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Abstract

�is thesis studies the remarkable success of deep learning. It o�ers the perspec-

tive that, rather than developing black-box generalization bounds, one particularly

fruitful way to understand the success of modern deep learning is through the care-

ful interplay between neural networks’ �exibility and structure in speci�c domains.

In these domains, we can understand modern deep learning through its ability to (1)

adapt to structure in data and (2) use its structures (architecture, pretrained initializa-

tion, etc.) to adapt. We build this perspective through a mix of theory and empirics.

We begin by looking at traditional learning theory tools: generalization bounds.

Speci�cally, we study algorithmic stability as a possible framework for explaining

the performance of gradient descent in overparameterized neural networks. We

provide empirical evidence that uniform stability does not appear with su�cient

strength to explain the generalization performance of neural networks. �en, in-

stead of focusing on taming deep learning’s �exibility, we recast deep learning’s

�exibility as a powerful ability to adapt when just enough structure is present. In

the remainder of the thesis, we carefully study three key se�ings - convolutional

neural networks on image data, simple Transformers on basic algorithmic tasks,

and pretrained language models on natural language data - that demonstrate the

impressive ability of neural networks to adapt to structure in data and leverage their

structures to quickly and �exibly adapt. Together, these three se�ings trace the

evolution of training methods and paradigms over the past six years. Instead of the

bleaker image painted by the more black-box approach to generalization that we

began with, we use these se�ings to advocate for a more mechanistic and nuanced

understanding of the interplay between neural networks’ �exibility and structure in

speci�c domains.
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Chapter 1
Introduction

Over the past decade, deep learning has transformed the computational landscape. In domains

spanning computer vision, translation, natural language understanding, speech, robotics, biology,

and many more, deep learning models have not only signi�cantly outperformed prior machine

learning techniques, but they have - in many cases - completely changed what seems possible.

Deep learning models are the underlying technology behind many of the paradigm-shi�ing arti-

�cial intelligence applications that we see today, including the large-scale multimodal chatbots

that have recently received considerable media a�ention.

However, it wasn’t always obvious to the machine learning community that deep learning

would one day see this remarkable fate. Researchers have been working on neural networks for

decades (Rumelhart et al., 1986; LeCun and Bengio, 1995), o�en ba�ling signi�cant skepticism

surrounding whether these models could ever truly work well. One common criticism was

related to optimization. Neural networks are notorious for having nonconvex loss landscapes,

which means that a local minimum of the training loss is not necessarily a global minimum, and

thus li�le can be guaranteed about successful optimization in the worst case (Blum and Rivest,

1992; Bartle� and Ben-David, 2002). Moreover, since neural networks are o�en trained with

many more parameters than data points (i.e., in the overparameterized regime), they seemed to

lack the capacity control that had been the bedrock of classical machine learning theory (Vapnik

and Chervonenkis, 1971; Bartle� and Mendelson, 2002). �erefore, even if global minima of the

training loss could be found, it seemed di�cult to expect these solutions to reliably perform well

on unseen data. Nevertheless, neither of these obstacles has appeared as di�cult in practice as

theory suggested. Why?

�is mystery of deep learning’s success has a�racted much a�ention within the machine

learning theory community. Unlocking deep learning’s secrets holds allure for multiple reasons.

On the one hand, the failures of existing theory to explain the success of modern deep learning

suggest that these theoretical frameworks have room to improve, which creates an excitement

within the machine learning community akin to the search for physics beyond the standard

model. Beyond this, understanding the mysteries of deep learning o�ers hope for designing even

be�er systems and training algorithms. Working with deep learning models today has o�en

been described as tinkering with a black box, and any progress made toward more principled
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techniques promises to save researchers and engineers signi�cant time and e�ort.

On the optimization side, various works over the years have been gradually developing the

theory of optimization in the overparameterized regime. Speci�cally, one of the key insights was

that, with su�cient width (i.e., number of neural network hidden units) in terms of the problem

parameters, the neural network’s parameters do not end up moving that much overall, which

simpli�es the dynamics of gradient descent (Du et al., 2019b). �ese initial results have been

gradually improved over the years (Allen-Zhu et al., 2019b; Zou and Gu, 2019; Ji and Telgarsky,

2020; Zou et al., 2020; Chen et al., 2021).

On the generalization side, early work showed that, contrary to classical machine learning

wisdom, test error does not increase with a neural network’s size (i.e., number of hidden units),

even a�er zero training error is achieved (Neyshabur et al., 2014). In response, the community

asked: are certain reasonable notions of complexity naturally controlled by gradient descent

when it is used to train deep neural networks? Or, what is gradient descent’s “inductive bias”?

Various norms and other complexity measures were explored, some with more success than

others, but no single measure appeared to truly solve the puzzle (Neyshabur et al., 2017b; Bartle�

et al., 2017a; Arora et al., 2018; Neyshabur et al., 2019; Long and Sedghi, 2020b). In fact, some

norm-based measures were seen to correlate negatively with generalization performance (Jiang*

et al., 2020), and Nagarajan and Kolter, 2019a even questioned and cast doubt on whether any
uniform convergence technique (the focus of much of the aforementioned results) could explain

deep learning’s generalization performance, even a�er accounting for gradient descent’s implicit

bias.

�us, at the time when this thesis started, there were far more questions than answers

surrounding deep learning’s remarkable performance.

1.1 �esis Statement

�is thesis therefore studies the question: Why do deep neural networks work so well?

�rough a series of works completed over the past six years, we develop the following

perspective:

Rather than developing black-box generalization bounds, one particularly fruitful way to

understand the success of modern deep learning is through the careful interplay between neural

networks’ �exibility and structure in speci�c domains. In these domains, we can understand

modern deep learning through its ability to (1) adapt to structure in data and (2) use its structures

(architecture, pretrained initialization, etc.) to adapt.

We develop this perspective throughout this thesis as follows, employing a mix of theory

and empirics.

We begin by looking at traditional learning theory tools: generalization bounds. As previously

discussed, at the beginning of this thesis, traditional complexity-based generalization measures

had been failing to adequately capture and explain the surprising generalization performance of

overparameterized neural networks, and the search for “the right” complexity measure was in full

swing. �ere was also the question of whether a traditional complexity-based approach would
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ever prove adequate, or whether fundamentally new frameworks and tools would be needed.

Much of the skepticism came from the role of gradient descent – it seemed like a full explanation

should somehow account for the role of gradient descent speci�cally, but most traditional

generalization bounds were not designed to take the optimizer into account. One notable

exception to this was algorithmic stability (Bousquet and Elissee�, 2002), a framework connecting

an algorithm’s generalization performance to its sensitivity to changes in the training data. Some

theory researchers therefore wondered whether this could be the right framework to explain the

remarkable performance of gradient descent in overparameterized neural networks. However,

not much was known about whether this framework could really capture the performance of

practical neural networks.

In On the Algorithmic Stability of SGD in Deep Learning (Chapter 2), we studied empir-

ically whether neural networks demonstrate su�cient algorithmic stability to explain their

generalization performance. We created the �rst comprehensive empirical study of uniform

stability in deep learning and provided initial empirical evidence that uniform stability does not

appear with su�cient strength to explain the generalization performance of neural networks.

�is work contributed to the growing sentiment within the theory community that traditional

generalization bounds - even algorithm-dependent ones - were likely not the right toolkit for

studying deep learning.

�e failures of these generalization bounds stemmed from the capacity and �exibility of deep

learning. Instead of trying so hard to tame its �exibility, could we instead focus on understanding

how its �exibility contributed to its success? In the remaining chapters, this is the approach we

take, recasting �exibility as a powerful ability to adapt when just enough structure is present.

In Chapter 3, we study the ability of convolutional neural networks to adapt their �lters to

underlying structure in image data, amidst high degrees of background noise, and thus provably

outperform corresponding kernel methods. We also present empirical evidence that this ability

to adapt, which we call Local Signal Adaptivity, is a key separator between convolutional

neural networks and their corresponding kernel methods. In Chapter 4, we study how the

Transformer’s �exible self-a�ention mechanism can adapt to an underlying decision-list-like

structure, and we provide some of the �rst provable guarantees for so�max-based a�ention.

Finally, in Chapter 5, we study how pretrained Transformer-based language models can grow in

depth and subsequently adapt to their new parameters. �e pretrained language models have

su�cient structure to enable fast adaptation to the new Transformer blocks, which enables

surprisingly early prediction of optimal growing strategies.

In this manner, through a mix of theory and empirics at di�erent scales, we carefully study

three key se�ings - convolutional neural networks on image data, simple Transformers on basic

algorithmic tasks, and pretrained language models on natural language data - that demonstrate

the impressive ability of neural networks to adapt to structure in data and leverage their structures

(architecture, pretrained initializations) to quickly and �exibly adapt. Together, these three

se�ings trace the evolution of training methods and paradigms over the past six years. Instead

of the bleaker image painted by the more classical, black-box approach to generalization in

Chapter 2, we use these se�ings to advocate for a more mechanistic and nuanced understanding

of the interplay between neural networks’ �exibility and structure in speci�c domains.
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1.2 Overview of Chapters

Here, we provide a more detailed description of each chapter.

Chapter 2: Algorithmic Stability

�is chapter is based on:

• Stefani Karp, Behnam Neyshabur, and Mehryar Mohri. On the Algorithmic Stability of

SGD in Deep Learning. 2020.

In this chapter, we study algorithmic stability (Bousquet and Elissee�, 2002) as a framework

for explaining why gradient descent �nds neural network parameters that generalize well. Other

generalization bounds have failed to apply successfully to neural networks. Many such bounds

either scale incorrectly with important problem parameters or are vacuous. In this work, we

empirically analyze whether neural networks trained via gradient descent exhibit su�cient

algorithmic stability to explain their generalization performance. Overall, we see a lack of

stability empirically: just swapping one data point leads to quite di�erent functions.

Where do we go from here? Propelled by the limitations of generalization bounds in explain-

ing the success of gradient descent in modern deep learning, we consider alternative approaches.

Speci�cally, the limitations of this black-box approach spur us to take a more mechanistic

perspective. We look at three important threads, which together trace the evolution of training

methods and paradigms over the past six years. �roughout, we focus on the role of structure:

how neural networks adapt to structure in data and how their structures themselves enable this

adaptation.

Chapter 3: Local Signal Adaptivity

�is chapter is based on:

• Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local Signal Adaptivity: Provable

Feature Learning in Neural Networks Beyond Kernels. In Advances in Neural Information

Processing Systems, 2021.

In 2018, the Neural Tangent Kernel (Jacot et al., 2018b) was introduced as a possible explana-

tion for the success of gradient-descent-trained neural networks. Speci�cally, this line of work

showed that, under certain limiting conditions, neural networks trained via gradient descent

reduce to kernel methods, where the speci�c kernel is determined by the neural network’s

architecture and its initialization. Mathematically, this perspective was incredibly appealing, as

it permi�ed theoreticians to reuse the rich preexisting and mathematically rigorous literature

on kernel methods to make mathematically-grounded predictions about modern-day neural

networks. On the one hand, certain works showed impressive empirical similarity between

the performance of neural networks and their corresponding kernel methods. However, on the

other hand, these corresponding kernel methods could not consistently match the performance

of gradient-descent-trained neural networks. And perhaps more importantly, something seemed
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conceptually o�: could it really be the case that features determined before seeing any training

data at all were su�cient to explain why neural networks worked so well? Empirically, neural

networks seemed to be using their training data to learn features. �ey seemed to be adapting
their features to the data.

We explore this question throughout Chapter 3. Speci�cally, we study feature learning

in convolutional neural networks. To do so, we introduce a toy model that is intended to

capture what we conjecture to be a key property of natural image classi�cation tasks: the

presence of localized, label-determining features embedded within noisy backgrounds. In this

simple model, we show that convolutional neural networks trained via gradient descent are

able to adapt their �lters to learn the underlying problem structure, whereas kernel methods

succumb to the noise. We call this phenomenon Local Signal Adaptivity: the learned ability to

�nd a small set of localized label-determining features embedded within a noisy background.

�rough theoretical and empirical analysis, we provide evidence that this adaptation is key to

gradient-descent-trained convolutional neural networks’ superiority over kernel methods.

Chapter 4: Transformer �eory

�is chapter is based on:

• Stefani Karp, Pranjal Awasthi, and Satyen Kale. Provable Gradient-Descent-Based Learning

of Decision Lists by Transformers. In DeepMath, 2023.

�e Transformer architecture, introduced in 2017, signi�cantly altered the landscape of

natural language understanding and generation, as well as that of many other domains – ranging

from speech to vision to biology to robotics. �e Transformer architecture is suitable for any

input data that can be represented as a sequence. Its key architectural component is self-a�ention,

which allows each sequence element to dynamically “pay a�ention to” other sequence elements,

enabling sophisticated computation across the sequence. �e generality of this approach has

been paradigm-shi�ing. Why is it the case that so many domains have fallen to the Transformer

architecture? What is so powerful about the combination of sequence data, self-a�ention, and

gradient descent?

Rigorously analyzing gradient descent dynamics for the Transformer architecture is no-

toriously di�cult. �e self-a�ention mechanism consists of a so�max applied over the input

sequence, which signi�cantly complicates the analysis. It is also far from obvious what assump-

tions one should make on the input data. What are the key interesting, common features of

sequence data that have contributed to the Transformer’s rise?

In Chapter 4, we explore this question through the design of a simple data distribution that

signi�cantly bene�ts from a�ention, and we provide a mathematically rigorous analysis of how

gradient descent can optimize the parameters of a simple Transformer to solve this task. �is

provides one of the �rst examples of provably optimizing the so�max-based-a�ention using

gradient descent. Our data distribution is similar to a decision list, with a few variations, and we

put forth this simple data distribution as a basic example of the kind of domain-agnostic data

structure to which self-a�ention’s parameters can provably adapt.
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Chapter 5: Landscape-Aware Growing

�is chapter is based on:

• Stefani Karp*, Nikunj Saunshi*, Sobhan Miryoose�, Sashank J. Reddi, and Sanjiv Kumar.

Landscape-Aware Growing: �e Power of a Li�le LAG. arXiv preprint arXiv:2406.02469,

2024,

where
∗

denotes joint �rst authorship.

Language models have grown rapidly in size in recent years, and with this seeming explosion

in model size, we have seen the concurrent rise of the “foundation model” paradigm: using and

adapting large, pretrained models for various tasks. �ese pretrained models are adapted in

myriad ways, ranging from supervised �ne-tuning and various other �ne-tuning techniques to

model merging and growing. In this regime, the questions about gradient descent are slightly

di�erent. Rather than asking why gradient descent is able to optimize neural networks starting

from random initializations, we ask how the structure contained in the pretrained network

a�ects the dynamics and even predictability of gradient descent.

In this chapter, we explore this question by studying the growing of pretrained language

models. Speci�cally, we study how to increase the depth of pretrained Transformer-based

language models. We conduct an extensive empirical analysis of various ways to increase the

depth, and we see that there is generally su�cient structure in the existing network to enable

fast adaptation to the new parameters via gradient descent. As a result, unlike in standard neural

architecture search, where predicting the optimal architectures early on is fairly di�cult, and

unlike in the growing literature thus far, where the common wisdom has been to grow in a

loss-preserving manner, we show that it is possible to identify near-optimal growing strategies

a�er just a small amount of gradient-based training. In doing so, we highlight how the structure

contained in pretrained weights enables e�cient adaptation.
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Chapter 2
Algorithmic Stability

�is chapter is based on Karp et al., 2020:

Stefani Karp, Behnam Neyshabur, and Mehryar Mohri. On the Algorithmic Stability of SGD in

Deep Learning. 2020.

2.1 Introduction

Despite the impressive empirical success of deep learning models, their ability to generalize well

(on a signi�cant set of data distributions) despite overparameterization has largely eluded the

research community (Zhang et al., 2017; Neyshabur et al., 2017a). Various �avors of generalization

bounds have been applied to neural networks, including various norm- and margin-based

bounds (Bartle� et al., 2017b; Neyshabur et al., 2015; Elsayed et al., 2018; Liang et al., 2019; Long

and Sedghi, 2020a), PAC-Bayes bounds (Dziugaite and Roy, 2017; Neyshabur et al., 2018), and

VC-dimension-based bounds (Bartle� et al., 2019). However, many such bounds have been shown

to be insu�ciently-correlated with generalization as various model components are varied (e.g.,

number of parameters) (Jiang et al., 2020). Nagarajan and Kolter (2019b) demonstrated that

some of these bounds can even increase with sample size in certain se�ings, underscoring

the importance of empirically evaluating proposed bounds’ behavior as a function of dataset

size. Furthermore, Nagarajan and Kolter (2019b) suggest that all uniform-convergence-based

approaches might inherently be unable to explain deep learning’s generalization performance,

even a�er uniform convergence is restricted to the smallest possible set of models determined

by the implicit bias of the learning algorithm. If this is true, then what tools for proving deep

learning generalization bounds remain? One such tool, as acknowledged by Nagarajan and

Kolter (2019b), is algorithmic stability.

Algorithmic stability. Algorithmic stability typically refers to a sensitivity analysis of the

algorithm itself; speci�cally, how much can swapping (or removing) one point in an m-item

training set S change the output of an algorithmA(S)? Bousquet and Elissee� (2002) formalized

and proved generalization bounds under various di�erent �avors of algorithmic stability; since

then, additional variants of algorithmic stability have been developed (Abou-Moustafa and
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Szepesvári, 2019; Foster et al., 2019; Kutin and Niyogi, 2002; Liu et al., 2017). However, to this

day, the main variant for obtaining bounds that hold with high probability over the random

draw of the training set is uniform stability, the strictest of the requirements. Speci�cally, a

learning algorithm A is called β- uniformly stable with respect to loss ` if:

∀S ∈ Zm,∀i ∈ {1, . . . ,m},∀z ∈ Z : |`(A(S), z)− `(A(S\i), z)| ≤ β,

where S\i is S with element i removed. O�en, uniform stability is expressed with respect to the

swapping of one point, instead of the removal:

∀S, S ′ ∈ Zm,∀z ∈ Z : |`(A(S), z)− `(A(S ′), z)| ≤ β,

where S and S ′ only di�er at one index.

Algorithmic stability of stochastic gradient descent (SGD). Various works thus far have

studied whether the framework of algorithmic stability can be applied to the analysis of stochastic

gradient descent (typically including at least some extension to nonconvex loss landscapes)

(Hardt et al., 2016; Feldman and Vondrak, 2019; Kuzborskij and Lampert, 2018). However, each

of these results has some subset of the following weaknesses when applied to practical deep

learning:

• �e bound is only in expectation with respect to the draw of the sample S. In general, we

ultimately seek bounds that will hold with high probability over the draw of the sample

S ∼ Dm, although such bounds are generally more di�cult to prove theoretically.

• �e stability parameter β relies on smoothness parameters of the loss landscape that might

not be particularly favorable for neural networks.

• �e result heavily relies on a learning rate of O(1/t), where t is the parameter update (vs.

epoch). �is ensures that, in expectation over the algorithm’s randomness, the learning

rate has decayed more for larger samples by the time the swapped point is encountered.

In contrast, in deep learning, the learning rate typically stays constant for at least the �rst

epoch.

• �e proof relies on controlling the (expected) distance between A(S) and A(S ′) in pa-

rameter space, which seems unlikely to decrease su�ciently with dataset size in practice

(without the aforementioned 1/t learning rate schedule). We explore this in more detail

in Section 2.4.

Our work. Inspired by the growing literature empirically analyzing the shortcomings of cur-

rent deep learning generalization bounds and the anticipated algorithmic stability weaknesses

discussed above, in this work we initiate a study of the following question: Does SGD empiri-

cally satisfy uniform stability in practical deep learning se�ings, in a manner su�cient to yield

generalization bounds that hold with high probability (over the draw of the dataset and the

algorithm’s randomness)? Unfortunately, analyzing uniform stability empirically is incredibly

challenging due to the many suprema in the de�nition (i.e., ∀S, S ′, z), and we thus do not claim

that any empirical analysis can de�nitively answer whether or not SGD in deep learning is

uniformly stable. However, to our knowledge, this is the most extensive empirical examination

of uniform stability in deep learning to date. Our contributions are as follows:
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• Discussion of challenges in the empirical evaluation of uniform stability, with suggested

methodology for overcoming them. Crucially, we validate our methodology in the simpler

se�ing of logistic regression.

• Evidence that uniform stability (with respect to the cross-entropy loss) does not decrease

su�ciently with dataset size to fully explain generalization in deep learning.

• Evidence that ‖A(S) − A(S ′)‖2 (when the output of A is treated as a single vector of

concatenated parameters) does not su�ciently decrease with dataset size in practical deep

learning se�ings; in some cases, it can even increase despite strong generalization. We

suggest that, if there is a form of algorithmic stability at play in deep learning, it does not

stem from parameter closeness. We argue that any future theoretical a�empts to prove

stability of SGD in deep learning should proceed through a di�erent key path.

• Discovery of se�ings with insu�cient cross-entropy uniform stability to explain general-

ization but for which A(S) and A(S ′) are in the same basin of a�raction (see Section 2.4

for a precise de�nition), suggesting that convex se�ings with large basins of a�raction

could also share these same failure modes and thus pave the way for more tractable

analyses.

2.2 Methodology

Here, we describe the key aspects of our methodology for empirically evaluating uniform

stability, with additional details in Appendix A.1. We �rst applied our methodology to logistic

regression, which we used to help validate our methodology. We then applied our methodology

to deep neural networks.

