

where ϵt ∼ N(0, I) and different values of σt define different generative processes. When σt =√
1− αt−1

1− αt

√
1− αt

αt−1
for all t, the generative process represents a DDPM. Empirically, this is parame-

terized as

σt(η) = η

√
1− αt−1

1− αt

√
1− αt

αt−1
, (3.2)

where η is a hyperparameter to control stochasticity. Note that η = 1 corresponds to a DDPM Sohl-
Dickstein et al. [2015], Ho et al. [2020]. Setting σt = 0 for all t gives rise to a DDIM, which results in a
deterministic generating process except the initial sampling xT ∼ p(xT).

3.2 Parallelizing the Diffusion Sampling: A DEQ Formulation of
Diffusion Models

In this section, we present the main modeling contribution of the paper, a formulation of diffusion
processes under the DEQ framework. The specific parameterization of diffusion models that we will
focus on is DDIM [Song et al., 2020a]. Although diffusion models may seem to be a natural fit for DEQ
modeling (after all, we typically do not care about intermediate states in the denoising chain, but only
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the final clean image), there are several reasons why setting up the diffusion chain “naively” as a DEQ
(i.e., making fθ be a single sampling step) does not ultimately lead to a functional algorithm. Most
fundamentally, the diffusion process is not time-invariant (i.e., not “weight-tied” in the DEQ sense),
and the final generated image is practically-speaking independent of the noise used to generate it
(i.e., not truly based upon “input injection” either).

Thus, at a high level, our approach to building a DEQ version of the DDIM involves representing all
the states x0:T simultaneously within the DEQ state. The advantage of this approach is that 1) we can
exactly capture the typical diffusion inference chain; and 2) we can create a more expressive reverse
process where the state xt is updated based upon all previous states xt+1:T , improving the inference
process; 3) we can execute all steps of the inference chain in parallel rather than solely in sequence as is
typically required in diffusion models; and 4) we can use common DEQ acceleration methods, such
as the Anderson solver Anderson [1965] to find the fixed point, which makes the sampling process
converge faster. A downside of this formulation is that we need to store all DEQ states simultaneously
(i.e., only the images, not the intermediate network states).

3.2.1 DEQ-DDIM: A DEQ Formulation for Deterministic Generative Process

The generative process of DDIM is given by which is obtained by setting σt = 0 in Eq. (3.1):

xt−1 =
√

αt−1

(
xt −
√

1− αtϵ
(t)
θ (xt)√

αt

)
+
√

1− αt−1 · ϵ
(t)
θ (xt), t = [1, . . . , T] (3.3)

This process also allows us to generate a sample using a subset of latent states {xτ1 , . . . , xτS}, where
{τ1, . . . , τS} ⊆ T. While this helps in accelerating the overall generative process, there is a tradeoff
between sampling quality and computational efficiency. As noted in Song et al. [2020a], larger T values
lead to lower FID scores of the generated images but need more compute time; smaller T are faster to
sample from, but the resulting images have worse FID scores.

Reformulating this sampling process as a DEQ addresses multiple concerns raised above. We can
define a DEQ, with a sequence of latent states x1:T as its internal state, that simultaneously solves for the
equilibrium points at all the timesteps. The global convergence of this process is upper bounded by T
steps, by definition. To derive the DEQ formulation of the generative process, first we rearrange the
terms in Eq. (3.3):

xt−1 =

√
αt−1

αt
xt +

√1− αt−1 −

√
αt−1(1− αt)

αt

 ϵ
(t)
θ (xt) (3.4)

Let c(t)1 =
√

1− αt−1 −
√

αt−1(1− αt)

αt
. Then we can write

xt−1 =

√
αt−1

αt
xt + c(t)1 ϵ

(t)
θ (xt) (3.5)

By induction, we can rewrite the above equation as:

xT−k =

√
αT−k
αT

xT +
T−1

∑
t=T−k

√
αT−k

αt
c(t+1)

1 ϵ
(t+1)
θ (xt+1), k ∈ [0, .., T] (3.6)
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This defines a “fully-lower-triangular” inference process, where the update of xt depends on the noise
prediction network ϵθ applied to all subsequent states xt+1:T ; in contrast to the traditional diffusion
process, which updates xt based only on xt+1. Specifically, let h(·) represent the function that performs
the operations in the equations Eq. (3.6) for a latent xt at timestep t, and let h̃(·) represent the function
that performs the same set of operations across all the timesteps simultaneously. We can write the
above set of equations as a fixed point system:

xT−1

xT−2
...

x0

 =


h(xT)

h(xT−1:T)
...

h(x1:T)


or,

x0:T−1 = h̃(x0:T−1; xT) (3.7)

The above system of equations represent a DEQ with xT ∼ N (0, I) as input injection. We can
simultaneously solve for the roots of this system of equations using black-box solvers such as Anderson
acceleration [Anderson, 1965]. Let g(x0:T−1; xT) = h̃(x0:T−1; xT)− x0:T−1, then we have

x∗0:T = RootSolver(g(x0:T−1; xT)) (3.8)

This DEQ formulation has multiple benefits. Solving for all the equilibria simultaneously leads to a
better estimation of the intermediate latent states xt in a fewer number of steps (i.e., ≤ t steps for xt).
This leads to faster convergence of the sampling process as the final sample x0, which is dependent on
the latent states of all the previous time steps, has a better estimate of these intermediate latent states.
Note that by the same reasoning, the intermediate latent states xt converge faster too. Thus, we can
get images with perceptual quality comparable to DDIM in a significantly fewer number of steps. Of
course, we also note that the computational requirements of each individual step has significantly
increased, but this is at least largely offset by the fact that the steps can be executed as mini-batched in
parallel over each state. Empirically, in fact, we often notice significant speedup using this approach on
tasks like single image generation.

3.2.2 DEQ-sDDIM: A DEQ Formulation for Stochastic Generative Process

We now extend the formulation for deterministic DDIM to a more general case for σt ̸= 0.

Rearranging the terms in Eq. (3.1), we get

xt−1 =

√
αt−1

αt
xt +

√1− αt−1 − σ2
t −

√
αt−1(1− αt)

αt

 ϵ
(t)
θ (xt) + σtϵt (3.9)

Let c(t)1 =
√

1− αt−1 − σ2
t −

√
αt−1(1− αt)

αt
. Then we can write

xt−1 =

√
αt−1

αt
xt + c(t)1 ϵ

(t)
θ (xt) + σtϵt (3.10)
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By induction, we can rewrite the above equation as:

xT−k =

√
αT−k
αT

xT +
T−1

∑
t=T−k

√
αT−k

αt

(
c(t+1)

1 ϵ
(t+1)
θ (xt+1) + σt+1ϵt+1

)
, k ∈ [0, .., T] (3.11)

This again defines a “fully-lower-triangular” inference process, where the update of xt depends on the
noise prediction network ϵθ applied to all subsequent states xt+1:T .

Following the notation used in the main paper, let h(·) represent the function that performs the
operations in the equations Eq. (3.11) for a latent xt at timestep t, let h̃(·) represent the function that
performs the same set of operations across all the timesteps simultaneously, and let ϵ1:T represent the
noise injected into the diffusion process at every timestep. We can write the above set of equations as a
fixed point system: 

xT−1

xT−2
...

x0

 =


h(xT ; ϵT)

h(xT−1:T ; ϵT−1:T)
...

h(x1:T ; ϵ1:T)


or,

x0:T−1 = h̃(x0:T−1; xT , ϵ1:T) (3.12)

The above system of equations represent a DEQ with xT and ϵ1:T as an input injection. We refer to this
formulation of DEQ for stochastic DDIM with η > 0 as DEQ-sDDIM.

A major difference between Eq. (3.7) in Sec. 3.2.1 and the above derivation is that DEQ-sDDIM
can exploit the noises ϵ1:T sampled prior to fixed point solving as addition input injections. The
insight here is that the noises along the sampling chain are independent of each other, thus allowing
us to sample all the noises simultaneously and convert a highly stochastic autoregressive sampling
process into a deterministic “fully-lower-triangular” DEQ. As usual, we can now use black-box
solvers like Anderson acceleration [Anderson, 1965] to solve the roots of this system of equations. Let
g(x0:T−1; xT , ϵ1:T) = h̃(x0:T−1; xT , ϵ1:T)− x0:T−1, then we have

x∗0:T = RootSolver(g(x0:T−1); xT , ϵ1:T) (3.13)

where RootSolver(·) is any black-box fixed point solver.

3.3 Efficient Model Inversion of DDIM with DEQ

One of the primary strengths of DEQs is their constant memory consumption, for both forward pass
and backward pass, regardless of their ‘effective depth’. This leads to an interesting application of
DEQs in inverting DDIMs that fully leverages this advantage along with the other benefits discussed
in the previous section.
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Algorithm 1 A naive algorithm to invert DDIM

Input: A target image x0 ∼ D, ϵθ(xt, t) a trained
denoising diffusion model, N the total number
of epochs
▷ f denotes the sampling process in Eq Eq. (3.3)
Initialize x̂T ∼ N (0, I)
for epochs from 1 to N do

for t = T, ..., 1 do
Sample x̂t−1 = f (x̂t; ϵθ(x̂t, t))

end for
Take a gradient descent step on

∇x̂T∥x̂0 − x0∥2
F

end for
Output: x̂T

Algorithm 2 Inverting DDIM with DEQ

Input: A target image x0 ∼ D, ϵθ(xt, t) a trained
denoising diffusion model, N the total number
of epochs
▷ g is the function in Eq. Eq. (3.8)
Initialize x̂0:T ∼ N (0, I)
for epochs from 1 to N do

▷ Disable gradient computation
x∗0:T = RootSolver(g(x0:T−1); xT)

▷ Enable gradient computation
Compute Loss L(x0, x∗0)
Use the 1-step grad to compute ∂L/∂xT

Take a gradient descent step using above
end for

Output: x∗T

3.3.1 Problem Setup

Given an arbitrary image x0 ∼ D, and a denoising diffusion model ϵθ(xt, t) trained on a dataset D,
model inversion seeks to determine the latent x̂T ∼ N (0, I) that can generate an image x̂0 identical
to the original image x0 through the generative process for DDIM described in Eq. Eq. (3.3). For an
input image x0, and a generated image x̂0, this task needs to minimize the squared-Frobenius distance
between these images:

L(x0, x̂0) = ∥x0 − x̂0∥2
F (3.14)

3.3.2 Inverting DDIM: A Naive Approach

A relatively straightforward way to invert DDIM is to randomly sample xT ∼ N (0, I) and update it via
gradient descent by first estimating x0 using the generative process in Eq. (3.3) and backpropagating
through this process after computing the loss objective in Eq. (3.14). The overall process has been
summarized in Algorithm 1. This process has a large computational overhead. Every training epoch
requires sequential sampling for all T time steps. Optimizing through this generative process would
require the creation of a large computational graph for storing relevant intermediate variables necessary
for the backward pass. Sequential sampling further slows down the entire process.

3.3.3 Efficient Inversion of DDIM with DEQs

Alternatively, we can use the DEQ formulation to develop a much more efficient inversion method.
We provide a high-level overview of this approach in Algorithm 2. We can apply implicit function
theorem (IFT) to the fixed point, i.e., Eq. (2.3) to compute gradients of the loss L(x0, x∗0) in Eq. (3.14)
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w.r.t. (·):
∂L
∂(·) = − ∂L

∂x∗0:T

(
J−1
gθ

∣∣
x∗0:T

) ∂h̃(x∗0:T−1; xT)

∂(·) (3.15)

where (·) could be any of the latent states x1, ..., xT , and J−1
gθ

∣∣
x∗0:T

is the inverse Jacobian of g(x0:T−1; xT)

evaluated at x∗0:T . Refer to Bai et al. [2019] for a detailed proof. Computing the inverse of Jacobian matrix
can become computationally intractable, especially when the latent states xt are high-dimensional,
as in images. Recent works [Geng et al., 2021a, Fung et al., 2021, Geng et al., 2021b, Bai et al., 2022]
suggest that we do not need an exact gradient to train DEQs. We can instead use an approximation to
Eq. (3.15), i.e.,

∂L
∂(·) = − ∂L

∂x∗0:T
M

∂h̃(x∗0:T−1; xT)

∂(·) (3.16)

where M is an approximation of J−1
gθ

∣∣
x∗0:T

. For example, [Geng et al., 2021a, Fung et al., 2021, Geng et al.,
2021b] show that setting M = I, i.e., 1-step gradient, works well. In this work, we follow Geng et al.
[2021b] to further add a damping factor to the 1-step gradient. The forward pass is given by:

x∗0:T = RootSolver(g(x0:T−1); xT) (3.17)

x∗0:T = τ · h̃(x∗0:T−1; x∗T) + (1− τ) · x∗0:T (3.18)

The gradients for the backward pass can be computed through standard autograd packages. We
provide the PyTorch-style pseudocode of our approach in Algorithm 4. Using inexact gradients for the
backward pass has several benefits: 1) It remarkably improves the training stability of DEQs; 2) Our
backward pass consists of a single step and is ultra-cheap to compute. It reduces the total training
time by a significant amount. It is easy to extend the strategy used in Algorithm 2 and use DEQs to
invert DDIMs with stochastic generative process (referred to as DEQ-sDDIM). We provide the key
steps of this approach in Algorithm 3.

Algorithm 3 Inverting stochastic DDIM with DEQ (DEQ-sDDIM)

Input: A target image x0 ∼ D, a trained denoising diffusion model ϵθ(xt, t), the total number of
epochs N, diffusion function g defined in Eq. (3.13)
Initialize x̂0:T ∼ N (0, I), ϵ1:T ∼ N (0, I)
for epochs from 1 to N do

x∗0:T−1 = RootSolver(g(x0:T−1); xT , ϵ1:T). ▷ Disable gradient computation
Compute Loss L(x0, x∗0). ▷ Enable gradient computation
Compute ∂L/∂xT using 1-step grad.
Update x̂T with gradient descent.

end for
Output: x∗T

3.4 Details of Experimental Setup

Datasets. We consider four datasets that have images of different resolutions for our experiments:
CIFAR10 (32×32) [Krizhevsky, 2009], CelebA (64×64) [Liu et al., 2015], LSUN Bedroom (256×256) and
LSUN Outdoor Church (256×256) [Yu et al., 2015].
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Algorithm 4 PyTorch-style pseudocode for inversion with DEQ-DDIM

# x0: a target image for inversion

# all_xt: all the latents in the diffusion chain or its subsequence; xT is at index 0, x0 is at the

last index

# func: A function that performs the required operations on the fixed-point system for a single

timestep

# solver: A fixed-point solver like Anderson acceleration

# optimizer: an optimization algorithm like Adam

# tau: the damping factor τ for phantom gradient

# num_epochs: the max number of epochs

def forward(func, x):

with torch.no_grad():

z = solver(func, x)

z = tau * func(z) + (1 - tau) * z

return z

def invert(func, all_xt, x0, optimizer, num_epochs):

for epoch in range(num_epochs):

optimizer.zero_grad()

xt_pred = forward(func, all_xt)

loss = (xt_pred[-1] - x0).norm(p=’fro’)

loss.backward()

optimizer.step()

return all_xt[0]

Model Architecture. We use the standard U-Net [Falk et al., 2019] architecture for ϵθ(xt, t) as used
previously in Ho et al. [2020], Song et al. [2020a]. We use pretrained models from Ho et al. [2020] for
CIFAR10, LSUN Bedrooms and Outdoor Churches, and from Song et al. [2020a] for CelebA.

DEQ solver details. For all the experiments, we use Anderson acceleration as the default fixed point
solver. While training DEQs for model inversion, we use the 1-step gradient Eq. (3.18) to compute the
backward pass. The damping factor τ for 1-step gradient is set to 0.1.

General setting. We follow the linear selection procedure to select a subsequence of timesteps τS ⊂ T
for all the datasets except CIFAR10, i.e., we select timesteps such that τi = ⌊ci⌋ for some c. For CIFAR10,
we select timesteps such that τi = ⌊ci2⌋ for some c. The constant c is selected so that τ−1 is close to
T. We use Anderson acceleration [Anderson, 1965] as our fixed-point solver for all the experiments.
We set the equilibrium error threshold of solver to 0.001 and set the history length to 5. We allow a
maximum of 15 solver forward steps in all the experiments with DEQ-DDIM, and use a maximum
of 50 solver forward steps for DEQ-sDDIM. Finally, we use PyTorch’s inbuilt DataParallel module
to handle parallelization. We use upto 4 NVIDIA Quadro RTX 8000 or RTX A6000 GPUs for all our
experiments.

Training details for model inversion. We implement and test the code in PyTorch version 1.11.0. We
use the Adam [Kingma and Ba, 2014] optimizer with a learning rate of 0.01. We train DEQs for 400
epochs on CIFAR10 and CelebA, and for 500 epochs on LSUN Bedroom, and LSUN Outdoor Church.
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The baseline is trained for 1000 epochs on CIFAR10 with T = 100, for 3000 epochs on CIFAR10 with
T = 10, for 2500 epochs on CelebA, and for 2000 epochs on LSUN Bedroom, and LSUN Outdoor
Church. At the beginning of inversion procedure with DEQ-DDIM, we sample xT ∼ N (0, I), and
initialize the latents at all (or the subsequence of) timesteps to this value. For inversion with DEQ-
sDDIM we also sample ϵ1:T ∼ N (0, I). We stop the training as soon as the loss falls below 0.5 for
CIFAR10, and below 2 for other datasets.

Evaluation. We compute Fréchet Inception Distance (FID) [Heusel et al., 2017] scores using the code
provided by https://github.com/w86763777/pytorch-gan-metrics on 50, 000 images. We also use
the precomputed statistics for CIFAR10, LSUN Bedrooms and Outdoor Churches provided in this
github repository. For CelebA, we compute our own dataset statistics, as the precomputed statistics
for images of resolution 64×64 are not included in this repository. While computing the statistics, we
preprocess the images of CelebA in exactly the same way as done by Song et al. [2020a].

3.5 Convergence Properties

3.5.1 Convergence of DEQ-DDIM

We verify that DEQ-DDIM converges to a fixed point by plotting the values of ∥h̃(x0:T)− x0:T∥2 over
Anderson solver steps. As seen in Figure 3.1, DEQ-DDIM converges to a fixed point for generative
processes of different lengths. It is easier to reach simultaneous equilibria on smaller sequence lengths
than larger sequence lengths. However, this does not affect the quality of images generated. We
visualize the latent states of DEQ-DDIM in Figure 3.2. Our experiments demonstrate that DEQ-DDIM
is able to generate high-quality images in as few as 15 Anderson solver steps on diffusion chains
that were trained on a much larger number of steps T. One might note that DEQ-DDIM converges
to a limit cycle for diffusion processes with larger sequence lengths. This is not a limitation as we
only want the latent states at the last few timesteps to converge well, which happens in practice as
demonstrated in Fig. 3.2. Further, these residuals can be driven down by using more powerful solvers
like quasi-Newton methods, e.g., Broyden’s method.

3.5.1.1 Effects of choice of initialization on convergence of DEQ-DDIM.

The choice of initialization is critical for fast convergence of DEQs. Bai et al. [2019] initialize the initial
estimate of the fixed point of DEQ with zeros. However, in this work, we initialize all latent states with
xT ∼ N (0, I), as it results in a faster convergence as shown in Figure 3.3. Although both initialization
schemes eventually converge to high quality images, we observe that initializing with xT results in
up to 3× faster convergence compared to zero initialization. We observe a significant qualitative
difference in the visualization of the intermediate states of the diffusion chain at different solver steps
for the two initialization schemes, as observed in Figure 3.4.
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Figure 3.1: DEQ-DDIM finds an equilibrium point. We plot the absolute fixed-point convergence
∥h̃(x0:T)− x0:T∥2 during a forward pass of DEQ for CIFAR-10 (left) and CelebA (right) for different
number of steps T. The shaded region indicates the maximum and minimum value encountered
during any of the 25 runs.

Figure 3.2: Visualization of intermediate latents xt of DEQ-DDIM after 15 forward steps with Anderson
solver for CIFAR-10 (first row, T = 500), CelebA (second row, T = 500), LSUN Bedroom (third row,
T = 50, and LSUN Outdoor Church (fourth row, T = 50). For T = 500, we visualize every 50th latent,
and for T = 50, we visualize every 5th latent. In addition, we also visualize x0:4 in the last 5 columns.

Figure 3.3: Choice of initialization is critical in DEQs: Initializing DEQs with xT ∼ N (0, I) results
in much faster convergence compared to zero initialization. We report the convergence results on
CIFAR10 using 5 runs on diffusion chains of length 50.
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Figure 3.4: Visualization of intermediate latents xt for CelebA for different choices of initialization for
T = 50: (first row) Initialization with xT after 10 Anderson solver steps (second row) Zero initialization
after 10 Anderson solver steps (third row) Zero initialization after 30 Anderson solver steps. We
visualize every 5th latent in x0:T−1 at the given solver step (10 or 30). We also visualize x0:4 in the last 5
columns. Initialization with xT produces visually appealing images much faster.

3.5.2 Convergence of DEQ-sDDIM

We verify that our DEQ version for stochastic DDIM converges to a fixed point for different levels of
stochasticity, indicated by parameter η, by plotting values of ∥h̃(x0:T)− x0:T∥2 over Anderson solver
steps in Figure 3.5. As one would expect, we need more solver steps to solve for the fixed point given
higher values of η.

Figure 3.5: DEQ-sDDIM finds an equilibrium point. We plot the absolute fixed-point convergence
∥h̃(x0:T)− x0:T∥2 during a forward pass of DEQ for CelebA (left) and LSUN Bedrooms (right) for dif-
ferent number of steps T. The shaded region indicates the maximum and minimum value encountered
during any of the 10 runs.

3.6 Results of Parallel Sampling with DEQs

Results for DEQ-DDIM. We verify that DEQ-DDIM can generate images of comparable quality to
DDIM by reporting Fréchet Inception Distance (FID) [Heusel et al., 2017] in Table 3.1. For the forward
pass of DEQ-DDIM, we run Anderson solver for a maximum of 15 steps for each image. We report
FID scores on 50,000 images and average time to generate an image (including GPU time) on 500
images. We note significant gains in wall-clock time in single-shot image generation with DEQ-DDIM
on images with smaller resolutions. Specifically, DEQ-DDIM can generate images almost 2× faster
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than sequential DDIM sampling on CIFAR-10 (32×32) and CelebA (64×64). We note that these gains
vanish on sequences of shorter lengths. This is because the number of fixed point solver iterations
needed for convergence becomes comparable to the length of the diffusion chain for small values of
T. Thus, lightweight updates performed on short diffusion chains for sequential sampling are faster
compared to compute heavy updates in DEQ-DDIM.

Results for DEQ-sDDIM. We report FID scores on DEQ-sDDIM for CIFAR10 in Table 3.2 and CelebA
in Table 3.3. We run Anderson solver for a maximum of 50 steps for each image. We observe that
while DEQ-sDDIM is slower than DDIM, it always generates images with comparable or better FID
scores. For higher levels of stochasticity i.e., for larger values of η, DEQ-sDDIM needs more Anderson
solver iterations to converge to a fixed point, increasing image generation wall clock time. Finally,
we also find that on full batch inference with larger batches, sequential sampling could outperform
DEQ-DDIM, as the latter would have larger memory requirements in this case, i.e., processing smaller
batches of size B might be faster than processing larger batches of size BT.

Dataset T
DDPM DDIM DEQ-DDIM

FID Time FID Time FID Time

CIFAR10 1000 3.17 24.45s 4.07 20.16s 3.79 2.91s
CelebA 500 5.32 14.95s 3.66 10.31s 2.92 5.12s

LSUN Bedroom 25 184.05 1.72s 8.76 1.19s 8.73 3.82s
LSUN Church 25 122.18 1.77s 13.44 1.68s 13.55 3.99s

Table 3.1: FID scores and time for single image generation for DDPM, DDIM and DEQ-DDIM.

η T
FID Scores Time (in seconds)

DDIM DEQ-sDDIM DDIM DEQ-sDDIM

0.2 20 7.19 6.99 0.33 0.51
0.5 20 8.35 8.22 0.35 0.51
1 20 18.37 17.72 0.34 0.93

0.2 50 4.69 4.44 0.88 0.88
0.5 50 5.26 4.99 0.83 1.00
1 50 8.02 7.85 0.83 1.58

Table 3.2: FID scores for single image generation for DDIM and DEQ-sDDIM on CIFAR10. Note that
DDPM Ho et al. [2020] with a larger variance achieves FID scores of 133.37∗ and 32.72∗ respectively for
T = 20 and T = 50, where ∗ indicates numbers reported from Song et al. [2020a]

.

3.7 Results of Model Inversion with DEQs

Results for DEQ-DDIM. We report the minimum values of squared Frobenius norm between the
recovered and target images averaged from 100 different runs in Table 3.4. We report results for DEQ
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η T
FID Scores Time (in seconds)

DDIM DEQ-sDDIM DDIM DEQ-sDDIM

0.2 20 13.85 13.52 0.42 1.53
0.5 20 15.67 15.27 0.42 2.17
1 20 25.85 25.31 0.42 2.35

0.2 50 9.33 8.66 1.05 4.17
0.5 50 10.75 9.73 1.05 5.18
1 50 18.22 15.57 1.05 8.59

Table 3.3: FID scores for single image generation using stochastic DDIM and DEQ-sDDIM on CelebA.
Note that DDPM with a larger variance achieves FID score of 183.83∗ and 71.71∗ on T = 20 and T = 50,
respectively, where ∗ indicates the numbers from Song et al. [2020a]

with η = 0 (i.e., DEQ-DDIM) in this table, and additional results for η > 0 (i.e., DEQ-sDDIM) are
reported in Figure 3.12. DEQ outperforms the baseline method on all the datasets by a significant
margin. We also plot the training loss curves of DEQ-DDIM and the baseline in Figure 3.6. We observe
that DEQ-DDIM converges faster and has much lower loss values than the baseline method induced
by DDIM. We also visualize the images generated with the recovered latent states for DEQ-DDIM
in Figure 3.7. It is worth noting that images generated with DEQs capture more vivid details of the
original images, like textures of foliage, crevices, and other finer details than the baseline. We include
additional results of model inversion with DEQ-sDDIM on different datasets in Sec. 3.9.

Dataset T
Baseline DEQ-DDIM

Min loss ↓ Avg Time (mins) ↓ Min loss ↓ Avg Time (mins) ↓

CIFAR10 100 15.74± 8.7 49.07± 1.76 0.76± 0.35 12.99± 0.97
CIFAR10 10 2.59± 3.67 14.36± 0.26 0.68± 0.32 2.54± 0.41
CelebA 20 14.13± 5.04 30.09± 0.57 1.03± 0.37 28.09± 1.76

Bedroom 10 1114.49± 795.86 26.41± 0.17 36.37± 22.86 33.7± 1.05
Church 10 1674.68± 1432.54 29.7± 0.75 47.94± 24.78 33.54± 3.02

Table 3.4: Comparison of minimum loss and average time required to generate an image. All the
results have been reported on 100 images.

Results for DEQ-sDDIM. We report the minimum values of squared Frobenius norm between
the recovered and target images averaged from 25 different runs in Figure 3.12. We use the same
hyperparameters as the ones used for training DEQ models for DDIM in these experiments. DEQ-
sDDIM is able to achieve low values of the reconstruction loss even for large values of η like 1 as noted
in Figure 3.12. We also plot training loss curves for different values of η in Figure 3.11 on CIFAR10. We
note that it indeed takes longer time to invert DEQ-sDDIM for higher values of η. This is primarily
because the fixed point solver needs more iterations to converge. However, despite that we obtain
impressive model inversion results on CIFAR10 and CelebA. We visualize images generated with the
recovered latent states in Figure 3.8, Figure 3.9 and Figure 3.10.
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Figure 3.6: Training loss for CelebA and LSUN Bedroom over epochs. DEQ-DDIM converges in fewer
epochs, and achieves lower values of loss compared to the baseline. The shaded region indicates the
maximum and minimum value of loss encountered during any of the 100 runs.

Figure 3.7: Model inversion on CIFAR10, CelebA, LSUN Bedrooms and Churches, respectively. Each
triplet has the original image (left), DDIM’s inversion (middle), and DEQ-DDIM’s inversion (right).

Figure 3.8: Model inversion of DEQ-sDDIM on CIFAR10, CelebA, LSUN Bedrooms and Churches,
respectively. Each triplet displays the original image (left), and images obtained through inversion
with DEQ-sDDIM for η = 0.5 (middle), and η = 1 (right).
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Figure 3.9: Results of model inversion of DEQ-sDDIM on CIFAR10: For every set of four images from
left to right we display the original image, and images obtained through inversion for η = 0, η = 0.5,
and η = 1.

Figure 3.10: Results of model inversion of DEQ-sDDIM on CelebA: For every set of four images from
left to right we display the original image, and images obtained through inversion for η = 0, η = 0.5,
and η = 1.

Figure 3.11: Training loss of inver-
sion for DEQ-sDDIM on CIFAR10 av-
eraged over 25 different runs

Dataset T η Min loss Epochs

CIFAR10 10 0 0.76± 0.35 400
CIFAR10 10 0.5 0.49± 0.001 600
CIFAR10 10 1 6.64± 3.45 1000

CelebA 20 0 0.41± 0.07 1500
CelebA 20 0.5 1.57± 1.63 1500
CelebA 20 1 5.03± 1.57 1500

Figure 3.12: Minimum loss for inversion with DEQ-sDDIM

3.8 Ablation Studies for Model Inversion with DEQ-DDIM

3.8.1 Effect of length of sampling chain

3.8.1.1 Effect of length of subsequence τS during training

We study the effect of the length of the diffusion chain on the convergence rate of optimization for
model inversion in Fig. 3.13. We note that for sequential sampling, loss decreases slightly faster for the
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smaller diffusion chain (τS = 10 and 20) than the longer one (τS = 100) for the baseline. However, for
DEQ-DDIM, the length of diffusion chain doesn’t seem to have an effect on the rate of convergence as
the loss curves for τS = 100 and τS = 10 and 20 are nearly identical.

Figure 3.13: Effect of length of diffusion chain on optimization process for model inversion with
DEQ-DDIM. We display training loss curves for (left) baseline and (right) DEQ for CIFAR10 (top row)
and CelebA (bottom row). It is slightly easier to optimize smaller diffusion chain for the Baseline. The
error bar indicates the maximum and minimum value of loss encountered during any of the 100 runs
for CIFAR10, and 25 runs for CelebA.