�roughout the paper, we use A(S) to denote to the output of the algorithm on dataset S.

Although this object is really a function, we slightly abuse notation and treat it as a vector, i.e.,

with all of the model’s parameters concatenated into a single vector. We occasionally use WS

instead to denote the parameters output by A on S, concatenated into a single vector.

Random seeds. Since we are seeking bounds that hold with high probability over the random-

ness of the algorithm, each plot we produce examines a single se�ing of the seed controlling

initialization and the seed controlling SGD order. �us, for each dataset/hyperparameter con�g-

uration, we present a single se�ing of the seeds in the main paper and defer our plots for other

seeds to Appendix A.2.

Datasets: S and S′
. We used MNIST for logistic regression (divided into two classes for

binary classi�cation: labels 0-4 and labels 5-9), and we used CIFAR-10 (Krizhevsky, 2009a) and

SVHN (Street View House Numbers) (Netzer et al., 2011) for neural network training (10-class

classi�cation). In order to thoroughly study behavior (e.g., test/train error, various stability

metrics, etc.) as a function of dataset size, we examined the following dataset sizes:

• {800, 1600, 3200, 6400, 12800} for logistic regression, and

• {15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000} for neural networks.

See Appendix A.1 for more details regarding this choice of dataset sizes.
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We emphasize that we intentionally do not use data augmentation; we want to precisely

measure behavior as a function of dataset size, and to our knowledge, there is no widely-accepted

approach for calculating the e�ective dataset size with data augmentation.

Multiple trials per dataset size. To study the quanti�er ∀S, S ′ ∈ Zm empirically as thor-

oughly as possible, we sampled multiple (S, S ′) pairs per dataset size m. Each (S, S ′) pair was

sampled as follows: we �rst randomly drew a subset of size m from the relevant training dataset

(uniformly at random without replacement) to form S, we then uniformly sampled a single

element of the relevant test set (call this element z), and �nally we uniformly sampled an index

i ∈ {1, . . . ,m} of S in which to swap in z, thus forming S ′. We then trained two models

in parallel, one on training dataset S and one on S ′. �is procedure was repeated 90 times

per dataset size for logistic regression and 40 times per dataset size for each neural network

con�guration (due to the higher cost of each run).

Crucially, the only di�erence between training on S and S ′ was the appearance of z in S ′ in

a single batch per epoch. All other data points were the same and were visited in the same order.

Furthermore, we explicitly disabled all sources of GPU nondeterminism to ensure that we were

fully isolating the e�ect of swapping in z.

Models and training. �e logistic regression model is a 784-dimensional linear classi�er plus

a bias term, and the neural networks are residual networks, speci�cally ResNet-20 (He et al.,

2016).

�e logistic regression models were trained via stochastic gradient descent (SGD) with

learning rate 0.1, batch size 128, and no momentum.

On SVHN, we trained a ResNet-20 via SGD with learning rate 0.01, batch size 32, and no

momentum. On CIFAR-10, we explored two di�erent hyperparameter con�gurations: one

without momentum and one with momentum 0.9. �e other hyperparameters were the same

across both con�gurations: a decaying learning rate schedule (starting at 0.1 and dividing by 10

at iterations 32,000 and 48,000) and batch size 128 (He et al., 2016).

Stopping criterion. We train each model for 100,000 iterations (i.e., parameter updates). See

Appendix A.1 for a more detailed discussion of stopping criteria.

Uniform stabilitywith respect to the cross-entropy loss. In the uniform stability de�nition,

instead of a supremum over the domain, we calculate a max over the test set. A priori, it might

not be clear how e�ective this would be, and we thus validate our methodology via logistic

regression in Section 2.3 before proceeding to deep learning.

Plots and curve �tting. Many of the quantities examined in this paper take the form of

g(m) = supS∈Zm f(S) or g(m) = supS,S′∈Zm f(S, S ′) for some function f , and we expect g(m)
to have the form g(m) = amb

for some constants a, b. �us, for these quantities, we use the

following plo�ing motif: all trials per dataset size are displayed as blue dots, the maximum value

per dataset size is a red dot, and a green curve of the form g(m) = amb
is �t to the red dots (see

Appendix A.1 for curve ��ing details). To emphasize b, the rate of decrease (or occasionally

increase) with m, these plots display both the x- and y-axes in log scale.
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Figure 2.1: Main logistic regression results. From le� to right: logistic loss generalization gap as a

function of dataset size, logistic loss stability as a function of dataset size, Euclidean distance between

parameters found using S vs. S′ as a function of dataset size, and 0-1 loss generalization gap as a function

of dataset size. �ere are 90 samples per dataset size m. Each sample involves independently drawing

S ∼ Dm
train

, z ∼ Dtest, i ∼ U([m]), and S′ := Si←z . Each sample is plo�ed as a blue dot, the maximum

value per dataset size m is plo�ed as a red dot, and a curve of the form y = amb
is �t to the red dots

and plo�ed in green. Overall, the logistic loss stability has a dependence on m comparable to that of the

logistic loss generalization gap.

2.3 Uniform Stability and Generalization

For many years, obtaining useful generalization bounds via uniform stability required β =
O(1/m), but Feldman and Vondrak (2019) (followed by Bousquet et al. (2019)) recently derived

tighter bounds of the form: with probability at least 1− δ over the choice of S ∼ Dm,

RD(A(S)) ≤ R̂S(A(S)) + c

(
β log(m) log(m/δ) +

√
log(1/δ)√
m

)
(2.1)

for some constant c. Here, RD(A(S)) is the expected loss over the true distribution, and

R̂S(A(S)) is the empirical loss evaluated on S. �is bound suggests thatRD(A(S))−R̂S(A(S))
is bounded by Õ(max{β, 1/

√
m}), hiding logarithmic dependencies inside the Õ. �us, if

RD(A(S))− R̂S(A(S)) empirically decays more slowly than 1/
√
m, providing empirical evi-

dence that RD(A(S))− R̂S(A(S)) and β decay similarly with m would suggest that uniform

stability has su�cient strength to explain generalization.

In this section, we present the results of our uniform stability experiments for both logistic re-

gression and neural networks. In both sections, we also carefully estimateR(A(S))− R̂S(A(S))
as a function of dataset size, under both the 0-1 loss and the logistic or cross-entropy loss, to

understand to what degree our uniform stability results are able to capture the strength of

generalization. For convenience, we use the phrase “generalization gap” or “loss gap” to denote

this di�erence in test and train loss.

2.3.1 Logistic regression

As there are obvious challenges in the empirical investigation of uniform stability with respect

to the cross-entropy loss, we began by analyzing logistic regression, which presents many of the
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ID Model Dataset Learning rate Batch size Momentum

1a ResNet-20 SVHN 0.01 (constant) 32 0.0

2a ResNet-20 CIFAR-10 0.1, 0.01 at 32k, 0.001 at 48k 128 0.0

2b ResNet-20 CIFAR-10 0.1, 0.01 at 32k, 0.001 at 48k 128 0.9

Table 2.1: Details of the 3 deep neural network se�ings studied.

same challenges (e.g., the logistic loss, how to analyze the suprema over the domain, etc.) but

provides a much simpler and be�er-understood testbed in which to explore our methodology.

Results. In Figure 2.1, we plot the logistic loss generalization gap, our empirical estimate of the

logistic loss uniform stability, the Euclidean distance between the �nal parameters of A(S) and

A(S ′), and the 0-1 loss generalization gap. We �t a curve to the maximum value per dataset size,

as described in detail in Section 2.2 and Appendix A.1, and we compare the dependence on m of

our curves. Among the �rst three plots, we see a very similar dependence on m, ranging from

m−1.05
to m−1.13

. �e dependence on m in the 0-1 loss generalization gap plot is a bit weaker

(m−0.82
), but we include this primarily for completeness and as a frame of reference; we are

more interested in whether logistic loss stability can explain the strength (with respect to m) of

generalization with respect to the logistic loss.

Conclusions. �ese plots demonstrate the potential of our methodology to capture, via uniform

stability with a �nite maximum over the test set, the dependence on m of the Euclidean distance

between parameters and, most importantly, the logistic loss generalization gap. �us, although

there are obvious di�erences between the suprema in the de�nition of uniform stability and

our empirical evaluation with �nite maxima, our results suggest that there is nevertheless some

promise of obtaining informative empirical results.

2.3.2 Deep learning

A�er validating our methodology in the simpler se�ing of logistic regression, we now extend

our methodology to the three deep learning con�gurations described in Section 2.2.

Results. Figure 2.2 displays the generalization and stability results for our three neural network

se�ings. In contrast with logistic regression, we postpone examining the parameters themselves

until Section 2.4, in which we conduct an analysis more targeted to deep learning’s nonconvex

loss landscape.

Most signi�cantly, we compare the cross-entropy loss generalization gap to the uniform

stability curve. For the ResNet-20 on SVHN, the stability curve displays a mild decrease with

m (speci�cally, m−0.09
), compared to m−0.18

for the cross-entropy loss generalization gap. For

the ResNet-20 on CIFAR-10 without momentum, the stability curve does not decrease with

m, despite the cross-entropy loss generalization gap having a dependence of m−0.48
. For the

ResNet-20 on CIFAR-10 with momentum, the stability curve displays a mild decrease with m
(speci�cally, m−0.17

), compared to m−0.35
for the cross-entropy loss generalization gap.

To provide a frame of reference, we also compare the cross-entropy loss generalization gap
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Figure 2.2: Main neural network results. Each row is a di�erent neural network con�guration. Per row,

from le� to right: 0-1 loss generalization gap as a function of dataset size, cross-entropy loss generalization

gap as a function of dataset size, cross-entropy loss stability as a function of dataset size. �ere are

40 samples per dataset size m. Each sample involves independently drawing S ∼ Dm
train

, z ∼ Dtest,

i ∼ U([m]), and S′ := Si←z . Each sample is plo�ed as a blue dot, the maximum value per dataset size m
is plo�ed as a red dot, and a curve of the form y = amb

is �t to the red dots and plo�ed in green. Overall,

the cross-entropy loss stability has a dependence on m that is not comparable to the generalization gap’s

dependence on m. Note: We use “logistic loss” and “cross-entropy” loss interchangeably here; all models

in this �gure were trained and evaluated with the cross-entropy loss.
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Figure 2.3: ‖A(S)−A(S′)‖2 at t = 100, 000, for each of the 3 neural network con�gurations. �ere

are 40 samples per dataset size m. Each sample involves independently drawing S ∼ Dm
train

, z ∼ Dtest,

i ∼ U([m]), and S′ := Si←z . Each sample is plo�ed as a blue dot, and the maximum value per dataset

size m is plo�ed as a red dot.

to the 0-1 loss generalization gap and note that, at least for these particular con�gurations,

a�empting to explain the rate of decrease with m of the cross-entropy loss generalization gap

does not leave us too far from the 0-1 generalization gap either.

Appendix A.2 includes the same experiments repeated with more seeds (for initialization

and SGD data order) and includes plots at other stopping points (other than 100,000 iterations).

Conclusions. Overall, in our deep learning experiments, uniform stability with respect to the

cross-entropy loss does not appear with su�cient strength to explain observed generalization

with respect to the cross-entropy loss.

2.4 Behavior of Parameters

In this section, we analyze the behavior of the underlying parameters to try to disentangle the

e�ect of the cross-entropy loss and the supremum over the domain (estimated via the max over

the test set) from the learned models themselves in parameter space.

2.4.1 Euclidean distance

As mentioned in Section 2.1, we are further interested in studying the Euclidean distance between

the �nal learned parameters to help understand whether the key proof strategy introduced by

Hardt et al. (2016) extends to practical deep learning se�ings. Since this paper, most proofs of

the stability of SGD (even in nonconvex se�ings) proceed by bounding the Euclidean distance in

parameter space between A(S) and A(S ′) and then appealing to the Lipschitzness of the loss.

However, if the Euclidean distance betweenA(S) andA(S ′) does not decrease with dataset size

in our trained models, this suggests that this proof strategy might not be su�cient for obtaining

generalization bounds in practical deep learning se�ings that hold with high probability (over the

random draw of the dataset and the random initialization and SGD data order of the algorithm).
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Results. Figure 2.3 presents ‖A(S) − A(S ′)‖2 for our three neural network con�gurations.

We see that, from m = 15k to m = 50k, the distances do not decrease with dataset size at a

su�cient rate to explain generalization and actually even increase in some dataset size ranges.

Conclusions. �ese results suggest that a decrease in Euclidean distance of the parameters

with dataset size is likely not a viable path through which to prove stability in practical deep

learning se�ings.

One might ask whether the nondecreasing Euclidean distance we observe here is caused by

the norms in parameter space themselves growing with dataset size. We �rst emphasize that

this question does not impact our conclusions, as the proofs to which we have referred invoke

the raw Euclidean distance between the parameters. However, for completeness, we refer the

interested reader to Appendix A.3 for an extensive analysis of norms and normalized Euclidean

distances.

2.4.2 Linear mode connectivity

We now ask the question: Is nonconvexity causing optimization on S and S ′ to diverge to

di�erent basins of a�raction, thus thwarting e�orts to extend analyses from convex se�ings

to deep learning’s nonconvex se�ing (as is done by Hardt et al. (2016) and follow-up works)?

Here, we use basin of a�raction to mean a convex set of solutions (in parameter space) all with

comparable training and/or test loss.

To make this more precise, we invoke the linear mode connectivity framework of Frankle et al.

(2020) to study this question. Speci�cally, linear mode connectivity asks whether, at all networks

along the linear path between two candidate networks (in parameter space), the training and/or

test error does not increase. In our se�ing, WS and WS′ qualify as linearly connected modes if,

for all α ∈ [0, 1], the (test or train) accuracy of the model with parameters αWS + (1− α)WS′

is not signi�cantly below that of WS or WS′ (roughly 2%, per Frankle et al. (2020)).

Results. We plot the train accuracy (on S) and test accuracy at αWS + (1 − α)WS′ at 76

equally-spaced values of α ∈ [−1, 2]. �e learned parameters are at α = 0 and α = 1, but

we include additional values of α on either end as a frame of reference. We randomly select

10 trials among the 40 trials described in Section 2.2 and, for each trial, we plot the train and

test accuracy for each value of α. Figure 2.4a has results for m = 15, 000 and Figure 2.4b has

results for m = 50, 000. �e ResNet-20 on SVHN has nondecreasing accuracy when linearly

interpolating between WS and WS′ , the ResNet-20 on CIFAR-10 without momentum has slightly

decreasing accuracy when linearly interpolating between WS and WS′ , and the ResNet-20 on

CIFAR-10 with momentum has signi�cantly decreasing accuracy when interpolating.

Conclusions. A priori, it is not obvious what one should expect when linearly interpolating, and

it is thus perhaps surprising that our three con�gurations largely span the space of possibilities.

�us, in order to further study the weaknesses of uniform stability in practical deep learning

se�ings, we suggest that moving to a regime such as a ResNet-20 on CIFAR-10 with momentum,

in which the solutions are not connected by a path of nondecreasing accuracy, might not be

immediately necessary from a scienti�c standpoint. Perhaps the limitations of uniform stability
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(a) Training dataset size m = 15, 000.
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(b) Training dataset size m = 50, 000.

Figure 2.4: Linear mode connectivity at t = 100, 000. Each column has a di�erent neural network

con�guration. In each plot, the x-axis is α, ranging from -1.0 to 2.0, and the y-axis is the train or test

accuracy evaluated at the parameters αWS + (1− α)WS′ for some (S, S′) pair. Speci�cally, each color

represents a di�erent (S, S′) pair from among the 40 trials described in Section 2.2; each plot includes

10 such pairs randomly selected from among the 40. Figure 2.4a has results for training dataset size

m = 15, 000 and Figure 2.4b has results for training dataset size m = 50, 000. Overall, the ResNet-20 on

SVHN has nondecreasing accuracy when linearly interpolating between WS and WS′ , the ResNet-20 on

CIFAR-10 without momentum has slightly decreasing accuracy when linearly interpolating between WS

and WS′ , and the ResNet-20 on CIFAR-10 with momentum has signi�cantly decreasing accuracy when

interpolating.
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can be explored and be�er understood with a con�guration such as our ResNet-20 on SVHN

(without momentum). Notably, the SVHN interpolation results suggest that nonconvexity

might not be necessary at all to investigate the particular weaknesses of algorithmic stability

experienced by deep learning; rather, convex se�ings with large enough basins of a�raction

(de�ned for our purposes as convex sets of parameters yielding approximately equal training

and/or test loss) to host a reasonable degree of functional diversity might actually be subject to

these same weaknesses. �us, our �ndings might open the door to the study of more tractable,

convex se�ings in which one can study the same limitations of algorithmic stability that appear

in deep learning.

2.5 Conclusion

In this work, we have initiated the challenging endeavor of empirically studying the uniform

stability of deep learning. Although we freely admit that no reasonable empirical results could

de�nitively rule out uniform stability (due to its formulation as several maxima over the domain),

we believe that our results present compelling evidence that (a) uniform stability (with respect to

the cross-entropy loss) might not be present in practical deep learning with su�cient strength to

explain generalization, and (b) that typical theoretical approaches based on parameter distance

decreasing with dataset size are likely not the driving force behind any form of algorithmic

stability that nevertheless might exist in deep learning. Ultimately, if some form of algorithmic

stability (perhaps weaker than uniform stability) is at play in deep learning, we suspect that it

will stem from a function-space view that appropriately handles divergence to di�erent basins of

a�raction a�er swapping one data point (as seen in Section 2.4.2, Con�guration 2b). However, in

the meantime, we present compelling evidence that many of the weaknesses of uniform stability

can already be seen empirically in simpler, perhaps even convex, se�ings. Formalizing and

further investigating these more tractable se�ings presents an interesting direction for future

work.
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Chapter 3
Local Signal Adaptivity

�is chapter is based on Karp et al., 2021:

Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local Signal Adaptivity: Provable

Feature Learning in Neural Networks Beyond Kernels. In Advances in Neural Information

Processing Systems, 2021.

3.1 Introduction

Recently, deep learning (using multi-layer, non-linear neural networks) has demonstrated su-

perior performance over traditional linear learners in many machine learning tasks. �ese

achievements have bred much theoretical investigation into whether neural networks are, in

fact, superior - and why. On the one hand, the Neural Tangent Kernel (NTK) and derivative

works show that, under certain (limiting) conditions, a gradient-descent-trained neural network

reduces to a kernel method with a speci�c architecture- and initialization-determined kernel

(Jacot et al., 2018a; Du et al., 2019a). However, this does not seem to be the full story, as it fails

to capture the feature learning aspect of neural network training. �is distinction between a

�xed feature representation and a data-adaptive feature representation has been studied from

a variety of perspectives, including the lazy vs. active regime framework (Chizat et al., 2019;

Woodworth et al., 2020; Moroshko et al., 2020; Geiger et al., 2020; Wang et al., 2020). Building

on these insights, there has been increasing interest in now showing a provable gap between

the performance of neural networks and kernel methods in various se�ings (Ghorbani et al.,

2019; Ghorbani et al., 2020; Allen-Zhu and Li, 2019; Allen-Zhu and Li, 2020a; Li et al., 2020b;

Malach et al., 2021; Kamath et al., 2020; Re�ne�i et al., 2021; Daniely and Malach, 2020; Chen

et al., 2020; Domingo-Enrich et al., 2021).

In this work, we extend this theoretical investigation into the superiority of neural networks

over linear learners and, inspired by practical se�ings, propose a new line of reasoning that we

refer to as “Local Signal Adaptivity”. In particular, we explore the power of convolutional neural

networks (CNNs) in image classi�cation, compared to linear functions over prescribed feature

mappings.
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Our setting: We study a simple data distribution that captures one key property of natural

image classi�cation tasks: a small set of localized “label-determining” features embedded within

a “noisy” background. We formally prove that even when such background occupies a rather

large fraction of an image, a CNN can be quite e�ective at locating the label-determining signal

and thus ignoring background information that is mostly irrelevant to the true label, to achieve

high accuracy.

Our result: In the formal se�ing of our simple data distribution (presented in Section 3.3), we

ask whether a particular two-layer CNN trained via stochastic gradient descent can provably

acquire this “signal-�nding” ability and how this compares to its associated convolutional neural

tangent kernel (CNTK). We answer with a separation result between our CNN and its CNTK:

We formally prove that a small CNN, trained using standard SGD from random initialization, can
e�ciently learn to �nd the “signal” and threshold out the noise, whereas the corresponding CNTK

requires a comparatively much larger model (i.e., with more features) in order to accomplish this.

Empirical justi�cation: While we pick a simple data distribution in our work to illustrate the

main idea and obtain a formal proof, we point out that our se�ing is very natural in real images:

in many image classi�cation tasks, the label-determining feature only occupies a small fraction

of the image, and most other parts are background noise (Figure 3.1). Furthermore, in neural

networks trained on natural images, it is generally accepted that activation pa�erns become

increasingly sparse throughout training, e�ectively zeroing out the activations of low-magnitude

noise and locating the true signal (suggestive of the denoising/LSA phenomenon studied in this

work). For completeness, we have included such an experiment in Figure 3.2, illustrating how

the average percentage of active neurons per instance decreases throughout training (details

are provided in Appendix B.3). Finally, to empirically study our theoretical results, we create

a new dataset by embedding CIFAR-10 images within either random Gaussian or ImageNet

backgrounds. Our experiments show that, as the intensity of the background noise grows and

thus the “denoising task” becomes harder, the performance of the neural network stays relatively

stable, while the performance of the corresponding NTK does, in fact, degrade signi�cantly

(Section 3.6, Figure 3.4).

Based on our theorem and experiments, we therefore believe that this per-instance “signal

�nding within noisy backgrounds” ability of convolutional neural networks, which we dub “Local

Signal Adaptivity” (LSA), is one key component of the superiority of SGD-trained convolutional

neural networks over �xed feature mappings.

3.2 Related Work

Learning neural networks using SGD. �ere is a long line of work proving that various con-

cept classes can be learned e�ciently by SGD-trained neural networks. Many of the theoretical

works taking a “beyond-NTK” perspective and emphasizing the non-linearity of neural networks

are only proved under Gaussian inputs (Kawaguchi, 2016; Soudry and Carmon, 2016; Xie et al.,

2016; Ge et al., 2017; Soltanolkotabi et al., 2017; Tian, 2017; Brutzkus and Globerson, 2017; Zhong

et al., 2017; Li and Yuan, 2017; Boob and Lan, 2017; Li et al., 2018; Vempala and Wilmes, 2018; Ge
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Figure 3.1: Example images from the Ima-

geNet2012 dataset, illustrating background noise

in natural image classi�cation tasks. �e labels are:

bicycle (top le�), canoe (top right), school bus (bot-

tom le�), balloon (bo�om right). In each example,

the label-determining objects are only one part of

the whole image.
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Figure 3.2: Sparsity of intermediate WRN lay-

ers during training on CIFAR-10. �e x-axis is

the epoch number, and the y-axis is the average

percentage of active neurons per instance. Full

training details are provided in Appendix B.3. �e

plot illustrates how activation pa�erns become in-

creasingly sparse throughout training, e�ectively

zeroing out low-magnitude noise, as in the LSA

phenomenon.

et al., 2018; Bakshi et al., 2018; Oymak and Soltanolkotabi, 2019; Yehudai and Shamir, 2019; Li

and Yuan, 2017; Li and Liang, 2017; Li et al., 2016; Li and Dou, 2020; Li et al., 2020a). In our work,

we consider a more realistic se�ing in which there is a highly-structured signal hidden within

random background noise.

We now give a more detailed comparison of our work with prior theoretical results on the

separation between neural networks and kernels.

Representation power of neural networks. Many existing works focus on separating the

representation power of neural networks from that of other models (Ghorbani et al., 2020;

Re�ne�i et al., 2021; Gribonval et al., 2020; Suzuki, 2019; Suzuki and Nitanda, 2019). However,

the fact that a function can be represented e�ciently by a neural network does not mean that it

can be e�ciently learned. Only a subset of such works prove e�cient learnability, including

Suzuki and Akiyama (2020) and Daniely and Malach (2020). In our work, we focus on the set of

functions that can be e�ciently learned by neural networks, in particular learned via stochastic

gradient descent over the standard training objective starting from random initialization.

Classi�cation vs. regression. Many existing works only focus on separating the power of

neural networks from that of other learners in a regression se�ing (Ghorbani et al., 2020; Suzuki

and Akiyama, 2020; Allen-Zhu and Li, 2020a; Allen-Zhu and Li, 2019; Li et al., 2020a; Wei et al.,

2018; Yehudai and Shamir, 2019). In this case, both the neural network and the other learning

methods are required to �t the exact label. Although Daniely and Malach (2020) presents one of

the few results in a classi�cation se�ing, their �nal separation result is still in terms of hinge loss

instead of 0-1 loss. In our result, we focus on the binary classi�cation se�ing, where the neural

network and (signi�cantly) the linear learner are only required to �t the sign of the label, instead
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of the exact labeling function. Our �nal result is therefore more natural in image classi�cation

se�ings than prior works.

Learning a hidden subspace. Many of the existing works showing how neural networks are

be�er than other learners, in particular kernel methods, focus on the case where the concept

class is of the form f(x) = φ(Wx), where W is a rank-de�cient matrix (Ghorbani et al., 2020;

Wei et al., 2018). �us, the learning process can be divided into two phases: (1) Identifying the

hidden subspace of W ; (2) Learning the function φ over this hidden subspace. We point out

that to the best of our knowledge, all the cited works only shows the superior power of neural

networks in (1). �is means that, if W were known, then a neural network would have the same

sample/time complexity as kernels when performing (2). As we will show, in our work, the

underlying concept class does not have a �xed subspace, rather the signal can dri� between

di�erent patches, and the neural network needs to identify the signal patch while ignoring

the noise patches. Our explanation of how neural networks outperform kernels is therefore

fundamentally di�erent from the cited works.

Kernel lower bounds. Most of the existing theoretical works demonstrating the power of

neural networks focus on showing how neural networks are be�er than kernel methods or linear

functions over prescribed feature mappings. �ere are two related lines of work: (1) Showing

that neural networks are be�er than any kernel method or any linear learner (Allen-Zhu and Li,

2020a; Daniely and Malach, 2020); (2) Showing that neural networks are be�er than a particular
set of linear learners, most notably, the NTKs or �nite-width NTKs of the corresponding neural

network (Yehudai and Shamir, 2019; Re�ne�i et al., 2021; Wei et al., 2018). Our work belongs

to the second line. Although a result along the �rst line gives a much stronger separation, we

point out that in the classi�cation se�ing, such a separation is known to be extremely challenging
in computational complexity theory (O’Donnell and Servedio, 2003; Sherstov and Wu, 2019).

3.3 Problem Setup

We now formally state our data distribution and the learning problem in our paper.

Relevant problem parameters. We consider the input X = (X1, · · · , Xk+1) to have k + 1
patches; each patch is associated with a vector Xi ∈ Rd

. We can think of X as either the

input image or the output of some intermediate layer of the convolutional neural network. It is

convenient to think of X as a matrix with k + 1 rows and d columns, i.e., X ∈ R(k+1)×d
. We

treat k as “large” and d as polynomial in k, enabling us to simplify certain results by expressing

them entirely in terms of k. We consider an unknown signal vector w? ∈ Rd
with `2-norm

‖w?‖2 = 1, which determines how each (image) X is generated (described below). We also set

σ = log k/
√
k, where σ determines the intensity of the noise in our problem (described below).

Data distribution. We sample each (image, label) pair (X, y) ∼ D. �e marginal distribution

Dy is a uniform distribution over {−1, 1}, i.e., both classes occur with equal probability. We

�rst sample y from Dy and then sample X ∼ DX|y as follows: (a) draw i? from {1, . . . , k + 1}
arbitrarily and put yw? in row i? (we call this the “signal” row); (b) in each of the k remaining
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rows (we call these the “noise” rows), put an independently-drawn vector εi ∼ N (0, σ2Id×d).
We use Xi ∈ Rd

to denote row i of X , for i ∈ {1, . . . , k + 1}. Formally, we therefore have:

Xi =

{
yw? if i = i?

εi otherwise

Our data distribution shares many similarities with the distribution studied in Yu et al. (2019).

However, perhaps most crucially among the di�erences, the noise magnitude in our se�ing is

signi�cantly higher; in Yu et al. (2019), the noise magnitude is low enough to maintain linear
separability, which is insu�cient to show any separation with linear learners.

Remark. We consider the simplest se�ing where there is only one feature w?, though our

result trivially extends to the case when there are multiple orthogonal features (as many as

d). For example, the signal patch can contain features of the form

∑
i αiw

?
i , where the label is

determined by

∑
i αi, as in Allen-Zhu and Li, 2020b.

How to learn this concept class. In our concept class, one of the rows Xi is associated with

the true signal yw?, and all the others are random Gaussian noise. Since this row can appear

arbitrarily in one of the k + 1 rows, the most naive way to learn this function is to use a

convolutional linear classi�er:

l(X) =
k+1∑
i=1

〈w?, Xi〉.

However, we argue that this linear classi�er is actually very bad and cannot be used to classify

the labels correctly. Note that in our problem setup, the noise rows are sampled according to

N (0, σ2Id×d), which means that for each noise row i, we have 〈w?, Xi〉 ∼ N (0, σ2). Hence, the

total accumulated noise over k noise rows would be N (0, kσ2). By our choice of σ = log k/
√
k,

this means that the total noise is much bigger than the signal |y| = 1. Hence, the linear classi�er

fails to classify the labels correctly with at least probability 0.49.

�e above argument suggests that, to learn the concept class, the model cannot naively sum

up 〈w?, Xi〉. Rather, the model has to identify the signal row and ignore the noise rows. In

other words, the model needs to distinguish between the case when 〈w?, Xi〉 is large (y) or

small (N (0, σ2)). As we will show, this can be e�ciently learned by a neural network with ReLU

activations, trained using standard stochastic gradient descent from random initialization.

Convolutional neural network (CNN) architecture. Our goal is to learn the optimal pa-

rameters w ∈ Rd, b ∈ R of the following simple CNN:

fw,b(x) =
k+1∑
i=1

φb(〈w, Xi〉) =
k+1∑
i=1

[
ReLU(〈w, Xi〉+ b)− ReLU(−〈w, Xi〉+ b)

]
.

�is CNN can be understood from either of two equivalent perspectives:

(1) A single convolutional �lter w ∈ Rd
with stride d is applied to the image. �en the

so�-thresholding activation function φb(x) = ReLU(x+ b)−ReLU(−x+ b) is applied pointwise
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over the resulting (k + 1)-dimensional vector. Finally, the second (non-trainable) layer of the

CNN simply sums up the k + 1 entries (i.e., the second layer is a fully-connected layer mapping

from Rk+1
to R, with non-trainable weights all equal to 1).

(2) Two convolutional �lters, each with stride d, are applied to the image. One �lter is

w ∈ Rd
and the other is −w ∈ Rd

. A�er each �lter is applied, the activation function ϕb(x) =
ReLU(x+ b) is applied pointwise to all 2k + 2 pre-activation values (i.e., a k + 1 “vector” with 2
channels). A non-trainable fully-connected layer is then applied, mapping R2k+2

to R; in this

layer, each of the k + 1 weights applied to the the �rst channel (i.e., from �lter w) are all 1, and

each of the weights applied to the second channel (i.e., from �lter −w) are all −1.

�e key in both perspectives is how the two ReLU activation functions work together to

implement a so�-thresholding function, which enables denoising. �roughout, we refer to our

CNN as having one �lter, since it only has d + 1 trainable parameters, regardless of which

perspective is taken.

Training algorithm. We initialize b deterministically at 0. We initializew randomly by drawing

from N (0, σ2
0Id×d), where σ0 is 1/poly(k).

We train the above CNN using mini-batch stochastic gradient descent (SGD) with the logistic

loss, where the logistic loss ` is de�ned as `(fw,b(X), y) := log
(
1 + e−yfw,b(X)

)
.

Speci�cally, at each iteration of SGD, we use poly(k) fresh samples from D. �is will allow

us to argue that, at each iteration, the empirical gradient is very close to the true population

loss gradient.

To simply the proof, we use a slightly smaller learning rate for b (denoted ηb) than for w
(denoted ηw). Speci�cally, we adopt a 1/poly(k) learning rate for w, and we set ηb/ηw = 1/k.

With a bit more technical care, our proofs can be extended to cover the se�ing where ηb = ηw
but we use this simpler version to illustrate the main idea of the learning process, as we will

state in the next section.

To avoid any ambiguity, we de�ne this procedure explicitly as Algorithm 3.1.

Algorithm 3.1 Mini-batch SGD

Initialization and learning rate b(0) ← 0; w(0) ← N (0, σ2
0Id×d); ηb ← η/k; ηw ← η

for t← 1 . . . T do

Sample a mini-batch of examples of size n = poly(k): Z ← Dn

Compute the stochastic gradient: gb =
1
n

∑
z∈Z ∇b`(z), gw = 1

n

∑
z∈Z ∇w`(z)

Update using stochastic gradient descent: b(t) ← b(t−1) − ηbgb, w(t) ← w(t−1) − ηwgw
end for

Return b(T ),w(T )

Additional notation. We will occasionally use the shorthand ft(·) to denote fw(t),b(t)(·), the net-

work at iteration t. We use the standard big-O notation and its variants: O(·), o(·),Θ(·),Ω(·), ω(·),

where k is the problem parameter that becomes large. Occasionally, we use the symbol Õ(·)
(and analogously with the other four variants) to hide log k factors.

Our results will hold with high probability over the random initialization of w and the

randomness of the mini-batches, where “high probability” here means a failure probability
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super-polynomially small in k. Unless speci�ed otherwise, w.h.p. can be taken to mean: with

probability at least 1− e−Ω(log2 k)
.

3.4 Neural Network Results

We now present and brie�y describe our main result on the provably e�cient learning of the

CNN described in Section 3.3.

Theorem 3.1: Main result

�ere exists an absolute constant k0 such that, for every k ≥ k0, using poly(k) samples from

D, learning rate η = 1/poly(k), and T = poly(k) iterations, w.h.p. over the randomness

of the initialization and the samples, we have Pr(X,y)∼D[sign(fT (X)) 6= y] ≤ 0.01, for the

�nal network fT returned by Algorithm 3.1.

�erefore, in contrast to its corresponding Neural Tangent Kernel (Section 3.5), our CNN

trained via SGD provably achieves high accuracy e�ciently. �is stands in contrast to some of

the prior works discussed in Section 3.2, many of which do not prove e�cient learnability.

We defer our detailed proofs to Appendix B.1 and summarize the key ideas here.

Empirical vs. population gradients. Our general proof technique involves analyzing the gra-

dient of the population loss at each iteration (we call this the true gradient): ∇wE(X,y)∼D[`(fw,b(X), y)]
and∇bE(X,y)∼D[`(fw,b(X), y)]. �en, with poly(k) samples per mini-batch, we argue that w.h.p.
the empirical gradient concentrates around the true gradient, and over T = poly(k) steps, the

accumulated error is fairly small. �is argument is made rigorous in Appendix B.1. �erefore,

in the remainder of this section, to illustrate the key idea of the proof, we limit our discussion

to the true gradient as just de�ned (and use the term gradient or derivative without further

quali�cation).

Learning the signal direction. As training progresses, w ·w? grows from its small-magnitude

initialization to a relatively large, but still O(1), positive value. Speci�cally, at each iteration, the

gradient with respect to w has a component parallel to w?, with two opposing forces determining

the sign/magnitude of this component: in expectation over (X, y) ∼ D,

1. the k “noise” rows of X push w ·w? to shrink and

2. the “signal” row pushes w ·w? to grow.

�e “signal” row’s contribution has a magnitude of Θ(1), and the k “noise” rows have a total

contribution of magnitude at most O (|w ·w?| · k log k · σ2) = O
(
|w ·w?| · log3 k

)
. �erefore,

as long as |w ·w?| = o(1/ log3 k), the “signal” row’s contribution overpowers the “noise” rows’

contribution, causing w · w? to grow. �is means that, within Θ((ηw log4 k)−1) = poly(k)
iterations, w ·w? rises from its small-magnitude initialization to Θ(1/ log4 k). A�er w ·w? rises

to Θ(1/ log4 k), we no longer track its dynamics explicitly, as it must stay somewhere between

Ω(1/ log4 k) and O(1) throughout the rest of training, and this turns out to be su�cient for the

remainder of the argument. �e main lemma we prove in Appendix B.1 regarding the growth of

w ·w? is a slightly more formal version of the following:
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Lemma 3.1: Sketched

For any t ≤ T , if |w(t) ·w?| = o
(

1
log3 k

)
, then∇wE[`(ft(X), y)] ·w? = −Θ(1).

Bounded growth along non-signal directions. As training progresses, we also track ‖w −
(w ·w?)w?‖2, the magnitude of w’s projection onto the orthogonal complement of span{w?}.
Although the projection’s direction can change, we show that its norm remains very small,

allowing w ·w? to dominate.

Speci�cally, le�ing w⊥ denote w − (w · w?)w? at the start of iteration t, we show that

∇wE[`(ft(X), y)] ∈ span{w?,w⊥}. Further,∇wE[`(ft(X), y)] ·w⊥/‖w⊥‖2 mirrors the “noise”

contribution above: it has magnitude at mostO (‖w⊥‖2 · k log k · σ2) = O
(
‖w⊥‖2 · log3 k

)
and

pushes ‖w⊥‖2 to shrink. �us, if we were actually using the true gradient, w⊥ would maintain

its direction, and its norm would shrink. �e e�ect of the stochastic gradient is that w⊥ can
change direction slightly, and its norm can grow a bounded amount per iteration; however,

as long as the mini-batch size is large enough (poly(k) su�ces), its norm stays small enough

throughout training. �e main lemma we prove in Appendix B.1 regarding ‖w⊥‖2 is therefore a

slightly more formal version of the following:

Lemma 3.2: Sketched

For any t ≤ T , let g
(t)
⊥ denote ∇wE[`(ft(X), y)] ·w(t)

⊥ /‖w
(t)
⊥ ‖2. �en g

(t)
⊥ ≥ 0 and g

(t)
⊥ =

O
(
‖w(t)
⊥ ‖2 · log3 k

)
.

Learning to threshold out the noise. �e derivative with respect to b similarly has two

opposing forces determining its sign/magnitude: in expectation over (X, y) ∼ D,

1. the k “noise” rows of X push b to decrease and

2. the “signal” row pushes b to increase.

�e “signal” row’s contribution has a magnitude of Θ(1). �us, we can only guarantee that b is

decreasing if the “noise” rows’ total contribution is ω(1). Roughly, the “noise” rows’ contribution

is determined by (i) the scalar projection of each noise vector εi onto w and (ii) (when b < 0) how

much of these scalar projections survive “thresholding”. As ‖w‖2 grows throughout training

(primarily due to the growth of w · w?, discussed above), (i) becomes larger. However, as b
decreases (i.e, |b| grows, for b < 0), (ii) becomes smaller (i.e., much of the noise does not survive

“thresholding”). �erefore, the crux of the proof is to show that, as long as the probability of

misclassi�cation is still > 0.01, despite b already “thresholding out” a fair amount of the noise,

the “noise” rows’ total contribution will remain ω(1) and thus cause b to further decrease. �e

main lemma we prove in Appendix B.1 regarding b is therefore a slightly more formal version of

the following:

Lemma 3.3: Sketched

For any t ≤ T , if w(t) ·w? = ω(1/k1/8), then∇bE[`(ft(X), y)] = Ω(1).
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Figure 3.3: Training our model on synthetic data, using k = 1000, d = 10, σ = 1, ηw = 0.1, ηb =
0.1/1000, and minibatch size 500 (with new i.i.d. samples generated for each batch). In each plot, the

x-axis is the SGD step number. �e le� plot shows the values of b and w ·w?, the center plot shows the

ratio |b|/(w ·w?), and the right plot shows the test accuracy. Overall, as training progresses, w ·w?

increases, b decreases, the ratio |b|/|w ·w?| increases, and the test accuracy increases correspondingly,

tightly aligning with the theory.

We note that the requirement w(t) ·w? = ω(1/k1/8) is satis�ed by the Ω(1/ log4 k) lower

bound presented above, thus connecting the two phases of training.

Comment on actual dynamics. �e elegance of this approach is that it largely allows us to

ignore b’s behavior prior to w ·w? reaching the Ω(1/ log4 k) regime. In reality, there is a short

phase at the beginning of training during which b grows (i.e., becomes increasingly positive);
this occurs because, even though none of the noise is being “thresholded out” at this point,

‖w‖2 is not yet large enough for the “noise” rows’ contribution to dominate the “signal” row’s

Θ(1) contribution (which itself does not scale with ‖w‖2). �en, at some point prior to w ·w?

reaching Ω(1/ log4 k), b begins to decrease rather than increase - and, as we prove, eventually

continues to decrease throughout the rest of training. However, for our performance guarantee,

it does not ma�er exactly when this transition from increasing to decreasing actually occurs. �e

ηb/ηw = 1/k ratio ensures that |b|/|w ·w?| never exceeds Θ(1/k) while b > 0, which means

that b = O(1/k) throughout its positive phase.

Provable e�ciency. We argue that if Pr(X,y)∼D[sign(fT (X)) 6= y] ≥ 0.01, then we must have

|w·w?| = O(1). �is, along with the rest of the argument, is made fully rigorous in Appendix B.1.

We sum up the total number of iterations as follows. First, there are O((ηw log4 k)−1) iterations

before b begins to decrease. �en, because |w · w?| = O(1), ∇bE[`(ft(X), y)] = Ω(1), and

the classi�cation accuracy is controlled by the ratio |b|/|w · w?|, we conclude that there are

poly(k) iterations before |b| becomes large enough to yield Pr(X,y)∼D[sign(fT (X)) 6= y] ≤ 0.01.

�us, T = poly(k), and with poly(k) samples per mini-batch, we have total sample complexity

poly(k).

Illustration of training dynamics with synthetic data. Figure 3.3 illustrates these training

dynamics on synthetic data (with k = 1000, d = 10, σ = 1, ηw = 0.1, ηb = 0.1/1000). As can

be seen in the �gure, as training progresses, w ·w? increases and b decreases (i.e., b < 0, with

increasing magnitude). Furthermore, as the ratio |b|/|w ·w?| grows (and thus more and more

noise is “thresholded out”), the test accuracy increases as well, tightly aligning with the theory.
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3.5 Kernel Results

In this section, we compare the function learned by our simple convolution neural network to

its corresponding �nite-width CNTK (Allen-Zhu et al., 2019a). We de�ne the �nite-width CNTK

as:

kw(X) =
∑
i∈[k]

∑
j∈[m]

〈wj, Xi〉1|〈w(0)
j ,Xi〉|+bj≥0

,

which is a linear function over the gradient of fw,b(X) at initialization. We show that this

NTK is unable to classify the target function correctly, unless the total number of channels m is

large. For simplicity we consider the case when d = 1
σ2 .