3.8.1.2 Effect of length of subsequence τS during sampling

All the images in Fig. 3.7 are sampled with a subsequence of timesteps τS ⊂ T, i.e., the number of
latents in the diffusion chain used for training and the number of timesteps used for sampling an
image from the recovered x̂T were equal. We investigate if sampling with τS = T = 1000 results in
images with a better perceptual quality for the baseline. We display the recovered images for LSUN
Bedrooms in Fig. 3.14. The length of diffusion chain during training time is τS = 10. We note that
using more sampling steps does not result in inverted images that are closer to the original image. In
some cases, samples generated with more sampling steps have some additional artifacts that are not
present in the original image.

3.8.2 Comparison of exact vs inexact gradients for backward pass of DEQ-DDIM

The choice of gradient calculation for the backward pass of DEQ affects both the training stability and
convergence of DEQ-DDIM. Here, we compare the performance of the exact gradients and inexact
gradients. Computing the inverse of Jacobian in Eq. (3.15) is difficult because the Jacobian can be
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Figure 3.14: Model inversion on LSUN Bedrooms (Baseline): Using more sampling steps does not
generate images that are closer to the ground truth image. Each triplet has the original image (left),
images sampled with T = 10 (middle) and T = 1000 (right). The length of diffusion chain at training
time was 10.

prohibitively large. We follow Bai et al. [2019] to compute exact gradients using the following linear
system (

J−1
gθ

∣∣
x∗0:T

)
v⊤ +

(
∂L

∂x∗0:T

)⊤
= 0 (3.19)

We use Broyden’s method [Broyden, 1965] to efficiently solve for v⊤ in this linear system. We compare
it againt inexact gradients i.e., Jacobian free gradient used in Algorithm 2. We observe that training
DEQ-DDIM with exact gradients becomes increasingly unstable as the training proceeds, especially
for larger learning rates like 0.005. However, we can converge faster with larger learning rates like 0.01
with inexact gradients.

Figure 3.15: Training DEQ-DDIM becomes increasingly unstable with exact gradients for larger
learning rates like 0.005 (left, blue curve). However, it is possible to train DEQ-DDIM with exact
gradients for smaller learning rate like 0.001 (left, orange curve). However, inexact gradients (right,
orange curve) converge faster than exact gradients (right, blue curve) on larger learning rates like 0.01.
We report results on 10 runs for CelebA dataset with diffusion chains of length 20.
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3.9 Additional Qualitative Results for Model Inversion

We provide additional qualitative results of model inversion with DDIM for CIFAR-10 in Figure 3.16,
CelebA in Figure 3.17, LSUN Churches in Figure 3.19, and LSUN Bedrooms in Figure 3.18.

Figure 3.16: Model inversion on CIFAR10. Each triplet has the original image (left), DDIM’s inversion
(middle), and DEQ’s inversion (right). The number of sampling steps for all the images is T = 100.

3.10 Discussion

In this chapter, we propose an approach to elegantly unify diffusion models and deep equilibrium
(DEQ) models. We model the entire sampling chain of the denoising diffusion implicit model (DDIM)
as a joint, multivariate (deep) equilibrium model. This setup replaces the traditional sequential
sampling process with a parallel one, enabling us to enjoy the speedup obtained from multiple GPUs.
In addition, we can leverage inexact gradients to optimize the entire sampling chain quickly, which
results in significant gains in model inversion. We demonstrate the advantages of this approach on 1)
single-shot image generation, where we were able to obtain FID scores on par with or slightly better
than those of DDIM; and 2) model inversion, where we achieved much faster convergence. We also
propose an easy way to extend DEQ formulation for deterministic DDIM to its stochastic variants.
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Figure 3.17: Model inversion on CelebA. Finer details like hair, background, and texture of skin are
better captured by DEQ. Each triplet has the original image (left), DDIM’s inversion (middle), and
DEQ’s inversion (right). The number of sampling steps for all the generated images is T = 10.
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Figure 3.18: Model inversion on LSUN Bedrooms. Each triplet has the original image (left), DDIM’s
inversion (middle), and DEQ-DDIM’s inversion (right). The number of sampling steps for all the
generated images is T = 10.
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Figure 3.19: Model inversion on LSUN Outdoor Churches. Each triplet has the original image (left),
DDIM’s inversion (middle), and DEQ-DDIM’s inversion (right). The number of sampling steps for all
the generated images is T = 10.

Figure 3.20: Visualization of model inversion on CIFAR10. The first column is the original image
and the last column is the final generated image after 1000 steps for the baseline, and 500 steps for
DEQ-DDIM. The 6 columns in between contain images sampled from xT after n training updates
where n is 0 (initialization), 1, 50, 100, 150, and 200 for DEQ-DDIM (first row) and baseline (second
row).
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Figure 3.21: Visualization of model inversion on LSUN Bedrooms. The first column is the original
image and the last column is the final generated image after 2000 steps for the baseline, and 500 steps
for DEQ-DDIM. The 6 columns in between contain images sampled from xT after n training updates
where n is 0 (initialization), 1, 50, 100, 150, and 200 for DEQ-DDIM (first row) and baseline (second
row).

Figure 3.22: Visualization of model inversion on LSUN Churches. The first column is the original
image and the last column is the final generated image after 2000 steps for the baseline, and 500 steps
for DEQ-DDIM. The 6 columns in between contain images sampled from xT after n training updates
where n is 0 (initialization), 1, 50, 100, 150, and 200 for DEQ-DDIM (first row) and baseline (second
row).
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Chapter 4

One-Step Diffusion Distillation with
Deep Equilibrium Models

In the previous chapter, we leveraged Deep Equilibrium models (DEQs) for parallel sampling of
diffusion models, as well as efficient differentiation through the diffusion sampling chain. Although
parallel sampling indeed helps with faster sampling, this method is completely training-free. In this
chapter, we will instead look at another approach for faster sampling of diffusion models, namely
distillation, which requires training another model but achieves much faster sampling speeds compared
to training-free fast samplers. Inspired by prior work in distillation of deep neural networks [Hinton
et al., 2015] as well as in the distillation of diffusion models [Luhman and Luhman, 2021], we propose
a method for offline distillation of diffusion models that can directly predict an image from the
initial Gaussian noise. Of particular importance to our approach is to leverage a new DEQ model
as the distilled architecture: the Generative Equilibrium Transformer (GET) which we introduce in
Sec. 4.2. Our method achieves superior performance compared to prior approaches for one-step
image generation such as Salimans and Ho [2022], Luhman and Luhman [2021], Meng et al. [2022] on
comparable training budgets. This chapter is based on Geng et al. [2023].

4.1 Preliminaries

In this section, we provide an overview of continuous-time diffusion models and some techniques to
distill these models. We refer the reader to Sec. 2.1 and Sec. 2.2.1for a detailed overview of DEQs.

4.1.1 Distillation Techniques for Diffusion Models

Distillation methods draw inspiration from knowledge distillation [Hinton et al., 2015] and are perhaps
the most widespread training-based approach to accelerate the diffusion sampling process. In diffusion
distillation, a pretrained diffusion model (DM), which requires hundreds to thousands of model
evaluations to generate samples, acts as a teacher. A student model is trained to match the teacher
model’s sample quality, enabling it to generate high-quality samples in a few steps.
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There are two main lines of work in this area. The first category involves trajectory matching, where the
student learns to match points on the teacher’s sampling trajectory. Methods in this category include
offline distillation [Luhman and Luhman, 2021, Zheng et al., 2022], which requires an offline synthetic
dataset generated by sampling from a pre-trained DM to distill a teacher model into a few-step student
model; progressive distillation [Salimans and Ho, 2022, Meng et al., 2022], and TRACT [Berthelot
et al., 2023], which require multiple training passes or offline datasets to achieve the same goal; and
BOOT [Gu et al., 2023], Consistency Distillation (CD)[Song et al., 2023], and Imagine-Flash [Kohler
et al., 2024], which minimize the difference between student predictions at carefully selected points on
the sampling trajectory.

The second category minimizes the probabilistic divergence between the data and model distributions,
i.e., distribution matching [Poole et al., 2022, Wang et al., 2024b, Luo et al., 2024, Yin et al., 2023, Zhou
et al., 2024b]. These methods [Luo et al., 2024, Yin et al., 2023, Nguyen and Tran, 2023, Sauer et al.,
2023, Kohler et al., 2024, Xu et al., 2023b, Lin et al., 2024, Zhou et al., 2024a] use score distillation or
adversarial loss to distill an expensive teacher model into an efficient student model. However, they
can be challenging to train in a stable manner because of the alternating updating schemes from either
adversarial or score distillation. Some of these methods, such as DreamFusion [Poole et al., 2022] and
ProlificDreamer [Wang et al., 2024b] are used for 3D object generation.

This work falls into the first category, where we first create an offline dataset of noise-image pairs from
a pre-trained teacher diffusion model and then train a student model on these pairs to predict image
directly from noise.

4.2 Generative Equilibrium Transformer (GET): An Architectural
Overview

We introduce the Generative Equilibrium Transformer (GET), a Deep Equilibrium (DEQ) vision trans-
former designed to distill diffusion models into generative models that are capable of rapidly sampling
images using only a single model evaluation. Our approach builds upon the key components and best
practices of the classic transformer [Vaswani et al., 2017a], the Vision transformer (ViT) [Dosovitskiy
et al., 2021], and the Diffusion transformer (DiT) [Peebles and Xie, 2022]. We will now describe each
component of the GET in detail.

GET. Generative Equilibrium Transformer (GET) directly maps Gaussian noises e and optional
class labels y to images x̃. The major components of GET include an injection transformer (InjectionT,
Eq. (4.2)) and an equilibrium transformer (EquilibriumT, Eq. (4.3)). The InjectionT transforms tokenized
noise embedding h to an intermediate representation n that serves as the input injection for the
equilibrium transformer. The EquilibriumT, which is the equilibrium layer, solves for the fixed point
z⋆ by taking in the noise injection n and an optional class embedding c. Finally, this fixed point z⋆ is
decoded and rearranged to generate an image sample x̃ (Eq. (4.4)). Figure 4.1 provides an overview of
the GET architecture. Note that because we are directly distilling the entire generative process, there is
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Figure 4.1: Generative Equilibrium Transformer (GET). (Left) GET consists of two major components:
Injection transformer and Equilibrium transformer. The Injection transformer transforms noise em-
beddings into an input injection for the Equilibrium transformer. The Equilibrium transformer is the
equilibrium layer that takes in noise input injection and an optional class embedding and solves for
the fixed point. (Right) Details of transformer blocks in the Injection transformer (Inj) and Equilibrium
transformer (DEQ), respectively. Blue dotted boxes denote optional class label inputs.
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no need for a time embedding t as is common in standard diffusion models.

h, c = Emb (e) , Emb (y) ; if y /∈ ∅ (4.1)

n = InjectionT (h, c) (4.2)

z⋆ = EquilibriumT (z⋆, n, c) (4.3)

x̃ = Decoder (z⋆) (4.4)

Noise Embedding. GET first converts an input noise e ∈ RH×W×C into a sequence of 2D patches
p ∈ RN×(P2·C), where C is the number of channels, P is the size of patch, H and W denotes height
and width of the original image, and N = HW/P2 is the resulting number of patches. Let D = P2 · C
denote the width of the network. We follow ViT to use a linear layer to project the N patches to
D dimensional embedding. We add standard sinusoidal position encoding [Vaswani et al., 2017a]
to produce the noise embedding h. Position encoding plays a crucial role in capturing the spatial
structure of patches by encoding their relative positional information.

InjectionT & EquilibriumT. Both InjectionT and EquilibriumT are composed of a sequence of
Transformer blocks. InjectionT is called only once to produce the noise injection n, while EquilibriumT
defines the function f of the implicit layer z⋆ = f(z⋆, n, c) that is called multiple times—creating a
weight-tied computational graph—until convergence. A linear layer is added at the end of InjectionT
to compute the noise injection nl ∈ RN×3D, l ∈ [Le], for each of the Le GET blocks in EquilibriumT.
For convenience, we overload the notation nl and n, in the following paragraphs.

Transformer Block. GET utilizes a near-identical block design for the noise injection (InjectionT)
and the equilibrium layer (EquilibriumT), differing only at the injection interface. Specifically, the
transformer block is built upon the standard Pre-LN transformer block [Xiong et al., 2020, Dosovitskiy
et al., 2021, Peebles and Xie, 2022], as shown below:

z = z + Attention (LN (z) , u)

z = z + FFN (LN (z))

Here, z ∈ RN×D represents the latent token, u ∈ RN×3D is the input injection, LN, FFN, and Attention
stand for Layer Normalization [Ba et al., 2016a], a 2-layer Feed-Forward Network with a hidden
dimension of size D × E, and an attention [Vaswani et al., 2017a] layer with an injection interface,
respectively.

For blocks in the injection transformer, u is equal to the class embedding token c ∈ R1×3D for
conditional image generation, i.e., , u = c for conditional models, and u = 0 otherwise. In contrast, for
blocks in the equilibrium transformer, u is the broadcast sum of noise injection n ∈ RN×3D and class
embedding token c ∈ R1×3D, i.e., u = n + c for conditional models and u = n otherwise.

We modify the standard transformer attention layer to incorporate an additive injection interface
before the query q ∈ RN×D, key k ∈ RN×D, and value v ∈ RN×D,

q, k, v = zWi + u

z = MHA (q, k, v)

z = zWo
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where Wi ∈ RD×3D, Wo ∈ RD×D. The injection interface enables interactions between the latent
tokens and the input injection in the multi-head dot-product attention (MHA) operation,

qk⊤ = (zWq + uq)(zWk + uk)
⊤ = zWqW⊤k z⊤ + zWqu⊤k + uqW⊤k z⊤ + u⊤q uk, (4.5)

where Wq, Wk ∈ RD×D are slices from Wi, and uq, uk ∈ RN×D are slices from u. This scheme adds no
more computational cost compared to the standard MHA operation, yet it achieves a similar effect as
cross-attention and offers good stability during training.

Image Decoder. The output of the GET-DEQ is first normalized with Layer Normalization Ba et al.
[2016a]. The normalized output is then passed through another linear layer to generate patches
p̄ ∈ RN×D. The resulting patches p̄ are rearranged back to the resolution of the input noise e to
produce the image sample x̃ ∈ RH×W×C. Thus, the decoder maps the features back to the image space.

4.3 Details of Experimental Setup and Methodology

4.3.1 Data Collection

For unconditional image generation on CIFAR-10 [Krizhevsky, 2009], we generate 1M noise/im-
age pairs from the pretrained unconditional EDM [Karras et al., 2022]. This dataset is denoted as
EDM-Uncond-1M. As in EDM, we sample 1M images using Heun’s second-order deterministic solver [As-
cher and Petzold, 1998]. Generating a batch of images takes 18 steps or 35 NFEs (Number of Function
Evaluations). Overall, this dataset takes up around 29 GB of disk space. The entire process of data gen-
eration takes about 4 hours on 4 NVIDIA A6000 GPUs using PyTorch [Paszke et al., 2019] Distributed
Data Parallel (DDP) and a batch size of 128 per GPU. In addition to unconditional image generation,
we sample 1M noise-label/image pairs from the conditional VP-EDM [Karras et al., 2022] using the
same settings. This dataset is denoted as EDM-Cond-1M. Both the datasets will be released for future
studies.

4.3.2 Details of Offline Distillation

We distill a pretrained EDM [Karras et al., 2022] into ViTs and GETs by training on a dataset D with
noise/image pairs sampled from the teacher diffusion model using a reconstruction loss:

L(θ) = Ee,x∼D∥x− Gθ(e)∥1

where x is the desired ground truth image, Gθ(·) is unconditional ViT/GET with parameters θ, and e
is the initial Gaussian noise. To train a class-conditional GET, we also use class labels y in addition to
noise/image pairs:

L(θ) = Ee,y,x∼D∥x− Gc
θ(e, y)∥1

where Gc
θ(·) is class-conditional ViT/GET with parameters θ. As is the standard practice, we also

maintain an exponential moving average (EMA) of weights of the model, which in turn is used at
inference time for sampling.
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Figure 4.2: Data and Parameter Efficiency of GET:(a) (Left) GET outperforms PD and a 5× larger ViT
in fewer iterations, yielding better FID scores. Additionally, longer training times lead to improved
FID scores. (b) (Right) Smaller GETs can achieve better FID scores than larger ViTs, demonstrating
DEQ’s parameter efficiency. Each curve in this plot connects models of different sizes within the same
model family at identical training iterations, as indicated by the numbers after the model names in the
legend.

4.3.3 Training Details and Evaluation Metrics

We use AdamW [Loshchilov and Hutter, 2017] optimizer with a learning rate of 1e− 4, a batch size
of 128 (denoted as 1×BS), and 800k training iterations, which are identical to Progressive Distillation
(PD) [Salimans and Ho, 2022]. For conditional models, we adopt a batch size of 256 (2×BS). No
warm-up, weight decay, or learning rate decay is applied. We convert input noise to patches of size
2× 2. We use 6 steps of fixed point iterations in the forward pass of GET-DEQ and differentiate
through it. For the O(1) memory mode, we utilize gradient checkpoint [Chen et al., 2016] for DEQ’s
computational graph. We measure image sample quality for all our experiments via Frechet inception
distance (FID) [Heusel et al., 2017] of 50k samples. We also report Inception Score (IS) [Salimans et al.,
2016] computed on 50k images. We include other relevant metrics such as FLOPs, training speed,
memory, sampling speed, and the Number of Function Evaluations (NFEs), wherever necessary.

4.4 Experimental Results

4.4.1 Data and Parameter Efficiency of GET

Models trained with offline distillation require high data efficiency to make optimal use of limited
training data sampled from pretrained diffusion models. DEQs have a natural regularization mecha-
nism due to weight-tying, which allows us to efficiently fit significantly compact data-efficient models
even in limited data settings. In Figure 4.2(a), we observe that even with a fixed and limited offline data
budget of 1M samples, GET achieves parity with online distilled EDM [Karras et al., 2022, Salimans
and Ho, 2022, Song et al., 2023] while using only half the number of training iterations. For comparison,
PD, TRACT, and CM use a much larger data budget of 96M, 256M, and 409.6M samples, respectively.
Moreover, GET is able to match the FID score of a 5× large ViT, suggesting substantial parameter
efficiency.
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Figure 4.3: (a) (Left) Sampling speed of GET: GET can sample faster than large ViTs, while achieving
better FID scores. The size of each individual circle is proportional to the model size. For GETs, we
vary the number of iterations in the Equilibrium transformer (2 to 6 iterations). The trends indicate
that GETs can improve their FID scores by using more compute. (b) (Right) Compute efficiency of
GET: Larger GET models use training compute more efficiently. For a given GET, the training budget
is calculated from training iterations. Refer to Table 4.2 for the exact size of GET models.

4.4.2 Sampling speed of GET

Figure 4.3(a) illustrates the sampling speed of both ViT and GET. A smaller GET (37.2M) can achieve
faster sampling than a larger ViT (302.6M) while achieving lower FID scores. GET can also improve
its FID score by increasing its test-time iterations in the Equilibrium transformer at the cost of speed.
Note that despite this trade-off, GET still outperforms larger ViT in terms of both sampling speed and
sample quality.

4.4.3 Results of One-step Image Generation with GET

We provide results for unconditional and class-conditional image generation on CIFAR-10 in Table 4.1
and Table 4.3, respectively. GET outperforms a much more complex distillation procedure—PD with
classifier-free guidance—in class-conditional image generation. GET also outperforms PD and KD in
terms of FID score for unconditional image generation. This effectiveness is intriguing, given that our
approach for offline distillation is relatively simpler when compared to other state-of-the-art distillation
techniques. We have outlined key differences in the experimental setup between our approach and
other distillation techniques in Table 4.4.

We also visualize random CIFAR-10 [Krizhevsky, 2009] samples generated by GET for both uncondi-
tional and class-conditional cases in Figure 4.4. GET can learn rich semantics and world knowledge
from the dataset, as depicted in the images. For instance, GET has learned the symmetric layout of
dog faces solely using reconstruction loss in the pixel space, as shown in Figure 4.4(b).
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Figure 4.4: Uncurated CIFAR-10 image samples generated by (Left) (a) unconditional GET and (Right)
(b) class-conditional GET. Each row corresponds to a class in CIFAR-10.

4.4.4 Scaling laws of Generative Equilibrium Transformer

Why Scaling laws for Implicit Models? As a prospective study, we preliminarily investigated the
scaling properties of Deep Equilibrium models using GET. The scaling law is an attractive property, as
it enables us to predict models’ performance at extremely large compute based on the performance of
tiny models. This predictive capability allows us to select the most efficient model given the constraints
of the available training budget [Brown et al., 2020b, Hoffmann et al., 2022, OpenAI, 2023]. Although
the scaling law for explicit networks has been extensively studied, its counterpart for implicit models
remains largely unexplored. Implicit models are different from explicit models, as they utilize more
computation through weight-tying under similar parameters and model designs. Therefore, it is
natural to question whether their scaling laws align with those of their explicit counterparts.

Scaling Model Size We conduct extensive experiments to understand the trends in sample quality
as we scaled the size of the GET model. Table 4.2 provides a summary of our findings on single-step
unconditional image generation. We find that even small GET models with 10-20M parameters can
generate images with sample quality on par with NAS-derived AutoGAN [Gong et al., 2019]. In
general, sample quality improves with the increase in model size.

Scaling Training Compute Our experimental results support the findings of Peebles and Xie [2022]
for explicit models (DiT) and extend them to implicit models. Specifically, for both implicit and
explicit models, larger models are better at exploiting training FLOPs. Figure 4.3 shows that larger
models eventually outperform smaller models when training compute increases. For implicit models,
there also exists a “sweet spot” in terms of model size under a fixed training budget, e.g., GET-Small
outperforms both smaller and larger GETs at 231 training GFLOPs. Furthermore, because of the internal
dynamics of implicit models, they can match a much larger explicit model in terms of performance
while using fewer parameters. This underscores the potential of implicit models as candidates for
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compute-optimal models [Hoffmann et al., 2022] with substantially better parameter efficiency. For
example, at 231 training GFLOPs, Figure 4.3(b) suggests that we should choose GET-Small (31.2M)
among implicit models for the best performance, which is much more parameter efficient and faster in
sampling than the explicit model with the best performance, ViT-L (302M), in this training budget.

Table 4.1: Generative performance on unconditional CIFAR-10.

Method NFE ↓ FID ↓ IS ↑

Diffusion Models

DDPM [Ho et al., 2020] 1000 3.17 9.46
Score SDE [Song et al., 2020b] 2000 2.2 9.89
DDIM [Song et al., 2020a] 10 13.36 -
LSGM [Vahdat et al., 2021] 147 2.10
FastDPM [Kong and Ping, 2021] 10 9.9
DPM-solver [Lu et al., 2022a] 10 4.7 -
DEIS [Zhang and Chen, 2023] 10 4.17 -
EDM [Karras et al., 2022] 35 2.04 9.84

GANs

StyleGAN2 [Karras et al., 2020b] 1 8.32 9.18
StyleGAN2 + ADA Karras et al. [2020a] 1 5.33 10.22
StyleGAN-XL [Sauer et al., 2022] 1 1.85 -

Diffusion Distillation

KD [Luhman and Luhman, 2021] 1 9.36 8.36
PD [Salimans and Ho, 2022] 1 9.12 -
DFNO [Zheng et al., 2022] 1 4.12 -
TRACT-EDM [Berthelot et al., 2023] 1 4.17 -
PD-EDM [Salimans and Ho, 2022, Song et al., 2023] 1 8.34 8.69
CD-EDM (LPIPS) Song et al. [2023] 1 3.55 9.48

Consistency Models

CT [Song et al., 2023] 1 8.70 8.49
CT [Song et al., 2023] 2 5.83 8.85

Ours

GET-Base 1 7.42 9.16
GET-Mini (LPIPS) 1 7.20 9.08
GET-Base 1 6.91 9.16
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Table 4.2: Generative performance of GETs on unconditional CIFAR-10.

Models Params NFE ↓ FID ↓ IS ↑

GET-Tiny 8.6M 1 15.19 8.37
GET-Mini 19.2M 1 10.72 8.69
GET-Small 37.2M 1 8.00 9.03
GET-Base 62.2M 1 7.42 9.16
GET-Base+ 83.5M 1 7.19 9.09

More Training

GET-Tiny-4×Iters 8.6M 1 11.47 8.64
GET-Base-2×BS 62.2M 1 6.91 9.16

4.4.5 Ablation Study

4.4.5.1 Benchmarking GET against ViT

Table 4.5 summarizes key metrics for unconditional image generation for ViT and GET. Our exper-
iments indicate that a smaller GET (19.2M) can generate higher-quality images faster than a much
larger ViT (85.2M) while utilizing less training memory and fewer FLOPs. GET also demonstrates
substantial parameter efficiency over ViTs as shown in Figure 4.2(b) where smaller GETs achieve better
FID scores than larger ViTs.

4.4.5.2 Comparison of Number of Function Evaluations of Teacher Model

Offline distillation requires significantly fewer number of function evaluations (NFEs) for the teacher
network compared to other online distillation methods. In the experimental setup used in this paper,
GET requires 35M overall NFEs for the teacher model, as we train on 1M data samples and use 35
NFEs to generate each data sample with EDM. In contrast, progressive distillation requires 179M NFEs
to get 1-step distilled student model. Using the hyperparameters reported in Salimans and Ho [2022],
PD with the DDIM model requires 13 passes of distillation. The initial 12 passes use 50K iterations,
and the last pass uses 100K iterations. Each step of PD uses 2 teacher model NFEs. Thus, the overall
number of NFEs from teacher models can be evaluated as 2× 128 (batch size) × (12 passes ×50K +
100K) = 179M samples. The number of NFEs of the teacher model increases to 1.433B if we assume
that each of 8 TPUs use a batch size of 128. Consistency distillation [Song et al., 2023] requires 409.6 M
teacher model NFEs (512 batch size × 800K iterations = 409.6M). In addition, perceptual loss requires
double NFEs as the teacher model.

4.4.5.3 Design choices for Class Conditioning

As both GET and ViT share the same class injection interface, we perform an ablation study on ViT. We
consider two types of input injection schemes for class labels: 1) additive injection scheme 2) injection
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Table 4.3: Generative performance on class-conditional CIFAR-10. w indicates the level of classifier
guidance.

Method NFE ↓ FID ↓ IS ↑

GANs

BigGAN [Brock et al., 2018] 1 14.73 9.22
StyleGAN2-ADA [Karras et al., 2020a] 1 2.42 10.14

Diffusion Models

DDIM [Meng et al., 2022] 2048 2.73 9.66
EDM [Karras et al., 2022] 35 1.79 -
NCSN++-G [Chao et al., 2022] 2000 2.25
EDM-G++ [Kim et al., 2022] 35 1.64 -

Diffusion Distillation

Guided Distillation (w = 0) [Meng et al., 2022] 1 8.34 8.63
Guided Distillation (w = 0.3) [Meng et al., 2022] 1 7.34 8.90
Guided Distillation (w = 1) [Meng et al., 2022] 1 8.62 9.21
Guided Distillation (w = 2) [Meng et al., 2022] 1 13.23 9.23

Ours

GET-Base 1 6.25 9.40

with adaptive layer normalization (AdaLN-Zero) as used in DiT [Peebles and Xie, 2022]. These results
are summarized in Table 4.6. Despite using almost the same parameters as unconditional ViT-B, the
class-conditional ViT-B using additive injection interface has an FID of 12.43 at 200k, while the ViT-B
w/ AdaLN-Zero class embedding [Peebles and Xie, 2022] set up an FID of 17.19 at 200k iterations.
Another surprising observation is that ViT-B w/ AdaLN-Zero class embedding performs worse than
unconditional ViT in terms of FID score. Therefore, it seems that adaptive layer normalization might
not be useful when used only with class embedding.

4.5 Discussion

In this chapter, we proposed a simple yet effective approach to distill diffusion models into generative
models that are capable of sampling with just a single model evaluation. Our method involves training
Generative Equilibrium Transformer (GET), a DEQ-based architecture derived from Vision Transformer
(ViT), directly on noise/image pairs generated from a pretrained diffusion model. This eliminates the
need for diffusion sampling trajectory information, as well as temporal embeddings that are needed
in traditional diffusion models. GET demonstrates superior performance over more complex online
distillation techniques such as progressive distillation [Salimans and Ho, 2022, Meng et al., 2022] in
both class-conditional and unconditional settings. In addition, a small GET can generate higher quality
images than a 5× larger ViT, sampling faster while using less training memory and fewer compute
FLOPs, demonstrating its effectiveness.
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Table 4.4: Comparison of relevant training and hyperparameter settings for common distillation
techniques. GET requires neither multiple training phases nor any trajectory information. We only
count the number of models involved in the forward pass and exclude EMA in #Models.
† indicates offline distillation techniques.
▲For CD, we count the VGG network used in the perceptual loss [Zhang et al., 2018].
BS indicates batch size.

Model FID ↓ IS ↑ BS Training Phases #Models Trajectory Teacher

KD [Luhman and Luhman, 2021]† 9.36 - 4× 1 1 ✗ DDIM
PD [Salimans and Ho, 2022] 9.12 - 1× log2(T) 2 ✓ DDIM
DFNO [Zheng et al., 2022]† 4.12 - 2× 1 1 ✓ DDIM
TRACT [Berthelot et al., 2023] 14.40 - 2× 1 1 ✓ DDIM
TRACT [Berthelot et al., 2023] 4.17 - 2× 2 1 ✓ EDM
PD-EDM [Salimans and Ho, 2022, Song et al., 2023] 8.34 8.69 4× log2(T) 2 ✓ EDM
CD▲ [Song et al., 2023] 3.55 9.48 4× 1 3 ✓ EDM
Ours† 7.42 9.16 1× 1 1 ✗ EDM
Ours† 6.91 9.16 2× 1 1 ✗ EDM

Guided Distillation [Meng et al., 2022] 7.34 8.90 4× log2(T) + 1 3 ✓ DDIM
Ours† 6.25 9.40 2× 1 1 ✗ EDM

Table 4.5: Benchmarking GET against ViT on unconditional image generation on CIFAR-10. For the
first time, implicit models for generative tasks strictly surpass explicit models in all metrics. Results are
benchmarked on 4 A6000 GPUs using a batch size of 128, 800k iterations, and PyTorch [Paszke et al.,
2019] distributed training protocol. Training Mem stands for training memory consumed per GPU.
O(1) symbolizes the O(1) training memory mode, which differs only in training memory and speed.