Theorem 3.2: Kernel lower bound

As long as m = O(1), w.p. at least 0.999 over the random initialization {w(0)
j }j∈[m] where

each w
(0)
j i.i.d. ∼ N (0, σ2

0I), we have that for every set of weights w and for every set of

biases {bj}j∈[m],

Pr
X,y∼D

[sign(kw(X)) 6= y] ≥ 0.1.

Compared to our convolutional neural network, which only requiresm = 1 neurons and can

learn the target function correctly, the corresponding �nite-width CNTK needs ω(1) neurons

in order to even represent the target function. �is is due to the fact that the features w
(0)
j are

prescribed at random initialization, instead of trained. �us, even with arbitrary tuned bias bj ,
the neural tangent kernel still fails to adapt to the local signal and perform denoising.

3.6 Experiments

We now provide concrete empirical evidence that the LSA phenomenon does explain the per-

formance gap between CNNs and kernels in real-world datasets. To gain more insight, we

construct several CIFAR-10 (Krizhevsky, 2009b) variants with various forms of structured noise.

�ese datasets capture a key property of real-world image classi�cation tasks, that the signal

is localized to patch amidst a large amount of background noise. Although real-world images

also exhibit this property (as in Figure 3.1), we wanted the ability to easily vary the intensity

of the background noise, while leaving the signal intact. On each dataset, we compare the

performance of a 10-layer WideResNet (with widening factor of 10) to that of its �nite-width

NTK (Zagoruyko and Komodakis, 2016). We vary the intensity of the noise and observe the

resulting degradation in WideResNet (WRN) and NTK performance. Details of the architectures

and training procedures are given in Appendix B.3.

Each dataset is constructed by scaling a CIFAR image to 16x16 pixels and placing it onto a

32x32 noise background. In some instances described below, we used ImageNet backgrounds

(Deng et al., 2009). Experiments on larger-sized images and di�erent image placements are

described in Appendix B.4. Here we highlight experiments on four such datasets:
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Figure 3.4: Each plot shows how the WRN and its corresponding NTK

respond to increasing the intensity of the background noise, in vari-

ous image se�ings: (top le�) CIFAR-10, ImageNet noise, (top right)

CIFAR-Vehicles, (bo�om le�) CIFAR-2, ImageNet noise, (bo�om right)

CIFAR-2, Gaussian noise, with more details in Section 3.6. �e x-axis

is the scale of the background noise or the standard deviation of the

background noise, and the y-axis is the test accuracy. �e WRN (blue)

retains most of its performance as the noise intensity increases, whereas

the corresponding NTK (orange) has degraded performance.

Figure 3.5: Examples from

CIFAR-Vehicles (top) and

CIFAR-10 with ImageNet

noise (bo�om), both for back-

ground noise pixel intensity

scaled to 0.75.

• CIFAR-10, ImageNet noise. CIFAR-10 images are placed at a random location onto

random background image chosen from the ImageNet Plants synset. �e Plants synset

was chosen for its visual similarity to backgrounds in real images. In our experiments, we

scale the background pixel intensity in a range between zero (black background) and one

(original ImageNet background). An example is shown in Figure 3.5 (bo�om).

• CIFAR-2, ImageNet noise. Same as above, except the CIFAR-10 classes are grouped

into animals and vehicles and the classi�cation task is now binary. In contrast to CIFAR-10,

on CIFAR-2 the NTK performs nearly as well as the CNN in the zero-noise se�ing.

• CIFAR-2, Gaussian noise. Also using the CIFAR-2 task, but with standard Gaussian

noise in the background, for a range of standard deviations σ.

• CIFAR-Vehicles. �e task is to classify between the four vehicle classes from CIFAR-

10. �e vehicle appears in a random corner of the image, and the other three corners are

�lled with random images from the four CIFAR-10 animal classes. See Figure 3.5 (top).

Unlike the relatively uniform ImageNet plants backgrounds, this dataset is designed to

capture a common type of background noise which consists of “distractor” signals which

are not predictive of the true image class. For example, irrelevant people, bicycles, and

birds could all occur in the background of a real-world vehicle-classi�cation task.
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Observations. As seen in Figure 3.4, as the scale of the noise increases, NTK performance

decreases signi�cantly while WRN performance is relatively una�ected. Table 3.1 gives the

percent of test accuracy retained by each model as noise intensity increases from 0 to 1 (or from

σ = 0 to σ = 2 in the Gaussian-noise case); that is, the percentage 100 · test acc. at max noise level

test acc. at zero noise
.

�e WRN always retains over 96% of its zero-noise performance, while the NTK in one case

degrades below 70%.

While these datasets capture key a�ributes of real images, their synthetic construction does

limit how realistic the images can be. We constructed the dataset in this way in order to allow

tunable noise levels, thus providing the x-axis of the plots in Figure 3.4. In fact, the scaling of the

noise by pixel intensity is another somewhat-unrealistic aspect, since in real images we might

expect the background and signal to have similar intensities. One could imagine alternative

ways of creating tunable noise levels, such as increasing the size of the background or diversity

of distractor images; these are all viable avenues for future experimentation.

Table 3.1: �e percentage of the zero-noise test accuracy still retained at the maximum noise level,

for each of the image types described in Section 3.6. Speci�cally, each number in this table is 100 ·
test acc. at max noise level

test acc. at zero noise
. Overall, the WRN always retains over 96% of its zero-noise performance, while the

NTK in one case degrades below 70%.

CIFAR-10, ImNet noise CIFAR-Vehicles CIFAR-2, ImNet noise CIFAR-2, Gauss. noise

WRN 98.97 97.25 99.79 96.83

NTK 69.75 76.37 92.81 85.54

3.7 Conclusion

We have considered a simple, noisy data distribution that captures some of the key structure

seen in natural images. We have (1) provably shown that a particular two-layer CNN trained

via SGD can e�ciently (in time and sample complexity) achieve high accuracy and (2) that its

corresponding linear model (the �nite-width NTK) requires a much larger network size (i.e.,

more features). Overall, our results shed light on a new mechanism through which neural

networks are provably be�er than their corresponding kernels: in particular, when there is a

signal hidden within background noise, a neural network is able to simultaneously adapt to

the local signal and perform “denoising”. We provide empirical justi�cation showing that our

theoretical framework does coincide with the superior power of neural networks over linear

learners in practice.

One avenue for future work involves extending the noise distribution: increasing σ beyond

log k/
√
k, which can provide an even stronger separation with linear learners, and extending

to other noise models beyond Gaussian. Another possible extension is to drop the restriction

that the same �lter is used in both parts of the activation function and study whether this

so�-thresholding behavior is recovered automatically upon training the �nal-layer weights. We

could also consider more general models in which the signal “patch” and the CNN �lter are not

perfectly aligned. Another possibility is to develop a limitation result for all kernel methods

instead of the CNTK corresponding to our CNN; however, as discussed in Section 3.2, this would
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likely be a regression result instead of a classi�cation result, which is weaker in other ways.

Finally, it would be interesting to extend this theoretical analysis to deeper networks and thus

more practical CNNs (perhaps “hierarchical denoising”).
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Chapter 4
Transformer �eory

�is chapter is based on Karp et al., 2023:

Stefani Karp, Pranjal Awasthi, and Satyen Kale. Provable Gradient-Descent-Based Learning of

Decision Lists by Transformers. In DeepMath, 2023.

4.1 Introduction

Despite the incredible success of Transformers (Vaswani et al., 2017), there is much that remains

to be understood about the a�ention mechanism and its learning via gradient-based algorithms.

�e theoretical studies of gradient-based optimization in Transformers are rather limited and

paint a far-from-complete picture.

One key line of understanding-focused work studies in-context learning, the Transformer’s

impressive ability to learn from examples of a task provided in its prompt (Brown et al., 2020).

Elhage et al., 2021 and Olsson et al., 2022 introduce and formalize induction heads and present

them as a possible candidate for the main mechanism underlying in-context learning. Other

works a�empting to understand in-context learning include Garg et al., 2022; Oswald et al., 2023;

Ahn et al., 2023; Fu et al., 2024. On the theoretical side, most rigorous proofs here are limited to

linear a�ention in order to make the analysis more tractable.

A more general line of work, beyond in-context learning, seeks to provide a mechanistic

understanding of how gradient descent works in simple Transformer models (Jelassi et al.,

2022; Bie�i et al., 2023; Tian et al., 2023; Li et al., 2023b). �ese works have made valuable

progress in understanding some of the core mechanisms underlying gradient-based learning

in Transformer models. However, most of these works do not provide full gradient descent

convergence guarantees under so�max-based a�ention starting from uniform a�ention.

Another challenge these analyses face is how to design signi�cant but theoretically-tractable

sequence distributions. What types of distributions capture meaningful characteristics of the

sequence-to-sequence tasks solved by self-a�ention?

In this chapter, we present some of the �rst convergence proofs for gradient descent on

the parameters of a one-layer Transformer with so�max-based a�ention, on a simple data
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distribution where the Transformer’s a�ention plays a key role in solving the task. Speci�cally,

we introduce and formalize a simple decision-list-like data distribution and a slight generalization

thereof, serving as a theoretically simple, near-minimal example of a data distribution for which

learning the a�ention head is crucial in solving the task. We study our simple Transformer’s

ability to learn this data distribution, and we prove e�cient gradient-descent-based learning

under the population loss.

We �rst focus on just training the parameters of the Transformer inside the so�max-based-

a�ention and prove that gradient descent on the population loss can e�ciently learn these

parameters. We then present a generalization of our data distribution and prove a corresponding

local convergence result, in which the Transformer’s value matrix is trained too, beginning from

a “good enough” initialization.

4.2 Setup

4.2.1 Simpli�ed Transformer model

Let L denote the vocabulary size, n denote the sequence length, and d denote the embedding

dimension. For a sequence of tokens of length n, let X ∈ Rd×n
be the matrix formed by

concatenating the embeddings of the n tokens. A Transformer model is composed of a�ention

layers which have d× d parameter matrices WQ, WK , and WV and computes new embeddings

for the sequence via the function:

X 7→ σ((WVX)σ((WKX)>(WQX))),

where for any matrix M , σ(M) is the so�max function applied to the columns of M .

In the following, we consider a simpli�ed Transformer model where the product W>
KWQ

is replaced by a single d× d parameter matrix W , and for simplicity we use V to denote the

matrix WV :

fW,V (X) := σ(V Xσ(X>WX)), (4.1)

Further, we assume that the embedding dimension d equals the vocabulary size L, and the input

embeddings are simple one-hot embeddings, i.e. token i is embedded as the standard basis vector

ei, which is 0 in all coordinates except i, where it is 1. �us, a sequence (i1, i2, . . . , in) ∈ [L]n is

represented by X = [ei1 | ei2 | . . . |ein ].

We assume also that the output vocabulary size is L. For a given input sequence represented

by X , let Y = (y1, y2, . . . , yn) ∈ [L]n be the label sequence. �e loss of the transformer model

fW,V is given by the loss on a single sequence (X, Y ) is now de�ned as

L((W,V ); (X, Y )) =
1

n

n∑
j=1

− log(fW,V (X)yj ,j). (4.2)

We analyze the dynamics of gradient �ow on the above loss function on the sequence-to-sequence

mapping described in the next section.
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4.2.2 Sequence-to-sequence mapping

We consider an arbitrary permutation function π : [L] → [L], and we let P denote the L × L
permutation matrix associated with the permutation function π. �e sequence-to-sequence

mapping of interest is computed as follows. LetM denote a positive integer assumed to be much

less than L. For every token a ∈ [L], we associate a list of tokens La = (a1, a2, . . . , am) of length

m ≤M , such that am = a. Given a sequence s ∈ [L]n, the output label y for any token a ∈ s is

equal to π(aj), where j is the smallest index such that aj ∈ s. We call aj the label-determining
token for a in s, since it determines the label: π(aj). Note that since am = a ∈ s, j always

exists. We call this a decision-list-like data distribution because this mapping can be realized by

a decision list associated with each token a.

4.2.3 Data distribution

We make several key assumptions on the data distribution.

Assumption 4.1 (No duplicate tokens). Each token in the vocabulary appears at most once per
input sequence.

We also make the following assumption about the relationship between the input data

distribution (over length-n sequences) D and the parameters at any time step:

Assumption 4.2 (Minimum misclassi�cation event probability). Suppose some token a is mis-
classi�ed in at least one sequence. Let k? denote the �rst label-determining token (according to the
ordering in La) for which there is such a misclassi�cation event. Let S denote the set of sequences s
in which the following all occur: a is in s, a is misclassi�ed in s, and k? is a’s label-determining
token in s. For any such set S for which Prs∼D[s ∈ S] > 0, we assume that Prs∼D[s ∈ S] ≥ δ.

We will consider two se�ings. In one se�ing, the matrix V is �xed at cP . In this se�ing,

we can achieve Assumption 4.2 through the following parameter-independent assumption (i.e.,

only an assumption on the data distribution).

Assumption 4.3 (Minimum probability per sequence-dependent triple). For any token triple
(a, b, c) such that b ∈ La and c either appears a�er b in La or is not in La, if Prs∼D[a, b, c ∈
s and b is a’s label-determining token in s] > 0, then

Pr
s∼D

[a, b, c ∈ s and b is a’s label-determining token in s] ≥ δ.

�is assumption is su�cient to imply Assumption 4.2 because, in order for a to be misclassi-

�ed when b is its label-determining token, there must be some other token c whose weight in

a’s column of W is higher than b’s weight in this column. As long as c appears in the sequence

when b is a’s label-determining token, then a will be misclassi�ed.

In the second se�ing, however, when V is not �xed at cP , it is no longer guaranteed that a

misordering of weights in W will lead to misclassi�cation, since the application of matrix V can

subtly a�ect the �nal order of the logits. �erefore, in this se�ing, for a given V , whether or

not a particular misordered pair of weights in W actually leads to a misclassi�cation depends

on the exact post-so�max-a�ention values, which are a�ected by exactly which other tokens
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appear simultaneously in the sequence. As a result, in this se�ing, it is more di�cult to achieve

Assumption 4.2 through a parameter-independent assumption. One simple way is to ensure that

every set of tokens appears with a minimum probability.

Assumption 4.4 (Minimum probability per token set). For any size-n set of tokensS ∈ {1, . . . , L}n,
if Prs∼D[i ∈ s ∀s ∈ S] > 0, then

Pr
s∼D

[i ∈ s ∀s ∈ S] ≥ δ.

However, this assumption is stronger, and it can lead to a much smaller value of δ.

For generality, we will work with Assumption 4.2 throughout the rest of this chapter and

merely present Assumption 4.3 and Assumption 4.4 as more interpretable, parameter-free

alternatives at the cost of a possibly smaller value of δ.

4.3 Main Results

In this section, we present our two main results. In the �rst, the matrix V is �xed at cP for

su�ciently large c. In the second, the matrix V is initialized near cP for su�ciently large c and

is trained alongside W .

We assume that the data are generated according to the distributional assumptions and

the sequence-to-sequence mapping given in the previous sections. We provide a convergence

analysis for gradient descent on the population loss. �e population loss is de�ned as

L(W,V ) = E(X,Y )[L((W,V ); (X, Y )).

For simplicity, we will sometimes drop the parameters in L(W,V ) and just write L when

our algebra does not depend on the particular parameters.

Gradient descent on the population loss is de�ned by the following update equations:

Wt+1 = Wt − η∇WL(Wt, Vt)

Vt+1 = Vt − η∇VL(Wt, Vt)

with some given initialization W0, V0.

We let Lt denote the loss at time t, i.e., Lt := L(Wt, Vt).

�roughout, we will consider two versions: one where we train W only and one where we

train both W and V . In the former, we will o�en drop the V , as in L(W ) vs. L(W,V ).

We will use ∇L to denote ∇WL when training just W and ∇L to denote ∇W,VL when

training both W and V .

We will use L(W,V ; s) and related variations to denote the loss on a particular sequence s.

4.3.1 Informal theorem statements
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Theorem 4.1: Training onlyW (Informal)

Fix V = cP for su�ciently large c, and initialize W0 = 0. Run gradient descent on the

population loss with su�ciently small learning rate η. Gradient descent will �nd a Wt that

achieves perfect classi�cation on all sequences within a small number of steps.

Theorem 4.2: TrainingW and V (Informal)

Initialize W0 = 0 and V0 close to cP , for su�ciently large c. Run gradient descent on the

population loss with su�ciently small learning rate η. Gradient descent will �nd a Wt, Vt
that achieve perfect classi�cation on all sequences within a small number of steps.

4.3.2 Proof sketch

�e rough idea of the proof is that misclassi�cation implies a large gradient. �erefore, as

long as gradient descent is run long enough, the gradient will become small enough to rule

out misclassi�cation. Here, we illustrate this in the simpli�ed se�ing where π is the identity

mapping and the matrix V is �xed to cI for some su�ciently large c.

Due to the 1-hot encodings, we can reason about each column of W (each token in the

vocabulary) separately, so let us consider an arbitrary token a. For simplicity, let w denote

token a’s column in W . We have La = (a1, . . . , am), where am = a. As long as the order of the

weights in w matches the order in La, i.e., wa1 > · · · > wam > wb for all b /∈ La, then token a
will be classi�ed perfectly in all sequences.

Consider an arbitrary sequence s. If k is a’s true label in sequence s, thenwe can show that

∂L(W ; s)

∂wk
≤ 0,

i.e., the gradient with respect to a’s true label in w is negative (or 0). We can further show that

if a is not correctly classi�ed as k, then this gradient is also large in magnitude.

Unfortunately, though, this is not enough. When k appears in sequences s where a’s true

label is not k, then
∂L(W ;s)
∂wk

can instead be positive. �is makes it hard to argue about the

population loss over all sequences
∂L(W )
∂wk

. Is there enough structure to argue about how things

balance out?

It turns out that we can instead argue about a certain directional derivative (de�ned in the

following subsections) that reduces to
∂L(W ;s)
∂wk

whenever k is the true label and is always ≤ 0

otherwise. �is circumvents the issue with
∂L(W ;s)
∂wk

sometimes being positive.

Using this directional derivative, we can then show that misclassi�cation implies a large

gradient. �erefore, with su�ciently many steps of gradient descent, we can ensure perfect

classi�cation.
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4.3.3 Formal theorem statements and proofs

Theorem 4.3: Training onlyW (Formal version of �eorem 4.1)

Fix V = cP , for c = 4n2 logL
δ

. Starting fromW0 = 0, run gradient descent on the population

loss with learning rate η = 1
λmax

, where λmax is the maximum eigenvalue of the Hessian of

L(W ). �en, there exists a t ≤ 32Mλmax

logL
such that Wt, V achieve perfect classi�cation on all

sequences.

Proof. By contradiction.

Without loss of generality, suppose some token a is misclassi�ed. Among all sequences in

which a is misclassi�ed, let k? denote the label-determining token that appears earliest in La.
Let S denote the set of sequences where this misclassi�cation pa�ern occurs - speci�cally, a is

misclassi�ed and k? is its label-determining token.

Let p denote the column of Xσ(X>WX) corresponding to a, let w denote the column of

matrix W updated due to a, let y denote a’s true label, and let ŷ denote a’s predicted label.

�en, for any i ∈ s:

∂

∂wk
pi =


pi(1− pi) = −pipk + pk k = i

−pipk k ∈ s, k 6= i

0 k ∈ [L] \ s.

Via the chain rule, we obtain:

∂L
∂wk

= pk

∑
i∈s

Vy,ipi − Vy,k +
∑
l∈[L]

σl

(
Vl,k −

∑
i∈s

Vl,ipi

) .

We will now examine the directional derivative 〈∇wL(W ; s), v〉, where∇wL(W ; s) denotes

the gradient of the loss on sequence s with respect to column w and we de�ne v as the length-L
vector of all 0s other than 1s for the tokens that precede k? in La (as well as k? itself).

For any s ∈ S, we have: 〈∇wL(W ; s), v〉 ≤ − c
2
pk?(1− pk?). �is comes from σy ≤ 1/2 and
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the following calculation:

〈∇wL(W ; s), v〉 =
1

n
pk?

∑
i∈s

Vy,ipi − Vy,k? +
∑
l∈[L]

σl

(
Vl,k? −

∑
i∈s

Vl,ipi

)
=

1

n
pk?

∑
l∈[L]

σl [(zy − zl)− (Vy,k? − Vl,k?)]


=

1

n
pk?

 ∑
l∈[L]\{y}

σl
∑

i∈s\{k?}

pi[(Vy,i − Vl,i︸ ︷︷ ︸
∆l,i

)− (Vy,k? − Vl,k?︸ ︷︷ ︸
∆l,k?

)]


≤ 1

n
pk?

 ∑
l∈[L]\{y}

σl
∑

i∈s\{k?}

pi(−c)


≤ − c

n
pk?(1− σy)(1− pk?)

≤ − c

2n
pk?(1− pk?).