Model FID↓ IS↑ Params↓ FLOPs↓ Training Mem↓ Training Speed↑

ViT-Base 11.49 8.61 85.2M 23.0G 10.1GB 4.83 iter/sec
GET-Mini 10.72 8.69 19.2M 15.2G 9.2GB 5.79 iter/sec
GET-Mini-O(1) - - - - 5.0GB 4.53 iter/sec

4.6 Addition Appendices

4.6.1 Model Configuration

We set the EMA momentum to 0.9999 for all the models.

The configuration of different GET architectures are listed in Table 4.7. Here, Li and Le denote the
number of transformer blocks in the Injection transformer and Equilibrium transformer, respectively.
D denotes the width of the network. E corresponds to the expanding factor of the FFN layer in the
Equilibrium transformer, which results in the hidden dimension of E×D. For the injection transformer,
we always adopt an expanding factor of 4.

We have listed relevant model configuration details of ViT in Table 4.8. The model configurations
are adopted from DiT [Peebles and Xie, 2022], whose effectiveness was tested for learning diffusion
models. In this table, L denotes the number of transformer blocks in ViT. D stands for the width of the
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Table 4.6: Ablation on design choices for class conditioning.

Model FID↓ IS↑ Params↓

ViT-Uncond 15.20 8.27 85.2M
ViT-AdaLN-Zero 17.19 8.38 128.9M
ViT-Inj-Interface 12.43 8.69 85.2M

Table 4.7: Details of configuration for GET architectures.

Model Params Li Le D E

GET-Tiny 8.9M 6 3 256 6
GET-Mini 19.2M 6 3 384 6
GET-Small 37.2M 6 3 512 6
GET-Base 62.2M 1 3 768 12
GET-Base+ 83.5M 6 3 768 8

network. We always adopt an expanding factor of 4 following the common practice [Vaswani et al.,
2017a, Dosovitskiy et al., 2021, Peebles and Xie, 2022].

Table 4.8: Details of configuration for ViT architectures.

Model Params L D

ViT-B 85.2M 12 768
ViT-L 302.6M 24 1024

4.6.2 Additional Related work

4.6.2.1 Fast Samplers for Diffusion Models

Fast samplers are usually training-free, unlike distillation-based approaches, and use advanced solvers
to simulate the diffusion stochastic differential equation (SDE) or ordinary differential equation (ODE)
to reduce the number of sampling steps. These methods reduce the discretization error during sampling
by analytically solving a part of SDE or ODE [Lu et al., 2022b,c, Xue et al., 2024], by using exponential
integrators and higher-order polynomials for a better approximation of the solution [Zhang and Chen,
2022], using higher-order numerical methods [Karras et al., 2022], using a better approximation of noise
levels during sampling [Kong and Ping, 2021], correcting predictions at each step of sampling [Zhao
et al., 2024] and ensuring that the solution of the ODE lies on a desired manifold [Liu et al., 2022a].
Another orthogonal strategy is the parallel sampling process such as the one covered in Chapter 1,
where we solve for the fixed points of the entire sampling trajectory. A drawback of these fast samplers
is that the quality of the samples is drastically reduced as the number of sampling steps falls below a
threshold such as 10 steps.
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Chapter 5

Training-free Linear Image Inverses via
Flows

Solving inverse problems without any training involves using a pretrained generative model and
making appropriate modifications to the generation process to avoid fine-tuning of the generative
model. While recent methods have explored the use of diffusion models, they still require the manual
tuning of many hyperparameters for different inverse problems. In this chapter, we propose a training-
free method for solving linear inverse problems in non-blind setting by using pretrained unconditional
flow models, leveraging the simplicity and efficiency of Flow Matching models [Lipman et al., 2022,
Liu et al., 2022b, Albergo et al., 2023], using theoretically-justified weighting schemes, and thereby
significantly reducing the amount of manual tuning. In particular, we draw inspiration from two
main sources: adopting prior gradient correction methods to the flow regime, and a solver scheme
based on conditional Optimal Transport paths. As pretrained diffusion models are widely accessible,
we also show how to practically adapt diffusion models for our method. Empirically, our approach
requires no problem-specific tuning across an extensive suite of noisy linear inverse problems on
high-dimensional datasets, ImageNet-64/128 and AFHQ-256, and we observe that our flow-based
method for solving inverse problems improves upon closely-related diffusion-based methods in most
settings. This chapter is based on Pokle et al. [2023].

5.1 Introduction

Solving an inverse problem involves recovering a clean signal from noisy measurements generated
by a known degradation model. Many interesting image processing tasks can be cast as an inverse
problem. Some instances of these problems are super-resolution, inpainting, deblurring, colorization,
denoising etc. As we have seen in the previous chapters, diffusion models or score-based generative
models [Sohl-Dickstein et al., 2015, Song and Ermon, 2019, Song et al., 2020b, Ho et al., 2020] have
emerged as a leading family of generative models for solving inverse problems for images [Saharia
et al., 2022b,a, Wang et al., 2022, Chung et al., 2022a, Song et al., 2022, Mardani et al., 2023]. However,
sampling with diffusion models is known to be slow, and the quality of generated images is affected
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by the curvature of SDE/ODE solution trajectories [Karras et al., 2022]. While Karras et al. [2022]
observed ODE sampling for image generation could produce better results, sampling via SDE is still
common for solving inverse problems, whereas ODE sampling has been rarely considered, perhaps
due to the use of diffusion probability paths.

Continuous Normalizing Flow (CNF) [Chen et al., 2018] trained with Flow Matching [Lipman et al.,
2022, Liu et al., 2022b, Albergo et al., 2023] has been recently proposed as a powerful alternative to
diffusion models. CNF (hereafter denoted flow model) has the ability to model arbitrary probability
paths, and includes diffusion probability paths as a special case. Of particular interest to us are
Gaussian probability paths that correspond to optimal transport (OT) displacement [McCann, 1997].
Recent works [Lipman et al., 2022, Albergo et al., 2023, Liu et al., 2022b, Shaul et al., 2023] have shown
that these conditional OT probability paths are straighter than diffusion paths, which results in faster
training and sampling with these models. Due to these properties, conditional OT flow models are an
appealing alternative to diffusion models for solving inverse problems.

In this work, we introduce a training-free method to utilize pretrained unconditional flow models
for solving linear inverse problems. Our approach adds a gradient-based adaptation term to the
unconditional vector field that takes into account knowledge from the degradation model and converts
it to a conditional vector field. Specifically, we introduce an algorithm that extends ΠGDM [Song
et al., 2022] gradient adaptation to ODE sampling with an affine Gaussian probability path. Given
the wide availability of pretrained diffusion models trained with diffusion probability paths, we also
present a way to convert these models to other affine Gaussian probability paths. Empirically, we
observe images restored via a conditional OT path exhibit perceptual quality better than that achieved
by the model’s original diffusion path, as well as recently proposed diffusion approaches such as
ΠGDM [Song et al., 2022] and RED-Diff [Mardani et al., 2023], particularly in noisy settings. To
summarize, our key contributions are:

• We present a training-free approach to solve linear inverse problems in non-blind setting that
can be applied to any continuous-time diffusion or flow model under affine Gaussian probability
paths that extends ΠGDM gradient adaptation to this more generic setting.

• We explain the subtleties in converting models between different affine Gaussian probability
paths. Specifically, we enable the use of pre-trained continuous-time diffusion models with
conditional OT probability paths by an adjusted initialization procedure.

• We demonstrate that images restored via our ODE algorithm using conditional OT probability
paths have perceptual quality that is largely on par with, or better than that achieved by diffusion
probability paths, and other recent methods like ΠGDM and RED-Diff, without the need for
problem-specific hyperparameter tuning.

5.2 Preliminaries

We introduce relevant background knowledge and notation from conditional diffusion and flow
modeling, as well as training-free inference with diffusion models.
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Notation. Both diffusion and flow models consider two distinct processes indexed by time between
[0, 1] that convert data to noise and noise to data. Here, we follow the temporal notation used in
prior work [Lipman et al., 2022] where the distribution at t = 1 is the data distribution and t = 0 is a
standard Gaussian distribution. Note that this is opposite of the prevalent notation used in diffusion
model literature [Song and Ermon, 2019, Ho et al., 2020, Song et al., 2020a,b].

We let xt denote a real-valued vector at time t, without regard to which process (i.e., diffusion or
flow) it was drawn from. The probability density for the data to noise process is denoted q and the
parameterized probability density for the noise to data process is denoted pθ . Expectations with
respect to q are denoted via Eq, where the relevant random variables are noisy xt, clean data x1,
and conditioning y with density q(xt,x1,y) = q(xt|x1,y)q(x1,y). Here q(x1,y) is unknown and
q(xt|x1,y) will be a modeling choice. Conditional diffusion or flow models aim to produce samples
x1 ∼ q(x1|y). We generally keep function arguments of t implicit (i.e. f (xt, t) is informally written as
f (xt).)

5.2.1 Conditional diffusion models.

Suppose we have samples x1 (e.g., an image) and conditioning y (e.g., a distorted image) drawn from a
data distribution q(x1,y). Conditional diffusion models use latent variables x0:1 = {xt|t ∈ [0, 1)} to
model the joint distribution pθ(x0:1,x1|y) for the noise to data process pθ .1 The data to noise process q
approximates the posterior q(x0:1|x1,y) and is defined as a Markov chain2 that adds Gaussian noise
to data, which in continuous time satisfies a stochastic differential equation (SDE)[Song and Ermon,
2019, Ho et al., 2020, Song et al., 2020b]. The parameters of pθ are learned via minimizing a regression
loss derived from the variational bound on negative log-likelihood with respect to x̂1:

Ldiffusion(x̂1) =
∫ 1

0
w(t)Ext∼q(xt |x1,y),x1,y∼q(x1,y)

[
∥x̂1(xt,y)− x1∥2

]
dt, (5.1)

where w(t) are positive weights [Kingma et al., 2021, Song et al., 2021a, Kingma and Gao, 2023], and
x̂1 is a deterministic parametrized denoiser. The optimal solution for x̂1 with the squared L2 error
in Eq. (5.1) is Ex1∼q(x1|xt ,y)[x1|xt,y]. For brevity as well as ease of readability, henceforth we will
typically write the expectations with respect to q such as the one that appears in Eq. (5.1) in short as
Eq. Many equivalent parameterizations exist for the loss in Eq. (5.1) and have known conversions
to denoising. Sampling using pθ proceeds by starting from x0 ∼ pθ(x0|y) and integrating the SDE
using x̂1 to t = 1. If pθ(x0|y) = q(x0|y), the SDE is integrated exactly, and x̂1(xt,y) = Eq[x1|xt,y],
the resulting x1 ∼ q(x1|y) as desired. Please see Sec. 3.1.1 for an overview of discrete-time diffusion
models, and Sec. 2.2.1 for an overview of continuous-time diffusion models.

5.2.2 Conditional flow models

Alternatively, continuous normalizing flow models [Chen et al., 2018] define the data generation
process through an ODE. This leads to simpler formulations and does not introduce extra noise during
intermediate steps of sample generation. Recently, simulation-free training algorithms have been

1In discrete time, we can write this joint distribution as pθ(x0:1|y) = pθ(x0|y)∏t pθ(xt+∆|xt,y) where ∆ denotes an
appropriate step size of time discretization in [0, 1]. Please see Sec. 3.1.1 for a detailed overview.

2In discrete time, the forward process is q(x0:1|x1,y) = ∏t q(xt−∆|xt,y). Please see Sec. 3.1.1 for a detailed overview.
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designed specifically for such models [Lipman et al., 2022, Liu et al., 2022b, Albergo et al., 2023], an
example being the Conditional Flow Matching loss [Lipman et al., 2022],

Lcfm(v̂) =
∫ 1

0
Ext∼q(xt |x1,y),x1,y∼q(x1,y)

[
∥v̂(xt,y)− v(xt,y,x1)∥2

]
dt, (5.2)

where v̂(xt,y) denotes a parameterized vector field defining the ODE

dxt

dt
= v̂(xt,y), (5.3)

and data-conditional vector field v(xt,y,x1) is determined by modeling choice q(xt|x1,y) If trained
perfectly, the marginal distributions of xt from ODE integration, denoted pθ(xt|y), will match the
marginal distributions of q(xt|y). Hence sampling from q(x1|y) as desired can be achieved by
sampling initial value xt′ ∼ q(xt′ |y) and integrating the ODE from t′ to 1. Typically, one samples from
t′ = 0 since q(x0|y) is a tractable distribution.

5.2.3 Gaussian probability paths

The time-dependent densities q(xt|x1,y) are referred to as conditional probability paths. We focus on
the class of affine Gaussian probability paths of the form

q(xt|x1,y) = q(xt|x1) = N (αtx1, σ2
t I), (5.4)

where non-negative αt and σt are monotonically increasing and decreasing respectively. This class
includes the probability paths for conditional diffusion as well as the conditional Optimal Transport
(OT) path [Lipman et al., 2022], where αt = t and σt = 1− t. The conditional OT path used by flow
models has been demonstrated to have good empirical properties, including faster inference and
better sampling in practice, and has theoretical support in high-dimensions [Shaul et al., 2023]. As
emphasized in Lin et al. [2023], a desirable property for probability paths, obeyed by conditional OT
but not commonly used diffusion paths, is to ensure q(x0|y) is known (i.e. N (0, I)), as otherwise
one cannot exactly sample x0 which can add substantial error. When using these affine Gaussian
probability paths with a conditional flow model, one sets [Lipman et al., 2022]

v(xt,y,x1) =
dαt

dt
x1 +

dσt

dt

(
xt − αtx1

σt

)
. (5.5)

Converting between flow and diffusion models In our framing for affine Gaussian probability
paths, a model is identified as flow or diffusion by whether an ODE or SDE is used for sampling
respectively. For this class of paths though, we can convert directly between flow and diffusion
models. To see this, note that the optimal v(xt,y) for the Conditional Flow Matching loss in Eq. (5.2)
is Eq[v(xt,y,x1)|xt,y], which for affine Gaussian probability paths using Eq. 5.5 is

v(xt,y) =
dαt

dt
Eq[x1|xt,y] +

dσt

dt

(
xt − αtEq[x1|xt,y]

σt

)
. (5.6)

This equivalence has been noted by Karras et al. [2022], leveraging a more complex conversion from
SDE to probability flow ODE from Song et al. [2020b]. Rearranging Eq. (5.6), a diffusion model’s
denoiser x̂1(xt,y) trained using affine Gaussian probability path q can be interchanged with a flow
model’s v̂(xt,y) with the same path via

v̂ =

(
αt

d ln(αt/σt)

dt

)
x̂1 +

d ln σt

dt
xt. (5.7)
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5.2.4 Training-free conditional inference using unconditional diffusion.

Given pretrained unconditional diffusion models that are trained to approximate Eq[x1|xt], training-free
approaches for conditional inference aim to approximate Eq[x1|xt,y] without any fine-tuning of the
unconditional model. Under affine Gaussian probability paths, the two terms are related by Tweedie’s
identity [Robbins, 1992] which expresses Eq[x1|xt,y] = (xt + σ2

t∇xt ln q(xt|y))/αt. Applying this
identity (twice for both Eq[x1|xt,y] and Eq[x1|xt]) and simplifying gives

Eq[x1|xt,y] = Eq[x1|xt] +
σ2

t
αt
∇xt ln q(y|xt). (5.8)

Following Eq. 5.8, past approaches (e.g., Chung et al. [2022a], Song et al. [2022]) have used the pretrained
model for the first term and approximated the second intractable term to produce an approximate
x̂1(xt,y). Diffusion posterior sampling (DPS) [Chung et al., 2022a] proposed to approximate q(y|xt)

via q(y|x1 = x̂1(xt)). Later, Pseudo-inverse Guided Diffusion Models (ΠGDM) [Song et al., 2022]
improved upon DPS for linear noisy observations where y = Ax+ σyϵ, where A is some measure-
ment matrix and ϵ ∼ N (0, I), by approximating q(y|xt) as N (Ax̂1(xt), σ2

yI + r2
t AAT), derived via

first approximating q(x1|xt) as N (x̂1(xt), r2
t I), where rt is an appropriate time-dependent standard

deviation. ΠGDM also suggested adaptive weighting, replacing σ2
t /αt with another function of time

to account for the approximation. While these past approaches have used Eq. (5.8) for diffusion
probability paths, this equation is valid for any affine Gaussian probability path.

5.3 Solving Linear Inverse Problems without Conditional Training
via Flows

5.3.1 Problem setup: Linear Inverse Problem

In the standard setup of a linear inverse problem, we observe measurements y ∈ Rn such that

y = Ax1 + ϵ (5.9)

where x1 ∈ Rm is drawn from an unknown data distribution q(x1), A ∈ Rn×m is a known measure-
ment matrix, and ϵ ∼ N (0, σ2

yI) is unknown i.i.d. Gaussian noise with known standard deviation
σy. Given a pretrained flow model with v̂(xt) that can sample from q(x1), and measurements y,
our goal is to produce clean samples from the posterior q(x1|y) ∝ q(y|x1)q(x1) without training a
problem-specific conditional flow model defined by v̂(xt,y). In this section, we motivate and propose
our approach to solving this problem using flows.

5.3.2 Adapting the vector field of unconditional flow models for conditional
sampling

To solve linear inverse problems without any training via flow models, we derive an expression similar
to Eq. 5.8 that relates conditional vector fields under Gaussian probability paths to unconditional
vector fields.
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Let q be a Gaussian probability path described by Eq. 5.4. Assume we observe y ∼ q(y|x1) for
arbitrary q(y|x1) and v(xt) is a vector field enabling sampling xt ∼ q(xt). Note that Eq. (5.6) without
y also holds for optimal unconditional v(xt). Inserting Eq. (5.8) into Eq. (5.6) and taking the difference
(v(xt,y)− v(xt)) yields

v(xt,y) = v(xt) + σ2
t

d ln(αt/σt)

dt
∇xt ln q(y|xt). (5.10)

We use Eq. (5.10) in our training-free algorithm for solving linear inverse using flows by incorporating
ΠGDM’s adaptation. In particular, given v̂(xt) (or x̂1(xt)), our approximation will be

v̂(xt,y) = v̂(xt) + σ2
t

d ln(αt/σt)

dt
γt∇xt ln qapp(y|xt), (5.11)

where qapp(y|xt) denotes an approximation for q(y|xt) and γt denotes time-dependent weights.

We refer to γt = 1 as unadaptive and other choices as adaptive weights. In general, we view adaptive
weights γt ̸= 1 as an adjustment for error in qapp(y|xt).

Approximating q(y|xt). The update for adapting the unconditional vector field in Eq. (5.10) requires
q(y|xt) which is intractable to compute as it involves marginalization over x1

q(y|xt) =
∫
x1

q(y|x1)q(x1|xt)dx1. (5.12)

In this equation, the first term q(y|x1) is tractable as it is equal to N (Ax1, σ2
yI). However, it is

computationally expensive to estimate the second term q(x1|xt) with a flow model or a diffusion
model. We therefore use an approximation for q(y|xt) and refer to this approximation as qapp(y|xt).
Following ΠGDM, we set

q(x1|xt) ≈ N (x̂1(xt), r2
t I). (5.13)

where rt is an appropriately chosen time-dependent standard deviation. We can now compute
qapp(y|xt) in closed form as qapp(y|xt) ≈ N (Ax̂1(xt), σ2

y I + r2
t AA⊤) which gives the following

approximation for ∇xt ln qapp(y|xt):

∇xt ln qapp(y|xt) ≈ (y −Ax̂1)
⊤(r2

t AA⊤ + σ2
yI)
−1A

∂x̂1

∂xt
. (5.14)

Note that this is a vector-Jacobian product and can computed efficiently with packages for automatic
differentiation. With this we generalize ΠGDM to any Gaussian probability path described by Eq. 5.4
by using an alternate r2

t . We choose r2
t following the Π GDM derivation which assumes that q(x1)

is N (0, I) to derive r2
t . We have q(xt|x1) = N (αtx1, σ2

t I). Thus by Bayes’ rule, we can write the
posterior as

q(x1|xt) ∝ q(x1)q(xt|x1) = N
(

αtxt

α2
t + σ2

t
,

σ2
t

α2
t + σ2

t
I

)
. (5.15)

With this, we approximate r2
t as

r2
t =

σ2
t

σ2
t + α2

t
. (5.16)

When αt = 1, we recover ΠGDM’s r2
t as expected under their Variance-Exploding path specification.
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5.3.3 Converting between affine Gaussian probability paths

To complete our derivation, we demonstrate how one can train with path q′ and perform sampling with
alternative path q. This conversion is crucial to enable sampling with any probability path, including
particularly the conditional OT probability path, without training given an existing pre-trained model.
Such conversions have been noted previously by Karras et al. [2022] using an SDE perspective. Our
derivation exposes important subtleties when converting between affine Gaussian probability paths.

Consider two affine Gaussian probability paths, with joint densities q and q′, defined by Eq. 5.4 with
αt, σt and α′t, σ′t respectively. Define t′(t) as the unique solution to αt/σt = α′t′/σ′t′ when it exists for
given t. The solution for t′(t) is unique due to the monotonicity requirements of both α and σ. By
definition, the joint densities q and q′ share the same distribution on the data x1, q(x1|y) = q′(x1|y).
Then for affine Gaussian probability paths, q(Xt = xt|x1,y) = q′(X ′t′(t) = α′t′(t)xt/αt|x1,y) when
t′(t) exists. Since the joint densities are identical, the conditional distributions over x1 used by the
optimal denoiser and vector fields are also identical at these values.

So x̂1 trained under q′ can be used for sampling under q via evaluating at x̂1(α
′
t′(t)xt/αt, t′(t),y) (with

explicit time for clarity) whenever t′(t) exists, with identical argument changes for vector fields. In
particular, if sampling uses the conditional OT probability path, we have

t′(t) = SNR−1
q′ (SNRq(t))) = SNR−1

q′

(
t

1− t

)
. (5.17)

where signal-to-noise ratio SNR(t) = αt/σt. The main avenue for nonexistence for t′(t) is if the model
under q′ is trained using a minimum SNR above zero, which induces a minimum t for which t′(t)
exists. When a minimum t exists, we can only perform sampling with q starting from xt ∼ q(xt|y).
Approximating this sample is entirely analogous to approximating x0 ∼ q′(x0|y). This error already
exists for q′ because q′(x0|y) is not N (0, I) unless q′ is trained to zero SNR. An initialization problem
cannot be avoided if q′ has a limited SNR range by switching paths to q. This problem is relevant when
converting pre-trained diffusion models as typical diffusion paths have a nonzero minimum SNR.

5.3.4 Our algorithm for solving linear inverse problems with Cond-OT flows

Starting flow sampling at time t > 0 Initializing conditional diffusion model sampling at t > 0 has
been proposed by Chung et al. [2022c]. For flows, we similarly want xt ∼ q(xt|y) at initialization time
t. In our experiments, we examine (approximately) initializing at different times t > 0 using

xt = αty + σtϵ (5.18)

for ϵ ∼ N (0, I) when y is the correct shape. For superresolution, we used nearest-neighbor interpola-
tion on y instead. We also consider using A†y as an ablation in Sec. 5.9 (where A† is the pseudo-inverse
of A [Song et al., 2022]). We may be forced to use this initialization for flow sampling due to converting
a diffusion model not trained to zero SNR. However as shown in [Chung et al., 2022c] for diffusion,
this initialization can improve results more generally. Conceptually, if the resulting xt is closer to
xt ∼ q(xt|y) than achieved via starting from an earlier time t′ and integrating, then this initialization
can result in less overall error.
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Algorithm Summary Putting this altogether, our proposed approach using flow sampling and
conditional OT probability paths is succinctly summarized in Algorithm 5, derived via inserting
αt = t and σt = 1− t. This algorithm uses the unconditional vector field adaptation proposed in
Eq. (5.11) and uses this vector field adaptation v̂adapted to integrate the ODE from some initial time t0

to 1 to get the final corrected image x1. We can integrate the ODE by using any standard numerical
methods such as Euler method, Runge-Kutta method etc. As an example, an intermediate update
of Euler method from time t to t + ∆t during ODE integration is given by xt+∆t = xt + v̂adapted∆t.
Unlike ΠGDM, we propose unadaptive weights γt = 1. By default, we set initialization time t0 = 0.2.
The algorithm therefore has no additional hyperparameters to tune over traditional diffusion or flow
sampling. In Appendix 5.3.5, we detail our algorithm for other Gaussian probability paths, and the
equivalent formulation when a pretrained vector field is available instead.

Algorithm 5 Solving linear inverse problems via flows using conditional OT probability path

Input: Pretrained denoiser x̂1(xt) converted to conditional OT probability path, noisy measurement
y, measurement matrix A, initial time t0, and std σy

1: Initialize xt0 = t0y + (1− t0)ϵ, where ϵ ∼ N (0, I) ▷ Initialize xt, Eq. (5.18)
2: xt = xt0

3: for each time step t of ODE integration do ▷ Integrate ODE from t = t0 to 1.

4: r2
t = (1−t)2

t2+(1−t)2 ▷ Value of r2
t from Eq. (5.16)

5: v̂ = x̂1(xt)−xt
1−t ▷ Convert x̂1 to vector field, Eq. (5.7)

6: g = (y −Ax̂1)
⊤(r2

t AA⊤ + σ2
yI)
−1A ∂x̂1

∂xt
▷ ∇xt ln qapp(y|xt)

7: v̂adapted = v̂ + 1−t
t g ▷ Adapt the unconditional vector field v̂, Eq. (5.11)

8: xt+∆t = ODESolverStep(xt, v̂adapted) ▷ One step of ODE solver to update xt

9: end for
10: return x1 ▷ This is the solution of ODE integration.

5.3.5 Our algorithm for any affine gaussian probability path

Algorithm 5 in the previous section is specific to conditional OT probability paths. Here we provide
Algorithm 6 for any Gaussian probability path specified by Eq. 5.4. Algorithm 5 and Algorithm 6 are
written assuming a denoiser x̂1(xt) is provided from a pretrained diffusion model. For completeness,
we also include equivalent Algorithm 7 that assumes v̂(xt) is provided from a pretrained flow model.
In all cases, the vector field or denoiser is evaluated only once per iteration.

Our VP-ODE sampling results correspond to αt and σt given from the Variance-Preserving path, which
can be found in [Lipman et al., 2022].

5.4 Experimental Details

5.4.1 Datasets

We verify the effectiveness of our proposed approach on three datasets: face-blurred ImageNet 64× 64
and 128× 128 [Deng et al., 2009, Russakovsky et al., 2015, Yang et al., 2022], and AnimalFacesHQ
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Algorithm 6 A training-free approach to solve inverse problems via flows with a pretrained denoiser

Input: Pretrained denoiser x̂1(xt) converted to Gaussian probability path with αt and σt, noisy
measurement y, measurement matrix A, initial time t0, adaptive weights γt, and std σy

1: Initialize xt0 = αt0 y + σt0 ϵ, where ϵ ∼ N (0, I) ▷ Initialize xt, Eq. (5.18)
2: xt = xt0

3: for each time step t of ODE integration do ▷ Integrate ODE from t = t0 to 1.

4: r2
t =

σ2
t

σ2
t +α2

t
▷ Value of r2

t from Eq. (5.16)

5: v̂ =
(

αt
d ln(αt/σt)

dt

)
x̂1 +

d ln σt
dt xt ▷ Convert x̂1 to vector field, Eq. (5.7)

6: g = (y −Ax̂1)
⊤(r2

t AA⊤ + σ2
yI)
−1A ∂x̂1

∂xt
▷ ∇xt ln qapp(y|xt)

7: v̂adapted = v̂ + σ2
t

d ln(αt/σt)
dt γtg ▷ Adapt unconditional vector field v̂, Eq. (5.11)

8: xt+∆t = ODESolverStep(xt, v̂adapted) ▷ One step of ODE solver to update xt

9: end for
10: return x1 ▷ This is the solution of ODE integration.

Algorithm 7 A training-free approach to solve inverse problems via flows with a pretrained vector
field
Input: Pretrained vector field v̂(xt) converted to Gaussian probability path with αt and σt, noisy

measurement y, measurement matrix A, initial time t0, adaptive weights γt, and std σy

1: Initialize xt0 = αt0 y + σt0 ϵ, where ϵ ∼ N (0, I) ▷ Initialize xt, Eq. (5.18)
2: xt = xt0

3: for each time step t of ODE integration do ▷ Integrate ODE from t = t0 to 1.
4: v̂ = v̂(xt) ▷ xt is value of xt at time t during ODE integration

5: r2
t =

σ2
t

σ2
t +α2

t
▷ Value of r2

t from Eq. (5.16)

6: x̂1 =
(

αt
d ln(αt/σt)

dt

)−1 (
v̂ − d ln σt

dt xt

)
▷ Convert vector field to x̂1, Eq. (5.7)

7: g = (y −Ax̂1)
⊤(r2

t AA⊤ + σ2
yI)
−1A ∂x̂1

∂xt
▷ ∇xt ln qapp(y|xt)

8: v̂adapted = v̂ + σ2
t

d ln(αt/σt)
dt γtg ▷ Adapt unconditional vector field v̂, Eq. (5.11)

9: xt+∆t = ODESolverStep(xt, v̂adapted) ▷ One step of ODE solver to update xt

10: end for
11: return x1 ▷ This is the solution of ODE integration.

58



(AFHQ) 256× 256 [Choi et al., 2020]. We report our results on 10K randomly sampled images from
validation split of ImageNet, and 1500 images from test split of AFHQ.

5.4.2 Tasks

We report results on the following linear inverse problems: inpainting (center-crop), Gaussian de-
blurring, super-resolution, and denoising. The exact details of the measurement operators are: 1) For
inpainting, we use centered mask of size 20× 20 for ImageNet-64, 40× 40 for ImageNet-128, and
80× 80 for AFHQ. In addition, for images of size 256× 256, we also use free-form masks simulating
brush strokes similar to the ones used in Saharia et al. [2022a], Song et al. [2022]. 2) For super-resolution,
we apply bicubic interpolation to downsample images by 4× for datasets that have images with res-
olution 256× 256 and downsample images by 2× otherwise. 3) For Gaussian deblurring, we apply
Gaussian blur kernel of size 61× 61 with standard deviation of 1 for ImageNet-64 and ImageNet-128,
and 61× 61 with standard deviation of 3 for AFHQ. 4) For denoising, we add i.i.d. Gaussian noise with
σy = 0.05 to the images. For tasks besides denoising, we consider i.i.d. Gaussian noise with σy = 0 and
0.05 to the images. Images x1 are normalized to range [−1, 1].

5.4.3 Implementation Details

We trained our own continuous-time conditional VP-SDE model, and conditional Optimal Transport
(conditional OT) flow model from scratch on the above datasets following the hyperparameters
and training procedure outlined in Song et al. [2020b] and Lipman et al. [2022]. These models are
conditioned on class labels, not noisy images. All derivations hold with class label c since q(y|c,x1) =

q(y|x1) (i.e. the noisy image is independent of class label given the image). We use the open-source
implementation of the Euler method provided in torchdiffeq library [Chen, 2018] to solve the ODE in
our experiments. Our choice of Euler is intentionally simple, as we focus on flow sampling with the
conditional OT path, and not on the choice of ODE solver.

5.4.4 Metrics

We follow prior works [Chung et al., 2022a, Kawar et al., 2022] and report Fréchet Inception Dis-
tance (FID) [Heusel et al., 2017], Learned Perceptual Image Patch Similarity (LPIPS) [Zhang et al.,
2018], peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM). We use open-source
implementations of these metrics in the TorchMetrics library [Detlefsen et al., 2022].

5.4.5 Methods and Baselines

We use our two pretrained model checkpoints— a conditional OT flow model and continuous VP-SDE
diffusion model, and perform flow sampling with both conditional OT and Variance-Preserving (VP)
paths, labeling our methods as OT-ODE and VP-ODE respectively. We compare our OT-ODE and
VP-ODE methods against ΠGDM [Song et al., 2022] and RED-Diff [Mardani et al., 2023] as relevant
baselines. We selected these baselines because they achieve state-of-the-art performance in solving
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Figure 5.1: Quantitative evaluation of pretrained VP-SDE model for solving linear inverse problems
on super-resolution (SR), gaussian deblurring (GB), inpainting with centered (IPC) and freeform mask
(IPF), and denoising (DN) with σy = 0.05. We present results on face-blurred ImageNet-64 (INET-64),
face-blurred ImageNet-128 (INET-128), and AFHQ.

linear inverse problems using diffusion models. The code for both baseline methods is available on
github, and we make minimal changes while reimplementing these methods in our codebase. A fair
comparison between methods requires considering the number of function evaluations (NFEs) used
during sampling.

We utilize at most 100 NFEs for our OT-ODE and VP-ODE sampling, and utilize 100 for ΠGDM as
recommended in Song et al. [2022]. We allow RED-Diff 1000 NFEs since it does not require gradients
of x̂1. For OT-ODE following Algorithm 5, we use γt = 1 and initial t = 0.2 for all datasets and
tasks. For VP-ODE following Algorithm 6 in the Appendix, we use γt =

√
αt

α2
t +σ2

t
and initial t = 0.4

for all datasets and tasks. Ablations of these mildly tuned hyperparameters are shown in Sec. 5.9.
We extensively tuned hyperparameters for RED-Diff and ΠGDM as described in Sec. 5.12, including
different hyperparameters per dataset and task.

5.5 Experimental Results for Variance Preserving SDE

We report quantitative results for the VP-SDE model, across all datasets and linear measurements, in
Figure 5.1 for σy = 0.05, and in Figure 5.2 for σy = 0. Additionally, we report results for the conditional
OT flow model in Figure 5.7 and Figure 5.6 for σy = 0.05 and σy = 0, respectively. Exact numerical
values for all the metrics across all datasets and tasks can also be found in Sec. 5.7. Qualitative images
have been selected for demonstration purposes.
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Figure 5.2: Quantitative evaluation of pretrained VP-SDE model for linear inverse problems on super-
resolution (SR), gaussian deblurring (GB), image inpainting - centered mask (IPC) and inpainting -
free-form (IPF) with σy = 0. We show results on face-blurred ImageNet-64 (INET-64), face-blurred
ImageNet-128 (INET-128), and AFHQ-256 (AFHQ).

5.5.1 Gaussian Deblurring

We report qualitative noisy results for the VP-SDE model in Figure 5.3 and for the conditional OT
flow (cond-OT) model in Figure 5.11. We observe that OT-ODE and VP-ODE outperforms ΠGDM
and RED-Diff, both qualitatively and quantitatively, across all datasets for σy = 0.05. As shown in
these figures, ΠGDM tends to sharpen the images, which sometimes results in unnatural textures in
the images. Further, we also observe some unnatural textures and background noise with RED-Diff
for σy = 0.05. For σy = 0, OT-ODE has better FID and LPIPS, but ΠGDM shows improved PSNR and
SSIM. Figure 5.18 and Figure 5.17 show qualitative examples for σy = 0.

5.5.2 Super-resolution

We report qualitative noisy results for the VP-SDE model in Figure 5.4 and for the cond-OT model
in Figure 5.12. OT-ODE consistently achieves better FID, LPIPS and PSNR metrics compared to other
methods for σy = 0.05 (See Figure 5.1 and 5.7). Similar to Gaussian deblurring, ΠGDM tends to
produce sharper edges. This is certainly desirable to achieve good super-resolution, but sometimes this
results in unnatural textures in the images (See Figure 5.4). RED-Diff for σy = 0.05 gives slightly blurry
images. In our experiments, we observe RED-Diff is sensitive to the values of σy, and we get good
quality results for smaller values of σy, but the performance deteriorates with increase in value of σy.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) REDDiff

Figure 5.3: Results for Gaussian deblurring with VP-SDE model and σy = 0.05 for (first row) ImageNet-
64, (second row) ImageNet-128, and (third row) AFHQ.

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) REDDiff

Figure 5.4: Results for super-resolution with VP-SDE model and σy = 0.05 for (first row) ImageNet-64
2×, (second row) ImageNet-128 2×, and (third row) AFHQ 4×.

For σy = 0, as shown in Figure 5.19 and Figure 5.20, all the methods achieve comparable performance
and the method declared best varies per metric and dataset.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) REDDiff

Figure 5.5: Results for inpainting (centered mask) with VP-SDE model and σy = 0.05 for (first row)
ImageNet-64, (second row) ImageNet-128, and (third row) AFHQ.

5.5.3 Inpainting

For centered mask inpainting, OT-ODE outperforms ΠGDM and RED-Diff in terms of LPIPS, PSNR
and SSIM across all datasets at σy = 0.05. Regarding FID, OT-ODE performs comparably to or better
than VP-ODE (See Figure 5.1 and 5.7). Similar observations hold true for inpainting with freeform
mask on AFHQ. We present qualitative noisy results for the VP-SDE model in Figure 5.5 and the
cond-OT model in Figure 5.13. As evident in these images, OT-ODE can result in more semantically
meaningful inpainting (for instance, the shape of bird’s neck, and shape of hot-dog bread in Figure 5.5).
In contrast, the inpainted regions generated by RED-Diff tend to be blurry and less semantically
meaningful. However, we note that OT-ODE (and VP-ODE) inpainting occasionally produces artifacts
in the inpainted region as the resolution of image increases. We show examples of such negative
inpainting results in Sec. 5.10.8.

Empirically, we observe that performance of RED-Diff and ΠGDM improves as σy decreases. For
σy = 0, RED-Diff achieves higher PSNR and SSIM, but performs worse than OT-ODE in terms of
FID and LPIPS (Refer to Figure 5.2). OT-ODE’s tendency to produce inpainting artifacts for higher
resolution images remains for σy = 0, and can occur for the same images as σy = 0.05. These artifacts
can significantly degrade the pixel-based metrics PSNR and SSIM more than the perceptual metrics
such as FID and LPIPS. We further note that noiseless inpainting for OT-ODE can be improved by
incorporating null-space decomposition [Wang et al., 2022]. We describe this adjustment in Sec. 5.11.

5.6 Empirical Results for Conditional OT Flow Model

Sec. 5.5 includes Figure 5.1 with σy = 0.05 and Figure 5.2 with σy = 0 produced with the denoiser from
the continuous-time VP-SDE diffusion model showing plots of various metrics across all datasets and
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tasks. In this section, we provide the same for our pre-trained conditional OT flow matching model
using Algorithm 7 in Figure 5.7, and for the noiseless case in Figure 5.6. To save compute, for the flow
model we only include our ΠGDM baseline as RED-Diff required extensive hyperparameter tuning.
The qualitative results using the flow model instead of diffusion model checkpoint are identical.

5.7 Detailed Empirical Results for all Tasks and Datasets

This section includes tables that contain the numerical values of the metrics in all data sets and tasks.
The tables are hierarchically organized by noise, dataset, and task in consistent ordering. Noisy results
with σy = 0.05 are in Table 5.1 to 5.6 and noiseless results with σy = 0 are in Table 5.5 to 5.10.

Figure 5.6: Quantitative evaluation of pretrained conditional OT model for linear inverse problems on
super-resolution (SR), gaussian deblurring (GB), image inpainting - centered mask (IPC) and inpainting
- freeform (IPF) with σy = 0. We show results on face-blurred ImageNet-64 (INET-64), face-blurred
ImageNet-128 (INET-128), and AFHQ-256 (AFHQ).
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Figure 5.7: Quantitative evaluation of pretrained conditional OT model for linear inverse problems
on super-resolution (SR), gaussian deblurring (GB), image inpainting - centered mask (IPC) and
denoising (DN) with σy = 0.05. We show results on face-blurred ImageNet-64 (INET-64), face-blurred
ImageNet-128 (INET-128), and AFHQ-256 (AFHQ).

Table 5.1: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-64× 64

Model Inference NFEs ↓
SR 2×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 80 6.07 0.157 30.88 0.799 6.83 0.185 30.51 0.773
OT VP-ODE 80 7.82 0.163 30.75 0.792 8.72 0.190 30.40 0.765
OT ΠGDM 100 6.52 0.168 30.54 0.753 55.19 0.374 28.74 0.516

VP-SDE OT-ODE 80 5.57 0.155 30.88 0.799 6.33 0.181 30.52 0.773
VP-SDE VP-ODE 80 7.40 0.160 30.75 0.792 8.16 0.187 30.42 0.766
VP-SDE ΠGDM 100 6.84 0.174 30.48 0.743 54.77 0.376 28.74 0.511
VP-SDE RED-Diff 1000 23.02 0.187 31.22 0.839 51.20 0.236 30.19 0.776
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Table 5.2: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-64× 64

Model Inference NFEs ↓
Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ SSIM ↑ PSNR ↑ FID ↓ LPIPS ↓ SSIM ↑ PSNR ↑

OT OT-ODE 80 5.45 0.101 34.21 0.870 2.91 0.044 35.96 0.968
OT VP-ODE 80 5.70 0.105 33.87 0.865 3.54 0.049 35.37 0.960
OT ΠGDM 100 9.25 0.111 34.13 0.863 16.59 0.102 34.60 0.906

VP-SDE OT-ODE 80 5.03 0.098 34.25 0.872 2.76 0.042 36.02 0.969
VP-SDE VP-ODE 80 5.26 0.103 33.93 0.866 3.29 0.048 35.45 0.961
VP-SDE ΠGDM 100 9.75 0.113 34.03 0.860 17.19 0.107 34.25 0.901
VP-SDE RED-Diff 1000 12.18 0.119 33.97 0.881 6.02 0.041 35.64 0.964

Table 5.3: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-128× 128

Model Inference NFEs ↓
SR 2×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 70 3.22 0.141 32.35 0.820 4.84 0.175 31.94 0.821
OT VP-ODE 70 7.52 0.162 32.24 0.847 8.49 0.191 31.76 0.809
OT ΠGDM 100 4.38 0.148 32.07 0.831 30.30 0.328 29.96 0.606

VP-SDE OT-ODE 70 3.21 0.139 32.40 0.855 4.49 0.173 32.02 0.824
VP-SDE VP-ODE 70 9.14 0.166 32.06 0.838 9.35 0.193 31.66 0.804
VP-SDE ΠGDM 100 7.55 0.183 31.61 0.785 55.61 0.463 28.57 0.414
VP-SDE RED-Diff 1000 10.54 0.182 31.82 0.852 21.43 0.229 31.41 0.807

Table 5.4: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-128× 128

Model Inference NFEs ↓
Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 70 6.58 0.121 35.00 0.881 3.21 0.063 37.35 0.964
OT VP-ODE 70 6.44 0.127 34.47 0.871 3.98 0.075 36.26 0.948
OT ΠGDM 100 7.99 0.122 34.57 0.867 9.60 0.107 35.11 0.903

VP-SDE OT-ODE 70 6.39 0.120 35.04 0.882 3.25 0.062 37.41 0.965
VP-SDE VP-ODE 70 8.47 0.129 34.43 0.876 5.83 0.087 35.85 0.938
VP-SDE ΠGDM 100 9.75 0.130 34.45 0.858 10.69 0.124 34.72 0.882
VP-SDE RED-Diff 1000 14.63 0.171 32.42 0.820 9.19 0.105 33.52 0.895
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Table 5.5: Quantitative evaluation of linear inverse problems on AFHQ-256× 256

Model Inference NFEs ↓
SR 4×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 100 6.03 0.219 31.12 0.739 7.57 0.268 30.27 0.626
OT VP-ODE 100 6.81 0.229 31.01 0.728 7.80 0.276 30.21 0.616
OT ΠGDM 100 12.69 0.285 30.18 0.665 24.60 0.383 28.93 0.429

VP-SDE OT-ODE 100 7.28 0.238 30.83 0.714 8.53 0.276 30.37 0.641
VP-SDE VP-ODE 100 8.02 0.243 30.96 0.727 10.21 0.289 30.21 0.621
VP-SDE ΠGDM 100 77.49 0.469 29.34 0.469 116.42 0.535 28.49 0.313
VP-SDE RED-Diff 1000 20.84 0.331 29.97 0.675 15.81 0.341 30.15 0.645

Table 5.6: Quantitative evaluation of linear inverse problems on AFHQ-256× 256

Model Inference NFEs ↓
Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 100 8.98 0.104 35.32 0.897 2.48 0.061 37.18 0.965
OT VP-ODE 100 7.48 0.107 35.02 0.892 3.38 0.075 37.41 0.954
OT ΠGDM 100 19.09 0.153 34.20 0.855 22.87 0.237 32.93 0.823

VP-SDE OT-ODE 100 9.93 0.107 35.18 0.892 2.17 0.060 37.95 0.963
VP-SDE VP-ODE 100 8.78 0.107 35.12 0.891 3.08 0.071 37.68 0.959
VP-SDE ΠGDM 100 57.46 0.239 32.40 0.773 81.15 0.451 29.62 0.639
VP-SDE RED-Diff 1000 11.02 0.124 34.97 0.893 4.93 0.112 34.18 0.899

Table 5.7: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-64× 64

Model Inference NFEs ↓
SR 2×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 80 6.46 0.119 31.59 0.839 2.59 0.038 35.31 0.961
OT VP-ODE 80 8.29 0.147 31.20 0.817 6.13 0.083 33.31 0.929
OT ΠGDM 100 6.89 0.115 32.02 0.853 4.53 0.051 35.88 0.963

VP-SDE OT-ODE 80 6.32 0.118 31.60 0.839 2.61 0.037 35.45 0.963
VP-SDE VP-ODE 80 7.76 0.145 31.21 0.817 5.68 0.080 33.37 0.931
VP-SDE ΠGDM 100 6.47 0.113 32.03 0.853 4.35 0.049 35.95 0.964
VP-SDE RED-Diff 1000 11.74 0.224 30.12 0.798 15.39 0.134 31.99 0.879
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Table 5.8: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-64× 64

Model Inference NFEs ↓
Inpainting-Center, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 80 4.94 0.080 37.42 0.885
OT VP-ODE 80 7.85 0.120 34.24 0.858
OT ΠGDM 100 6.09 0.082 36.75 0.901

VP-SDE OT-ODE 80 4.85 0.079 37.64 0.887
VP-SDE VP-ODE 80 7.21 0.117 34.33 0.860
VP-SDE ΠGDM 100 5.79 0.081 36.81 0.902
VP-SDE RED-Diff 1000 7.29 0.079 39.14 0.925

Table 5.9: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-128× 128

Model Inference NFEs ↓
Inpainting-Center, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 70 5.88 0.095 37.06 0.894
OT VP-ODE 70 8.63 0.144 34.48 0.864
OT ΠGDM 100 5.82 0.097 36.89 0.908

VP-SDE OT-ODE 70 5.93 0.094 37.31 0.898
VP-SDE VP-ODE 70 8.08 0.142 34.55 0.865
VP-SDE ΠGDM 100 5.74 0.095 37.01 0.911
VP-SDE RED-Diff 1000 5.40 0.068 38.91 0.928

Table 5.10: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-128× 128

Model Inference NFEs ↓
SR 2×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 70 4.46 0.097 33.88 0.903 2.09 0.048 37.49 0.961
OT VP-ODE 70 7.69 0.144 32.93 0.871 6.02 0.108 34.73 0.925
OT ΠGDM 100 6.09 0.105 34.28 0.910 4.28 0.066 37.56 0.961

VP-SDE OT-ODE 70 4.62 0.096 33.95 0.906 2.26 0.046 37.79 0.967
VP-SDE VP-ODE 70 7.91 0.144 32.87 0.869 5.64 0.105 34.81 0.928
VP-SDE ΠGDM 100 6.02 0.104 34.33 0.911 4.35 0.065 37.70 0.963
VP-SDE RED-Diff 1000 3.90 0.082 34.47 0.92 4.19 0.085 34.68 0.929
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Table 5.11: Quantitative evaluation of linear inverse problems on AFHQ-256× 256

Model Inference NFEs ↓
SR 4×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 100 5.75 0.169 32.25 0.792 6.63 0.213 31.29 0.722
OT VP-ODE 100 6.14 0.194 31.93 0.773 7.38 0.231 31.10 0.705
OT ΠGDM 100 8.89 0.173 32.57 0.812 9.78 0.209 31.54 0.743

VP-SDE OT-ODE 100 6.58 0.178 32.18 0.789 8.24 0.226 31.21 0.717
VP-SDE VP-ODE 100 8.00 0.225 31.48 0.742 9.19 0.252 30.91 0.688
VP-SDE ΠGDM 100 10.85 0.189 32.52 0.811 11.46 0.228 31.47 0.738
VP-SDE RED-Diff 1000 8.65 0.191 32.21 0.801 11.67 0.268 31.30 0.731

Table 5.12: Quantitative evaluation of linear inverse problems on AFHQ-256× 256

Model Inference NFEs ↓
Inpainting-Center, σy = 0 Inpainting-Free-form, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 100 8.87 0.061 37.45 0.921 4.98 0.097 36.15 0.889
OT VP-ODE 100 9.18 0.106 35.63 0.898 6.92 0.135 34.72 0.869
OT ΠGDM 100 7.36 0.080 37.45 0.933 6.52 0.100 36.58 0.913

VP-SDE OT-ODE 100 9.95 0.064 37.49 0.918 5.39 0.099 36.15 0.887
VP-SDE VP-ODE 100 10.50 0.112 35.59 0.893 7.36 0.139 34.65 0.865
VP-SDE ΠGDM 100 8.61 0.088 37.27 0.925 7.25 0.109 36.37 0.906
VP-SDE RED-Diff 1000 8.53 0.050 38.89 0.951 7.27 0.090 36.88 0.892
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5.8 Related Work

5.8.1 Solving Inverse Problems with Diffusion Models.

The challenge of solving noisy linear inverse problems without any training has been tackled in
many ways, often with other solution concepts than posterior sampling [Elad et al., 2023]. Utilizing
a diffusion model has a host of recent research that we build upon. Our state-of-the-art baselines
ΠGDM [Song et al., 2022] and RED-Diff [Mardani et al., 2023] correspond to lines of research in
gradient-based adaptations and variational inference.

Earlier gradient-based adaptations that approximate ∇xt ln q(y|xt) in various ways include Diffusion
Posterior Sampling (DPS) [Chung et al., 2022a], Manifold Constrained Gradient [Chung et al., 2022b],
and an annealed approximation [Jalal et al., 2021]. ΠGDM out-performs earlier methods combining
adaptive weights and Gaussian posterior approximation with discrete-time denoising diffusion implicit
model (DDIM) sampling [Song et al., 2020a]. Here we adapt ΠGDM to all Gaussian probability paths
and to flow sampling. Our results show adaptive weights are unnecessary for strongly performing
conditional OT flow sampling. Denoising Diffusion Null Models (DDNM) [Wang et al., 2022] proposed
an alternative approximation of Eq[x1|xt,y] using a null-space decomposition specific to linear inverse
problems, which has been explored in combination with our method in Appendix 5.11.

RED-Diff [Mardani et al., 2023] approximates intractable q(x1|y) directly using variational inference,
solving for parameters via optimization. RED-Diff was reported to have mode-seeking behavior
confirmed by our results where RED-Diff performed better for noiseless inference. Another earlier
variational inference method is Denoising Diffusion Restoration Models (DDRM) [Kawar et al., 2022].
DDRM showed SVD can be memory-efficient for image applications, and we adapt their SVD imple-
mentations for super-resolution and blur. DDRM incorporates noiseless method ILVR [Choi et al.,
2021], and leverages a measurement-dependent forward process (i.e. q(xt|x1,y) ̸= q(xt|x1)) like
earlier SNIPS [Kawar et al., 2021]. SNIPS collapses in special cases to variants proposed in Song and
Ermon [2019], Song et al. [2020b], Kadkhodaie and Simoncelli [2020] for linear inverse problems.

5.8.2 Classical Approaches for Solving Inverse Problems.

Inverse problems are ubiquitous in various domains like image processing [Krishnan and Fergus,
2009, Rick Chang et al., 2017, Gilton et al., 2019, Bertalmio et al., 2000, Yang et al., 2010], medical
imaging [Ribes and Schmitt, 2008, Jin et al., 2017, Liang et al., 2020, Song et al., 2021b], and remote
sensing [Krasnopolsky, 2009, Krasnopolsky and Schiller, 2003, Dong et al., 2018]. Many approaches
have been developed over years to solve inverse problems. Variational methods [Agrawal et al.,
2022] formulate the inverse problem as an optimization task with a regularization term [Benning and
Burger, 2018] for certain desirable properties in the solution. Some of the well-known frameworks
in this category include plug-and-play prior (P3) [Venkatakrishnan et al., 2013, Chan et al., 2016,
Kamilov et al., 2017, Meinhardt et al., 2017, Zhang et al., 2017, Vidal et al., 2020], deep image prior
(DIP) [Ulyanov et al., 2018, Van Veen et al., 2018], and regularization by denoising (RED) [Romano
et al., 2017, Cohen et al., 2021]. Subsequent works, inspired by these prior works, have extended these
frameworks to include flow models [Whang et al., 2021a,b], optimal transport [Vidal et al., 2020], and
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more recently, diffusion models [Mardani et al., 2023, Graikos et al., 2022, Liu et al., 2023c] as prior.
Optimization-based inversion methods were also extended to include GANs [Bora et al., 2017, Shah
and Hegde, 2018, Raj et al., 2019, Daras et al., 2021, Pan et al., 2021]. Optimization-based approaches
for solving inverse problems, despite their widespread popularity, have certain drawbacks. These
methods are often computationally expensive as they involve optimizing an objective, which might
require many steps to converge to a solution. Further, designing the optimization objective itself
can be challenging. In addition, these methods are sensitive to the choice of hyperparameters like
regularization parameter, as noted in our experiments with RED-Diff [Mardani et al., 2023].

With emergence of diffusion models, another family of gradient-based approaches for inverse problems
have emerged. These approaches do not explicitly optimize an objective, i.e., they are training-free, but
they use gradients to guide the sampling process with diffusion model as prior. These approaches
usually involve iterative denoising through a SDE and gradient-based correction that is applied at
each step of the process. Some of the approaches in this category include Diffusion Posterior Sampling
(DPS) [Chung et al., 2022a], Manifold Constraint Gradient (MCG) [Chung et al., 2022b], ΠGDM [Song
et al., 2022], and shortcut sampling for diffusion (SSD) [Liu et al., 2023a]. Our proposed approach for
solving linear inverse problems with flow models also falls under this category. Computing gradients at
each step of denoising can be expensive. There are many gradient-free iterative methods for inversion
that utilize diffusion models as generative prior. Some prominent approaches in this category are
denoising diffusion restoration models (DDRM) [Kawar et al., 2022] and denoising diffusion null-space
model (DDNM) [Wang et al., 2022]. We have covered important distinctions between these approaches
briefly in Sec. 5.8 of the main paper.

The aforementioned approaches for solving inverse problems with diffusion models use pre-trained
diffusion models and are not specific to a particular measurement operator. There are works such
as [Saharia et al., 2021, 2022a] that train a conditional diffusion model to solve a specific inverse
problem. This approach for solving inverse problems is more computationally expensive as it involves
training a model from scratch. Further, the resulting model is specific to the measurement operator
used in the training data and cannot be reused to solve inverse problems with a different measurement
operator.In addition to the above, there is also a line of research that considers the more general setting
of blind inverse problem where the method to solve an inverse problem is agnostic to the measurement
operator. Some works that have advanced this line of research are Chung et al. [2023], Gan et al. [2024],
Laroche et al. [2024]. Finally, we note that there are previously proposed methods such as Whang et al.
[2021a,b], Hong et al. [2023] which solve inverse problems using CNFs. As noted in these prior works,
using CNFs for solving inverse problems presents computational challenges as well as challenges
due to restricted architecture. In this work, we consider CNFs that are trained with flow matching
(or similarly converted diffusion models) which are more computationally more efficient and do not
suffer from drawbacks observed due to restricted architectures.
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5.9 Ablation Study

5.9.1 Choice of initialization

We initialize the flow at time t > 0 as xt = αty + σtϵ (y-init) where ϵ ∼ N (0, I). Another choice of
initialization is to use xt = αtA

†y+ σtϵ. However, empirically we find that this initialization performs
worse that y-init on cond-OT model with OT-ODE sampling. We summarize the results of our ablation
study in Table 5.13. We find that on Gaussian deblurring, initialization with A†y does worse than
y-init, while the performance of both the initializations is comparable for super-resolution. In all our
experiments, we use y-init, due to its better performance on Gaussian deblurring.

Table 5.13: Quantitative evaluation of choice of initialization for conditional OT flow model with
OT-ODE sampling on AFHQ dataset. We find that y-init outperforms A†y on Gaussian deblurring.

Initialization Start time NFEs ↓
Gaussian deblur, σy = 0.05 SR 4×, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

y init 0.2 100 7.57 0.268 30.28 0.626 6.03 0.219 31.12 0.739
A†y 0.1 100 41.22 0.449 28.79 0.392 12.93 0.292 30.46 0.664
A†y 0.2 100 56.42 0.554 28.11 0.249 6.09 0.219 31.12 0.739

5.9.2 Ablation over γt for VP-ODE sampling

We compare the performance of γt = 1 against γt =
√

αt
α2

t +σ2
t

. We show results of VP-ODE sampling

with VP-SDE model in Table 5.14 and Table 5.15. As seen our choice of γt outperform γt = 1 across all
the metrics on face-blurred ImageNet-128.

Table 5.14: Quantitative evaluation of value of γt in VP-ODE sampling with VP-SDE model on face-
blurred ImageNet-128 dataset.

γt Start time NFEs ↓
SR 2×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

1 0.4 60 32.66 0.371 29.06 0.530 29.31 0.346 29.12 0.554√
αt

α2
t +σ2

t
0.4 60 9.14 0.167 32.06 0.838 10.14 0.196 31.59 0.800

Table 5.15: Quantitative evaluation of value of γt in VP-ODE sampling with VP-SDE model on face-
blurred ImageNet-128 dataset.

γt Start time NFEs ↓
Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

1 0.3 70 53.03 0.285 31.55 0.737 28.37 0.238 31.63 0.786√
αt

α2
t +σ2

t
0.3 70 8.47 0.129 34.43 0.876 5.83 0.087 35.85 0.938
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5.9.3 Variation of performance with NFEs

We analyze the variation in performance of OT-ODE, VP-ODE and ΠGDM for solving linear inverse
problems as NFEs are varied. The results have been summarized in Figure 5.8. We observe that
OT-ODE consistently outperforms VP-ODE and ΠGDM across all measurements in terms of FID and
LPIPS metrics, even for NFEs as small as 20. We also note that the choice of starting time matters to
achieve good performance with OT-ODE. For instance, starting at t = 0.4 outperforms t = 0.2 when
NFEs are small, but eventually as NFEs is increased, t = 0.2 performs better. We also note that ΠGDM
achieves higher values of PSNR and SSIM at smaller NFEs for super-resolution but has inferior FID
and LPIPS compared to OT-ODE.

5.9.4 Choice of starting time

We plot the variation in performance of OT-ODE and VP-ODE sampling with change in start times for
conditional OT model and VP-SDE model on AFHQ dataset in Figure 5.9 and Figure 5.10, respectively.
We note that in general, OT-ODE sampling achieves optimal performance across all measurements
and all metrics at t = 0.2 while VP-ODE sampling achieves optimal performance between start times
of t = 0.3 and 0.4. In this work, for all the experiments, we use t = 0.2 for OT-ODE sampling and
t = 0.4 for VP-ODE sampling.
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Figure 5.8: Performance of different procedures for solving linear inverse problems with variation in
NFEs on AFHQ dataset. We use pretrained conditional OT model and set σy = 0.05. The legends VP
and VE indicate the choice of r2

t used in ΠGDM (See Sec. 5.12.1). Time t = 0.2 and 0.4 indicates the
starting time of sampling with OT-ODE. 74



Figure 5.9: Performance of OT-ODE and VP-ODE in solving linear inverse problems with varying start
times on AFHQ dataset. We use pretrained cond-OT model and set σy = 0.05.

Figure 5.10: Performance of OT-ODE and VP-ODE in solving linear inverse problems with varying
start times on AFHQ dataset. We use pretrained VP-SDE model and set σy = 0.05.
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5.10 Additional Qualitative Results

5.10.1 Qualitative Results for Gaussian Deblur

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 5.11: Gaussian-deblur with conditional OT model and σy = 0.05 for (first row) face-blurred
ImageNet-64, (second and third row) face-blurred ImageNet-128, and ( fourth and fifth row) AFHQ.

5.10.2 Qualitative Results for Super-resolution

76



(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 5.12: Super-resolution with conditional OT model and σy = 0.05 for (first row) face-blurred
ImageNet-64 2×, (second row) face-blurred ImageNet-128 2×, and (third row) AFHQ 4×.