For any s /∈ S, we have: 〈∇wL(W ; s), v〉 ≤ 0. �is comes from the following calculation,

where we let s′ denote the tokens in s which have 1s in v:

〈∇wL(W ; s), v〉 =
1

n
cpπ−1(y)

(∑
k∈s′

pk − 1

)
+
∑
k∈s′

pkσπ(k)c−
∑
k∈s′

pk
∑
t∈s

σπ(t)cpt

=
1

n
cpπ−1(y)

(∑
k∈s′

pk − 1

)
+
∑
k∈s′

∑
t∈s\s′

cpkpt
(
σπ(k) − σπ(t)

)
≤ 1

n
cpπ−1(y)

(∑
k∈s′

pk − 1

)
+
∑
k∈s′

∑
t∈s\s′

cpkptσπ(k)

= − 1

n
cpπ−1(y)

∑
t∈s\s′

pt + c
∑
k∈s′

pkσπ(k)

∑
t∈s\s′

pt

≤ − 1

n
cpπ−1(y)

∑
t∈s\s′

pt + cpπ−1(y)

(∑
k∈s′

σπ(k)

) ∑
t∈s\s′

pt

≤ 0.

We will put these parts together to upper bound 〈∇wL(W ), v〉, the directional derivative

of the population loss. However, we �rst need a lower bound on pk?(1− pk?). We know that

pk? ≤ 1
2
; otherwise, token a would have been correctly classi�ed. �erefore, we do not have to

consider pk? being close to 1; we only have to consider pk? being close to 0 (i.e., we only have to

worry about lower bounding pk?). Rather than a lower bound that holds for all sequences, we

upper bound the total mass where pk? can be very small, as follows.
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For every s ∈ S such that pk? ≤ 1
2n

, there must exist some l ∈ s such that pl ≥ 1/n. �is

means that, in such cases, the loss on token a is lower bounded:

− log σy = − log
ezy∑
t∈[L] e

zt

≥ − log
ezy

ezπ(l)

= zπ(l) − zy
= cpl − cpk∗

≥ c

n
− c

2n

=
c

2n
.

However, since we are running gradient descent with su�cient small learning rate, the

population loss cannot increase – it is upper bounded by the loss at time t = 0. �is allows us

to upper bound δ′ := Pr[s ∈ S, pk? ≤ 1
2n

] as follows:

1

n
· c

2n
· δ′ ≤ L0

δ′ ≤ 2n2 log(L)

c

δ′ ≤ 2n2 log(L)
4n2 log(L)

δ

δ′ ≤ δ/2.

We now analyze the directional derivative of the population loss as follows:

〈∇wL(W ), v〉 = (1) + (2) + (3),

where

(1) = E
[
〈∇wL(W ; s), v〉|s ∈ S, pk? >

1

2n

]
Pr

[
s ∈ S, pk? >

1

2n

]
(2) = E

[
〈∇wL(W ; s), v〉|s ∈ S, pk? ≤

1

2n

]
Pr

[
s ∈ S, pk? ≤

1

2n

]
(3) = E [〈∇wL(W ; s), v〉|s /∈ S] Pr[s /∈ S].

We have already established that (1), (2) and (3) are all ≤ 0, so we can upper bound

〈∇wL(W ), v〉 by dropping (2) and (3).
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We obtain

〈∇wL(W ), v〉 ≤ E
[
〈∇wL(W ; s), v〉|s ∈ S, pk? >

1

2n

]
Pr

[
s ∈ S, pk? >

1

2n

]
< −δ

2
· c

2n
· 1

2n

(
1− 1

2n

)
= −δ

2
·

4n2 log(L)
δ

2n
· 1

2n

(
1− 1

2n

)
≤ − logL

4
.

We therefore have

logL

4
< |〈∇wL(W ), v〉| ≤ ‖〈∇wL(W )〉‖‖v‖ ≤ ‖〈∇WL(W )〉‖‖v‖ ≤

√
M‖〈∇WL(W )〉‖.

By a standard gradient descent analysis, running for T iterations with η = 1
λmax

implies that

there exists a t ∈ [T ] such that

‖∇Lt‖2
2 ≤

2λmaxL0

T
.

When T = 32Mλmax

logL
, this means that there exists a t ∈ [T ] such that

‖∇Lt‖2
2 ≤

log2 L

16M
.

However, misclassi�cation implies that

‖∇Lt‖2
2 >

log2 L

16M
,

which is a contradiction.

�erefore, a�er T = 32Mλmax

logL
iterations, there must exist a t ∈ [T ] with perfect classi�cation.

Theorem 4.4: TrainingW and V (Formal version of �eorem 4.2)

Initialize W0 = 0 and V0 such that ‖V0 − cP‖∞ ≤ ε
2

for some ε > 0, where c >(
4L̄
√

M
ε

+ 6ε
n

)
10n2

δ
+ 4ε, ε ≤ 16M , and L̄ := max{1,L0}. Run gradient descent on

the population loss with learning rate η = 1
λmax

, where λmax is the maximum eigenvalue

of the Hessian of L(W,V ). �en, there exists a t ≤ λmaxε
2L̄ such that Wt, Vt achieve perfect

classi�cation on all sequences.

39



Proof. By contradiction.

Without loss of generality, suppose some token a is misclassi�ed. Among all sequences in

which a is misclassi�ed, let k? denote the label-determining token that appears earliest in La.
Let S denote the set of sequences where this misclassi�cation pa�ern occurs - speci�cally, a is

misclassi�ed and k? is its label-determining token.

Let p denote the column of Xσ(X>WX) corresponding to a, let w denote the column of

matrix W updated due to a, let y denote a’s true label, and let ŷ denote a’s predicted label.

�en, for any i ∈ s:

∂

∂wk
pi =


pi(1− pi) = −pipk + pk k = i

−pipk k ∈ s, k 6= i

0 k ∈ [L] \ s.

Via the chain rule, we obtain:

∂L
∂wk

= pk

∑
i∈s

Vy,ipi − Vy,k +
∑
l∈[L]

σl

(
Vl,k −

∑
i∈s

Vl,ipi

) .

Let vj denote row j of V . �en

∇vyL = −p+ σyp = (σy − 1)p

(l 6= y) ∇vlL = σlp.

We will now examine the directional derivative 〈∇wL(W,V ; s), v〉, where ∇wL(W,V ; s)
denotes the gradient of the loss on sequence s with respect to column w and we de�ne v as the

length-L vector of all 0s other than 1s for the tokens that precede k? in La (as well as k? itself).

For any s ∈ S, we have: 〈∇wL(W,V ; s), v〉 ≤ − 1
2n
pk?(1 − pk?)(c − 4ε). �is comes from

Lemma 4.1, σy ≤ 1/2, and the following calculation:
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〈∇wL(W,V ; s), v〉 =
1

n
pk?

∑
i∈s

Vy,ipi − Vy,k? +
∑
l∈[L]

σl

(
Vl,k? −

∑
i∈s

Vl,ipi

)
=

1

n
pk?

∑
l∈[L]

σl [(zy − zl)− (Vy,k? − Vl,k?)]


=

1

n
pk?

 ∑
l∈[L]\{y}

σl
∑

i∈s\{k?}

pi[(Vy,i − Vl,i︸ ︷︷ ︸
∆l,i

)− (Vy,k? − Vl,k?︸ ︷︷ ︸
∆l,k?

)]


≤ 1

n
pk?

 ∑
l∈[L]\{y}

σl
∑

i∈s\{k?}

pi(−c+ 4ε)


≤ 1

n
pk?(1− σy)(1− pk?)(−c+ 4ε)

≤ − 1

2n
pk?(1− pk?)(c− 4ε).

For any s /∈ S, we have: 〈∇wL(W,V ; s), v〉 ≤ 6ε. �is comes from the following calculation,
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where we let s′ denote the tokens in s which have 1s in v:

〈∇wL(W,V ; s), v〉 =
1

n

[
cpπ−1(y)

(∑
k∈s′

pk − 1

)
+
∑
k∈s′

pkσπ(k)c−
∑
k∈s′

pk
∑
t∈s

σπ(t)cpt

+
∑
k∈s′

pk〈εy,:, p〉 −
∑
k∈s′

pkεy,k +
∑
k∈s′

pk
∑
t∈[L]

σtεt,k −
∑
k∈s′

pk
∑
t∈[L]

σt〈εt,:, p〉

]

=
1

n

[
cpπ−1(y)

(∑
k∈s′

pk − 1

)
+
∑
k∈s′

∑
t∈s\s′

cpkpt
(
σπ(k) − σπ(t)

)
+
∑
k∈s′

pk〈εy,:, p〉 −
∑
k∈s′

pkεy,k +
∑
k∈s′

pk
∑
t∈[L]

σtεt,k −
∑
k∈s′

pk
∑
t∈[L]

σt〈εt,:, p〉

]

≤ 1

n

[
cpπ−1(y)

(∑
k∈s′

pk − 1

)
+
∑
k∈s′

∑
t∈s\s′

cpkptσπ(k)

+
∑
k∈s′

pk〈εy,:, p〉 −
∑
k∈s′

pkεy,k +
∑
k∈s′

pk
∑
t∈[L]

σtεt,k −
∑
k∈s′

pk
∑
t∈[L]

σt〈εt,:, p〉

]

= − 1

n

[
cpπ−1(y)

∑
t∈s\s′

pt + c
∑
k∈s′

pkσπ(k)

∑
t∈s\s′

pt

+
∑
k∈s′

pk〈εy,:, p〉 −
∑
k∈s′

pkεy,k +
∑
k∈s′

pk
∑
t∈[L]

σtεt,k −
∑
k∈s′

pk
∑
t∈[L]

σt〈εt,:, p〉

]

≤ − 1

n

[
cpπ−1(y)

∑
t∈s\s′

pt + (cpπ−1(y) + 2ε)

(∑
k∈s′

σπ(k)

) ∑
t∈s\s′

pt

+
∑
k∈s′

pk〈εy,:, p〉 −
∑
k∈s′

pkεy,k +
∑
k∈s′

pk
∑
t∈[L]

σtεt,k −
∑
k∈s′

pk
∑
t∈[L]

σt〈εt,:, p〉

]

≤ 6ε/n.

We will put these parts together to upper bound 〈∇wL(W,V ), v〉, the directional derivative

of the population loss. However, we �rst need a lower bound on pk?(1− pk?) (which requires

upper and lower bounding pk?).

We know that pk? ≤ 1
2

+ ε
c
; otherwise, token a would have been correctly classi�ed.
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To lower bound pk? , we further divide S into two subsets: a set where pk? ≤ 1/(2n), and

a set where pk? > 1/(2n). We will ultimately ignore the set where pk? ≤ 1/(2n) (i.e., drop it

when upper bounding). �erefore, we focus on lower bounding Prs∼D[s ∈ S, pk? > 1/(2n)].
We can see this as follows:

For every s ∈ S such that pk? ≤ 1
2n

, there must exist some l ∈ s such that pl ≥ 1/n. We

then have:

− log σy = − log
ezy∑
t∈[L] e

zt

≥ − log
ezy

ezπ(l)

= zπ(l) − zy
= cpl + 〈επ(l),:, p〉 − cpk∗ − 〈εy,:, p〉

≥ c

n
− ε− c

2n
− ε

=
c

2n
− 2ε.

Since we are running gradient descent with a small enough learning rate, the loss is decreasing

at every time step. �erefore, Lt ≤ L0, so at every time step t, we have

1

n

( c

2n
− 2ε

)
Pr

[
s ∈ S, pk? ≤

1

2n

]
≤ L0

Pr

[
s ∈ S, pk? ≤

1

2n

]
≤ nL0

c
2n
− 2ε

Plugging in c =
(

4L̄
√

M
ε

+ 6ε
n

)
10n2

δ
+ 4ε from the theorem statement, we obtain:

Pr

[
s ∈ S, pk? ≤

1

2n

]
≤ nL0

c
2n
− 2ε

<
nL0(

4L̄
√

M
ε

+ 6ε
n

)
10n2

δ
+4ε

2n
− 2ε

(plugging in c)

=
nL0

20L̄n
δ

√
M
ε

+ 30ε
δ

+ 2ε
n
− 2ε

(simplifying)

≤ nL0

20L̄n
δ

√
M
ε

(δ ≤ 1)

=
δ

20
· L0

L̄
·
√

ε

M
(simplifying)

≤ δ

5
(ε ≤ 16M ).
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We thus conclude that Pr
[
s ∈ S, pk? > 1

2n

]
≥ 4δ

5
.

We now analyze the directional derivative of the population loss as follows:

〈∇wL(W,V ), v〉 = (1) + (2) + (3),

where

(1) = E
[
〈∇wL(W,V ; s), v〉|s ∈ S, pk? >

1

2n

]
Pr

[
s ∈ S, pk? >

1

2n

]
(2) = E

[
〈∇wL(W,V ; s), v〉|s ∈ S, pk? ≤

1

2n

]
Pr

[
s ∈ S, pk? ≤

1

2n

]
(3) = E [〈∇wL(W,V ; s), v〉|s /∈ S] Pr[s /∈ S].

We note that, in (1), we have

pk∗(1− pk∗) > min

{
1

2n

(
1− 1

2n

)
,

(
1

2
+
ε

c

)(
1

2
− ε

c

)}
,

where the �rst part follows from the lower bound on pk? and the second part follows from the

fact that we must have pk? ≤ 1
2

+ ε
c
; otherwise, token a would have been correctly classi�ed.

Further, we have already established that (2) is≤ 0 and (3) is≤ 6ε/n, so we can upper bound

〈∇wL(W,V ), v〉 as follows:

〈∇wL(W,V ), v〉 ≤ E
[
〈∇wL(W,V ; s), v〉|s ∈ S, pk? >

1

2n

]
Pr

[
s ∈ S, pk? >

1

2n

]
+ 0 +

6ε

n

< − 1

2n
min

{
1

2n

(
1− 1

2n

)
,

(
1

2
+
ε

c

)(
1

2
− ε

c

)}
(c− 4ε)

4δ

5
+

6ε

n

< − 1

2n
· 1

4n
· (c− 4ε)

4δ

5
+

6ε

n

≤ − 1

2n
· 1

4n
·

((
4L̄
√
M

ε
+

6ε

n

)
10n2

δ
+ 4ε− 4ε

)
4δ

5
+

6ε

n

= −4L̄
√
M

ε
.

�is implies that

4L̄
√
M

ε
< |〈∇wL(W,V ), v〉| ≤ ‖∇wL(W,V )‖‖v‖ ≤ ‖∇wL(W,V )‖

√
M

and therefore

‖∇wL(W,V )‖2 >
16L̄2

ε
.
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By a standard gradient descent analysis, running for T iterations with η = 1
λmax

implies that

there exists a t ∈ [T ] such that

‖∇L(W,V )‖2 ≤ 2λmaxL0

T
.

�is means that, if we run for T = λmaxε
2L̄ iterations, we have

‖∇L(W,V )‖2 ≤ 4L0L̄
ε

.

However, misclassi�cation implies

16L̄2

ε
< ‖∇wL(W,V )‖2 ≤ ‖∇L(W,V )‖2 ≤ 4L0L̄

ε
,

which is a contradiction.

�erefore, a�er T = λmaxε
2L̄ iterations, we must have perfect classi�cation.

Lemma 4.1: Invariant on V

For all t ∈ [T ], we have ‖Vt − cP‖∞ ≤ ε.

Proof. By the gradient calculations, each gradient update can change each entry of V by at most

η. �us, over T time steps, each entry of V can change by at most

Tη =
λmaxε

2L̄
1

λmax

=
ε

2L̄
≤ ε

2
.

�us, for any t ∈ [T ], we have:

‖Vt − cP‖∞ ≤
ε

2
+
ε

2
= ε.

4.3.4 Experiments

Although our results for training W and V together are currently limited to a local convergence

result, where V begins near cP , we show here that the cP structure can - at least in some cases -

be picked up fairly easily empirically. Figure 4.1 shows a visualization of matrix V a�er just one

step of gradient descent (with a large learning rate), beginning from random initialization of V
(and zero initialization of W ). In this se�ing, we use L = 200 and n = 25. We use learning rate

η = L2
. We initialize V as follows: V0[i, j]

i.i.d.∼ N (0, 10−8), and we initialize W at 0: W0 = 0.

Our sequences are drawn at random as follows: sin ∼ U({n-permutations of [L]}).
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Figure 4.1: A visualization of matrix V a�er just one step of gradient descent (with a large learning rate),

using L = 200, n = 25, and learning rate η = L2
. V is initialized at random: V0[i, j]

i.i.d.∼ N (0, 10−8).
W is initialized at 0. �e input sequences are drawn at random: sin ∼ U({n-permutations of [L]}).
Using the notation f(i) := i mod (L + 1), the mapping π is f(i + 20), and each decision list is

Li = (f(i+10), f(i+20), f(i+30), i). �e visualization shows that, at least in some cases, the structure

we want in V can be picked up fairly easily empirically under uniform a�ention (i.e., W = 0).

�e ground-truth sequence-to-sequence mapping is designed as follows. Let f(i) := i
mod (L + 1) for notational convenience. �e mapping π is then chosen to be f(i + 20), and

each decision list is chosen to be Li = (f(i+ 10), f(i+ 20), f(i+ 30), i).

�e takeaway from Figure 4.1 is that the structure we want in V can be picked up under

uniform a�ention (i.e., W = 0). �is suggests that bridging the gap from a local convergence

result to a full convergence result might be tractable in future work.

4.4 Conclusion

In this chapter, we have presented convergence results for a one-layer Transformer on a simple

decision-list-inspired data distribution, which crucially requires the Transformer’s token-to-

token a�ention in order to solve the task. Although the local convergence result requires the

value matrix to be initialized within a “good enough” region in parameter space, empirical results

indicate that uniform a�ention (corresponding to W = 0) might be enough to already push V
in the direction of P . �erefore, with more work, it might be possible to widen the radius of the

local convergence result. Other possible extensions include more complicated data distributions,

and we are hopeful that some of the ideas in this document might prove useful in developing

such extensions.
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Chapter 5
Landscape-Aware Growing

�is chapter is based on Karp et al., 2024:

Stefani Karp*, Nikunj Saunshi*, Sobhan Miryoose�, Sashank J. Reddi, and Sanjiv Kumar. Landscape-

Aware Growing: �e Power of a Li�le LAG. arXiv preprint arXiv:2406.02469, 2024.

∗
denotes joint �rst authorship.

5.1 Introduction

Large language models with hundreds of billions of parameters have undoubtedly changed the

landscape of NLP and AI. However, training such large models is incredibly resource-intensive,

motivating the development of e�cient training paradigms. One standard way to save resources

is to design more e�cient architectures and optimization algorithms. Another approach recently

gaining popularity is knowledge transfer via the growing of models. Here, rather than training a

large model from scratch, the idea is to use a much smaller existing pretrained model to initialize

the parameters of the larger model (Chen et al., 2015; Wang et al., 2022). �is has been shown to

accelerate the training of large models compared to training from random initialization. Recently,

such ideas were used to train a 100B-parameter-scale model by growing from a 16B-parameter

model (Li et al., 2023a). A related approach is stagewise training, where the goal is to train

a target model by gradually growing its size. Methods like progressive and gradual stacking

(Gong et al., 2019; Reddi et al., 2023) have shown success in e�cient stagewise training of BERT

models by using layers from the previous stage to initialize the next stage.

�ese approaches for growing and stacking share a crucial design choice: the particular

growth operator used to initialize the larger model from the smaller model. In the context of

growing in depth, the fundamental design question becomes: how should we grow an L-layer
model into an (L+ k)-layer model for further training?

Numerous strategies have been proposed in prior work for growing in depth as well as

width (see Section 5.5 for a literature survey). �ese strategies are largely heuristic or based on

the principle of loss or function preservation – a growing strategy should ensure that the loss

value/functional behavior of the grown model is the same or very similar to that of the smaller
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model used to initialize it. At �rst sight, this seems like a desirable property, because we already

know that the small model is a decent pretrained model. �us, growth operators that maintain

the loss value or functional properties will guarantee a good initialization for the larger model,

which can be further improved upon by continued training. While this seems intuitive, to the

best of our knowledge there is no systematic study of the e�cacy of this approach. �us, we

study the following questions:

What are good guiding principles to select the best growing strategy?
Is loss/function preservation a good heuristic?

We explore the above questions in the context of growing in depth
1
. In particular, through

extensive empirical analysis, we argue that loss preservation is not necessarily a good strategy.

Instead we identify that the training dynamics and landscape properties a�orded by an initial-

ization play a much bigger role in the success of growing. In this context, we highlight the

following contributions:

• For a pool of depth-growing strategies inspired by prior work, we conduct an extensive

empirical analysis and �nd that the loss value at initialization does not correlate well

with the �nal performance of the model (i.e., Pearson correlation of -0.51 and Spearman

correlation of -0.42).

• Instead, we propose an alternative view based on the landscape induced by an initialization

through the following key observation: while initial loss can be misleading, the loss a�er

a relatively small number of steps (roughly 5000) correlates very strongly with the �nal

performance (i.e., Pearson correlation of 0.98 and Spearman correlation of 0.99).

• We take this a step further and �nd that good predictions for the best strategy can be

made even earlier, a�er a few hundred steps, and that this corresponds with a measurable

phase transition.