5.10.3 Qualitative Results for Inpainting
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 5.13: Inpainting (Center mask) with conditional OT model and σy = 0.05 for (first row)
face-blurred ImageNet-64, (second row) face-blurred ImageNet-128, and (third row) AFHQ.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 5.14: Inpainting (Free-form mask) with conditional OT model and σy = 0.05 for AFHQ.
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5.10.4 Qualitative Results for Denoising

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 5.15: Denoising with conditional OT model and σy = 0.05 for (first row) face-blurred ImageNet-
64, (second row) face-blurred ImageNet-128, and (third row) AFHQ.

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) RED-Diff

Figure 5.16: Denoising with pretrained VP-SDE model and σy = 0.05 for (first row) face-blurred
ImageNet-64, (second row) face-blurred ImageNet-128, and (third row) AFHQ.

80



5.10.5 Qualitative Results for Noiseless Gaussian Deblur

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 5.17: Gaussian deblurring with conditional OT model and σy = 0 for (first row) face-blurred
ImageNet-64, (second row) face-blurred ImageNet-128 and (third row) AFHQ.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) RED-Diff

Figure 5.18: Gaussian deblurring with VP-SDE model and σy = 0 for (first row) face-blurred ImageNet-
64, (second row) face-blurred ImageNet-128 and (third and fourth row) AFHQ.

5.10.6 Qualitative Results for Noiseless Super-resolution
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 5.19: Super-resolution with conditional OT model and σy = 0 for (first row) face-blurred
ImageNet-64, (second row) face-blurred ImageNet-128 and (third row) AFHQ.

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) RED-Diff

Figure 5.20: Super-resolution with VP-SDE model and σy = 0 for (first row) face-blurred ImageNet-64,
(second row) face-blurred ImageNet-128 and (third row) AFHQ.

5.10.7 Qualitative Results for Noiseless Inpainting
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 5.21: Inpainting (centered mask) with conditional OT model and σy = 0 for (first row) face-
blurred ImageNet-64, (second row) face-blurred ImageNet-128 and (third row) AFHQ.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) RED-Diff

Figure 5.22: Inpainting (centered mask) with VP-SDE model and σy = 0 for (first and second row)
face-blurred ImageNet-64, (third row) face-blurred ImageNet-128 and (fourth row) AFHQ.

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) RED-Diff

Figure 5.23: Inpainting (freeform mask) with VP-SDE model and σy = 0 for AFHQ.
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5.10.8 Negative results from Inpainting

(a) Reference (b) Masked-noisy (c) Corrected-noisy (d) Masked σy = 0 (e) Corrected σy = 0

Figure 5.24: Negative results for inpainting with OT-ODE on AFHQ. We can observe artifacts in
high-resolution images where the masked region is not inpainted correctly and there are patches in
the inpainted region that are semantically incorrect. The observed artifacts are present in both the
noiseless (e) and noisy (c) columns.
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(a) Reference (b) Masked-noisy (c) Corrected-noisy (d) Masked σy = 0 (e) Corrected σy = 0

Figure 5.25: Negative results for inpainting with OT-ODE on face-blurred ImageNet-128. We can
observe artifacts in high-resolution images where the masked region is not inpainted correctly and
there are patches in the inpainted region that are semantically incorrect. The observed artifacts are
present in both the noiseless (e) and noisy (c) columns.

5.11 Noiseless null and range space decomposition

When σ2
y = 0, we can produce a vector field approximation with even lower Conditional Flow Matching

loss by applying a null-space and range-space decomposition motivated by DDNM [Wang et al., 2022].87



In particular, when y = Ax1, we have that A†y = A†Ax1 (where A† is the pseudo-inverse of A) and
so

Eq[x1|xt,y] = Eq[A
†Ax1 + (I −A†A)x1|xt,y] = A†y + (I −A†A)Eq[x1|xt,y]. (5.19)

So when σ2
y = 0, it is only necessary to approximate the second term, as the first term is known through

y. The regression loss is minimized for the first term automatically and x̂1(xt,y) is only responsible
for predicting the second term.

In our experiments, we find that null space decomposition helps in inpainting but not other measure-
ments. We summarize the results in Table 5.16 to 5.21 and show qualitative results for inpainting
in Figure 5.26 to 5.28.

Table 5.16: Comparison of performance OT-ODE sampling and OT-ODE sampling with null and range
space decomposition (NRSD) on face-blurred ImageNet-64× 64. For inpainting, OT-ODE sampling
with null and range space decomposition outperforms simple OT-ODE sampling.

Model Inference NFEs ↓
Inpainting-Center, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 80 4.94 0.080 37.42 0.885
OT OT-ODE-NRSD 80 3.84 0.072 38.23 0.888
OT VP-ODE 80 7.85 0.120 34.24 0.858

VP-SDE OT-ODE 80 4.85 0.079 37.64 0.887
VP-SDE OT-ODE-NRSD 80 3.77 0.072 38.24 0.888
VP-SDE VP-ODE 80 7.21 0.117 34.33 0.860

Table 5.17: Comparison of performance OT-ODE sampling and OT-ODE sampling with null and range
space decomposition (NRSD) on face-blurred ImageNet-64× 64. For tasks like super-resolution and
Gaussian deblurring, OT-ODE sampling without null and range space decomposition outperforms
other methods.

Model Inference NFEs ↓
SR 2×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 80 6.46 0.119 31.59 0.839 2.59 0.038 35.31 0.961
OT OT-ODE-NRSD 80 7.37 0.134 31.05 0.799 3.05 0.044 35.19 0.956
OT VP-ODE 80 8.29 0.147 31.20 0.817 6.13 0.083 33.31 0.929

VP-SDE OT-ODE 80 6.32 0.118 31.60 0.839 2.61 0.037 35.45 0.963
VP-SDE OT-ODE-NRSD 80 7.13 0.133 31.06 0.798 2.99 0.044 35.24 0.956
VP-SDE VP-ODE 80 7.76 0.145 31.21 0.817 5.68 0.080 33.37 0.931
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Table 5.18: Comparison of performance OT-ODE sampling and OT-ODE sampling with null and range
space decomposition (NRSD) on face-blurred ImageNet-128× 128.

Model Inference NFEs ↓
SR 2×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 70 4.46 0.097 33.88 0.903 2.09 0.048 37.49 0.961
OT OT-ODE-NRSD 70 3.62 0.099 33.24 0.876 1.42 0.036 38.35 0.969
OT VP-ODE 70 7.69 0.144 32.93 0.871 6.02 0.108 34.73 0.925

VP-SDE OT-ODE 70 4.62 0.096 33.95 0.906 2.26 0.046 37.79 0.967
VP-SDE OT-ODE-NRSD 70 3.44 0.098 33.28 0.877 1.36 0.035 38.44 0.969
VP-SDE VP-ODE 70 7.91 0.144 32.87 0.869 5.64 0.105 34.81 0.928

Table 5.19: Comparison of performance OT-ODE sampling and OT-ODE sampling with null and range
space decomposition (NRSD) on face-blurred ImageNet-128× 128

Model Inference NFEs ↓
Inpainting-Center, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 70 5.88 0.095 37.06 0.894
OT OT-ODE-NRSD 70 3.95 0.074 38.27 0.906
OT VP-ODE 70 8.63 0.144 34.48 0.864

VP-SDE OT-ODE 70 5.93 0.094 37.31 0.898
VP-SDE OT-ODE-NRSD 70 3.84 0.073 38.27 0.906
VP-SDE VP-ODE 70 8.08 0.142 34.55 0.865

Table 5.20: Comparison of performance OT-ODE sampling and OT-ODE sampling with null and range
space decomposition (NRSD) on AFHQ-256× 256

Model Inference NFEs ↓
SR 4×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 100 5.75 0.169 32.25 0.792 6.63 0.213 31.29 0.722
OT OT-ODE-NRSD 100 5.73 0.179 31.69 0.753 7.32 0.237 30.72 0.665
OT VP-ODE 100 6.14 0.194 31.93 0.773 7.38 0.231 31.10 0.705

VP-SDE OT-ODE 100 6.58 0.178 32.18 0.789 8.24 0.226 31.21 0.717
VP-SDE OT-ODE-NRSD 100 6.99 0.195 31.65 0.752 10.19 0.255 30.66 0.662
VP-SDE VP-ODE 100 8.00 0.225 31.48 0.742 9.19 0.252 30.91 0.688

5.12 Baselines

5.12.1 ΠGDM

5.12.1.0.1 Implementation details.

We closely follow the official code available on github while implementing ΠGDM. For noisy case,
we closely follow the Algorithm 1 in the appendix of Song et al. [2022]. We use adaptive weighted
guidance for both noiseless and noisy cases as in the original work. We always use uniform spacing
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Table 5.21: Comparison of performance OT-ODE sampling and OT-ODE sampling with null and range
space decomposition (NRSD) on AFHQ-256× 256

Model Inference NFEs ↓
Inpainting-Center, σy = 0 Inpainting-Free-form, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 100 8.87 0.061 37.45 0.921 4.98 0.097 36.15 0.889
OT OT-ODE-NRSD 100 7.95 0.046 38.01 0.921 4.12 0.083 36.62 0.890
OT VP-ODE 100 9.18 0.106 35.63 0.898 6.92 0.135 34.72 0.869

VP-SDE OT-ODE 100 9.95 0.064 37.49 0.918 5.39 0.099 36.15 0.887
VP-SDE OT-ODE-NRSD 100 10.96 0.052 37.95 0.916 4.87 0.089 36.52 0.884
VP-SDE VP-ODE 100 10.50 0.112 35.59 0.893 7.36 0.139 34.65 0.865

while iterating the timestep over 100 steps. We use ascending time from 0 to 1. Note that the original
paper uses descending time from T to 0. According to the notational convention used in this paper,
this is equivalent to ascending time from 0 to 1. For the choice of r2

t , we consider the values derived
from both variance exploding formulation and variance preserving formulation.

5.12.1.0.2 Value of r2
t .

ΠGDM sets the value of r2
t =

σ2
1−t

1+σ2
1−t

for VE-SDE, where q(xt|x1) = N (x1, σ2
1−tI). We can follow the

same procedure as outlined in Song et al. [2022], and solve for r2
t in closed form for VP-SDE. We know

for that VP-SDE, q(xt|x1) = N (α1−tx1, (1− α2
1−t)I), where αt = e−

1
2 T(t), T(t) =

∫ t
0 β(s)ds, and β(s)

is the noise scale function. Using (5.16) for VP-SDE gives r2
t = 1− α2

1−t. We can also obtain an alternate
r2

t by plugging in value of σ2
t for VP-SDE into the expression of r2

t derived for VE-SDE, which evaluates

to r2
t =

1−α2
1−t

2−α2
1−t

. Empirically, we find that r2
t for VE-SDE marginally outperforms VP-SDE. We report

performance of ΠGDM with both choices of r2
t in Table 5.22 to 5.24.

Table 5.22: Relative performance of ΠGDM on face-blurred ImageNet-64 with VE and VP derived r2
t

with σy = 0.05

Measurement Model
VP VE

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

SR 2× OT 6.52 0.168 30.54 0.753 5.91 0.160 30.60 0.762
Gaussian deblur OT 55.19 0.374 28.74 0.516 39.36 0.326 29.00 0.572
Inpainting-Center OT 9.25 0.111 34.13 0.863 8.70 0.109 34.17 0.864

Denoising OT 16.59 0.102 34.60 0.906 16.44 0.101 34.64 0.907

SR 2× VP-SDE 6.84 0.174 30.48 0.743 6.11 0.166 30.54 0.753
Gaussian deblur VP-SDE 54.77 0.376 28.74 0.511 39.14 0.329 28.99 0.567
Inpainting-Center VP-SDE 9.75 0.113 34.03 0.860 9.36 0.112 34.06 0.862

Denoising VP-SDE 17.19 0.107 34.25 0.901 15.54 0.102 34.41 0.906
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(a) Reference (b) Distorted (c) OT-ODE (d) OT-ODE-NRSD (e) ΠGDM

Figure 5.26: Comparison of inpainting (center mask) via OT-ODE sampling with and without null and
range space decomposition (NRSD). We use conditional OT model and σy = 0 for (first and second
row) face-blurred ImageNet-64, (third row) face-blurred ImageNet-128, and (fourth row) AFHQ.

5.12.1.0.3 Choice of starting time.

For OT-ODE sampling and VP-ODE sampling, we observe that starting at time t > 0 improves the
performance. We therefore perform an ablation study on ΠGDM baseline, and vary the start time
to verify whether starting at t > 0 helps to improve the performance. We plot the metrics for three
different measurements in Figure 5.29. We observe that starting later at time t > 0 consistently leads
to worse performance compared to starting at time t = 0. Therefore, for all our experiments with
ΠGDM, we always start at time t = 0.
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(a) Reference (b) Distorted (c) OT-ODE (d) OT-ODE-NRSD (e) ΠGDM

Figure 5.27: Comparison of inpainting (center mask) via OT-ODE sampling with and without null and
range space decomposition (NRSD) for (first row) face-blurred ImageNet-64, (second row) face-blurred
ImageNet-128, and (third row) AFHQ. We use VP-SDE model and σy = 0.

Table 5.23: Relative performance of ΠGDM on face-blurred ImageNet-128 with VE and VP derived r2
t

with σy = 0.05

Measurement Model
VP VE

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

SR 2× OT 4.38 0.148 32.07 0.831 4.26 0.145 32.12 0.834
Gaussian deblur OT 30.30 0.328 29.96 0.606 22.42 0.296 30.17 0.642
Inpainting-Center OT 7.99 0.122 34.57 0.867 7.64 0.120 34.61 0.869

Denoising OT 9.60 0.107 35.11 0.903 9.30 0.104 35.21 0.906

SR 2× VP-SDE 7.55 0.183 31.61 0.785 6.14 0.168 31.79 0.803
Gaussian deblur VP-SDE 55.61 0.463 28.57 0.414 41.69 0.404 28.98 0.493
Inpainting-Center VP-SDE 9.75 0.130 34.45 0.858 9.46 0.129 34.49 0.859

Denoising VP-SDE 10.69 0.124 34.72 0.882 10.11 0.119 34.92 0.886

5.12.2 RED-Diff

5.12.2.0.1 Implementation details.

We use VP-SDE model for all experiments with RED-Diff. We closely follow the official code available
on github while implementing RED-Diff. Similar to [Mardani et al., 2023], we always use uniform
spacing while iterating the timestep over 1000 steps. We use ascending time from 0 to 1. Note that the
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(a) Reference (b) Distorted (c) OT-ODE (d) OT-ODE-NRSD (e) ΠGDM

Figure 5.28: Comparison of inpainting (free-form mask) via OT-ODE sampling with and without null
and range space decomposition (NRSD) for AFHQ. We use conditional OT model and σy = 0.

Table 5.24: Relative performance of ΠGDM on AFHQ with VE and VP derived r2
t with σy = 0.05

Measurement Model
VP VE

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

SR 4× OT 12.69 0.285 30.18 0.665 12.31 0.282 30.23 0.672
Gaussian deblur OT 24.60 0.383 28.93 0.429 19.66 0.355 29.16 0.475
Inpainting-Center OT 19.09 0.153 34.20 0.855 16.51 0.145 34.40 0.863

Denoising OT 11.20 0.159 34.49 0.876 10.92 0.153 34.78 0.883

SR 4× VP-SDE 77.49 0.469 29.34 0.469 54.12 0.413 29.73 0.549
Gaussian deblur VP-SDE 116.42 0.535 28.49 0.313 95.09 0.493 28.74 0.368
Inpainting-Center VP-SDE 57.46 0.239 32.40 0.773 56.86 0.238 32.42 0.775

Denoising VP-SDE 81.15 0.451 29.62 0.639 35.33 0.278 31.72 0.776

original paper uses descending time from T to 0. According to the notational convention used in this
paper, this is equivalent to ascending time from 0 to 1. We use Adam optimizer and use the momentum
pair (0.9, 0.99) similar to the original work. Further, we use initial learning rate of 0.1 for AFHQ and
ImageNet-128, as used in the original work, and learning rate of 0.01 for ImageNet-64. We use batch
size of 1 for all the experiments. Finally, we extensively tuned the regularization hyperparameter λ

to find the value that results in optimal performance across all metrics. We summarize the results of
our experiments in Table 5.25 to 5.30. We note that more extensive tuning may be able to find better
performing hyperparameters but this goes against the intent of a training-free algorithm.
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Figure 5.29: Variation in performance ΠGDM sampling with variation in start times on AFHQ dataset.
We use pretrained conditional OT model and set σy = 0.05. We observe similar trends with VP-SDE
checkpoint. We plot metrics for both choices of r2

t that can be derived from variance preserving and
variance exploding formulations.

Table 5.25: Hyperparameter search for RED-Diff on face-blurred ImageNet-64× 64 with σy = 0.05. We
use learning rate of 0.01.

λ

SR 2×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 34.09 0.224 30.12 0.798 46.76 0.254 29.29 0.715
0.25 28.45 0.206 30.40 0.814 51.20 0.236 30.19 0.776
0.75 23.02 0.187 31.22 0.839 73.76 0.287 30.47 0.750
1.5 32.35 0.243 30.80 0.792 82.26 0.335 30.29 0.705
2.0 40.33 0.284 30.41 0.750 86.48 0.358 30.17 0.683

λ

Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 15.71 0.155 31.74 0.840 12.47 0.085 32.24 0.907
0.25 15.56 0.155 31.73 0.839 11.80 0.083 32.36 0.908
0.75 13.31 0.139 32.65 0.857 8.43 0.062 33.65 0.932
1.5 12.18 0.119 33.97 0.881 6.11 0.041 35.34 0.958
2.0 12.87 0.119 34.19 0.886 6.02 0.041 35.64 0.964
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Table 5.26: Hyperparameter search for RED-Diff on face-blurred ImageNet-64× 64 with σy = 0. We
use learning rate of 0.01.

λ

SR 2×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 11.74 0.224 30.12 0.798 15.39 0.134 31.99 0.879
0.25 12.65 0.130 32.34 0.886 29.56 0.236 30.19 0.776
0.75 20.36 0.187 31.22 0.839 55.43 0.287 30.47 0.750
1.5 33.13 0.243 30.80 0.792 71.64 0.335 30.29 0.705
2.0 41.56 0.288 30.46 0.752 78.55 0.358 30.22 0.685

λ

Inpainting-Center, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 7.29 0.079 39.14 0.925
0.25 7.40 0.155 31.73 0.839
0.75 8.47 0.083 38.59 0.922
1.5 10.75 0.095 37.42 0.916
2.0 12.54 0.119 34.19 0.886

Table 5.27: Hyperparameter search for RED-Diff on face-blurred ImageNet-128× 128 with σy = 0.05.
We use learning rate of 0.1.

λ

SR 2×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 23.25 0.272 30.12 0.731 37.83 0.42 28.54 0.473
0.75 14.56 0.224 30.71 0.782 21.43 0.229 31.41 0.807
1.5 10.54 0.182 31.82 0.852 22.85 0.247 31.65 0.809
2.0 11.65 0.187 31.93 0.859 24.71 0.259 31.61 0.802

λ

Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 19.68 0.191 31.75 0.795 12.83 0.134 32.27 0.854
0.75 19.03 0.202 31.36 0.779 12.69 0.14 32.09 0.846
1.5 16.33 0.189 31.81 0.794 10.67 0.121 32.89 0.874
2.0 14.63 0.171 32.42 0.819 9.19 0.105 33.52 0.895
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Table 5.28: Hyperparameter search for RED-Diff on face-blurred ImageNet-128× 128 with σy = 0. We
use learning rate of 0.1.

λ

SR 2×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 3.90 0.082 34.47 0.922 4.19 0.085 34.68 0.929
0.75 6.52 0.105 33.54 0.905 12.59 0.177 32.71 0.864
1.5 10.46 0.142 32.98 0.894 19.29 0.225 32.15 0.831
2.0 13.08 0.165 32.65 0.884 22.57 0.245 31.94 0.816

λ

Inpainting-Center, σy = 0 Inpainting-Freeform, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 5.39 0.068 38.91 0.928 8.94 0.162 35.54 0.830
0.75 5.52 0.073 38.11 0.924 9.26 0.166 35.05 0.826
1.5 6.09 0.079 37.32 0.920 10.13 0.172 34.58 0.821
2.0 6.68 0.083 36.87 0.917 10.87 0.176 34.30 0.818

Table 5.29: Hyperparameter search for RED-Diff on AFHQ with σy = 0.5. We use learning rate of 0.1.

λ

SR 4×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 21.59 0.385 29.51 0.607 17.36 0.379 29.95 0.639
0.25 22.47 0.374 29.66 0.635 15.81 0.341 30.15 0.645
0.75 20.84 0.331 29.97 0.675 25.41 0.366 29.76 0.588
1.5 22.46 0.355 29.68 0.642 38.66 0.409 29.34 0.525
2.0 25.02 0.376 29.49 0.618 45.01 0.427 29.18 0.500

λ

Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 28.39 0.216 31.53 0.756 8.32 0.159 32.18 0.827
0.25 28.85 0.217 31.51 0.755 8.35 0.161 32.16 0.826
0.75 28.80 0.218 31.64 0.759 7.94 0.156 32.35 0.833
1.5 28.74 0.205 32.19 0.784 6.63 0.138 33.12 0.862
2.0 28.55 0.190 32.63 0.802 5.71 0.124 33.70 0.882
2.5 28.71 0.177 32.99 0.818 4.93 0.111 34.18 0.899
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Table 5.30: Hyperparameter search for RED-Diff on AFHQ with σy = 0. We use learning rate (lr) of 0.1
unless mentioned otherwise.

λ

SR 4×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.005 11.67 0.197 32.93 0.837 14.69 0.278 31.73 0.760
0.05 8.65 0.191 32.21 0.801 11.67 0.268 31.30 0.731
0.1 9.65 0.204 31.84 0.781 11.53 0.273 31.05 0.711

0.25 11.65 0.222 31.53 0.768 13.22 0.293 30.63 0.675
0.75 14.98 0.274 30.72 0.726 23.34 0.351 29.91 0.598
1.5 19.40 0.332 29.95 0.665 36.96 0.402 29.39 0.529
2.0 22.72 0.361 29.65 0.632 43.64 0.422 29.22 0.504

λ

Inpainting-Center, σy = 0, lr=0.01 Inpainting-Freeform, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.005 8.53 0.050 38.89 0.951 7.22 0.091 36.89 0.892
0.05 8.53 0.050 38.89 0.951 7.27 0.090 36.88 0.892
0.1 8.53 0.050 38.88 0.951 7.23 0.091 36.82 0.891

0.25 8.53 0.050 38.83 0.950 7.32 0.094 36.69 0.889
0.75 8.88 0.056 38.60 0.948 7.74 0.102 36.26 0.884
1.5 10.32 0.071 38.04 0.942 8.41 0.112 35.69 0.877
2.0 11.62 0.084 37.54 0.937 8.76 0.119 35.37 0.872
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Part II

Efficient Neural Operators with Deep
Equilibrium Models
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Chapter 6

Deep Equilibrium Based Neural
Operators for Steady-State PDEs

Partial differential equations (PDEs) are used to model a wide range of processes in science and
engineering. They define a relationship of (unknown) function and its partial derivatives. Most
PDEs do not accept a closed form solution and solving them with classical numerical methods can
be slow and expensive. Recent work has shown neural operators to be an extremely promising
machine learning-based approach to learn solutions of PDEs. These methods train an operator, which
takes as input a PDE in some family, and outputs its solution. However, the architectural design
space, especially given structural knowledge of the PDE family of interest, is still poorly understood.
Motivated by this, we study the benefits of weight-tied neural network architectures for steady-state
PDEs. Specifically, we propose a deep equilibrium based operator that directly solves for the solution
of a steady-state PDE as the infinite-depth fixed point of an implicit operator layer using a black-box
root solver and differentiates analytically through this fixed point resulting in O(1) training memory.
We refer the reader to Sec. 2.1 for a detailed overview on Deep Equilibrium (DEQ) models, and to
Sec. 2.3 for an overview on PDEs and neural operators. We introduce our weight-tied architectures
in Sec. 6.3, and provide experimental results on two well-known steady-state PDEs: Darcy flow and
steady-state Navier Stokes.

6.1 Preliminaries

We now summarize some key concepts and notation used in this chapter. We also refer the reader to
Chapter 2 for a more detailed background on PDEs and neural operators.

Definition 1 (L2(Ω; Rd)). For a domain Ω we denote by L2(Ω; Rd) the space of square integrable functions

g : Ω→ Rd such that ∥g∥L2(Ω) < ∞, where ∥g∥L2(Ω) =
(∫

Ω ∥g(x)∥2
ℓ2

dx
)1/2

.
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6.1.1 Fourier Neural Operator (FNO)

Neural operators [Lu et al., 2019, Li et al., 2020a, Bhattacharya et al., 2021, Patel et al., 2021, Kovachki
et al., 2023] are a deep learning approach to learning solution operators which map a PDE to its
solution. The Fourier neural operator (FNO) [Li et al., 2020a] is a particularly successful recent
architecture parametrized as a sequence of kernel integral operator layers followed by non-linear
activation functions. Each kernel integral operator layer is a convolution-based kernel function that is
instantiated through a linear transformation in Fourier domain, making it less sensitive to the level of
spatial discretization. Specifically, an L-layered FNO Gθ : Rdu → Rdu with learnable parameters θ, is
defined as

Gθ := Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ P (6.1)

where P : L2(Ω; Rdu)→ L2(Rdv ; Rdv) and Q : L2(Rdv ; Rdv)→ L2(Rdv ; Rdu) are projection operators,
and Ll : L2(Rdv ; Rdv)→ L2(Rdv ; Rdv) for l ∈ [L] is the lth FNO layer defined as,

Ll (vl) = σ (Wlvl + bl +Kl(vl))) . (6.2)

Here σ is a non-linear activation function, Wl , bl are the lth layer weight matrix and bias terms. Finally
Kl is the lth integral kernel operator which is calculated using the Fourier transform as introduced in
Li et al. [2020a] defined as follows,

Kl(vl) = F−1 (Rl · (Fvl)) (x) ∀x ∈ Ω, (6.3)

where F and F−1 are the Fourier transform and the inverse Fourier transform, with Rl representing
the learnable weight-matrix in the Fourier domain. Therefore, ultimately, the trainable parameters θ is
a collection of all the weight matrices and biases, i.e, θ := {Wl , bl , Rl , · · · , W1, b1, R1}.

6.2 Related Work

Neural network based approaches for solving PDEs can broadly be divided into two categories. First
are hybrid solvers [Bar-Sinai et al., 2019, Kochkov et al., 2021, Hsieh et al., 2019] which use neural
networks in conjunction with existing numerical solvers. The main motivation is to not only improve
upon the existing solvers, but to also replace the more computationally inefficient parts of the solver
with a learned counter part. Second set of approaches are full machine learning based approaches that
aim to leverage the approximation capabilities of neural networks [Hornik et al., 1989] to directly learn
the dynamics of the physical system from observations.

Hybrid solvers like Hsieh et al. [2019] use a neural network to learn a correction term to correct over
an existing hand designed solver for a Poisson equation, and also provide convergence guarantees
of their method to the solution of the PDE. However, the experiments in their paper are limited
to linear elliptic PDEs. Further, solvers like Bar-Sinai et al. [2019] use neural networks to derive
the discretizations for a given PDE, thus enabling the use of a low-resolution grid in the numerical
solver. Furthermore, Kochkov et al. [2021] use neural networks to interpolate differential operators
between grid points of a low-resolution grid with high accuracy. This work specifically focuses on
solving Navier-Stokes equations, their method is more accurate than numerical techniques like Direct
Numerical Simulation (DNS) with a low-resolution grid, and is also 80×more faster. Brandstetter et al.
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[2022] introduced a message passing based hybrid scheme to train a hybrid solver and also propose
a loss term which helps improve the stability of hybrid solvers for time dependent PDEs. However,
most of these methods are equation specific, and are not easily transferable to other PDEs from the
same family.

The neural network based approach that has recently garnered the most interest by the community is
that of the operator learning framework [Chen and Chen, 1995, Kovachki et al., 2021b, Lu et al., 2019,
Li et al., 2020a, Bhattacharya et al., 2021], which uses a neural network to approximate and infinite
dimensional operator between two Banach spaces, thus learning an entire family of PDEs at once. Lu
et al. [2019] introduces DeepONet, which uses two deep neural networks, referred to as the branch net
and trunk net, which are trained concurrently to learn from data. Another line of operator learning
framework is that of neural operators Kovachki et al. [2021b]. The most successful methodology for
neural operators being the Fourier neural operators (FNO) [Li et al., 2020a]. FNO uses convolution
based integral kernels which are evaluated in the Fourier space.

Future works like Tran et al. [2021] introduce architectural improvements that enables one to train
deeper FNO networks, thus increasing their size and improving their the performance on a variety of
(time-dependent) PDEs. Moreover, the success of Transformers in domains like language and vision
has also inspired transformer based neural operators in works like Li et al. [2022b], Hao et al. [2023]
and Liu et al. [2022c]. Theoretical results pertaining to the neural operators mostly include universal
approximation results Kovachki et al. [2021a], Lanthaler et al. [2022] which show that architectures like
FNO and DeepONet can indeed approximate the infinite dimension operators. In this work, we focus
on steady-state equations and show the benefits of weight-tying in improving the performance of FNO
for steady-state equations. We show that instead of making a network deeper and hence increasing
the size of a network, weight-tied FNO architectures can outperform FNO and its variants 4× its
size. We further introduce FNO-DEQ, a deep equilibrium based architecture to simulate an infinitely
deep weight-tied network (by solving for a fixed point) with O(1) training memory. Our work takes
inspiration from recent theoretical works like Marwah et al. [2021], Chen et al. [2021], Marwah et al.
[2022] which derive parametric rates for some-steady state equations, and in fact prove that neural
networks can approximate solutions to some families of PDEs with just poly(d) parameters, thus
evading the curse of dimensionality.

6.3 Problem Setup

6.3.1 Steady-State PDE

We first formally define the system of steady-state PDEs that we will solve for:

Definition 2 (Steady-State PDE). Given a bounded open set Ω ⊂ Rd, a steady-state PDE can be written in
the following general form:

L(a(x), u(x)) = f (x), ∀x ∈ Ω (6.4)

Here L is a continuous operator, the function u ∈ L2
(

Ω; Rdu
)

is the unknown function for which we wish to

solve, and a ∈ L2
(

Ω; Rda
)

collects all the coefficients describing the PDE, and f ∈ L2
(

Ω; Rd f
)

is a function
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independent of u. We will, for concreteness, assume periodic boundary conditions, i.e. ∀z ∈ Zd, ∀x ∈ Ω we
have u(x + z) = u(x). (Equivalently, Ω := Td = [0, 2π]d can be identified with the torus.) 1 Finally, we will
denote u⋆ : Ω→ R as the solution to the PDE.