• Based on the above empirical observation, we propose a selection strategy called Landscape-

Aware Growing (LAG). We validate our hypothesis by testing LAG on 1-stage growing for

both BERT and UL2 pretraining. LAG is shown to recover a strategy that is very close to

the optimal strategy in hindsight and is also be�er than many previously considered static

strategies. Furthermore, we apply LAG to the se�ing of gradual stacking by applying LAG

to each stacking stage. �is improves BERT pretraining loss compared to vanilla gradual

stacking, thus further validating the e�cacy of LAG.

5.2 Problem Setup: Growing and Stacking

We describe the problem of growing in general and how it can be applied to stacking. �is

section also sets up the notation for the rest of the paper.
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Figure 5.1: Illustration of growing a network. Le�: Generic growth of k layers into 2k layers. Middle:

Example with L = 6, k = 3, i = 2, b = 1, parameter duplication (interleaving). Right: Example with

L = 6, k = 3, i = 2, b = 3, parameter duplication (single-block copying).

5.2.1 Growing

�e basic idea of growing is to use one pretrained model (typically a smaller one) to construct an

initialization for another model. �is growing step can be formalized as a growth operator that

maps parameters from a smaller architecture class F1 to a larger one F2. We let G : F1 → F2

denote the growth operator. Given a pretrained checkpoint for a smaller model M1, the grown

checkpoint M2 = G(M1) expresses every parameter in the new checkpoint as a function of

parameters of the old checkpoint. For Transformer-based architectures, the small and large

model classesF1 andF2 can potentially vary in either the depth dimension (number of layers) or

in width (model dimension, number of a�ention heads). In this work, for simplicity of analysis,

we focus on growing in the depth dimension, i.e., F1 and F2 only vary in the depth of the model.

However, we note that the ideas being discussed in the paper are general and also apply to other

growth dimensions.

We consider growing an L-layer network into an (L+ k)-layer network in the following

manner: choose one set of k consecutive layers and grow it into 2k consecutive layers (in various

ways). Motivated by prior work on depth growing (Gong et al., 2019; Reddi et al., 2023; Wang

et al., 2022), we consider the following design space, parameterized by index, block size, and

initialization scheme:

• Index (i): When choosing one set of k consecutive layers in the original L-layer network,

where should this set of k layers begin? �roughout, we will let i denote the start index for

this set of k layers (1-indexed), so that the feasible set of values for i is {1, 2, . . . , L−k+1}.
• Block size (b): How should we divide k into smaller blocks when growing? For simplicity,

we divide k into equal-sized blocks and consider all valid block sizes b such that k is

divisible by b. At one extreme, when b = 1, new and old layers are interleaved. At the

other extreme, when b = k, the k old layers end up consecutive and the k new layers end

up consecutive in the (L+ k)-layer network.

• Initialization scheme: How should the new layers be initialized? We consider both options

of random initialization and parameter duplication of the old layers.

To make this more concrete with an example, let us consider a 6-layer network that we wish

1
Note that one could also grow models in width, but here we restrict our a�ention to depth-wise growing.
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to grow to 9 layers. In this case, L = 6 and k = 3. �e feasible set of start indices is {1, 2, 3, 4},
and the feasible set of block sizes is {1, 3}. To help illustrate how the growth operators work,

some examples in the design space are as follows, with the new layers indicated in bold.

1. i = 2, b = 1, duplication: [1, 2, 3, 4, 5, 6]→ [1, 2, 2, 3, 3, 4, 4, 5, 6]

2. i = 2, b = 3, duplication: [1, 2, 3, 4, 5, 6]→ [1, 2, 3, 4, 2, 3, 4, 5, 6]

3. i = 2, b = 1, random: [1, 2, 3, 4, 5, 6]→ [1, 2, random, 3, random, 4, random, 5, 6]

4. i = 2, b = 3, random: [1, 2, 3, 4, 5, 6]→ [1, 2, 3, 4, random, random, random, 5, 6]

Figure 5.1 (middle, right) illustrates rows 1, 2 above. A�er the new layers are added, all L+ k
layers of the resulting model are jointly trained.

5.2.2 Stacking as iterated growing

Above, we discuss a single-step growing operation to transition from L to L+k layers. �rough-

out, as in Gong et al., 2019 and Reddi et al., 2023, we use “stacking” to refer to the iterated applica-

tion of this “grow, then train” strategy, where training starts with a shallow model, and at the end

of each stage the model depth is grown by a certain amount until the desired depth is achieved.

�us, any growth operator can be converted into a corresponding stage-wise pretraining ap-

proach. In this work, we consider the gradual post-stacking framework from Reddi et al., 2023,

corresponding to the repeated application of growing with start index L− b+ 1 and block size b.
We use this perspective to extend our growing results in Section 5.3 to stacking in Section 5.4.2.

5.3 Understanding Growing in Depth

5.3.1 Pitfalls of loss-preservation-based growing

As discussed in Section 5.1, a common idea for growing in prior work is based on loss or function

preservation as a guiding principle – a growth operator is constructed such that it maintains the

same loss value or functional behavior as the original smaller model. �e intuition is that this

can provide a good initialization for the model in terms of the loss, and that hopefully translates

to the �nal performance. Our work challenges the idea of loss preservation for growing in depth.

To put this to the test, we consider a list of depth-growing strategies inspired by prior work

(discussed in Section 5.2.1) and measure the correlation between the initial and �nal loss values

across these strategies.

Growing BERT. We begin by pretraining BERT-Base for 500,000 steps. See Appendix C.1

for training details. A�er 500,000 steps, we grow the model from 12 layers to 16 layers. We con-

sider the abstract design space formalized in Section 5.2.1, instantiated in this particular se�ing.

Speci�cally, we consider indices 0, 2, 4, 6, and 8 (skipping odd indices simply due to compute lim-

itations – odd indices are equally valid choices), block sizes 1, 2, and 4, and initialization schemes

random and parameter duplication. �is results in a search space of 30 di�erent growth operators.
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Correlation of initial loss with �nal loss. For each of the 30 growth operators G, we

apply G to the 12-layer model M1 to initialize a 16-layer model M2. We then continue training

M2 for 100,000 steps, ensuring that each 16-layer model sees data in the same order, to avoid

artifacts of data order as best as possible. We load the optimizer state from the previous stage and

maintain a constant learning rate of 0.0001. We measure the validation loss upon initialization

of M2 (i.e., at step 500,000), as well as a�er 100,000 steps of training M2 (i.e., at step 600,000).

In Figure 5.2 (le�), for each growth operator, we plot the validation loss at step 600,000 vs. the

validation loss at step 500,000. Visually, we can see that the loss immediately a�er applying

the growth operator is not well-correlated with the loss a�er continued training for 100,000

steps. Numerically, the Pearson correlation between the validation losses at step 600,000 and the

validation losses at step 500,000 is -0.515, and the corresponding Spearman correlation is -0.418.

At step 500,000, the 12-layer model has a validation loss of 1.823. �erefore, although

our search space does not include pure loss-preserving growth operators, some of the growth

operators do come quite close (e.g., loss approximately 1.825 vs. 1.823), and others only raise the

validation loss a bit in comparison with other growth operators in the search space. From this, we

can see that approximate loss preservation does not appear to correlate with �nal performance.

Implications. Given that loss preservation is not a good heuristic to predict the �nal model

performance, is there another approach that is more predictive? In this rest of the section, we

provide a series of empirical analyses suggesting that the early loss landscape can provide a

much stronger indicator of the �nal loss.

5.3.2 Strong correlation with �nal performance emerges early

While the initial loss is not very predictive of �nal performance, we make a surprising discovery

that the loss a�er a few steps of training can be very highly predictive.

Hypothesis: Loss a�er some steps of training strongly correlates with the �nal loss.

For each growth operator G, we measure the validation loss at step 505,000 (i.e., a�er 5,000

steps of training M2). In Figure 5.2 (right), for each growth operator, we plot the validation loss

at step 600,000 vs. the validation loss at step 505,000. Visually, we can see that the loss a�er

5,000 steps is highly correlated with the loss at step 600,000. Numerically, the Pearson correlation

between the validation losses at step 600,000 and the validation losses at step 505,000 is 0.982,

and the corresponding Spearman correlation is 0.986. In other words, we see that the the �nal

order of the various growing strategies has largely already emerged within the �rst 5,000 steps.

�us, in this BERT se�ing, we have strong support for our hypothesis.

�e early loss landscape perspective. In general, it can be di�cult to predict �nal per-

formance based on initial or early performance. However, we posit that, when growing an

already-trained model, the early loss landscape has particularly nice properties amenable to

early prediction. One possible mental model is as follows. Upon growing, the network enters an

unstable state induced by the addition of its new layers. However, since the network is already

largely trained, it is able to adapt quickly to use its new layers, resulting in a fast drop in the

loss. During this initial fast adaptation phase, the overall ordering of various growing strategies

is still unstable. However, once this fast adaptation to the new layers is complete, the loss curves
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Figure 5.2: Growing a 12-layer BERT model at step 500,000 into a 16-layer BERT model and then

training the larger model for 100K steps. Correlation (in validation loss) between (le�) the loss at 600K

steps and the loss immediately upon growing (i.e., without any training) and (right) the loss at 600K steps

and the loss at 505K steps (i.e., a�er 5,000 steps of training the larger model). Although the correlation at

the beginning is low (le� plot), the correlation quickly rises a�er just 5,000 steps of training (right plot).

and, crucially, their relative orderings enter a more stable phase. �is can be summarized as:

Phase 1: At initialization, look for a nearby point in the loss landscape that is much be�er
adapted to using the new layers (resulting in a rapid drop in the loss).

Phase 2: Continue training from this adapted initialization (now in a slower, more predictable
manner).

�is perspective suggests that the initial loss is not the only factor in determining the �-

nal performance of a particular growth operator. Rather, how the growth operator in�uences

the network’s loss landscape near its new initialization is also crucial in determining its �nal

performance. We call this perspective landscape-aware growing.

5.3.3 Prediction within several hundred steps

Based on our insights in Section 5.3.2, we ask: How early does good prediction become possible?
We zoom in on the �rst 200 steps of training a�er growing (i.e., steps 500,000 to 500,200) and

observe several interesting properties.

Self-correlation heatmap. For every pair of steps (i, j) ∈ {500000, . . . , 500200}2
, we

compute the Spearman correlation between the validation losses at step i and the validation

losses at step j. Figure 5.3 (top le�) displays this as a correlation heatmap. In this heatmap, we can

see a clear phase transition between the earliest few steps of training (whose validation losses do

not correlate well with the losses at step 500,200) and the remainder of the �rst 200 steps, which

have strong correlation amongst themselves. �is phase transition between the earliest few steps

of training and the remainder of the �rst 200 steps seems to occur roughly around step 500,050.

Correlation with �nal performance. For every step i ∈ {500000, . . . , 500200}, we com-

pute the Spearman correlation between the validation losses at step i and the validation losses

at step 600,000. We observe that the Spearman correlation rises rapidly within the �rst 200
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Figure 5.3: Growing BERT from 12 to 16 layers: zooming in on steps 500,000 through 500,200. Spearman

correlation heatmap (top le�), Spearman correlation with �nal values (top right), Recall@k (bo�om le�),

Relative regret (bo�om right). See Section 5.3.3 for details on how these plots were constructed. For all

plots, at each step, the validation loss is �rst averaged over a window of 11 steps (centered at the step in

question) to help smooth out noise.
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steps, from less than -0.4 to approximately 0.8. �is indicates that strong correlation with �nal

performance emerges very early on in training, providing some support for the conjecture that

the phase transition observed above is, in fact, a transition into a more stable phase with high

predictive power with respect to �nal performance.

Measuring Recall@k. Practically speaking, however, we do not need to predict the

full ranking of strategies. In fact, predicting the exact ordering among the worst-performing

strategies has very limited utility. Rather, a practitioner could exploit the above insights by

pruning their search space down to just a few top con�gurations. �en, one practically-relevant

question is: Was the best growing strategy within this pruned set? We study this question

in the following manner. We �rst determine which growing strategy has the smallest vali-

dation loss at step 600,000, and we let G?
denote this growth operator. �en, at every step

i ∈ {500000, . . . , 500200}, we identify the k growth operators with the smallest validation loss

and ask whether G?
is among these k growth operators; if it is, we plot 1, and if not, we plot

0. Figure 5.3 (bo�om le�) displays this plot for k = 1, 2, 3. As can be seen in the �gure, the

recall rises to 1 for all values of k around step 500,050, which aligns with the phase transition

identi�ed in the correlation heatmap. �is provides further support for the conjecture that the

phase transition observed above is a transition into a more stable phase with high predictive

power with respect to the optimal growing strategies.

Notion of regret. Beyond just identifying or failing to identify the optimal growing strat-

egy at a particular step is the more nuanced question: how suboptimal (with respect to validation

loss) is it to choose a growing strategy based on its performance at step i (vs. its performance

at the end of training). Let Gi
denote the growth operator with the smallest validation loss at

step i, and let `(G) denote the �nal validation loss at step 600,000 a�er growing with operator

G at step 500,000. Among all growing strategies in the search space, let `min
denote the smallest

validation loss at step 600,000, and let `max
denote the largest validation loss at step 600,000.

�en, for every step i ∈ {500000, . . . , 500200}, we can calculate the regret as

`(Gi)− `min

(5.1)

and the relative regret as

(`(Gi)− `min)/(`max − `min). (5.2)

In other words, the relative regret captures how suboptimal it is to choose a growing strategy

based on its validation loss at step i. Figure 5.3 (bo�om right) displays the relative regret for

i ∈ {500000, . . . , 500200}. We can see that the relative regret starts at approximately 0.8 and

drops to 0 around step 500,050, which aligns with the phase transition identi�ed in the cor-

relation heatmap. �is provides further support for the conjecture that the phase transition

observed above is a transition into a more stable phase with high predictive power with respect

to identifying low-loss strategies.

Conclusion. Taken together, these results demonstrate that, soon a�er growing, (1) an

approximate ordering of the growing strategies emerges and (2) it is possible to identify a

low-regret strategy.
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Table 5.1: Performance of LAG@200 compared to other growing strategies, when growing BERT from 12

layers to 16 layers. See equations 5.1 and 5.2 for the de�nitions of regret and relative regret. �e “Oracle”

strategy refers to the best possible strategy within the search space, based on validation loss at step

600,000. LAG@0 roughly follows the “loss preservation” heuristic (i.e., choosing the strategy whose loss

is least perturbed by growing). �e �nal two rows most closely resemble gradual stacking (Reddi et al.,

2023): (1) stacking the last block on top, and (2) stacking a randomly-initialized block on top. Overall,

LAG@200 is able to identify the best-performing strategy, achieving a relative regret of 0. In contrast, the

other strategies have a relative regret of at least 0.5 (and even higher).

Strategy Final Validation Loss Regret Relative Regret

Oracle 1.7461 0 0

LAG@200 1.7461 0 0

Best at initialization (LAG@0) 1.7875 0.0414 0.7986

Stack last block on top 1.7747 0.0286 0.5517

Stack random block on top 1.7875 0.0414 0.7986

5.4 Applications

In this section, we extend the insights of Section 5.3 into algorithms for growing and stacking.

Our goal is primarily to validate the landscape-aware theory through its algorithmic utility

when applied in a very simple manner. We believe that more sophisticated algorithms could

be developed to further exploit the landscape-aware theory, with even stronger performance,

and that this is merely evidence of a step in the right direction algorithmically.

5.4.1 LAG

We de�ne Landscape-Aware Growing, or LAG@k, as a simple algorithm for growing as follows.

Consider a design space G of growth operators. For each growth operator G ∈ G, apply G to

the pretrained model M1 to obtain a larger model M2. Train each such M2 for k steps, for some

small k. Choose the growth operator Ĝ yielding the lowest validation loss at k steps, and then

train Ĝ(M1) to completion. Although LAG@k is fairly generic and can be instantiated with

various values of k, for the purposes of this evaluation, we look for a phase transition as in

Figure 5.3 (top le�) and choose k to ensure some margin post-phase-transition.

BERT. We �rst apply LAG to the BERT-Base se�ing de�ned in Section 5.3.1. Given the

phase transition around step 500,050, we use LAG@200 (though smaller values of k would have

similar behavior here, based on the results in Figure 5.3).

In Table 5.1, we compare the performance of LAG@200 with several other methods. �e

“Oracle” strategy refers to the best possible strategy within the search space, based on validation

loss at step 600,000 (i.e., it is not a practical strategy but rather represents the best one could

hope to achieve). We also compare to LAG@0; since the loss of G(M1) is higher than the loss

of M1 for all growth operators G, choosing the growth operator with the lowest loss a�er 0

steps of training follows the “loss preservation” heuristic (i.e., choosing the strategy whose loss
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Table 5.2: Performance of LAG@2000 compared to other growing strategies, when growing UL2 from

12 layers to 16 layers. See equations 5.1 and 5.2 for the de�nitions of regret and relative regret. �e

“Oracle” strategy refers to the best possible strategy within the search space, based on validation loss

at step 400,000. LAG@0 roughly follows the “loss preservation” heuristic (i.e., choosing the strategy

whose loss is least perturbed by growing). �e �nal two rows most closely resemble gradual stacking

(Reddi et al., 2023): (1) stacking the last block on top, and (2) stacking a randomly-initialized block on top.

Overall, LAG@2000 achieves a relative regret of 0.0895, which is much smaller than that of the alternative

methods.

Strategy Final Validation Loss Regret Relative regret

Oracle 2.1254 0 0

LAG@2000 2.1268 0.0014 0.0895

Best at initialization (LAG@0) 2.1398 0.0144 0.9202

Stack last block on top 2.1357 0.0103 0.6582

Stack random block on top 2.1398 0.0144 0.9202

300000 300500 301000 301500 302000
Step

300000

300500

301000

301500

302000

St
ep

Spearman correlation between steps

0.0

0.2

0.4

0.6

0.8

1.0

300000 300500 301000 301500 302000
Step

0.2

0.4

0.6

0.8
Re

la
tiv

e 
re

gr
et

Relative regret compared to optimal growing strategy

Figure 5.4: Growing UL2 from 12 layers to 16 layers: zooming in on steps 300,000 through 302,000.

Spearman correlation heatmap (le�) and Spearman correlation with �nal values (right). See Section 5.3.3

for details on how these plots were constructed. Here, the validation loss is only measured every 100

steps, so these plots do not use smoothing (in contrast with Figure 5.3).

is least perturbed by growing). We also compare to the variants within our search space which

most resemble gradual stacking (Reddi et al., 2023): (1) stacking the last block on top, and (2)

stacking a randomly-initialized block on top. Due to the limited e�ect of new �nal layers with

small random initialization, a randomly-initialized block on top can be viewed as another proxy

for the “loss preservation” heuristic and does turn out to match LAG@0.

Overall, with LAG@200, we see that we are able to identify the best-performing strategy,

achieving a relative regret of 0. In contrast, the other strategies have a relative regret of at least

0.5 (and even higher).

UL2. We also extend LAG to the UL2 se�ing. Speci�cally, we begin by pretraining a 12-layer

decoder-only model with 1.1B parameters and the UL2 objective (Tay et al., 2022) for 300,000

steps, before growing it to 16 layers and training for an additional 100,000 steps. See further

details in Appendix C.1. Since we are growing from 12 to 16 layers as we did in the BERT se�ing,

56



we include the same 30 growth operators that we studied for BERT in Section 5.3.1. We compute

the correlation heatmap as de�ned in Section 5.3.3 over the �rst 2,000 steps immediately a�er

growing (i.e., step 300,000 through step 302,000) and observe a phase transition around step 1,000.

To ensure a margin post-phase-transition, we choose k = 2000, i.e., LAG@2000. In Table 5.2,

we compare the performance of LAG@2000 with the same alternative methods we examined

for BERT, above. Overall, we see that LAG@2000 achieves a relative regret of 0.0895, which

is fairly small and much smaller than that of the alternative methods. We also include 1-shot

evaluations for several key downstream tasks in Appendix C.2, providing evidence that the

trends in validation loss hold for downstream metrics as well.

5.4.2 Adaptive stacking

Here, we consider how to apply LAG to gradual stacking. Speci�cally, LAG motivates an adaptive
strategy for gradual stacking: at each stage of stacking, multiple growing strategies are spawned

in parallel and trained for k steps, for some small k. �en, the strategy with the lowest validation

loss is chosen and training is continued for the rest of the stacking stage using just this one

strategy. Applied iteratively, with n stages and s strategies explored per stage, this costs n×k×s
additional steps of training (divided over a range of model sizes). Here, we use adaptive stacking

to train a 24-layer BERT-large model in 6 stages, using a roughly uniform stacking schedule

(160,000 steps per stage for the �rst 5 stages, and 200,000 steps in the �nal stage). We use k = 200
steps. In Table C.2 in Appendix C.2, we see that adaptive stacking outperforms last stacking

(Reddi et al., 2023), with a �nal validation loss of 1.5301 for adaptive stacking vs. 1.5432 for last

stacking (i.e., post-stacking in Reddi et al., 2023).

We caveat that this is merely intended as a demonstration of how one might naively apply

the principle of LAG to stacking. Without further iteration, we can already see gains over �xed

stacking, suggesting that this could be a promising direction for future work on improving

stacking (or “iterated growing”, more generally).

5.5 Related Work

�e literature on growing models is vast; hence, we only focus on the most relevant works here.

Net2Net (Chen et al., 2016) was one of the �rst works to popularize parameter-reusing growth

operators for neural networks, though notably building on much earlier works such as (Fahlman

and Lebiere, 1989) and (Gutstein et al., 2008). �e primary technical contribution of (Chen et al.,

2016) is its function-preserving growth operators, which ensure that the new, larger network at

initialization represents exactly the same function as the original, smaller network. Speci�cally,

among its main contributions, Chen et al. (2016) highlights how function-preserving growth

operators avoid “spending time passing through a period of low performance”. Since 2016,

various works have built upon this function-preserving idea, and it has become a core tenet in

the design of neural network growth operators (Wei et al., 2016; Evci et al., 2022).

More recent works in this direction are largely based on Transformers. Chen et al., 2022, Shen

et al., 2022, Li et al., 2023a, Yao et al., 2024, and Wang et al., 2024 all explore di�erent variants of
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function- or loss-preserving growth operators speci�cally in the Transformer se�ing. Despite

di�erences in how they achieve function preservation, they are all united by the perspective -

dating back to Net2Net - that “a growth operator that is not loss-preserving wastes time and

compute initially until it recovers the same performance of the original model” (Wang et al.,

2024). It is this design principle that our work provides compelling evidence against.

Although the primary focus of our work is how to expand a shallow model into a deeper

model through one step of growing, we also explore its application to iterated growing. Our

work is thus related to the literature on progressive stacking (Gong et al., 2019) and gradual

stacking (Reddi et al., 2023), which gradually increase the model depth in stages by reusing

layers from the previous stage.

5.6 Conclusion

Overall, we have conducted a fairly extensive empirical analysis of various growth operators

and identi�ed that, despite a vast body of prior work on function- and loss-preserving growth

operators, initial loss immediately upon growing is not particularly predictive of �nal perfor-

mance. Rather, allowing a growth operator to initially disrupt the function (and thus the loss)

can actually be desirable if it then leads to a more favorable early loss landscape in which the loss

can decrease more rapidly. To that end, we identify that this notion of “early loss landscape” is

actually quite early in BERT and is delineated by a measurable phase transition. Based on these

insights, we introduce Landscape-Aware Growing (LAG) as a general, design-space-agnostic

strategy for growing; with just a li�le “lag” a�er initialization, identifying a low-regret growth

operator is possible. We validate our approach in UL2 and extend our insights to stacking as

well.

Although these results are quite exciting, we �nd it prudent to point out various limitations

beyond the caveats already noted. One limitation is that, due to compute constraints, we could

only run one trial per growth operator. We hope that by validating our results in a di�erent, more

complex se�ing (UL2), we mitigate these concerns a bit; however, in an ideal world, we would

have multiple trials with di�erent random initializations and di�erent data orders. Another

limitation is that we have only explored the BERT and UL2 se�ings, and our largest model sizes

are just over 1B parameters; thus, we do not know how our results generalize to state-of-the-art

model sizes. Finally, due to compute constraints, our search space is naturally limited to a

subset of all possible growth operators. We have tried to capture a range of both approximately

loss-preserving and loss-disrupting growth operators, and we thus believe our search space is

quite reasonable with respect to our conceptual insights; however, future work could consider

expanding the search space to include even more growth operators from the literature.
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Chapter 6
Conclusion

In the preceding pages, we have examined the role of structure in the success of modern

deep learning. We began by considering whether classical generalization bounds - speci�cally

algorithmic stability, in our case - could explain deep learning’s impressive generalization

performance. We saw empirical evidence that the �exibility of neural networks optimized via

gradient descent is perhaps beyond the limitations of such a framework. However, when paired

with structure, this mystifying �exibility becomes a gi�: adaptability.

�erefore, rather than pursuing a general theory of why deep learning works right now, we

advocate for the more fruitful path of understanding how gradient-descent-optimized neural

networks can adapt to and from structure - structure in data, architecture, and initialization.

�rough three di�erent examples that together trace the evolution of deep learning over the

past six years, we see how

1. convolutional neural networks’ �lters can adapt to signal amidst signi�cant background

noise in images

2. how the Transformer’s self-a�ention mechanism can adapt to domain-agnostic decision-

list-like structure in sequence-to-sequence data, and

3. how pretrained language models with existing structure can adapt when new Transformer

blocks are inserted to increase their depth.

We believe that analyzing structures like these in detail, as we have done in this thesis, is

key to understanding the success of modern deep learning.

Now, in summer 2024 - at the time of concluding this thesis - this message seems as timely

as ever. With ever-increasing dataset sizes and model sizes and the overall rise of foundation

models, some of the most pressing questions are now less about whether these models will reach

low training loss or have good performance on unseen in-distribution data and instead more

about what representations/underlying structures are being learned and how this will enable

adaptation to new tasks.
1

In the near-term, some key questions include:

1
whether zero-shot, with in-context examples, or a�er some limited �ne-tuning

59



1. What structures are self-a�ention blocks learning from data?

2. Which aspects of self-a�ention are important when solving real-world tasks?

3. What is the role of MLPs in Transformers?

4. How can we design be�er data mixtures and training curricula to help Transformer-based

language models learn these structures more e�ciently?

In the longer term, as we move toward realizing the dream of more agentic, interactive

arti�cial intelligence, the practical applications of machine learning are becomingly increasing

highly multitask. A split has been forming between the pretraining of foundation models on

diverse Internet-scale data and their subsequent adaptation to many di�erent downstream tasks

of interest. In some cases, these downstream tasks involve no parameter modi�cations – just the

clever tuning of inputs. In other cases, the foundation models’ parameters are modi�ed through

various �ne-tuning techniques to further adjust their performance. In all of these se�ings,

adapting to and from structure remains key. Foundation models are only useful insofar as they

have adapted their parameters to represent the underlying structure in their vast pretraining

data. And it is these learned structures that enable e�cient adaptation to diverse downstream

tasks, through various post-training approaches such as in-context learning, supervised �ne-

tuning, reinforcement learning, etc. Some key questions are therefore: What structures are

being learned through the particular combination of large-scale data and architecture? How

do these structures enable e�cient adaptation to new tasks, and how can we learn even be�er

structures for more e�cient adaptation?

In this thesis, we have looked at single tasks (adapting to the structure in single tasks and

using this structure to adapt new parameters to the same task). In the coming agentic, multitask

se�ings, we believe that analogous approaches will similarly prove fruitful. As in this thesis, we

will likely get further, faster by trying to understand the actual, empirically-supported interplay

between structure in data and the structures learned by particular neural network architectures

– how neural networks adapt to structure in data, and how they use their learned structures

to adapt to new data, in particular, illustrative se�ings. �is is in contrast to a more black-box

approach such as that explored in Chapter 2. We are optimistic that the lessons and themes

learned from and illustrated in this thesis can carry us forward into the next phase of machine

learning and arti�cial intelligence research.
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Appendix A
Algorithmic Stability:

Additional Details

A.1 Further Methodology Details

Dataset splits. MNIST: From the 60,000 training examples, we randomly sampled subsets as

speci�ed in Section 2.2 for training. We used the full 10,000-element test set for evaluation

(including computation of uniform stability, as speci�ed in Section 2.2).

CIFAR-10: From the 50,000 training examples, we randomly sampled subsets as speci�ed

in Section 2.2 for training. We used the full 10,000-element test set for evaluation (including

computation of uniform stability, as speci�ed in Section 2.2).

SVHN: From the 73,257 training examples, we randomly sampled subsets as speci�ed in

Section 2.2 for training. To maintain consistency with MNIST and CIFAR-10, we randomly

sampled 10,000 elements from the 26,032-element test set for evaluation. All datasets were

normalized in the same manner, by dividing each coordinate by 255.

Selection of hyperparameters. �e hyperparameters for ResNet-20 on CIFAR-10 are derived

from He et al. (2016). �e hyperparameters for logistic regression were chosen similarly, inten-

tionally without momentum (since our primary goal was to study SGD) and without a decaying

learning rate. �e hyperparameters for Con�guration 1a were intentionally chosen to vary from

Con�gurations 2a and 2b, in order to create more diversity in our hyperparameter se�ings;

speci�cally, we deemed it valuable to investigate a smaller batch size (i.e., 32) without momentum,

and the corresponding learning rate of 0.01 worked fairly well with this batch size.

Stopping criterion details. We considered three di�erent possible stopping criteria: parameter

updates, epoch number, and average training loss. We performed preliminary analyses with

all stopping criteria, but a�er careful consideration, we ultimately chose to focus our analysis

on parameter updates for the following reasons: (1) parameter updates align with theoretical

analyses of uniform stability, such as Hardt et al. (2016) and Feldman and Vondrak (2019), in

which the stability parameter is expressed as a function of the number of parameter updates;
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and (2) parameter updates appear to give uniform stability the best chance at succeeding in

explaining generalization, thus making our negative results more signi�cant. Speci�cally, if

instead we were to hold the number of epochs �xed across dataset sizes, this means that larger
datasets would take more steps. �is is true for average training loss as a stopping criterion

as well, as it typically takes more steps for larger datasets to reach the same average training

loss as smaller datasets. �us, although these stopping criteria are perhaps truer to practice,

we believe that they make it even easier for uniform stability to fail to explain the strength of

generalization.

Dataset size range. We chose to limit our analysis to the ranges speci�ed in Section 2.2 for

the following reason. In order to ask the question Can the strength of decrease with m in our
generalization gap be explained by uniform stability?, we wanted a rate of decrease with m
that would be roughly constant in our dataset size range. Figure A.1 shows a plot and curve

�t on a normal-scale plot, followed by a log-log plot. Although the curve �t displays some

room for improvement in the original plot, the log-log plot reveals di�erent regions of decrease

with m. �rough this plot and additional such investigations, we noticed that the dataset size

range 15,000-50,000 yielded the largest window with a roughly consistent rate of decrease with

m. �us, we chose to focus our analysis on this window in order to draw more meaningful

conclusions. As deep learning models are typically trained in large-data regimes, this decision

aligns with practical considerations as well.

Curve �tting details. We used scipy’s optimize package, speci�cally the curve fit
function. We �t parameters a and b in y = amb

, where m is the dataset size and y is the metric

of interest.
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Figure A.1: Con�guration 1a, with 20 samples per dataset size m. �e le� column is generated using

50,000 iterations of training, and the right column is generated using 150,000 iterations of training. Each

sample involves independently drawing S ∼ Dm
train

, z ∼ Dtest, i ∼ U([m]), and S′ := Si←z . Each sample

is plo�ed as a blue dot, the maximum value per dataset size m is plo�ed as a red dot, and a curve of the

form y = amb
is �t to the red dots and plo�ed in green. �e top plot is a normal-scale plot, and the

bo�om plot is the same data plo�ed as a log-log plot. �e curve �t displays some room for improvement

in the original plot, and the log-log plot reveals di�erent regions of decrease with m. �ese plots help us

�nd a dataset size range where the loss has a roughly consistent rate of decrease with m.
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A.2 Further Experiments for Section 2.3

In this section, we present stability and generalization results for two additional seeds (Trials 2

and 3) and compare them to the original seed presented in the main paper (Trial 1). Our �gures

are as follows:

• Figure A.2 has all trials for Con�guration 1a (SVHN).

• Figure A.3 has all trials for Con�guration 2a (CIFAR-10, no momentum).

• Figure A.4 has all trials for Con�guration 2b (CIFAR-10, 0.9 mometum).

• Figure A.5 has generalization (cross-entropy only) and stability results for Iteration 50,000

for Con�guration 1a.

• Figure A.6 has generalization (cross-entropy only) and stability results for Iteration 50,000

for Con�guration 2a.

• Figure A.7 has generalization (cross-entropy only) and stability results for Iteration 50,000

for Con�guration 2b.

• Figure A.8 has generalization (cross-entropy only) and stability results for Iteration 150,000

for Con�guration 1a.

• Figure A.9 has generalization (cross-entropy only) and stability results for Iteration 150,000

for Con�guration 2a.

• Figure A.10 has generalization (cross-entropy only) and stability results for Iteration

150,000 for Con�guration 2b.

�e additional trials are roughly consistent with the trial highlighted in the main paper.

A.3 Further Experiments for Section 2.4

In this section, we present further experiments regarding regarding the Euclidean distance

between A(S) and A(S ′), parameter norms, and normalized Euclidean distances. Our �gures

are as follows:

• Figure A.11 presents additional trials for ‖A(S)−A(S ′)‖2 at Iteration 100,000.

• Figure A.12 has ‖A(S)‖2 at Iteration 100,000.

• Figure A.13 has normalized Euclidean distances, with further details in the caption.
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Figure A.2: All trials for Con�guration 1a (SVHN). Each column is a di�erent trial (i.e., di�erent random

seed controlling initialization and SGD data order). Row 1 is the 0-1 loss generalization gap as a function

of dataset size, row 2 is the cross-entropy loss generalization gap as a function of dataset size, and row 3

is the cross-entropy loss stability as a function of dataset size. �ere are 40 samples per dataset size m.

Each sample involves independently drawing S ∼ Dm
train

, z ∼ Dtest, i ∼ U([m]), and S′ := Si←z . Each

sample is plo�ed as a blue dot, the maximum value per dataset size m is plo�ed as a red dot, and a curve

of the form y = amb
is �t to the red dots and plo�ed in green. Overall, across all trials, the cross-entropy

loss stability has a dependence on m that is not comparable to the generalization gap’s decay with m.
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Figure A.3: All trials for Con�guration 2a (CIFAR-10, no momentum). Each column is a di�erent trial (i.e.,

di�erent random seed controlling initialization and SGD data order). Row 1 is the 0-1 loss generalization

gap as a function of dataset size, row 2 is the cross-entropy loss generalization gap as a function of dataset

size, and row 3 is the cross-entropy loss stability as a function of dataset size. �ere are 40 samples per

dataset size m. Each sample involves independently drawing S ∼ Dm
train

, z ∼ Dtest, i ∼ U([m]), and

S′ := Si←z . Each sample is plo�ed as a blue dot, the maximum value per dataset size m is plo�ed as a

red dot, and a curve of the form y = amb
is �t to the red dots and plo�ed in green. Overall, across all

trials, the cross-entropy loss stability has a dependence on m that is not comparable to the generalization

gap’s decay with m.
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Figure A.4: All trials for Con�guration 2b (CIFAR-10, 0.9 momentum). Each column is a di�erent trial (i.e.,

di�erent random seed controlling initialization and SGD data order). Row 1 is the 0-1 loss generalization

gap as a function of dataset size, row 2 is the cross-entropy loss generalization gap as a function of dataset

size, and row 3 is the cross-entropy loss stability as a function of dataset size. �ere are 40 samples per

dataset size m. Each sample involves independently drawing S ∼ Dm
train

, z ∼ Dtest, i ∼ U([m]), and

S′ := Si←z . Each sample is plo�ed as a blue dot, the maximum value per dataset size m is plo�ed as a

red dot, and a curve of the form y = amb
is �t to the red dots and plo�ed in green. Overall, across all

trials, the cross-entropy loss stability has a dependence on m that is not comparable to the generalization

gap’s decay with m.
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Figure A.5: All trials for Con�guration 1a at iteration 50,000. Each column is a di�erent trial (i.e., di�erent

random seed controlling initialization and SGD data order). Row 1 is the cross-entropy loss generalization

gap as a function of dataset size, and row 2 is the cross-entropy loss stability as a function of dataset

size. �ere are 40 samples per dataset size m. Each sample involves independently drawing S ∼ Dm
train

,

z ∼ Dtest, i ∼ U([m]), and S′ := Si←z . Each sample is plo�ed as a blue dot, the maximum value per

dataset size m is plo�ed as a red dot, and a curve of the form y = amb
is �t to the red dots and plo�ed

in green. Overall, across all trials, the cross-entropy loss stability has a dependence on m that is not
comparable to the generalization gap’s decay with m.
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Figure A.6: All trials for Con�guration 2a at iteration 50,000. Each column is a di�erent trial (i.e., di�erent

random seed controlling initialization and SGD data order). Row 1 is the cross-entropy loss generalization

gap as a function of dataset size, and row 2 is the cross-entropy loss stability as a function of dataset

size. �ere are 40 samples per dataset size m. Each sample involves independently drawing S ∼ Dm
train

,

z ∼ Dtest, i ∼ U([m]), and S′ := Si←z . Each sample is plo�ed as a blue dot, the maximum value per

dataset size m is plo�ed as a red dot, and a curve of the form y = amb
is �t to the red dots and plo�ed

in green. Overall, across all trials, the cross-entropy loss stability has a dependence on m that is not
comparable to the generalization gap’s decay with m.
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Figure A.7: All trials for Con�guration 2b at iteration 50,000. Each column is a di�erent trial (i.e.,

di�erent random seed controlling initialization and SGD data order). Row 1 is the cross-entropy loss

generalization gap as a function of dataset size, and row 2 is the cross-entropy loss stability as a function

of dataset size. �ere are 40 samples per dataset size m. Each sample involves independently drawing

S ∼ Dm
train

, z ∼ Dtest, i ∼ U([m]), and S′ := Si←z . Each sample is plo�ed as a blue dot, the maximum

value per dataset size m is plo�ed as a red dot, and a curve of the form y = amb
is �t to the red dots and

plo�ed in green. Overall, across all trials, the cross-entropy loss stability has a dependence on m that is

not comparable to the generalization gap’s decay with m.
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Figure A.8: All trials for Con�guration 1a at iteration 150,000. Each column is a di�erent trial (i.e.,

di�erent random seed controlling initialization and SGD data order). Row 1 is the cross-entropy loss

generalization gap as a function of dataset size, and row 2 is the cross-entropy loss stability as a function

of dataset size. �ere are 40 samples per dataset size m. Each sample involves independently drawing

S ∼ Dm
train

, z ∼ Dtest, i ∼ U([m]), and S′ := Si←z . Each sample is plo�ed as a blue dot, the maximum

value per dataset size m is plo�ed as a red dot, and a curve of the form y = amb
is �t to the red dots and

plo�ed in green. Overall, across all trials, the cross-entropy loss stability has a dependence on m that is

not comparable to the generalization gap’s decay with m.
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Figure A.9: All trials for Con�guration 2a at iteration 150,000. Each column is a di�erent trial (i.e.,

di�erent random seed controlling initialization and SGD data order). Row 1 is the cross-entropy loss

generalization gap as a function of dataset size, and row 2 is the cross-entropy loss stability as a function

of dataset size. �ere are 40 samples per dataset size m. Each sample involves independently drawing

S ∼ Dm
train

, z ∼ Dtest, i ∼ U([m]), and S′ := Si←z . Each sample is plo�ed as a blue dot, the maximum

value per dataset size m is plo�ed as a red dot, and a curve of the form y = amb
is �t to the red dots and

plo�ed in green. Overall, across all trials, the cross-entropy loss stability has a dependence on m that is

not comparable to the generalization gap’s decay with m.
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Figure A.10: All trials for Con�guration 2b at iteration 150,000. Each column is a di�erent trial (i.e.,

di�erent random seed controlling initialization and SGD data order). Row 1 is the cross-entropy loss

generalization gap as a function of dataset size, and row 2 is the cross-entropy loss stability as a function

of dataset size. �ere are 40 samples per dataset size m. Each sample involves independently drawing

S ∼ Dm
train

, z ∼ Dtest, i ∼ U([m]), and S′ := Si←z . Each sample is plo�ed as a blue dot, the maximum

value per dataset size m is plo�ed as a red dot, and a curve of the form y = amb
is �t to the red dots and

plo�ed in green. Overall, across all trials, the cross-entropy loss stability has a dependence on m that is

not comparable to the generalization gap’s decay with m.
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Figure A.11: All trials for ‖A(S) − A(S′)‖2 at t = 100, 000. Each column is a di�erent trial (i.e.,

di�erent random seed controlling initialization and SGD data order). Each row is a di�erent neural

network con�guration. �ere are 40 samples per dataset size m. Each sample involves independently

drawing S ∼ Dm
train

, z ∼ Dtest, i ∼ U([m]), and S′ := Si←z . Each sample is plo�ed as a blue dot, and the

maximum value per dataset size m is plo�ed as a red dot.
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Figure A.12: All trials for ‖A(S)‖2 at t = 100, 000. Each column is a di�erent trial (i.e., di�erent random

seed controlling initialization and SGD data order). Each row is a di�erent neural network con�guration.