Steady-state models a system at stationarity, i.e., when some quantity of interest like temperature or
velocity no longer changes over time. Classical numerical solvers for these PDEs include iterative
methods like Newton updates or conjugate gradient descent, typically with carefully chosen precondi-
tioning to ensure benign conditioning and fast convergence. Furthermore, recent theoretical works
[Marwah et al., 2021, Chen et al., 2021, Marwah et al., 2022] show that for many families of PDEs (e.g.,
steady-state elliptic PDEs that admit a variational formulation), iterative algorithms can be efficiently
“neuralized”, that is, the iterative algorithm can be represented by a compact neural network, so long
as the coefficients of the PDE are also representable by a compact neural network. Moreover, the
architectures constructed in these works are heavily weight-tied.

We will operationalize these developments through the additional observation that all these iterative
schemes can be viewed as algorithms to find a fixed point of a suitably chosen operator. Namely, we
can design an operator G : L2(Ω; Rdu)× L2(Ω; Rd f )→ L2(Ω; Rdu) 2 such that u⋆ = G(u⋆, f ) and a lot
of common (preconditioned) first and second-order methods are natural ways to recover the fixed
points u⋆.

6.3.2 Architectures for Steady-State PDEs

Before describing our architectures, we introduce two components that we will repeatedly use.

Definition 3 (Projection and embedding layers). A projection and embedding layer, respectively P :
L2(Ω; Rdu) × L2(Ω; Rd f ) → L2(Rdv ; Rdv) × L2(Rdv ; Rdv) and Q : L2(Rdv ; Rdv) → L2(Rdv ; Rdu), are
defined as

P(v, f ) =
(

σ
(

W(1)
P v + b(1)P

)
, σ
(

W(2)
P f + b(2)P

))
,

Q(v) = σ
(
WQv + bQ

)
where W(1)

P ∈ Rdu×dv , W(2)
P ∈ Rd f×dv , WQ ∈ Rdv×du and b(1)P , b(2)P ∈ Rdv , bQ ∈ Rdu .

Definition 4 (Input-injected FNO layer). An input-injected FNO layerL : L2(Rdv ; Rdv)× L2(Rdv ; Rdv)→
L2(Rdv ; Rdv) is defined as

L(v, g) := g + σ
(

Wv + b +F−1(R(k) · (Fv)
)

. (6.5)

where W ∈ Rdv×dv , b ∈ Rdv and R(k) ∈ Rdv×dv for all k ∈ [K] are learnable parameters.

Note the difference between the FNO layer specified above, and the standard FNO layer (6.2) is the
extra input g to the layer, which in our architecture will correspond to a projection of (some or all) of
the PDE coefficients. We also note that this change to the FNO layer also enables us to learn deeper
FNO architectures, as shown in Section 6.5. With this in mind, we can discuss the architectures we
propose.

1This is for convenience of exposition, our methods can readily be extended to other boundary conditions like Dirichet,
Neumann etc.

2We note that the choice of defining the operator with the forcing function f is made for purely expository purposes the
operator G can be defined as G : L2(Ω; Rdu )× L2(Ω; Rda )→ L2(Ω; Rdu ) as well.
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6.3.2.1 Weight-tied architecture I: Weight-tied FNO

The first architecture we consider is a weight-tied version of FNO (introduced in Section 6.1), in which
we repeatedly apply (M times) the same transformation in each layer. More precisely, we have:

Definition 5 (FNO Weight-Tied). We define a M times weight-tied neural operator GM
θ as,

GM
θ = Q ◦ BL ◦ BL ◦ · · · ◦ BL︸ ︷︷ ︸

M times

◦P

such that: P ,Q are projection and embedding layers as in Definition 3

6.3.2.2 Weight-tied architecture II: FNO-DEQ

In cases where we believe a weight-tied GM
θ converges to some fixed point as M → ∞, unrolling

GM
θ for a large M requires a lot of hardware memory for training: training the model requires one to

store intermediate hidden units for each weight-tied layer for backpropagation, resulting in a O(M)

increase in the amount of memory required.

To this end, we use Deep Equilibrium models (DEQs) which enables us to implicitly train Gθ :=
limM→∞ GM

θ by directly solving for the fixed point by leveraging black-box root finding algorithms
like quasi-Newton methods, [Broyden, 1965, Anderson, 1965]. Therefore we can think of this approach
as an infinite-depth (or infinitely unrolled) weight-tied network. We refer to this architecture as
FNO-DEQ.

Definition 6 (FNO-DEQ). Given P ,Q and BL in Definition 5, FNO-DEQ is trained to parametrize the fixed
point equation BL (v⋆,P( f )) = v⋆ and outputs u⋆ = Q(v⋆).

Usually, it is non-trivial to differentiate through these black-box root solvers. DEQs enable us to im-
plicitly differentiate through the equilibrium fixed point efficiently without any need to backpropagate
through these root solvers, therefore resulting inO(1) training memory. We refer the readers to Sec. 2.1
for further details.

6.4 Details of Experimental Setup

6.4.1 Network architectures

We consider the following network architectures for our experiments.

FNO: We closely follow the architecture proposed by Li et al. [2020a] and construct this network by
stacking four FNO layers and four convolutional layers, separated by GELU activation [Hendrycks
and Gimpel, 2016]. Note that in our current set up, we recover the original FNO architecture if the
input to the lth layer is the output of (l − 1)th layer i.e., vl = Bl−1(vl−1).
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Improved FNO (FNO++): The original FNO architecture suffers from vanishing gradients, which
prohibits it from being made deeper [Tran et al., 2021]. We overcome this limitation by introducing
residual connections within each block of FNO, with each FNO block Bl comprising of three FNO
layers L i.e., Bl = Ll

L1
◦ Ll

L2
◦ Ll

L3
and three convolutional layers, where L is defined in Eq. (6.5).

Weight-tied network (FNO-WT): This is the weight-tied architecture introduced in Definition 5,
where we initialize v0(x) = 0 for all x ∈ Ω.

FNO-DEQ: As introduced in Definition 6, FNO-DEQ is a weight-tied network where we explicitly
solve for the fixed point in the forward pass with a root finding algorithm. We use Anderson accelera-
tion [Anderson, 1965] as the root solver. For the backward pass, we use approximate implicit gradients
[Geng et al., 2021b] which are light-weight and more stable in practice, compared to implicit gradients
computed by inverting Jacobian.

Note that both weight-tied networks and FNO-DEQs leverage weight-tying but the two models differ
in the ultimate goal of the forward pass: DEQs explicitly solve for the fixed point during the forward
pass, while weight-tied networks trained with backpropagation may or may-not reach a fixed point
[Anil et al., 2022]. Furthermore, DEQs require O(1) memory, as they differentiate through the fixed
point implicitly, whereas weight-tied networks need to explicitly create the entire computation graph
for backpropagation, which can become very large as the network depth increases. Additionally,
FNO++ serves as a non weight-tied counterpart to a weight-tied input-injected network. Like weight-
tied networks, FNO++ does not aim to solve for a fixed point in the forward pass.

6.4.1.1 Implementation details

The width of an FNO layer set to 32 across all the networks. Additionally, we retain only 12 Fourier
modes in FNO layer, and truncate higher Fourier modes. We use the code provided by Li et al. [2020a]
to replicate the results for FNO, and construct rest of the networks on top of this as described above.

For FNO-DEQ, we use Anderson solver [Anderson, 1965] to solve for the fixed point in the forward
pass. The maximum number of Anderson solver steps is kept fixed at 32 for Dary Flow, and 16 for
Navier Stokes. For the backward pass, we use phantom gradients [Geng et al., 2021b] which are
computed as

u⋆ = τGθ(u⋆, a) + (1− τ)u⋆, (6.6)

where τ is a tunable damping factor and u⋆ is the fixed point computed using Anderson solver in the
forward pass. This step can be repeated S times. We use τ = 0.5 and S = 1 for Darcy Flow, and τ = 0.8
and S = 3 for Navier-Stokes.

For the S-FNO-DEQ used in Table 6.1, we use Broyden’s method [Broyden, 1965] to solve for the
fixed point in the forward pass and use exact implicit gradients, computed through implicit function
theorem as shown in Eq. (2.3), for the backward pass through DEQ. The maximum number of solver
steps is fixed at 32.

For weight-tied networks, we repeatedly apply the FNO block to the input 12 times for Darcy flow,
and 6 times for Navier-Stokes.
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6.4.1.2 Training details

We train all the networks for 500 epochs with Adam optimizer. The learning rate is set to 0.001 for
Darcy flow and 0.005 for Navier-Stokes. We use learning rate weight decay of 1e-4 for both Navier-
Stokes and Darcy flow. The batch size is set to 32. In case of Darcy flow, we also use cosine annealing
for learning rate scheduling. We run all our experiments on a combination of NVIDIA RTX A6000,
NVIDIA GeForce RTX 2080 Ti and 3080 Ti. All networks can easily fit on a single NVIDIA RTX A6000,
but training time varies between the networks.

6.4.2 Methodology

We test the aforementioned network architectures on two families of steady-state PDEs: Darcy Flow
equation and steady-state Navier-Stokes equation for incompressible fluids. For experiments with
Darcy Flow, we use the dataset provided by Li et al. [2020a], and generate our own dataset for
steady-state Navier-Stokes.

For each family of PDE, we train networks under 3 different training setups: clean data, noisy inputs
and noisy observations. For experiments with noisy data, both input and observations, we add noise
sampled from a sequence of standard Gaussians with increasing values of variance {N (0, (σ2

k ))}
M−1
k=0 ,

where M is the total number of Gaussians we sample from. We set σ2
0 = 0 and σ2

max = σ2
M−1 ≤ 1/r,

where r is the resolution of the grid. Thus, the training data includes equal number of PDEs with
different levels of Gaussian noise added to their input or observations.

We add noise to training data, and always test on clean data. We follow prior work [Li et al., 2020b]
and report the relative L2 norm between ground truth u⋆ and prediction on test data. The total depth
of all networks besides FNO is given by 6B + 4, where B is the number of FNO blocks. Each FNO
block has 3 FNO layers and convolutional layers. In addition, we include depth due to P , Q, and an
additional final FNO layer and a convolutional layer.

6.4.3 Datasets

6.4.3.1 Darcy Flow

As mentioned in the previous section, we use the dataset provided by Li et al. [2020a] for our experi-
ments with steady-state Darcy-Flow. All models are trained on 1024 data samples and tested on 500
samples. The resolution of the original images is 421× 421, which we downsample to 85× 85 for our
experiments. For experiments with noisy inputs/observations, the variance of Gaussian noise that we
add to PDEs are [0, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3]. We provide visualization of random samples
from the dataset in Figure 6.2.
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6.4.3.2 Steady-State Incompressible Fluid Navier-Stokes

u · ∇ω = ν∆ω + f , x ∈ Ω

∇ · u = 0 x ∈ Ω

To generate the dataset for steady-state Navier-Stokes, instead of solving the steady state PDE using
steady-state solvers like the SIMPLE algorithm [Patankar and Spalding, 1983], we first choose the
solution ω⋆ := ∇× u⋆ of the PDE and then generate the corresponding equation, i.e., calculate the
corresponding force term f = u⋆ · ∇ω⋆ − ν∆ω⋆.

To generate the solutions ω⋆, we forward propagate a relatively simple initial distribution of ω0

(sampled from a Gaussian random field) through a time-dependent Navier-Stokes equation in the
vorticity form for a short period of time. This ensures our dataset contains solutions ω∗ that are rich
and complex. Precisely, recall the Navier-Stokes equations in their vorticity form:

∂tω(x, t) + u(x, t) · ∇ω(x, t) = ν∆ω(x, t) + g(x) x ∈ (0, 2π)2, t ∈ [0, T]

∇ · u(x, t) = 0 x ∈ (0, 2π)2, t ∈ [0, T]

ω(x, 0) = ω0(x) x ∈ (0, 2π)2

(6.7)

where g(x) = ∇× g̃(x) and g̃(x) = sin(5x1)x̂2 is a divergence free forcing term and x = (x1, x2) are
the two coordinates of the input vector. We forward propagate the equations (6.7) using a pseudo-
spectral method using the functions provided in JAX-CFD [Kochkov et al., 2021, Dresdner et al., 2022]
package. The initial vorticity ω0 is sampled from a Gaussian random field N (0, (53/2(I + 25∆)−2.5)),
which is then made divergence free.

We forward propagate the Navier-Stokes equation in (6.7) for time T = 0.5 with dt = 0.002 to get
ω(1, x), which we choose as the solution to the steady-state PDE in (6.9), i.e, ω⋆ for Equation 6.9.

Subsequently, we use the stream function Ψ [Batchelor and Batchelor, 1967] to calculate
u = (∂Ψ/∂x1, ∂Ψ/∂x2) by solving the Poisson equation ∆Ψ = ω in the Fourier domain. Further-
more, since f = u⋆ · ∇ω⋆ − ν∆ω⋆, we use the stream function to calculate ( f1, f2), i.e., the different
components of the force term.

We use 4500 training samples and 500 testing samples. The input to the network is the vector field
f̃ = ( f1, f2) and we learn a map that outputs the vorticity ω⋆. The resolution of grid used to generate
the dataset is 256× 256 which we downsample to 128× 128 while training the models. For experiments
with noisy inputs/observations, we consider two values of maximum variance of Gaussian noise: 1e-3
and 4e-3. The variances of the Gaussian noise that we add to the PDEs for the latter case are [0, 1e-9,
1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 2e-3, 4e-3]. However, when conducting experiments with a variance of
1e-3, we exclude the last two values of variance from this list. We provide visualization of random
samples from the dataset in Figure 6.3 for viscosity ν = 0.001 and in Figure 6.4 for viscosity ν = 0.01.
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6.5 Experimental Results

6.5.1 Darcy Flow

For our first set of experiments we consider stationary Darcy Flow equations, a form of linear elliptic
PDE with in two dimensions. The PDE is defined as follows,

−∇ · (a(x)∇u(x)) = f (x), x ∈ (0, 1)2

u(x) = 0 x ∈ ∂(0, 1)2.
(6.8)

Note that the diffusion coefficient a ∈ L∞(Ω)(Ω; R+), i.e., the coefficients are always positive, and
f ∈ L2(Ω; Rd f ) is the forcing term. These PDEs are used to model the steady-state pressure of fluids
flowing through a porous media. They can also be used to model the stationary state of the diffusive
process with u(x) modeling the temperature distribution through the space with a defining the
thermal conductivity of the medium. The task is to learn an operator Gθ : L2(Ω; Rdu)× L2(Ω; Rda)→
L2(Ω; Rdu) such that u⋆ = Gθ(u⋆, a).

We report the results of our experiments on Darcy Flow in Table 6.1. The original FNO architecture
does not improve its performance with increased number of FNO blocks B. FNO++ with residual
connections scales better but saturates at around 4 FNO blocks. In contrast, FNO-WT and FNO-DEQ
with just a single FNO block outperform deeper non-weight-tied architectures on clean data and on
data with noisy inputs. When observations are noisy, FNO-WT and FNO-DEQ outperform FNO++
with a similar number of parameters, and perform comparably to FNO++ with 4× parameters.

We also report results on shallow FNO-DEQ, FNO-WT and FNO++ architectures. An FNO block in
these shallow networks has a single FNO layer instead of three layers. In our experiments, shallow
weight-tied networks outperform non-weight-tied architectures including FNO++ with 7× parameters
on clean data and on data with noisy inputs, and perform comparably to deep FNO++ on noisy
observations. In case of noisy observations, we encounter training instability issues in FNO-DEQ. We
believe that this shallow network lacks sufficient representation power and cannot accurately solve for
the fixed point during the forward pass. These errors in fixed point estimation accumulate over time,
leading to incorrect values of implicit gradients, which in turn result in training instability issues.

6.5.2 Steady-state Navier-Stokes Equations for Incompressible Flow

We consider the steady-state Navier-Stokes equation for an incompressible viscous fluid in the vorticity
form defined on a torus, i.e., with periodic boundary condition,

u · ∇ω = ν∆ω + f , x ∈ Ω

∇ · u = 0 x ∈ Ω
(6.9)

where Ω := (0, 2π)2, and u : Ω → R2 is the velocity and ω : Ω → R where ω = ∇× u, ν ∈ R+

is the viscosity and f : Ω → R is the external force term. We learn an operator Gθ : L2(Ω; Rdu)×
L2(Ω; Rd f ) → L2(Ω; Rdu), such that u⋆ = Gθ(u⋆, f ). We train all the models on data with viscosity
values ν = 0.01 and ν = 0.001, and create a dataset for steady-state incompressible Navier-Stokes,
which we will make public as a community benchmark for steady-state PDE solvers.
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Architecture Parameters #Blocks
Test error ↓

σ2
max = 0 (σ2

max)
i = 0.001 (σ2

max)
t = 0.001

FNO 2.37M 1 0.0080 ± 5e-4 0.0079 ± 2e-4 0.0125 ± 4e-5
FNO 4.15M 2 0.0105 ± 6e-4 0.0106 ± 4e-4 0.0136 ± 2e-5
FNO 7.71M 4 0.2550 ± 2e-8 0.2557 ± 8e-9 0.2617 ± 2e-9

FNO++ 2.37M 1 0.0075 ± 2e-4 0.0075 ± 2e-4 0.0145 ± 7e-4
FNO++ 4.15M 2 0.0065 ± 2e-4 0.0065 ± 9e-5 0.0117 ± 5e-5
FNO++ 7.71M 4 0.0064 ± 2e-4 0.0064 ± 2e-4 0.0109 ± 5e-4

S-FNO++ 1.78M 0.66 0.0093 ± 5e-4 0.0094 ± 7e-4 0.0402 ± 6e-3

FNO-WT 2.37M 1 0.0055 ± 1e-4 0.0056 ± 5e-5 0.0112 ± 4e-4
FNO-DEQ 2.37M 1 0.0055 ± 1e-4 0.0056 ± 7e-5 0.0112 ± 4e-4

S-FNO-WT 1.19M 0.33 0.0057 ± 3e-5 0.0057 ± 5e-5 0.0112 ± 1e-4
S-FNO-DEQ 1.19M 0.33 0.0056 ± 4e-5 0.0056 ± 5e-5 0.0136 ± 0.011

Table 6.1: Results on Darcy flow: clean data (Col 4),noisy inputs (Col 5) and noisy observations (Col 6)
with max variance of added noise being (σ2

max)
i and (σ2

max)
t, respectively. Reported test error has been

averaged on three different runs with seeds 0, 1, and 2. Here, S-FNO++, S-FNO-WT and S-FNO-DEQ
are shallow versions of FNO++, FNO-WT and FNO-DEQ respectively.

Results for Navier-Stokes equation have been reported in Table 6.2 and Table 6.3. For both values
of viscosity, FNO-DEQ outperforms other architectures for all three cases: clean data, noisy inputs
and noisy observations. FNO-DEQ is more robust to noisy inputs compared to non-weight-tied
architectures. For noisy inputs, FNO-DEQ matches the test-error of noiseless case in case of viscosity
0.01 and almost matches the test-error of noiseless case in case of viscosity 0.001. We provide additional
results for noise level 0.004 in Table 6.4 and Table 6.5. FNO-DEQ and FNO-WT consistently outperform
non-weight-tied architectures for higher levels of noise as well.

In general, DEQ-based architectures are slower to train (upto ∼2.5× compared to feedforward net-
works of similar size) as we solve for the fixed point in the forward pass. However, their inductive
bias provides performance gains that cannot be achieved by simply stacking non-weight-tied FNO
layers. In general, we observe diminishing returns in FNO++ beyond 4 blocks. Additionally, training
the original FNO network on more than 4 FNO blocks is challenging, with the network often diverging
during training, and therefore we do not include these results in the paper.

6.5.3 Convergence analysis of fixed point

We report variations in test error, absolute residual ∥Gθ(zt)− zt∥2, and relative residual ∥Gθ(zt)−zt∥2
∥zt∥2

with an increase in the number of solver steps while solving for the fixed point in FNO-DEQ, for both
Darcy Flow (See Table 6.6) and Steady-State Navier Stokes (See Table 6.7). We observe that all these
values decrease with increase in the number of fixed point solver iterations and eventually saturate
once we have a reasonable estimate of the fixed point. We observe that increasing the number of
fixed point solver iterations results in a better estimation of the fixed point. For steady state PDEs, we
expect the test error to reduce as the estimation of the fixed point improves. Furthermore, at inference
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Architecture Parameters #Blocks
Test error ↓

σ2
max = 0 (σ2

max)
i = 0.001 (σ2

max)
t = 0.001

FNO 2.37M 1 0.184 ± 0.002 0.218 ± 0.003 0.184 ± 0.001
FNO 4.15M 2 0.162 ± 0.024 0.176 ± 0.004 0.152 ± 0.005
FNO 7.71M 4 0.157 ± 0.012 0.187 ± 0.004 0.166 ± 0.013

FNO++ 2.37M 1 0.199 ± 0.001 0.230 ± 0.001 0.197 ± 0.001
FNO++ 4.15M 2 0.154 ± 0.005 0.173 ± 0.003 0.154 ± 0.006
FNO++ 7.71M 4 0.151 ± 0.003 0.165 ± 0.004 0.149 ± 0.003

FNO-WT 2.37M 1 0.123 ± 0.004 0.129 ± 0.004 0.124 ± 0.005
FNO-DEQ 2.37M 1 0.123 ± 0.005 0.129 ± 0.004 0.123 ± 0.006

Table 6.2: Results on incompressible steady-state Navier-Stokes (viscosity=0.001): clean data (Col 4),
noisy inputs (Col 5) and noisy observations (Col 6) with max variance of added noise being (σ2

max)
i

and (σ2
max)

t, respectively. Reported test error has been averaged on three different runs with seeds 0, 1,
and 2.

Architecture Parameters #Blocks
Test error ↓

σ2
max = 0 (σ2

max)
i = 0.001 (σ2

max)
t = 0.001

FNO 2.37M 1 0.181 ± 0.005 0.186 ± 0.003 0.178 ± 0.006
FNO 4.15M 2 0.138 ± 0.007 0.150 ± 0.006 0.137 ± 0.012
FNO 7.71M 4 0.152 ± 0.006 0.163 ± 0.002 0.151 ± 0.008

FNO++ 2.37M 1 0.188 ± 0.002 0.207 ± 0.004 0.187 ± 0.003
FNO++ 4.15M 2 0.139 ± 0.004 0.153 ± 0.002 0.140 ± 0.005
FNO++ 7.71M 4 0.130 ± 0.005 0.151 ± 0.004 0.128 ± 0.009

FNO-WT 2.37M 1 0.089 ± 0.004 0.089 ± 0.003 0.089 ± 0.004
FNO-DEQ 2.37M 1 0.085 ± 0.005 0.090 ± 0.003 0.087 ± 0.007

Table 6.3: Results on incompressible steady-state Navier-Stokes (viscosity=0.01): clean data (Col 4),
noisy inputs (Col 5) and noisy observations (Col 6) with max variance of added noise being (σ2

max)
i

and (σ2
max)

t, respectively. Reported test error has been averaged on three different runs with seeds 0, 1,
and 2.

time we observe that the test error improves (i.e. reduces) with increase in the number of fixed point
solver iterations even though the FNO-DEQ is trained with fewer solver steps. For Navier-Stokes with
viscosity 0.01, at inference time we get a test MSE loss of 0.0744 with 48 solver steps from 0.0847 when
used with 24 solver steps.

This further bolsters the benefits of DEQs (and weight-tied architectures in general) for training neural
operators for steady-state PDEs. Moreover, performance saturates after a certain point once we have
a reasonable estimate of the fixed point, hence showing that more solver steps stabilize to the same
solution.
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Architecture Parameters #Blocks
Test error ↓

σ2
max = 0 (σ2

max)
i = 0.004 (σ2

max)
t = 0.004

FNO 2.37M 1 0.184 ± 0.002 0.238 ± 0.008 0.179 ± 0.004
FNO 4.15M 2 0.162 ± 0.024 0.196 ± 0.011 0.151 ± 0.010
FNO 7.71M 4 0.157 ± 0.012 0.216 ± 0.002 0.158 ± 0.009

FNO++ 2.37M 1 0.199 ± 0.001 0.255 ± 0.002 0.197 ± 0.004
FNO++ 4.15M 2 0.154 ± 0.005 0.188 ± 0.006 0.157 ± 0.006
FNO++ 7.71M 4 0.151 ± 0.003 0.184 ± 0.008 0.147 ± 0.004

FNO-WT 2.37M 1 0.123 ± 0.004 0.141 ± 0.003 0.125 ± 0.007
FNO-DEQ 2.37M 1 0.123 ± 0.005 0.139 ± 0.007 0.127 ± 0.002

Table 6.4: Results on incompressible Steady-State Navier-Stokes (viscosity=0.001): clean data (Col 4),
noisy inputs (Col 5) and noisy observations (Col 6) with max variance of added noise being (σ2

max)
i

and (σ2
max)

t, respectively. Reported test error has been averaged on three different runs with seeds 0, 1,
and 2.
‡ indicates that the network diverges during training for one of the seeds.

Architecture Parameters #Blocks
Test error ↓

σ2
max = 0 (σ2

max)
i = 0.004 (σ2

max)
t = 0.004

FNO 2.37M 1 0.181 ± 0.005 0.207 ± 0.003 0.178 ± 0.008
FNO 4.15M 2 0.138 ± 0.007 0.163 ± 0.003 0.137 ± 0.006
FNO 7.71M 4 0.152 ± 0.006 0.203 ± 0.055 0.151 ± 0.008

FNO++ 2.37M 1 0.188 ± 0.002 0.217 ± 0.001 0.187 ± 0.005
FNO++ 4.15M 2 0.139 ± 0.004 0.170 ± 0.005 0.138 ± 0.005
FNO++ 7.71M 4 0.130 ± 0.005 0.168 ± 0.007 0.126 ± 0.007

FNO-WT 2.37M 1 0.089 ± 0.004 0.097 ± 0.008 0.087 ± 0.003
FNO-DEQ 2.37M 1 0.085 ± 0.005 0.096 ± 0.008 0.087 ± 0.004

Table 6.5: Results on incompressible Steady-State Navier-Stokes (viscosity=0.01): clean data (Col 4),
noisy inputs (Col 5) and noisy observations (Col 6) with max variance of added noise being (σ2

max)
i

and (σ2
max)

t, respectively. Reported test error has been averaged on three different runs with seeds 0, 1,
and 2.
‡ indicates that the network diverges during training for one of the seeds.

6.5.4 Train and Test Loss Curves

We visualize training and test loss curves for steady-state Navier-Stokes with viscosity 0.01 in Figure 6.1.
We observe that while all the models converge to approximately the same MSE loss value while training,
DEQs and weight-tied networks get a better test loss in fewer epochs.
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Solver steps Absolute residual ↓ Relative residual ↓ Test Error ↓

2 212.86 0.8533 0.0777
4 18.166 0.0878 0.0269
8 0.3530 0.00166 0.00567
16 0.00239 1.13e-5 0.00566
32 0.000234 1.1e-6 0.00566

Table 6.6: Convergence analysis of fixed point for noiseless Darcy Flow: The test error, absolute residual
∥Gθ(zt)− zt∥2 and relative residual ∥Gθ(zt)−zt∥2

∥zt∥2
decrease with increase in the number of fixed point

solver iterations. The performance saturates after a certain point once we have a reasonable estimate
of the fixed point. We consider the noiseless case, where we do not add any noise to inputs or targets.

Solver steps Absolute residual ↓ Relative residual ↓ Test Error ↓

4 544.16 0.542 0.926
8 397.75 0.408 0.515
16 150.33 0.157 0.147
24 37.671 0.0396 0.0847
48 5.625 0.0059 0.0744
64 3.3 0.0034 0.0746

Table 6.7: Convergence analysis of fixed point for noiseless incompressible Steady-State Navier-Stokes
with viscosity=0.01: The test error, absolute residual ∥Gθ(zt)− zt∥2 and relative residual ∥Gθ(zt)−zt∥2

∥zt∥2
decrease with increase in the number of fixed point solver iterations. The performance saturates after a
certain point once we have a reasonable estimate of the fixed point. We consider the noiseless case,
where we do not add any noise to inputs or targets.

6.6 Universal Approximation and Fast Convergence of FNO-DEQ

Though the primary contribution of our paper is empirical, we show (by fairly standard techniques)
that FNO-DEQ is a universal approximator, under mild conditions on the steady-state PDEs. Moreover,
we also show that in some cases, we can hope the fixed-point solver can converge rapidly.

As noted in Definition 2, we have Ω := Td. We note that all continuous function f ∈ L2(Ω; R) and∫
Ω | f (x)|dx < ∞ can be written as, f (x) = ∑ω∈Zd eixTω f̂w. where { f̂ω}ω∈Zd are the Fourier coefficients

of the function f . We define as L2
N(Ω) as the space of functions such that for all fN ∈ L2

N(Ω) with
Fourier coefficients that vanish outside a bounded ball. Finally, we define an orthogonal projection
operator ΠN : L2(Ω)→ L2

N(Ω), such that for all f ∈ L2(Ω) we have,

fn = ΠN( f ) = ΠN

(
∑

ω∈Zd

fωeixTω

)
= ∑
∥ω∥∞≤N

f̂ωeixTω. (6.10)

That is, the projection operator ΠN takes an infinite dimensional function and projects it to a finite
dimensional space. We prove the following universal approximation result:

Theorem 1. Let u⋆ ∈ L2(Ω; Rdu) define the solution to a steady-state PDE in Definition 2, Then there exists

111



(a) Training Loss Curve

(b) Test Loss Curve

Figure 6.1: Training and Test Loss Curves for Steady-State Navier-Stokes with viscosity 0.01. The x
axis is the number of epochs and y axis is the MSE loss in log scale. Note that while all the models
converge to approximately the same MSE loss value while training, DEQs and weight-tied networks
get a better test loss in fewer epochs.

an operator G : L2(Ω; Rdu)× L2(Ω; Rd f )→ L2(Ω; Rdu) such that, u⋆ = G(u⋆, f ). Furthermore, for every
ϵ > 0 there exists an N ∈N such that for compact sets Ku ⊂ L2(Ω; Rdu) and K f ⊂ L2(Ω; Rd f ) there exists a
neural network Gθ : L2

N(Ω; Rdu)× L2
N(Ω; Rd f )→ L2

N(Ω; Rdu) with parameters θ, such that,

sup
u∈Ku , f∈K f

∥u⋆ − Gθ(ΠNu⋆, ΠN f )∥L2(Ω) ≤ ϵ.

The proof for the above theorem is relatively straightforward and provided in Appendix 6.6.1. The
proof uses the fact that u⋆ is a fixed-point of the operator G(u, f ) = u− (L(u)− f ), allowing us to use
the the results in Kovachki et al. [2021a] that show a continuous operator can be approximated by a
network as defined in (6.1). Note that the choice of G is by no means unique: one can “universally
approximate” any operator G(u, f ) = u− A(L(u)− f ), for a continuous operator A. Such a G can be
thought of as a form of “preconditioned” gradient descent, for a preconditioner A. For example, a
Newton update has the form G(u, f ) = u− L′(u)−1 (L(u)− f ) , where L′ : L2(Ω; Rdu)→ L2(Ω; Rdu)

is the Frechet derivative of the operator L.
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The reason this is relevant is that the DEQ can choose to universally approximate a fixed-point equation
for which the fixed-point solver it is trained with also converges rapidly. As an example, the following
classical result shows that under Lax-Milgram-like conditions (a kind of strong convexity condition),
Newton’s method converges doubly exponentially fast:

Lemma 1 (Faragó and Karátson [2002], Chapter 5). Consider the PDE defined Definition 2, such that
du = dv = d f = 1. such that L′(u) defines the Frechet derivative of the operator L. If for all u, v ∈ L2(Ω; R)

we have ∥L′(u)v∥L2(Ω) ≥ λ∥v∥L2(Ω) and ∥L′(u)− L′(v)∥L2(Ω) ≤ Λ∥u− v∥L2(Ω) for 0 < λ ≤ Λ < ∞,
then for the Newton update, ut+1 ← ut − L′(ut)−1 (L(ut)− f ) , with u0 ∈ L2(Ω; R), there exists an ϵ > 0,

such that ∥uT − u⋆∥L2(Ω) ≤ ϵ if T ≥ log
(

log
(

1
ϵ

)
/ log

(
2λ2

Λ∥L(u0)− f ∥L2(Ω)

))
.

We note that the conditions of the above lemma are satisfied for elliptic PDEs like Darcy Flow, as well
as many variational non-linear elliptic PDEs (e.g., those considered in Marwah et al. [2022]). Hence,
we can expect FNO-DEQs to quickly converge to the fixed point, since they employ quasi-Newton
methods like Broyden and Anderson methods [Broyden, 1965, Anderson, 1965]

6.6.1 Proof of Universal Approximation of FNO-DEQ

The proof of the universal approximation essentially follows from the result on the universal approxi-
mation capabilities of FNO layers in Kovachki et al. [2021a], applied to G(v, f ) = v− (Lv− f ). For the
sake of completeness, we reiterate the key steps.

For simplicity, we will assume that du = dv = d f = 1. (The results straightforwardly generalize.) We
will first establish some key technical lemmas and introduce some notation and definitions useful for
the proof for Theorem 1.

Definition 7. An operator T : L2(Ω; R)→ L2(Ω; R) is continuous at u ∈ L2(Ω; R) if for every ϵ > 0, there
exists a δ > 0, such that for all v ∈ L2(Ω) with ∥u− v∥L2(Ω) ≤ δ, we have ∥L(u)− L(v)∥L2(Ω) ≤ ϵ.

First, we approximate the infinite-dimensional operator G : L2(Ω)× L2(Ω) → L2(Ω) by projecting
the functions in L2(Ω) to a finite-dimensional approximation L2

N(Ω), and considering the action of the
operator in this subspace. The linear projection we use is the one introduced in (6.10). More precisely
we show the following result,

Lemma 2. Given a continuous operator L : L2(Ω) → L2(Ω) as defined in (6.4), let us define an operator
G : L2(Ω) × L2(Ω) → L2(Ω) as G(v, f ) := v − (L(v) − f ). Then, for every ϵ > 0 there exists an
N ∈ N such that for all v, f in any compact set K ⊂ L2(Ω), the operator GN = ΠNG(ΠNv, ΠN f ) is an
ϵ-approximation of G(v, f ), i.e., we have,

sup
v, f∈K

∥G(v, f )− GN(v, f )∥L2(Ω) ≤ ϵ.

Proof. Note that for an ϵ > 0 there exists an N = N(ϵ, d) such that for all v ∈ K we have

sup
v∈K
∥v−ΠNv∥L2(Ω) ≤ ϵ.
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Therefore, using the definition of GN we can bound the L2(Ω) norm of the difference between G and
GN as follows,

∥G(v, f )−ΠNG(vn, fn)∥L2(Ω)

≤ ∥G(v, f )−ΠNG(v, f )∥L2(Ω) + ∥ΠNG(v, f )−ΠNG(ΠNv, ΠN f )∥L2(Ω)

≤ ∥G(v, f )−ΠNG(v, f )∥L2(Ω)︸ ︷︷ ︸
I

+ ∥G(v, f )− G(ΠNv, ΠN f )∥L2(Ω)︸ ︷︷ ︸
I I

We first bound the term I as follows:

∥G(v, f )−ΠNG(v, f )∥L2(Ω)

= ∥v− (L(v)− f )−ΠN (v− (L(v)− f ))∥L2(Ω)

= ∥v−ΠNv∥L2(Ω) + ∥ f −ΠN f ∥L2(Ω) + ∥L(v)−ΠN L(v)∥L2(Ω)

= ϵ + ϵ + ∥L(v)−ΠN L(v)∥L2(Ω) (6.11)

Since L is continuous, for all compact sets K ⊂ L2(Ω), L(K) is compact as well. This is because: (1)
for any u ∈ K, ∥L(u)∥L2(Ω) is finite; (2) for any v ∈ K, ∥L(v)∥L2(Ω) ≤ ∥L(u)∥L2(Ω) + C∥u− v∥L2(Ω).
Therefore, for every ϵ > 0, there exists an N ∈N such that

sup
v∈K
∥L(v)−ΠN L(v)∥L2(Ω) ≤ ϵ.

Substituting the above result in (6.11), we have

∥G(v, f )−ΠNG(v, f )∥L2(Ω) ≤ 3ϵ. (6.12)

Similarly, for all v ∈ K where K is compact, we can bound Term I I as following,

∥G(v, f )− G(ΠNv, ΠN f )∥L2(Ω)

≤ ∥v− (L(v)− f )−ΠNv− (L(ΠNv)−ΠN f )∥L2(Ω)

≤ ∥v−ΠNv∥L2(Ω) + ∥ f −ΠN f ∥L2(Ω) + ∥L(v)− L(ΠNv)∥L2(Ω)

≤ ϵ + ϵ + ∥L(v)− L(ΠNv)∥L2(Ω). (6.13)

Now, since v ∈ K and L : L2(Ω)→ L2(Ω) is a continuous operator, there exists a modulus of continuity
(an increasing real valued function) α ∈ [0, ∞), such that for all v ∈ K, we have

∥L(v)− L(ΠNv)∥L2(Ω) ≤ α
(
∥v−ΠNv∥L2(Ω)

)
Hence for every ϵ > 0 there exists an N ∈N such that,

α(∥v−ΠNv∥L2(Ω)) ≤ ϵ.

Plugging these bounds in (6.13), we get,

∥G(v, f )− G(ΠNv, ΠN f )∥L2(Ω) ≤ 3ϵ. (6.14)

Therefore, combining (6.12) and (6.14) then for ϵ > 0, there exists an N ∈N, such that for all v, f ∈ K
we have

sup
v, f∈K

∥G(v, f )−ΠNG(vn, fn)∥L2(Ω) ≤ 6ϵ. (6.15)

Taking ϵ′ = 6ϵ proves the claim.
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Proof of Theorem 1. For Lemma 2 we know that there exists a finite dimensional projection for the
operator G, defined as GN(v, f ) such that for all v, f ∈ L2(Ω) we have

∥G(v, f )− GN(v, f )∥L2(Ω) ≤ ϵ.

Now using the definition of GN(v, f ) we have

GN(v, f ) = ΠNG(ΠNv, ΠN f )

= ΠNv− (ΠN L(ΠNv)−ΠN f )

From Kovachki et al. [2021a], Theorem 2.4 we know that there exists an FNO network GθL of the form
defined in (6.1) such that for all v ∈ K, where K is a compact set, there exists an ϵL we have

sup
v∈K
∥ΠN L(ΠNv)− GθL∥L2(Ω) ≤ ϵL (6.16)

Finally, note that from Lemma D.1 in Kovachki et al. [2021a], we have that for any v ∈ K, there exists
an FNO layers Gθ f ∈ L2(Ω) and Gθv ∈ L2(Ω) defined in (6.2) such that

sup
v∈K
∥ΠNv− Gθv∥L2(Ω) ≤ ϵv (6.17)

and
sup
f∈K
∥ΠN f − Gθ f ∥L2(Ω) ≤ ϵ f (6.18)

for ϵv > 0 and ϵ f > 0.

Therefore there exists an ϵ̃ > such that there is an FNO network Gθ : L2(Ω)× L2(Ω)→ L2(Ω) where
θ := {θL, θv, θ f } such that

sup
v∈K, f∈L2(Ω)

∥GN(v, f )− Gθ(v, f )∥L2(Ω) ≤ ϵ̃ (6.19)

Now, since we know that u⋆ is the fixed point of the operator G we have from Lemma 2 and (6.19),

∥G(u⋆, f )− Gθ(u⋆, f )∥L2(Ω) ≤ ∥u⋆ − GN(u⋆, f )∥L2(Ω) + ∥GN(u⋆, f )− Gθ(u⋆, f )∥L2(Ω)

≤ ϵ̃ + ϵ.

6.6.2 Proof of Fast Convergence for Newton Method

Definition 8 (Frechet Derivative in L2(Ω)). For a continuous operator F : L2(Ω) → L2(Ω), the Frechet
derivative at u ∈ L2(Ω) is a linear operator F′(u) : L2(Ω)→ L2(Ω) such that for all v ∈ L2(Ω) we have

lim
∥v∥L2(Ω)

→0

∥F(u + v)− F(u)− F′(u)(v)∥L2(Ω)

∥v∥L2(Ω)
= 0.

Lemma 3. Given the operator L : L2(Ω)→ L2(Ω) with Frechet derivative L′, such that for all u, v ∈ L2(Ω),
we have ∥L′(u)(v)∥L2(Ω) ≥ λ∥v∥L2(Ω), then L′(u)−1 exists and we have, for all v1, v2 ∈ L2(Ω):
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1. ∥L′(u)−1(v1)∥L2(Ω) ≤ 1
λ∥v1∥L2(Ω).

2. ∥v1 − v2∥L2(Ω) ≤ 1
λ∥L(v1)− L(v2)∥L2(Ω)

Proof. Note that for all u, v′ ∈ L2(Ω) we have,

∥L′(u)v′∥L2(Ω) ≥ λ∥v′∥L2(Ω)

Taking v = L′(u)−1(v′), we have

∥L′(u)
(

L′(u)−1(v)
)
∥L2(Ω) ≥ λ∥L−1(u)(v)∥L2(Ω)

=⇒ 1
λ
∥v∥L2(Ω) ≥ ∥L−1(u)(v)∥L2(Ω).

For part 2, note that there exists a c ∈ [0, 1] such that

∥L(v1)− L(v2)∥L2(Ω) ≥ inf
c∈[0,1]

∥L′(cv1 + (1− c)v2)∥2∥v1 − v2∥L2(Ω) ≥ λ∥v1 − v2∥L2(Ω).

We now show the proof for Lemma Lemma 1. The proof is standard and can be found in Faragó and
Karátson [2002], however we include the complete proof here for the sake of completeness.

We restate the Lemma here for the convenience of the reader.

Lemma 4 (Faragó and Karátson [2002], Chapter 5). Consider the PDE defined Definition 2, such that
du = dv = d f = 1. such that L′(u) defines the Frechet derivative of the operator L. If for all u, v ∈ L2(Ω; R)

we have ∥L′(u)v∥L2(Ω) ≥ λ∥v∥L2(Ω)
3 and ∥L′(u)− L′(v)∥L2(Ω) ≤ Λ∥u− v∥L2(Ω) for 0 < λ ≤ Λ < ∞,

then for the Newton update, ut+1 ← ut − L′(ut)−1 (L(ut)− f ) , with u0 ∈ L2(Ω; R), there exists an ϵ > 0,

such that ∥uT − u⋆∥L2(Ω) ≤ ϵ if 4 T ≥ log
(

log
(

1
ϵ

)
/ log

(
2λ2

Λ∥L(u0)− f ∥L2(Ω)

))
.

Proof of Lemma 1. Re-writing the updates in Lemma 1 as,

ut+1 = ut + pt (6.20)

L′(ut)pt = −(L(ut)− f ) (6.21)

Now, upper bounding L(ut+1)− f for all x ∈ Ω we have,

L(ut+1(x))− f (x)

= L(ut(x))− f (x) +
∫ 1

0

(
L′(ut(x) + t(ut+1(x)− ut(x)))

)
(ut+1(x)− ut(x))dt

= L(ut(x))− f (x) + L′(ut(x))pt(x) +
∫ 1

0

(
L′(ut(x) + t(ut+1(x)− ut(x)))− L′(ut(x))

)
pt(x)dt

=
∫ 1

0

(
L′(ut(x) + t(ut+1(x)− ut(x)))− L′(ut(x))

)
pt(x)dt

3We note that this condition is different from the condition on the inner-product in the submitted version of the paper,
which had. ⟨L′(u), v⟩L2(Ω) ≥ λ∥v∥L2(Ω).

4We note that this rate is different from the one in the submitted version of the paper.
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where we use (6.21) in the final step.

Taking L2(Ω) norm on both sides and using the fact that ∥L′(u)− L′(v)∥L2(Ω) ≤ Λ∥u− v∥L2(Ω), we
have

∥L(ut+1)− f ∥L2(Ω) ≤
∫ 1

0
Λt∥ut+1 − ut∥L2(Ω)∥pt∥L2(Ω)dt

Noting that for all x ∈ Ω, we have ut+1− ut = pt, and using the fact that for all u, v ∥L′(u)−1v∥L2(Ω) ≤
1
λ∥v∥L2(Ω) we have, ∥L′(ut)pt∥L2(Ω) ≤ 1

λ∥pt∥L2(Ω)

∥L(ut+1)− f ∥L2(Ω) ≤
∫ 1

0
Λt∥ut+1 − u∥L2(Ω)∥pt∥L2(Ω)dt

≤ Λ/2∥pt∥2
L2(Ω)

≤ Λ/2∥ − L′(ut)
−1(L(ut)− f )∥2

L2(Ω)

≤ Λ
2λ2 ∥L(ut)− f )∥2

L2(Ω)

where we use the result from Lemma 3 in the last step.

Therefore we have

∥L(ut+1)− f ∥L2(Ω) ≤
(

Λ
2λ2

)2t−1

(L(u0)− f )2t

=⇒ ∥L(ut+1)− f ∥L2(Ω) ≤
(

Λ
2λ2

)2t−1

(L(u0)− L(u⋆))2t

=⇒ ∥ut+1 − u⋆∥L2(Ω) ≤
1
λ

(
Λ

2λ2

)2t−1

∥L(u0)− L(u⋆)∥2t

L2(Ω) .

Therefore, if
Λ

2λ2 ∥L(u0)− L(u⋆)∥L2(Ω) ≤ 1,

then we have

∥ut+1 − u⋆∥L2(Ω) ≤ ϵ,

for

T ≥ log

(
log
(

1
ϵ

)
/ log

(
2λ2

Λ∥L(u0)− f ∥L2(Ω)

))
.

6.7 Visualization of samples from datasets

We visualize random pairs of input and output a(x) and the output u(x) for Darcy flow Figure 6.2 and
Steady-State Navier Stokes for viscosity = 0.001 in Figure 6.3, and viscosity = 0.01 in Figure 6.4.
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Figure 6.2: Samples from Darcy Flow PDE dataset
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Figure 6.3: Samples from Steady-state Navier-Stokes dataset with viscosity 0.001. Each triplet visualizes
the inputs f1, f2 and the ground truth output i.e. ω⋆.
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Figure 6.4: Samples from Steady-state Navier-Stokes dataset with viscosity 0.01. Each triplet visualizes
the inputs f1, f2 and the ground truth output i.e. ω⋆.
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6.8 Discussion

We demonstrate that the inductive bias of deep equilibrium models—and weight-tied networks in
general—makes them ideal architectures for approximating neural operators for steady-state PDEs.
Our experiments on steady-state Navier-Stokes equation and Darcy flow equations show that weight-
tied models and FNO-DEQ perform outperform FNO models with ∼ 4× the number of parameters
and depth. Our findings indicate that FNO-DEQ and weight-tied architectures are, in general, more
robust to both input and observation noise compared to non-weight-tied architectures, including FNO.
We believe that our results complement any future progress in the design and development of PDE
solvers [Tran et al., 2021, Li et al., 2022a] for steady-state PDEs, and hope that our work motivates the
study of relevant inductive biases that could be used to improve them.

121



Part III

Algorithmic Generalization with Deep
Equilibrium Models
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Chapter 7

Understanding Upwards
Generalization with Deep Equilibrium
Models

One of the main challenges limiting the practical applicability of modern deep learning systems is the
ability to generalize outside the training distribution [Koh et al., 2021]. One particularly important
type of out-of-distribution (OOD) generalization is upwards generalization, or the ability to generalize to
more difficult problem instances than those encountered at training time [Selsam et al., 2018, Bansal
et al., 2022, Schwarzschild et al., 2021b, Nye et al., 2021]. Often, good performance on more difficult
instances will require a larger amount of test-time computation, so a natural question arises: how
can we design neural net architectures which can reliably exploit additional test-time computation to
achieve better accuracy? In this chapter, we show that a broad class of architectures named equilibrium
models display strong upwards generalization, and find that stronger performance on harder examples
(which require more iterations of inference to get correct) strongly correlates with the path independence
of the system—its tendency to converge to the same steady-state behaviour regardless of initialization,
given enough computation.

7.1 Preliminary

In this chapter, we will examine upward generalization capability of DEQ models and depthwise
recurrent models. We point the reader to Sec. 2.1 for a detailed overview of Deep Equilibrium (DEQ)
models. In this section, we further list primary distinction between these two network architectures.

7.1.1 Distinction between DEQs and Depthwise Recurrent Networks

Both deep equilibrium (DEQ) models and input-injected depthwise recurrent (i.e. weight-tied, fixed-
depth) networks leverage weight-tying i.e., they apply the same transformation at each layer, f [i]θ =
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fθ ∀i. The two models differ in the ultimate aim of the forward pass: while depthwise recurrent models
compute a (weight-tied) fixed depth computation (which may or may not approach a fixed point), the
stated goal of equilibrium models is explicitly to find a fixed point. Weight-tied fixed depth networks,
by definition, require backpropagation through an explicit stack of layers. Deep equilibrium models,
however, directly solve for fixed points using (potentially black-box) solvers during the forward pass
and may be trained using implicit differentiation.

7.2 Related Work

There is a long line of research on neural networks that can adapt their computational budget based
on the complexity of the task they are learning to solve—akin to the intrinsic mechanism in humans to
reason and solve problems. Schmidhuber [2012] introduced self-delimiting neural networks which
are a type of recurrent neural networks (RNNs) that adapt their compute based on the output of a
special ”halt” neuron. Adaptive computation time (ACT) [Graves, 2016a] also uses the output of a
sigmoidal halting unit to determine the termination condition of an RNN, but it avoids long ”thinking”
time by explicitly penalizing it. Subsequent works have successfully applied variants of ACT in image
classification and object detection [Figurnov et al., 2017], visual reasoning [Eyzaguirre and Soto, 2020],
Transformers [Vaswani et al., 2017b] for language modelling [Dehghani et al., 2019, Elbayad et al.,
2020a, Liu et al., 2021], and recognizing textual entailment [Neumann et al., 2016]. PonderNet [Banino
et al., 2021] reformulates the halting policy of ACT as a probabilistic model, and adds a regularization
term in the loss objective to encourage exploration. With these additions, PonderNet can extrapolate
to more difficult examples on the parity task, first proposed by Graves [2016b]: in a vector with entries
of 0, -1, and 1, output 1 for odd number of ones, and 0 otherwise. In this work, we do not optimize
or penalize the network for the number of computational steps. Our main goal is to understand the
underlying mechanism that results in scalable generalization of equilibrium models on harder problem
instances. Our current work is closely related to previous work by Schwarzschild et al. [2021b] and
[Bansal et al., 2022] that propose architectural choices and training mechanisms that enable weight
tied networks to generalize on harder problem instances.

Another family of models with the property of adaptive inference compute budget is early exit
networks [Teerapittayanon et al., 2016, Laskaridis et al., 2021]. These networks have multiple additional
“exit” prediction heads along their depth. At inference time, the result that satisfies an exit policy is
selected as the prediction output. This approach of designing adaptive networks has been adapted
both in natural language processing [Schwartz et al., 2020, Soldaini and Moschitti, 2020, Elbayad et al.,
2020b, Zhou et al., 2020, Liu et al., 2020] and vision [Li et al., 2017, Wang et al., 2018, Xing et al., 2020,
Kouris et al., 2021]. Most of these architectures have complex sub-modules that are trained in multiple
stages, and require complex exit policies. In contrast, equilibrium models have a simple architecture,
and can use root solvers to efficiently solve for the fixed point at inference.

More complex transformer-based language models like GPT-3 also struggle to generalize well on
simple algorithmic tasks like addition [Brown et al., 2020a]. Recent work by Nye et al. [2021] shows
that transformers can be trained to perform well on algorithmic tasks and generalize on OOD data by
emitting the intermediate steps of an algorithm to a buffer called “scratchpad”. Using a scratchpad
enables the model to revisit its errors and correct them.
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Relation between Path Independence and the Concepts of Global Convergence and Stability Path
independence is closely related to the concept of global stability and global convergence in control theory
and optimization. This concept is somewhat overloaded, as it sometimes requires convergence to a
single point [Slotine et al., 1991], and sometimes implies the system is convergent everywhere, even if
to different points [Wang et al., 2003, Sriperumbudur and Lanckriet, 2009]. We thus choose the term
path independence to refer specifically to the fact that the system will converge to the same limiting
behavior (whatever that might be) regardless of the initial state of the system.

7.3 Upwards Generalization with Deep Equilibrium Models

In this section, we establish that equilibrium models are capable of strong upwards generalization.
To study the effects of test time computation, it is useful to consider tasks with an explicit difficulty
parameter, so that the learned models can be tested on more difficult instances which require a large
number of iterations to solve correctly. We focus on multiple algorithmic generalization tasks: prefix
sum and mazes by Schwarzschild et al. [2021a,b], blurry MNIST, matrix inversion and edge copy by
Du et al. [2022]. Taken together, these tasks cover a wide range of problems from different domains,
namely sequence prediction, visual reasoning, image classification, continuous optimization and graph
regression. Below we describe individual tasks in detail.

7.3.1 Algorithmic Tasks to Test Upwards Generalization

• Prefix-sum is a sequence-to-sequence task whereby the network is given a sequence of 0-1 bits,
and is trained to output, for each bit, the parity of all of the bits received since the beginning of
the sequence until the current bit. We train on 10,000 unique 32-bit binary strings, and report
results on binary strings of other lengths.

• Mazes task is an image-to-image task, where the input is a three-channel RGB image. The ‘start’
and ‘finish’ positions are marked by a red and a green square respectively; walls are marked
in black. The output is the optimal path in the maze that connects these two points without
passing through the walls. We train on 50,000 small mazes of size 9× 9, and report upward
generalization results on larger mazes.

• Blurry MNIST [Liang et al., 2021] is a robustness-to-corruption task: one has to learn to do
MNIST classification from lightly blurred images and generalize zero-shot to highly blurred ones.
The images are blurred with Gaussian blur filters. Training data uses Gaussian blur filters with
standard deviation equal to 2, 2.5, 3, 3.5 and testing data uses Gaussian blur filters with slightly
higher standard deviation equal to 4, 4.5, 5, 5.5.

• In the matrix inversion task [Du et al., 2022], the goal is to learn to invert 20× 20 matrices in a
way that generalizes to matrices that have worse condition number than those observed during
training. The well conditioned invertible matrix M that is used for training is represented as
M = R + R⊤ + 0.5I, where R is a random matrix with individual elements sampled between
-1 and 1. The more difficult less well-conditioned matrix used for testing is constructed as
M = R + R⊤ + 0.1I.
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(a) (b)

Figure 7.1: (left) Strong upward generalization on mazes by PI models. Models were trained on 9× 9
sized mazes and tested for upward generalization on larger mazes. y-axis uses probit transformation.
(right) PI models are better able to make use of additional test-time computation. We trained models
with varying number of training-time iterations, learning rate and weight norm application. Bit-wise
accuracies are evaluated and averaged over different string-lengths.

• Edge copy [Du et al., 2022] is a simple graph regression task that requires learning to output the
input edge features, in a way that generalizes to larger graph size.The value of each edge in a
fully connected graph is randomly sampled with a uniform value between -1 and 1. We train
on graphs with 2-10 nodes and evaluate on graphs with 15 nodes. See [Du et al., 2022] for more
details. [asp: Add dataset sizes for individual tasks]

Note that the training and test data for the latter two tasks are generated with noise added on-the-fly,
as done by Du et al. [2022]. To maintain clarity and focus, we run our detailed analysis on the prefix
sum and mazes tasks in the following sections, and provide additional results with the remaining
tasks in [asp: Add section here]. [asp: Add example images for each of the individual tasks]

7.3.2 Empirical Evidence of Strong Upwards Generalization

Figure 7.1a shows that equilibrium models demonstrate very strong upward generalization perfor-
mance compared to non weight-tied fixed-depth models. Moreover, Figure 7.1b shows that increasing
inference depth consistently improves performance—especially on harder problem instances.

7.4 Path Independence

We argue that a key determiner of whether a learned model can exploit additional test-time computa-
tion is whether the dynamical system corresponding to the model is path independent; that is, whether
the learned model’s hidden layer activations converge to the same asymptotic behaviour (i.e. fixed
point or limit cycle), regardless of the initialization of the system. For example, a simple integrator
xt+1 = xt + 1 is clearly not path independent, as its final state depends on the initial state x0 and the
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Figure 7.2: Trajectories of path independent models converge to the same hidden state for a given input,
regardless of initialization, whereas the trajectories of path dependent models depend on initialization.
Here, we display five trajectories with different initializations obtained from a path independent (left)
and path dependent model (right) on the prefix-sum task, projected onto two random directions.

number of iterations run; conversely, the system xt+1 = (xt + 1)/2 is path independent, as it will
converge to the solution xT = 1 as T → ∞ regardless of the initial condition of x0. Path independence
is closely related to the concept of global stability from control theory (see Section Sec. 7.2 for more).

Intuitively, path independent systems can more easily take advantage of additional test-time iterations
than path dependent ones. For instance, gradient descent applied to a convex objective is path
independent, and correspondingly when confronted with a more ill-conditioned problem instance,
one can compensate by increasing the number of iterations. Conversely, a weather simulation is path
dependent, and extending the simulation won’t yield more accurate predictions of a given day’s
weather. Based on this intuition, we hypothesize that path independence of a learned model is a
key determiner of whether it can take advantage of an increased test-time iteration budget when
generalizing to harder problem instances:

Path Independence Hypothesis: Models which successfully fit the training distribution
with a path independent function are better able to exploit more test-time iterations to
achieve higher accuracy, compared to those which fit the training distribution with a
path-dependent function.

More formally, we say that the computation performed by a recurrent operator computing function
fθ on an input x is path independent if it converges to the same limiting behaviour regardless of the
current state zt. As a special case, if the computation is convergent, this property is equivalent to the
existence of a unique fixed point z∗ such that f ∞

θ (x, z0) = z∗ for any z0. However, our definition
allows for other behaviors such as limit cycles (see Sec. 7.7).

Some architectures guarantee the path independence property (see Sec. 2.1). However, most common
DEQ architectures—and the ones we use throughout this paper—have the expressive power to learn
multiple fixed points per input. Since it is unclear whether architectures enforcing the contraction
property lose expressiveness [Bai et al., 2021], we focus our investigation on unrestricted architectures.
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7.4.1 Architectural Components Necessary for Path Independence

Past work has observed that weight tying and input injection are both crucial for upwards generalization
[Bansal et al., 2022]. We observe that both architectural components are also necessary for a learned
model to be PI.1 Without weight tying, the network is constrained to have a fixed forward depth, so
it is meaningless to talk about the limiting behavior in large depth. Input injection ensures that the
equilibrium point depends on the input despite having an “infinite depth”. Without input injection, a
PI network would necessarily forget the input; hence, any model which successfully fits the training
distribution must be path dependent.

Interestingly, both architectural motifs are also key components of deep equilibrium models [Bai et al.,
2019]; in that work, the motivation was to enable efficient gradient estimation via the implicit function
theorem (IFT) — a concept closely related to path independence, since the premise of the IFT gradient
estimator is that only the final hidden state matters, not the path taken to get there. It is striking
that two separate lines of work would converge on the same architectural motifs, one motivated by
generalization and the other by a variant of path independence.

Reproducing the results of Bansal et al. [2022], in Figure 7.1a we show upward generalization perfor-
mance using both equilibrium models and progressive nets [Bansal et al., 2022] – and the lack thereof
using non-input-injected networks. For the remainder of this paper, we focus on architectures with
both input injection and weight tying.

7.4.2 Quantifying Path Independence: Asymptotic Alignment Score (AA Score)

We propose a simple metric to quantify path independence based on the directional alignment of
the fixed points computed with the same input, but different initializations. We name this metric
the Asymptotic Alignment (AA) score. Pseudocode to compute the metric is given in Algorithm 8. The
AA score is the average cosine similarity between the fixed points obtained with the training time
initialization (often simply the zero vector) and the fixed points obtained when one initializes the
solver using the fixed points computed on different inputs. Higher AA scores (with 1 being the highest
value) imply higher degrees of path independence. In Sec. 7.5, we show a strong correlation between
path independence and accuracy using the AA score.

The AA score is cheap to compute, is a reliable indicator of path independence (see below), and is
unitless, meaning that networks obtained from different training runs can be compared on equal
footing. See Sec. 7.9 for other metrics we have considered for quantifying path independence and why
we found AA score to be preferable.

7.4.3 Stress-testing the AA score

To stress-test the extent to which the AA score really measures path independence, we search for
adversarial initializations that are optimized to result in distinct fixed points, hence low AA values.
(Unlike adversarial examples, this attack is not constrained to an ε-ball.) We use the L-BFGS [Liu and

1Our definition also admits non-input-injected models to be path independent if they’re representing constant functions (i.e.
input independent). We don’t consider such cases in our analyses.
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Algorithm 8 Asymptotic Alignment Score

Input: A batched input

[
x1

x2

]
, an operator fw

Initialize:

[
z1

z2

]
= 0

Define: h(y1,y2) =
y1

∥y1∥2
· y2

∥y2∥2

Compute

[
z′1
z′2

]
= FIX fw

([
x1

x2

]
,

[
z1

z2

])

# Interchange and reinitialize iterates

Compute

[
z′′1
z′′2

]
= FIX fw

([
x1

x2

]
,

[
z′2
z′1

])
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Figure 7.3: (left) AA Score Algorithm: We provide the algorithm for a simple illustrative case of
two inputs. In practice, we consider larger batches. (right) Promoting path independence improves
generalization in the prefix sum task: Interventions that are designed to promote path independence
(initializing fixed points with random noise or running the fixed point solver with stochastic budget)
improves generalization. Conversely, those that hurt path independence (penalty term that directly
penalizes fixed point alignment) leads to poorer generalization.

Model Task AA ↑ Accuracy (%) Attacked AA ↑ Attacked Acc. (%)

Non-PI network Maze 0.32 87.12 0.09 0
PI network Maze 1.00 100 1.00 100

Non-PI network Prefix sum 0.62 66.66 0.18 0
PI network Prefix sum 0.99 100 0.99 100

Table 7.1: Stress-testing the AA Scores: AA scores for PI vs non-PI networks computed on 13× 13
mazes and 64 bit prefix sum. Attacked AA refers to the cosine similarity between the fixed point
from zero initialization and an adversarial initialization. Non-PI networks can be easily steered away
from the initial fixed point estimate through adversarial initializations but it is difficult to do so for PI
networks with high AA scores.

Nocedal, 1989] optimizer, and repeat the search multiple times starting from different fixed point
initializations. We include pseudocode in the supplementary material.

Results of the adversarial stress test can be seen in Table 7.1. The results corroborate that the AA score is
indeed a reliable measure of path independence; while it isn’t possible to find adversarial initializations
for high AA score networks (indicating high path independence), low AA score networks can easily
be adversarially initialized to be steered away from the original fixed point estimate.
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Experimental details The non-path independent network used in this table is a 8-layer weight-tied
input-injected network trained with backpropagation gradients. We set the maximum number of
iterations for fixed point computation to 12 as we found that this choice gives the highest test accuracy
on 13× 13 mazes. While selecting the optimal value for maximum iterations, we increased the value up
to 60 iterations. The path independent network is a 32-layer weight-tied input injected network trained
with backpropagation gradients. The maximum iterations for this network are set to 500. We used a
batch size of 1 and set the maximum number of L-BFGS [Liu and Nocedal, 1989] updates per batch to 50
for both the networks. We implemented this code in PyTorch and use these values of hyperparameters:
lr=1, tolerance grad=1e-7, tolerance change=1e-9, line search fn="strong wolfe". We report
AA scores and accuracy computed on 500 examples. We provide pseudocode in Algorithm Box 9

Algorithm 9 Stress testing AA Scores: An algorithm to find adversarial initializations

Input: A trained network fw, an input x, N max number of LBFGS updates
Define: h(y1,y2) :=

y1

∥y1∥2
· y2

∥y2∥2
random init(·): A method that returns a random vector initialized from N (0, I)
Initialize: z = x or random init(x)
▷ Disable gradients
z1 = FIX fw (z,x)
▷ Clone z1 and Enable gradients on z1

for trials from 1 to N do
z2 = FIX fw (z1,x)
Perform L-BFGS update on z1 to minimize h(z1, z2)

end for
Output: z1

7.5 Path Independence Correlates with Upward Generalization

Is path independence (as measured by the AA score) a strong predictor of upwards generalization?
We took the trained networks from Sec. 7.3, computed their average AA scores on in- and out-of-
distribution splits and inspected whether the AA scores are correlated with upward generalization.

On prefix sum experiments, we varied 1) network depth, 2) whether or not weight norm (wnorm)
[Salimans and Kingma, 2016] was used or not,2 3) learning rate (one of [0.01, 0.001, 0.0001]), 4) forward
solver (fixed point iterations or Anderson acceleration [Anderson, 1965], and 5) the gradient estimator
(backprop or implicit gradients).3 On the maze experiments, we varied 1) network depth, 2) use of
weight norm, 3) forward solver (fixed point iterations or Broyden solver [Broyden, 1965]), and 5) the
gradient estimator (backprop or implicit gradients).

Figure 7.4 displays our findings. We evaluated performance on a mixture of in- and OOD validation
data; results on individual data splits can be found in the supplementary material. The results show
a strong correlation between AA score and accuracy when the inference depth is large enough. This
shows that PI networks allow for scaling test-time compute to improve test-time accuracy (see also

2Bai et al. [2019] report that weight norm helps stabilize the training of DEQ models.
3Note that the deep equilibrium model (DEQ) setup [Bai et al., 2019] correspond to using a root solver (such as Anderson)

for the forward pass and implicit gradients for the backward pass.
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(a) Prefix Sum (b) Mazes

Figure 7.4: High AA scores correlate with good upward generalization. For a given choice of an
architecture and a task, the reported numbers are averaged over problem instances of different
dimensions. We apply the probit transformation along both axes, following Miller et al. [2021].
Accuracies and AA scores are capped at 0.999 for compatibility with the probit transform.

Figure 7.1b). The in-distribution validation performance of non-PI networks degrades with deeper
inference depths. Unsurprisingly, these networks generalize poorly on harder problem instances that
require deeper inference depths (i.e. problem instances that provably require at least a given number
of layers to handle). Further results on the BlurryMNIST, matrix inversion and edge copy tasks can
be found in 7.14.1, 7.14.2 and 7.14.3.

7.6 Experimental Manipulations of Path Independence

The previous section demonstrates a strong correlation between path independence and the ability
to exploit additional test-time iterations. Unfortunately, we can’t make a causal claim based on these
studies: the observed effect could have been due to an unobserved confounder. In this section, we in-
tervene directly on path independence by imposing regularizers which directly encourage or penalize
path independence. We find that interventions designed to promote path independence also improve
generalization, while interventions designed to reduce path independence also hurt generalization.

7.6.1 Promoting Path Independence via Randomized Forward Passes

A straightforward way to encourage path independence is simply to initialize the hidden states with
random noise during training. To this end, we experimented with initializing the hidden states with
zeros on half of the examples in the batch, and with standard Gaussian noise on the rest of the examples.
The reason to include the zero-initializations at training time is that we initialize from zeros at test time
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- not including this initialization during training time causes a distribution shift.

Another way to promote path independence is simply running the forward solver with randomized
compute budgets/depths during training time. While a path independent solution can be expected to
be robust against this intervention, a path dependent one will fail.

We took the training configurations of the 12 prefix-sum networks described in Sec. 7.5 that use
fixed point iterations in their forward pass, and backpropagation gradient in their backward pass,
and retrained them separately with the aforementioned mixed initialization and randomized depth
strategies without modifying any other experimental conditions. As can be seen in Figure 7.3, the
interventions lead to strong test-time path independent neural networks, while also reliably improving
in- and out-of-distribution validation accuracy. We especially emphasize that shallow networks trained
with mixed initialization actually remain far from having high AA scores using the training-time
forward pass conditions due to lack of convergence. However, since the mixed initialization strategy
results in path independent networks, scaling up test-time compute budget leads to high AA scores,
and therefore high upwards generalization.

7.6.2 Penalizing Path Independence via the Fixed Point Alignment Penalty

Does an intervention that results in less path independence also result in poorer upwards general-
ization? Like in the mixed initialization experiment, we retrained the 12 unroll + backpropagation
networks with an additional auxiliary loss term that penalizes the dot product between the fixed
points computed from the same input, but different initializations sampled from standard Gaussian
noise. Figure 7.3 shows that this intervention succeeded in pushing the AA scores down, while also
keeping the accuracy on the same trend line.

7.7 Disambiguating Convergence and Path Independence

Is convergence necessary for path independence? We answer this statement in the negative, and show
that neither training-time convergence nor test-time convergence is required for path independence.
Instead convergence to the same limiting behavior regardless of initialization is important.

Training Time Convergence We consider two implicitly trained equilibrium models trained on the
mazes task—one trained with implicit gradients computed via implicit function theorem (IFT), and the
other trained with an approximation of the (inverse) Jacobian, called phantom gradients [Geng et al.,
2021b]. We report the values of residuals (i.e., ∥ fθ(x, z)− z∥2), AA scores and accuracies observed for
in- and out-of-distribution data for mazes in Table 7.2. We observe that DEQs trained with phantom
gradients have higher values of in-distribution residuals but are path independent, as indicated by
their high AA scores, and show strong upward generalization as indicated by their good accuracy.

The mixed-initialization intervention described in Sec. 7.6.1 also leads to a separation between training-
time convergence and path independence. We found that it is possible to train very shallow (i.e., 5
layer) unrolled networks that, while being very far from converging during training and attaining
poor in-distribution generalization, are able to converge and achieve perfect performance when run
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Model
Residual ↓ AA score ↑ Accuracy (%) ↑

In-dist OOD In-dist OOD In-dist OOD

DEQ (phantom grad.) 11.83 0.016 0.96 0.99 99.96 99.88
DEQ (IFT) 1.4 0.011 0.99 0.99 99.99 100

Table 7.2: Training-time convergence is not needed for path independence: models might show
poor training-time convergence (as shown by high values of residuals) but still be path independent.
Residual, AA score, and Accuracy for DEQ trained with IFT vs phantom gradients. In-distribution
(In-dist) results were computed on 9× 9 mazes, and OOD results were computed on 25× 25 mazes.

for many more iterations during test time. Details are provided in the supplementary material.

Test Time Convergence From Table 7.2, one might conclude that test time convergence is important
for path independence. However, we show that this connection is not necessary, and convergence to
the same fixed point is not a required condition for path independence. We study test time convergence
properties of an unrolled weight-tied input-injected network trained with backpropagation under
different solvers. This network is highly path independent using either the Broyden solver or fixed
point iterations, as indicated by its high AA scores (0.99) on both in- and out-of-distribution data.
We visualize the values of test-time residuals with fixed point iterations and Broyden’s method
in Figure 7.5a. Both these solvers converge to different limit cycles but still show good upward
generalization.

7.8 Validity of Path Independence on a Per-Example Level

The connection between path independence and prediction correctness also largely holds on a per-
instance basis. Using the prefix-sum networks trained with the mixed-initialization strategy (the most
performant group of networks in our intervention experiments), we plotted the distribution of per-
instance fixed point alignment scores, colored by whether the prediction on that instance was correct
or not in Figure 7.5b. This suggests that path independence can be used as a valuable sanity-check
to determine whether a prediction is correct or not without the need for any label data, both in- and
out-of-distribution. We provide a more in-depth per-instance analysis in the supplementary material.

7.9 Alternative Approaches for Quantifying Path Independence

We review alternative methods for quantifying how path-independent a given equilibrium model is,
and why the Asymptotic Alignment score (AA Score) is the most suitable one amongst them for our
analyses. We want a path independence metric to satisfy three criteria: 1) Dimensionless: Metrics
computed from different training runs should be directly comparable with each other. To ensure this,
one has to make sure that one uses dimensionless metrics (i.e. doesn’t have units). 2) local and global
path independence: The metric should test for path independence not just in a local neighborhood of
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(a) (b)

Figure 7.5: (Left) Different solvers display differing asymptotic behaviours but still achieve good
upwards generalization. Here, the network has an adversarial AA score of 0.99, and achieves accuracy
of 99.98% (fixed point iterations) and 99.97% (Broyden solver) respectively on the mazes task; (Right)
Per-instance path independence is highly correlated with correctness of predictions for prefix sum
task.

fixed points, but over a sufficiently large portion of the initialization domain. 3) efficiency: It should
be computationally tractable.

With these in mind, we review three alternative ways of quantifying path independence. The summary
of the analysis is described in Table :

• Jacobian Norm: The Frobenius norm of the Jacobian of the output of an equilibrium model
with respect to its fixed point initialization (i.e. || ∂FIX(x,z0)

∂z0
||2) gives a robust measure of how

locally sensitive the network is to initializations. If this quantity is very small (and approaching
0 with more root finding steps), one can conclude that the given equilibrium model is path-
independent on the given input. The main issues with this approach are: 1) It’s extremely
computationally intensive to compute (since both the input and the output of FIX are high-
dimensional, neither forward nor backward differentiation can estimate this Jacobian efficiently)
2) It has units, meaning it isn’t comparable across different training runs, 3) It only measures
local path independence.

• Agreement with Adversarial Initializations: This method quantifies to what extent it is possible
to directly optimize initializations such that they result in different fixed points. If the network
is path independent, there shouldn’t exist an adversary that can find adversarial initializations.
The exact procedure for how adversarial fixed points can be found in Sec. 7.4.3. The downsides
with this approach is that 1) it’s expensive - one has to solve an optimization problem for every
problem instance, potentially using different optimizers and initializations, and 2) it only checks
for local path independence.

• Agreement with Swapped Initializations (Asymptotic Alignment Score): The main idea
behind this approach is to initialize the forward pass of an equilibrium model with fixed points
obtained from other problem instances, and checking if the network still displays the same
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asymptotic behaviour (i.e. finds the same fixed point). If one uses cosine similarity to measure
consistency, then one recovers Fixed Point Alignment score proposed in Section 7.4.2. Another
option is to use the average Euclidean distance to check for consistency. This is identical to
computing the trace of the covariance matrix of the distance between the computed fixed points.
This approach – especially the one that utilizes cosine similarity to quantify consistency – is
appealing, as 1) because it’s unitless, it can be compared between training runs on the same task,
2) it checks for non-local convergence by sampling from a distribution of relevant fixed points 3)
it’s very efficient, requiring only two forward passes. The version that utilizes Euclidean distance
does have units, hence cannot be used for cross-model comparisons 4) To further make sure
that this metric is correct, and does subsume with local path independence, we ran stress tests
described in Section 7.4.2 to make sure this metric produces results consistent with the agreement
with adversarial initializations method described above.

Alternatives to Cosine Similarity in Measuring Directional Alignment While cosine similarity is
a conceptually clean way of quantifying directional alignment, one can consider alternative kernels
as well. Ideally, our main results should not depend on the specific implementation details of path
independence metrics (as long as they satisfy the criteria we set out above).

To check how sensitive our results are on the precise functional form of the AA score, we replaced it
with three other kernels and re-assessed whether the results pointed to the same high-level takeaways.
Concretely, we tried the Gaussian kernel ϕg(r) = exp(−(ϵr)2), Laplacian kernel ϕl(r) = exp(−|ϵr|)
and inverse multiquadratic kernel ϕi(r) = 1√

1+(ϵr)2
where the input to the kernel function is the

Euclidean distance of the normalized fixed points r = || z1
||z1||
− z2
||z2||
||. We used ϵ = 5000, which gave a

reasonable dynamic range in the resulting values. The results can be seen in Figure 7.6. The takeaways
from the plots remain identical: path independence is strongly correlated with generalization, regardless of the
specific details of how path independence is quantified (as long as it satisfies the criteria we set out above).

Importance of using dimensionless metrics: Being unitless is necessary for a metric to be comparable
across training runs, though obviously not sufficient. Consider two equilibrium models M1 and M2,
where the fixed points computed by M2 have the same direction as those computed by M1, but have
twice the Euclidean norm. The behaviour of this M2 is qualitatively the same as that of M1, but any
metric that depends on the Euclidean metric (or Jacobian L2 norm, or any non-unitless metric) would
report this network to be less path independent. Note that this is not a purely theoretical consideration:
simply adding L2 regularization, or penalizing the magnitude of fixed points to encourage convergence
will directly impact the scale of the fixed points (things that practitioners often use), thereby rendering
non-unitless metrics unreliable.

4If one uses LayerNorm [Ba et al., 2016b] or similar normalization layers, we could expect the Euclidean distance based
metric to behave similar to the cosine similarity based one.
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Figure 7.6: Alternatives to Cosine Similarity in AA Score: Replacing cosine similarity (right bottom)
with alternative kernels like Gaussian (left top), Laplacian (right top) and inverse multiquadratic
kernel yields qualitatively similar results. This demonstrates that the takeaways from our experiments
don’t depend on the particular implementation details of the ways path-independence is quantified.
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Path Independence Metrics Dimensionless Local & Global Coverage Efficient

IO Jacobian Norm ✗ ✗ ✗

Using Adversarial Initializations ✓✓ ✓ ✗

Asymptotic Alignment (AA) Score ✓✓ ✓ ✓✓

Table 7.3: Comparing different ways of quantifying path independence: We compare three different
methods of quantifying how path independent a network is in terms of their correctness (whether they
actually measure path independence), dimensionlessness (whether the quantity is unitless, allowing
comparisons between between different networks meaningful), local and global coverage (whether the
metric checks for path independence locally or globally) and efficiency (whether it’s computationally
cheap to compute the metric). Among the methods we’ve considered (See Section 7.9), the Asymptotic
Alignment (AA) Score is the most suited one for our purposes. Note that no metric considered here
has perfect global coverage (i.e. can verify that a given network is globally path independent or not).

7.10 Path Independence vs. Accuracy Plots for Different Difficulty
Levels

The path-independence vs. accuracy plots in Figure 7.4b uses averaged values over different problem
difficulties. In Figure 7.7, we show how these correlations look like at different lengths on the prefix
sum task. The same figure also shows how the accuracy differs if one does inference using the training
time forward pass budget. The main takeaways from this plot are:

• Out-of-distribution problem lengths (right top of the Figure) do indeed require larger inference
depths - all models perform very poorly when inference is run with training-time forward pass
budget.

• The correlation between path independence and accuracy - as the definition implies - is more
apparent in the very large forward pass limit. In this regime, the correlation persists for all
lengths.

• While networks with low PI values using the training-time budget occasionally perform worse
when the test-time compute is increased, that doesn’t happen with path-independent networks.

7.11 Intervention Results on Different Difficulty Levels

Mirroring Section 7.10, we provide how the accuracy correlates with path independence on 1) different
problem difficulties (32 is in-distribution) and different forward pass budgets in Figure 7.8.

We especially emphasize the mixed initialization results (mixed initialization is one of the interventions
that promotes path independence). Note that some of these networks (half of which are as shallow
as 6 layers) do poorly in and out-of-distribution when the forward pass uses the training forward
pass budget. Unsurprisingly, the AA scores for these networks are low in this condition. However,
when additional test-time compute is provided, these networks reach perfect in-distribution accuracy,
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Figure 7.7: Accuracy vs. Path Independence Correlation on Different Problem Difficulties and
Inference Depths on Prefix Sum: The data on the plots in the left column is obtained when the forward
pass is run with the training forward pass budged. Likewise, the data on the right column is obtained
in the large inference-time budget limit. Each row corresponds to a different problem difficulty, with
the first row (length = 32) corresponding to in-distribution data.
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Figure 7.8: Accuracy vs. Path Independence Correlation on Different Problem Difficulties and
Inference Depths on Prefix Sum: The data on the plots in the left column is obtained when the forward
pass is run with the training forward pass budged. Likewise, the data on the right column is obtained
in the large inference-time budget limit. Each row corresponds to a different problem difficulty, with
the first row (length = 32) corresponding to in-distribution data.
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and near-perfect OOD accuracy (especially on length = 64 split). This demonstrates that training
time convergence is not required for path independence. We find it surprising that with the help of a
path-independence-promoting regularization procedure, it’s possible to train very shallow (i.e. less
than 6 layers) networks such that they can exploit additional test-time compute to achieve very high
accuracy.

7.12 Per-Instance Path Independence Analyses - Convergence vs.
Path Independence

In addition to the analysis in Section 7.8, we also analyzed how test-time convergence correlates with
path independence on a per-instance basis. The per-instance AA score vs. convergence (measured in
terms of the L2 distance between the last two root solver iterates) can be seen in Figure 7.9. We used
the 12 networks trained using the mixed initialization strategy (since these networks yielded the best
in and OOD performance), and used 300 samples from the length splits 16, 32, 64, 128 and 256.

This analysis reaffirms our past observation that test-time convergence is not needed for path indepen-
dence. The plot contains data from three different regimes:

• Full convergence to a fixed point: These datapoints, observed on the right bottom part of Figure
7.9, corresponds to samples where the solver nearly converges to a fixed point. This is almost
always associated with high FPA scores, and good per-instance accuracy.

• Limit cycles: These datapoints, corresponding to the right-top part of Figure 7.9, correspond
to cases where the solver doesn’t converge to a fixed points, but enters an orbit around it. AA
scores, as well as the per-instance accuracy values remain high in this regime as well, indicating
that test-time convergence (to a fixed point) is not necessary for path independence, and good
accuracy. Note that the boundary between the full-convergence regime and the limit cycle regime
is gradual.

• Divergence: On a number of the samples, the solver diverges. These are associated with high
residuals, low AA scores and low per-instance accuracies. This shows that the main source of
per-instance lack of path independence on networks that are otherwise overwhelmingly path
independent (on other samples) is almost always solver divergence.

7.13 Test Time Convergence and Path independence

We provide a per-instance analysis of test-time convergence in Figure 7.10. We display plots for
per-instance residuals i.e. ∥ f (x, z)− z∥2 for Broyden’s method and naive fixed point iterations over
solver steps. In addition, we also plot L2 norm between the fixed points of these solvers at every
step. We provide plots for both in-distribution data i.e. 9× 9 mazes and on more difficult problem
instances i.e. 13× 13 and 25× 25 mazes. Across all the mazes, we observe that there are problem
instances where both the solvers converge to the same limiting behavior (as indicated by low values
of residuals and L2 norms). However, there are a considerable number of points where naive fixed
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Figure 7.9: Per-Instance Test-time Convergence vs. Path Independence: The per-instance AA score
vs. convergence (measured in terms of the L2 distance between the last two root solver iterates). Each
example is labelled based on whether the network’s prediction on it was correct (blue) or not (red). We
used the 12 networks trained using the mixed initialization strategy (since these networks yielded the
best in and OOD performance), and used 300 samples from the length splits 16, 32, 64, 128 and 256.
While good convergence is almost always associated with high AA score values, the converse is not
necessarily true: there are many samples on which convergence is poor, yet the AA score is high.

point iterations converge to a limit cycle but still output correct predictions. This behavior can be seen
on both in-distribution data and on harder problem instances. We find that the absolute residuals
between the points in the limit cycles are a small percentage of the Euclidean norms of the points:
0.9% for 9x9 mazes, 0.49% for 13x13 mazes and 1.5% for 25x25 mazes which indicates that these limit
cycles are localized. These examples of problem instances where both the solvers converge to different
limiting behavior reaffirm our observation that convergence to the same fixed point at test-time is not
a necessary condition for path independence.

7.14 Additional Experimental Results

7.14.1 Results on the Blurry MNIST Task

We tested our path-independence hypothesis on task we call BlurryMNIST [Liang et al., 2021]. This task
involves training an image classifier on MNIST digits corrupted with small degrees of Gaussian blur,
and testing the performance on significantly more corrupted ones. The blur corruption is implemented
by convolving each image with Gaussian filters of differing standard deviations. We used standard
deviations from 2 to 5.5 (in increments of 0.5) to generate each split. This dataset allows for testing in
and out-of-distribution performance by way of training on a subset of the splits (i.e. the four lowest
blur splits) and testing performance on all splits.

We trained a number of fully connected equilibrium models on the BlurryMNIST task and inspected
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(c) (d)

(e) (f)

Figure 7.10: Different solvers display differing asymptotic behaviour but still achieve good upwards
generalization (Left column) We display plots for the values of || f (x, z)− z||2 over multiple solver steps
for Broyden’s method (dotted lines) and naive fixed point iterations (solid lines). (Right column)We
also plot L2 norm between the fixed points obtained through fixed point solver and Broyden’s method.
Each line indicates one problem instance and for a given row, lines with same color are the same
problem instance. The network was trained on 9× 9 mazes, has an adversarial FPA score of 0.99, and
achieves accuracy of 100% with both the solvers on all the displayed problem instances of mazes; (first
row) 9× 9 mazes i.e. in-distribution, (second row) 13× 13 mazes. (third row) 25× 25 mazes
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Figure 7.11: BlurryMNIST results: Path independence and generalization correlate on the BlurryM-
NIST dataset. This task involves training an image classifier on MNIST digits corrupted with small
degrees of Gaussian blur, and testing the performance on significantly more corrupted ones.

whether path independence still correlates with accuracy. The results can be found in Figure 7.11. The
correlation we reported in the main body of the paper also holds in the BlurryMNIST dataset. Note
that the in-distribution error rates of the trained models vary between 1 and 5 percent.

7.14.2 Results on Matrix Inversion Task

We also tested the connection between path independence and generalization on the Matrix Inversion
task proposed by Du et al. [2022]. This task is concerned with learning to invert 20x20 matrices. Success
is defined by how well the trained model works on matrices with worse condition numbers than those
observed during training. Note that this task is qualitatively very different from all the others we
considered before. We have summarized the results in Figure 7.12.

Using a fully-connected ResNet block as the equilibrium model cell of width 512, we trained a number
of equilibrium models where we varied 1) the forward pass (fixed point iterations vs. solver) 2) the
backwards pass (backprop gradients or implicit gradients) 3) learning rate (0.001, 0.0001 and 0.00001),
4) learning rate schedule (step decays of magnitude 0.5 at different points during training) and 5)
whether layer normalization [Ba et al., 2016b] was used or not. The results can be seen in Figure 7.12.
We see a similar pattern that we saw on earlier tasks: lack of path independence correlates with poor
generalization. Note that our best model matches the performance of the energy based model approach
proposed by Du et al. [2022] in the matrix inversion task and significantly beats their baselines.
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Figure 7.12: Matrix inversion results: We also tested the connection between path independence and
generalization on the Matrix Inversion task proposed by Du et al. [2022]. Lack of path independence
correlates with poor generalization in this task as well (note that lower is better in this task).

7.14.3 Results on the Edge Copy Task

We also test our path independence hypothesis on tasks that take in a graph as an input. We consider
the following the edge copy task proposed by Du et al. [2022], where the goal is to learn to simply
output the input edge features, in a way that generalizes to larger graph sizes.

We used an equilibrium model cell that’s compatible with graph tasks in the Edge Copy experiments,
whose structure is shown in Figure 7.14. This cell is especially suited for edge regression tasks, since
each application of the cell refines the edge features.

We trained a number of equilibrium models where we varied 1) the forward pass (fixed point iterations
vs. solver) 2) the backwards pass (backprop gradients or implicit gradients) 3) learning rate (0.0001,
, 0.000333 and 0.0001) and 4) whether layer normalization [Ba et al., 2016b] was used or not. Each
hyperparameter configuration was run twice with different seeds. The results can be seen in Figure
7.13. We see a similar pattern that we saw on earlier tasks: lack of path independence correlates with
poor generalization. Note that our best equilibrium model outperforms the the energy based model
approach proposed by Du et al. [2022] in this task.

7.15 Discussion

Being able to attain better levels of performance using a larger inference-time compute budget is a
feat that eludes most standard deep learning architectures. This is especially relevant for tasks that
require upwards generalization, i.e., the ability to generalize from easy problem instances to hard ones.
We show that equilibrium models are capable of displaying upwards generalization by exploiting
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Figure 7.13: Edge copy task: The edge copy task requires learning to simply output the input edge
features, in a way that generalizes to larger graph sizes. Lack of path independence correlates with
poor generalization in the edge copy task as well. Note that lower in better in this task.

Figure 7.14: A graph-processing equilibrium model cell: In the edge-copy experiments, we used the
equilibrium model cell illustrated above. The workhorse of this cell is the GINEConv operation [Hu
et al., 2019], which fuses node and edge features to produce updated node features. This cell is
especially suited for edge regression tasks, since each application of the cell refines the edge features.
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scalable test-time compute. We link this to a phenomenon we call path independence: the tendency
of an equilibrium network to converge to the same limiting behavior given an input, regardless of
the initial conditions. We investigate this phenomenon through careful experiments and verify that
path independent networks indeed generalize well on harder problem instances by exploiting more
test time compute. Moreover, interventions on training conditions that promote path independence
also improve upwards generalization, while those that penalize it hurt this capability. Our findings
suggest that path independent equilibrium models are a promising direction towards building general
purpose learning systems whose test-time performance improves with more compute.
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Learning to correct spectral methods for simulating turbulent flows. 2022. doi: 10.48550/ARXIV.
2207.00556. URL https://arxiv.org/abs/2207.00556. 106

Y. Du, S. Li, J. Tenenbaum, and I. Mordatch. Learning iterative reasoning through energy minimization.
In International Conference on Machine Learning, pages 5570–5582. PMLR, 2022. 125, 126, 143, 144

P. Dubois, T. Gomez, L. Planckaert, and L. Perret. Machine learning for fluid flow reconstruction from
limited measurements. Journal of Computational Physics, 448:110733, 2022. 2

M. Elad, B. Kawar, and G. Vaksman. Image denoising: The deep learning revolution and beyond—a
survey paper. SIAM Journal on Imaging Sciences, 16(3):1594–1654, 2023. 70

M. Elbayad, J. Gu, E. Grave, and M. Auli. Depth-adaptive transformer. In International Conference on
Learning Representations, 2020a. URL https://openreview.net/forum?id=SJg7KhVKPH. 124

150

https://openreview.net/pdf?id=HyzdRiR9Y7
https://arxiv.org/abs/2207.00556
https://openreview.net/forum?id=SJg7KhVKPH


M. Elbayad, J. Gu, E. Grave, and M. Auli. Depth-adaptive transformer. ArXiv, abs/1910.10073, 2020b.
124

C. Eyzaguirre and A. Soto. Differentiable adaptive computation time for visual reasoning. In Proceedings
of the ieee/cvf conference on computer vision and pattern recognition, pages 12817–12825, 2020. 124
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