�ere are 40 samples per dataset size m. Each sample involves independently drawing S ∼ Dm
train

,

z ∼ Dtest, i ∼ U([m]), and S′ := Si←z . Each sample is plo�ed as a blue dot, and the maximum value per

dataset size m is plo�ed as a red dot.
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Figure A.13: Normalized Euclidean distance for all trials at t = 100, 000. For each Euclidean distance

‖A(S)−A(S′)‖2, we divide by (‖A(S)‖2 + ‖A(S′)‖2)/2. Each column is a di�erent trial (i.e., di�erent

random seed controlling initialization and SGD data order). Each row is a di�erent neural network

con�guration. �ere are 40 samples per dataset size m. Each sample involves independently drawing

S ∼ Dm
train

, z ∼ Dtest, i ∼ U([m]), and S′ := Si←z . Each sample is plo�ed as a blue dot, and the

maximum value per dataset size m is plo�ed as a red dot. �e results suggest that normalizing largely

mitigates the growth in Euclidean distance with dataset size; however, this does not appear to yield a

signi�cant decrease in Euclidean distance with dataset size.
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Figure A.14: Additional linear mode connectivity interpolation trials for Con�guration 1a (SVHN). Each

column is a di�erent trial (i.e., di�erent random seed controlling initialization and SGD data order). In

each plot, the x-axis is α, ranging from -1.0 to 2.0, and the y-axis is the train or test accuracy evaluated at

the parameters αWS + (1− α)WS′ for some (S, S′) pair. Speci�cally, each color represents a di�erent

(S, S′) pair from among the 40 samples described in Section 2.2; each plot includes 10 such pairs randomly

selected from among the 40. Overall, we see roughly nondecreasing accuracy when linearly interpolating

between WS and WS′ .
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Figure A.15: Additional linear mode connectivity interpolation trials for Con�guration 2a (CIFAR-10,

no momentum). (Note: We omit Con�guration 2b from additional trials because the lack of connectivity

seen in the body of the paper is not our focus in these additional trials; rather, we are simply interested in

con�rming cases of linear mode connectivity.) Each column is a di�erent trial (i.e., di�erent random seed

controlling initialization and SGD data order). In each plot, the x-axis is α, ranging from -1.0 to 2.0, and

the y-axis is the train or test accuracy evaluated at the parameters αWS + (1− α)WS′ for some (S, S′)
pair. Speci�cally, each color represents a di�erent (S, S′) pair from among the 40 samples described

in Section 2.2; each plot includes 10 such pairs randomly selected from among the 40. Overall, we see

slightly decreasing accuracy when linearly interpolating between WS and WS′ .
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Appendix B
Local Signal Adaptivity:

Additional Details

B.1 Full Proofs for Section 3.4

B.1.1 Simplifying calculations and notation

We introduce the following calculations and notation to simplify the subsequent proofs.

Let I = [k + 1] \ {i?}.
For any given t, we decompose w(t) = (w(t) ·w?)w? + w

(t)
⊥ .

We let ct := w(t) · w? and vt := ‖w(t)
⊥ ‖2. For i ∈ I , we de�ne Ai := Xi · w? and Bi :=

Xi ·w(t)
⊥ /‖w

(t)
⊥ ‖2. Since Xi is a spherically symmetric Gaussian vector and w? and w

(t)
⊥ /‖w

(t)
⊥ ‖2

de�ne two �xed (per t) orthogonal directions, we have

Ai, Bi
i.i.d.∼ N (0, σ2).

Finally, we de�ne Zi := ctAi + vtBi ∼ N (0, (c2
t + v2

t )σ
2) and s2

t := (c2
t + v2

t )σ
2
. With this

notation, we obtain the following simpli�cation of ft(X), used extensively throughout the

proofs:

ft(X) =
k+1∑
i=1

[
ReLU(〈wt, Xi〉+ bt)− ReLU(−〈wt, Xi〉+ bt)

]
=
∑
i∈I

[
ReLU(Zi + bt)− ReLU(−Zi + bt)

]
+ ReLU(ctY + bt)− ReLU(−ctY + bt).

�e population gradients then simplify as follows:

∇wE[`(ft(X), y)] = E

[
−Y σ(−Y ft(X))

∑
i∈I

Ai

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
w?
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+ E
[
−σ(−Y ft(X))

[
I{ctY ≥ −bt}+ I{ctY ≤ bt}

]]
w?

+ E

[
−Y σ(−Y ft(X))

∑
i∈I

Bi

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
w⊥/‖w⊥‖2.

∇bE[`(ft(X), y)] = E

[
−Y σ(−Y ft(X))

∑
i∈I

[
I{Zi ≥ −bt} − I{Zi ≤ bt}

]]
+E [−Y σ(−Y ft(X)) [I{ctY ≥ −bt} − I{ctY ≤ bt}]] .

We de�ne the following variants of the sum over I :

S :=
∑
i∈I

[
ReLU(Zi + bt)− ReLU(−Zi + bt)

]
Si := ReLU(Zi + bt)− ReLU(−Zi + bt)

S−i :=
∑

j∈I\{i}

[
ReLU(Zj + bt)− ReLU(−Zj + bt)

]
�us, for any i ∈ I , S = S−i + Si.

We further de�ne:

f−i(X) := ft(X)− Si = S−i + ReLU(ctY + bt)− ReLU(−ctY + bt).

We de�ne αt := |bt|/st.

B.1.2 Frequently-used Gaussian facts

Following common notation, we let φ(x) denote the standard normal PDF, Φ(x) denote the

standard normal CDF, and Φc(x) denote the standard normal complementary CDF.

Using the notation de�ned in Section B.1.1, we have:

E[Zi | Zi ≥ −bt] = st
φ(αt)

Φc(αt)
=
√
c2
t + v2

t σ
φ(αt)

Φc(αt)
. (B.1)

Var[Zi | Zi ≥ −bt] = s2
t

[
1 + αt

φ(αt)

Φc(αt)
−
(
φ(αt)

Φc(αt)

)2
]
. (B.2)

E[Z2
i | Zi ≥ −bt] = s2

t

[
1 + αt

φ(αt)

Φc(αt)

]
= (c2

t + v2
t )σ

2

[
1 + αt

φ(αt)

Φc(αt)

]
. (B.3)

E[ctAi | Zi] = Zi
c2
tσ

2

c2
tσ

2 + v2
t σ

2
= Zi

c2
t

c2
t + v2

t

. (B.4)
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E[vtBi | Zi] = Zi
v2
t σ

2

v2
t σ

2 + c2
tσ

2
= Zi

v2
t

c2
t + v2

t

. (B.5)

We use the following (relatively tight) bounds on Mills ratio
Φc(x)
φ(x)

, for x ≥ 0:

2√
x2 + 4 + x

≤ Φc(x)

φ(x)
≤ 2√

x2 + 2 + x
. (B.6)

Lemma B.1

Let X1, . . . , Xn be i.i.d. N (0, σ2) RVs. �en P
[
maxj≤nXj ≥ 2σ

√
log n

]
≤ 1/n.

Proof. For all t > 0, P[maxj Xj ≥ t] ≤
∑

j P[Xj ≥ t] ≤ n · exp
(
− t2

2σ2

)
. Now let t = 2σ

√
log n.

�en P[maxj Xj ≥ t] ≤ n exp
(
−4σ2 logn

2σ2

)
= n exp(−2 log n) = 1/n.

Lemma B.2

Let X1, . . . , Xn be i.i.d. N (0, σ2) RVs. �en P
[
maxj≤n |Xj| ≥ 2σ

√
log n

]
≤ 2/n.

Proof. For all t > 0, P[maxj |Xj| ≥ t] ≤
∑

j P[|Xj| ≥ t] ≤ n · 2 exp
(
− t2

2σ2

)
. Now let

t = 2σ
√

log n.

�en P[maxj |Xj| ≥ t] ≤ 2n exp
(
−4σ2 logn

2σ2

)
= 2n exp(−2 log n) = 2/n.
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B.1.3 Neural network upper bound proofs

Training invariants

Lemma B.3: Initialization

Initialize w(0) ∼ N
(

0, δ
2

kd
Id×d

)
. �en with probability at least 1 − e−Ω(k)

, we have

|c(0)|, v(0) ≤ δ.

Proof. Let E denote the event that, ∀i ∈ [d], w
(0)
i ≤ δ√

d
. �en via a Gaussian tail bound and

union bound, we have

P[¬E] ≤
∑
i∈[d]

P
[
|w(0)

i | ≥
δ√
d

]
≤ d · 2e−k/2.

E implies ‖w(0)‖2 ≤ δ, so |c(0)|, v(0) ≤ δ.

Remark B.1. We choose δ = 1/k100. �us, w(0) ∼ N (0, σ2
0Id×d), where σ0 is 1/poly(k). We

choose η so that η/δ = Ω(k).

Lemma B.4: Stochastic gradients

Using n = poly(k) samples per mini-batch, at any given time step t ≤ T , with probability

at least 1− e−Ω̃(k)
, we have:∥∥∥∥∥∥ 1

n

∑
(X,y)∈Z

∇w`(ft(X), y)− E [∇w`(ft(X), y)]

∥∥∥∥∥∥
2

≤ δ

ηpoly(k)
.

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

∇b`(ft(X), y)− E [∇b`(ft(X), y)]

∣∣∣∣∣∣ ≤ 1

k
.

Proof. Consider a mini-batch of n examples Z ∼ Dn, where n = poly(k).

For some (X, y), j ∈ [d], let Ej be the event that |Xi,j| ≤ 1 for all i ∈ I and gj :=
(∇w`(f(X), y))j .

E[gj] = E[gj | Ej]P[Ej] + E[gj | ¬Ej]P[¬Ej]

= E[gj | Ej]
(

1− e−Ω̃(k)
)

+ E[gj | ¬Ej]e−Ω̃(k)

E[gj]− E[gj | Ej] = e−Ω̃(k) (E[gj | ¬Ej]− E[gj | Ej])

|E[gj]− E[gj | Ej]| ≤ e−Ω̃(k)O(k)

|E[gj]− E[gj | Ej]| ≤ e−Ω̃(k).
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Let Êj be the event that |Xi,j| ≤ 1 for all i ∈ I , for all (X, y) ∈ Z . For any j ∈ [d], t > 0,

we have:

P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[(∇w`(f(X), y))j]

∣∣∣∣∣∣ ≥ t


= P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[(∇w`(f(X), y))j]

∣∣∣∣∣∣ ≥ t

∣∣∣∣ Êj
P[Êj]

+ P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[(∇w`(f(X), y))j]

∣∣∣∣∣∣ ≥ t

∣∣∣∣ ¬Êj
P[¬Êj]

≤ P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[(∇w`(f(X), y))j]

∣∣∣∣∣∣ ≥ t

∣∣∣∣ Êj
+ e−Ω̃(k)

≤ P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[gj | Ej]

∣∣∣∣∣∣+

∣∣∣∣E[gj | Ej]− E[gj]

∣∣∣∣ ≥ t

∣∣∣∣ Êj
+ e−Ω̃(k)

≤ P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[gj | Ej]

∣∣∣∣∣∣ ≥ t−
∣∣∣∣E[gj | Ej]− E[gj]

∣∣∣∣ ∣∣∣∣ Êj
+ e−Ω̃(k)

We can now apply a Hoe�ding bound with t = δ
η
√
dpoly(k)

. For su�ciently large n = poly(k),

we obtain:

P

∣∣∣∣∣∣ 1n
∑

(X,y)∈Z

(∇w`(f(X), y))j − E[(∇w`(f(X), y))j]

∣∣∣∣∣∣ ≥ t

 ≤ e−Ω̃(k).

Finally, with probability at least 1− e−Ω̃(k)
, we have:∥∥∥∥∥∥ 1

n

∑
(X,y)∈Z

∇w`(f(X), y)− E [∇w`(f(X), y)]

∥∥∥∥∥∥
2

≤ δ

ηpoly(k)
.

For all (X, y) ∈ R(k+1)×d × {−1, 1}, we have |∇b`(f(X), y)| ≤ poly(k) (deterministically).

�en, by a Hoe�ding bound for su�ciently large n = poly(k), with probability at least

1− e−Ω̃(k)
, we have: ∣∣∣∣∣∣ 1n

∑
(X,y)∈Z

∇b`(f(X), y)− E [∇b`(f(X), y)]

∣∣∣∣∣∣ ≤ 1

k
.
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Lemma B.5

�ere exists an absolute constant k0 such that, for every k ≥ k0, we have αt ≤ 2
√

log k
for all t such that P(X,y)∼D[sign(ft(X)) 6= y] ≥ 0.01.

Proof. Recall that we have de�ned αt := |bt|/st in Section B.1.1.

At the start of training, when the derivatives of b and c are each coming from the signal

patch and thus both b and c are increasing, the ratio b/c is determined by ηb/ηw = 1/k.

Once b starts to decrease, we consider αt for bt < 0 and ct > 0. We prove this case by

contradiction.

Suppose αt > 2
√

log k. �en we have:

P(X,y)∼D[sign(ft(X)) 6= y] ≤ P[max
i
|Zi| ≥ |bt|] ≤

∑
i∈I

P[|Zi| ≥ |bt|] ≤ k · 2e−α2
t /2 < 2/k.

For su�ciently large k, we obtain P(X,y)∼D[sign(ft(X)) 6= y] < 0.01, a contradiction. �us,

we must have αt ≤ 2
√

log k.

Lemma B.6

�ere exists a constant β > 0 and a constant k0 such that, for every k ≥ k0, the following

holds for all t ≤ T such that P(X,y)∼D[sign(ft(X)) 6= y] ≥ 0.01:

Var[Si | |Si| ≤ st log2 k] ≥ β(ct + bt)
2/k ∀i ∈ I.

Proof. For any M > 0, let EM be the event that |Si| ≤M ∀i ∈ I . For any t > 0, we then have:

P

[∑
i∈I

Si ≥ t

]
= P

[∑
i∈I

Si ≥ t

∣∣∣∣∣ EM
]
P[EM ] + P

[∑
i∈I

Si ≥ t

∣∣∣∣∣ ¬EM
]
P[¬EM ]

≤ P

[∑
i∈I

Si ≥ t

∣∣∣∣∣ EM
]

+ P[¬EM ]

≤ P

[∑
i∈I

Si ≥ t

∣∣∣∣∣ EM
]

+ kP[|S1| > M ]

≤ exp

(
− t2

2kVar[S1 | |S1| ≤M ] + 2Mt/3

)
+ kP[|Z1| > M − b]

≤ exp

(
− t2

2kVar[S1 | |S1| ≤M ] + 2Mt/3

)
+ 2k exp

(
−(M − b)2

2s2
t

)
,

by applying a Bernstein inequality.
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Choosing M = st log2 k and t = ct + bt and de�ning u2
t := Var[S1 | |S1| ≤M ], we obtain:

P

[∑
i∈I

Si ≥ ct + bt

]
≤ exp

(
− (ct + bt)

2

2ku2
t + 2st log2 k(ct + bt)/3

)
+ 2k exp

(
−(st log2 k − bt)2

2s2
t

)
.

2k exp
(
− (st log2 k−bt)2

2s2t

)
= e−Ω(log4 k)

, and 2st log2 k(ct + bt)/3 = O(c2
t log3 k/

√
k). �ere-

fore, unless u2
t ≥ β(ct + bt)

2/k for some constant β > 0, we will have P
[∑

i∈I Si ≥ ct + bt
]
<

0.01 for su�ciently large k.

Corollary B.1. �ere exists a constant β > 0 and a constant k0 such that, for every k ≥ k0, the
following holds for all t ≤ T such that P(X,y)∼D[sign(ft(X)) 6= y] ≥ 0.01 and all i ∈ I :

Var[Si] ≥ β
(ct + bt)

2

k
.
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Function value stays O(1) with Ω(1) probability

Lemma B.7

�ere exists a constant C > 0 and constant k0 such that, for all k ≥ k0, the following holds

for all t ≤ T :

ct ≤ C.

Proof. Since we are doing stochastic gradient descent with stochastic gradients very close to

the population gradients, we can easily conclude that the loss cannot grow throughout training.

E[`(f0(X), y)] ≤ 1 at the start of training, so we must have E[`(ft(X), y)] ≤ 1 for all t ≤ T .

Let E denote the event that |Si| ≤ st log2 k ∀i ∈ I .

1 ≥ E[`(ft(X), y)]

= E[log(1 + exp(−Y ft(X)))]

=
1

2
E[log(1 + exp(−ft(X))) | Y = 1] +

1

2
E[log(1 + exp(ft(X))) | Y = −1]

≥ 1

2
E[ReLU(−ft(X)) | Y = 1] +

1

2
E[ReLU(ft(X)) | Y = −1]

= E[ReLU(−ft(X)) | Y = 1]

= E

[
ReLU

(
−(ct + bt)−

∑
i∈I

Si

)]

≥ E

[
ReLU

(
−(ct + bt)−

∑
i∈I

Si

) ∣∣∣∣∣ ∑
i∈I

Si ≤ −2(ct + bt)

]
P

[∑
i∈I

Si ≤ −2(ct + bt)

]

≥ (ct + bt)P

[∑
i∈I

Si ≤ −2(ct + bt)

]

= (ct + bt)

(
P

[∑
i∈I

Si ≤ −2(ct + bt) | E

]
P[E] + P

[∑
i∈I

Si ≤ −2(ct + bt) | ¬E

]
P[¬E]

)

≥ (ct + bt)P

[∑
i∈I

Si ≤ −2(ct + bt) | E

]
P[E].

Following the notation in the proof of Lemma B.6, we let u2
t := Var[Si | |Si| ≤ st log2 k], for

any i ∈ I . Since E[Si | |Si| ≤ st log2 k] = 0, we also have E[S2
i | |Si| ≤ st log2 k] = u2

t .

We then use Lemma B.6 and Berry-Esseen to lower bound P
[∑

i∈I Si ≤ −2(ct + bt) | E
]

as

follows, where C1 is some positive constant.

sup
x∈R

∣∣∣∣P(∑i∈I Si

ut
√
k
≤ x

∣∣∣∣ E)− Φ(x)

∣∣∣∣ ≤ C1√
k
· E[|Si|3 | |Si| ≤ st log2 k]

u3

≤ C1√
k
· st log2 k · E[|Si|2 | |Si| ≤ st log2 k]

u3
t
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=
C1√
k
· st log2 k

ut

≤ C1st log2 k√
β(ct + bt)

≤ C1

2
√
β

log3 k√
k
,

by Lemma B.6, which says that ut ≥
√
β ct+bt√

k
for some constant β > 0. Based on Lemma B.6,

we choose x such that x < 0 and |x| ≤ 2/
√
β. We obtain

P

[∑
i∈I

Si ≤ −2(ct + bt) | E

]
≥ Φ(x)− C1

2
√
β

log3 k√
k
≥ 1

2
Φ(x)

for su�ciently large k.

By Lemma B.6’s proof, we know that P[E] = 1− e−Ω(log4 k)
.

Pu�ing these pieces together, we obtain 1 ≥ E[`(ft(X), y)] = Φ(x)
4

(ct+bt), and by Lemma B.5,

we conclude that there must exist a constant C > 0 such that ct ≤ C .

Lemma B.8

For all t ≤ T , P[|S| < ct + bt + 10] ≥ 4/5.

Proof. We closely follow the proof of Lemma B.7. Since we are doing stochastic gradient descent

with stochastic gradients very close to the population gradients, we can easily conclude that the

loss cannot grow throughout training. E[`(f0(X), y)] ≤ 1 at the start of training, so we must

have E[`(ft(X), y)] ≤ 1 for all t ≤ T .

1 ≥ E[`(ft(X), y)]

= E[log(1 + exp(−Y ft(X)))]

=
1

2
E[log(1 + exp(−ft(X))) | Y = 1] +

1

2
E[log(1 + exp(ft(X))) | Y = −1]

≥ 1

2
E[ReLU(−ft(X)) | Y = 1] +

1

2
E[ReLU(ft(X)) | Y = −1]

= E[ReLU(−ft(X)) | Y = 1]

= E

[
ReLU

(
−(ct + bt)−

∑
i∈I

Si

)]

≥ E

[
ReLU

(
−(ct + bt)−

∑
i∈I

Si

) ∣∣∣∣∣ ∑
i∈I

Si ≤ −(ct + bt)− 10

]
P

[∑
i∈I

Si ≤ −(ct + bt)− 10

]

≥ 10 · P

[∑
i∈I

Si ≤ −(ct + bt)− 10

]
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= 5 · P

[∣∣∣∣∣∑
i∈I

Si

∣∣∣∣∣ ≥ (ct + bt) + 10

]

= 5 ·

(
1− P

[∣∣∣∣∣∑
i∈I

Si

∣∣∣∣∣ < (ct + bt) + 10

])
,

�nally yielding

P

[∣∣∣∣∣∑
i∈I

Si

∣∣∣∣∣ < (ct + bt) + 10

]
≥ 4/5.
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Initial growth of c

Lemma: Lemma 3.1, Full

For any constant H > 0, there exist constants A > 0 and k0 such that, for all k ≥ k0,

for any t ≤ T such that |ct| ≤ H/ log4 k, we have the following with probability at least

1− e−Ω̃(k)
over a mini-batch Z ∼ Dn of n = poly(k) samples:

1

n

∑
(X,y)∈Z

∇w`(ft(X), y) ·w? ≤ −A.

Proof. We recall the following:

∇wE[`(ft(X), y)] ·w? = E

[
−Y σ(−Y ft(X))

∑
i∈I

Ai

[
I{Zi + bt ≥ 0}+ I{−Zi + bt ≥ 0}

]]
︸ ︷︷ ︸

(1)

+

E

[
−σ(−Y f(X))

[
I{ctY + bt ≥ 0}+ I{−ctY + bt ≥ 0}

]]
︸ ︷︷ ︸

(2)

.

Let g(Y ) := ReLU

(
ctY +b

)
−ReLU

(
−ctY +b

)
. �en g(1) = −g(−1) and f(X) = S+g(Y ).

We �rst simplify (1) as follows:

(1) = E

[
−Y σ(−Y ft(X))

∑
i∈I

Ai

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]

= E

[
−σ
(
−S − g(1)

)∑
i∈I

Ai

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
P[Y = +1]

+ E

[
σ
(
S + g(−1)

)∑
i∈I

Ai

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
P[Y = −1]

=
1

2

∑
i∈I

E
[
−σ
(
−g(1)− (S−i + Si)

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
−σ
(
−g(1)− (S−i + Si)

)
AiI{Zi ≤ bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + (S−i + Si)

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + (S−i + Si)

)
AiI{Zi ≤ bt}

]
(g(−1) = −g(1))
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=
1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
AiI{Zi ≤ bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
AiI{Zi ≤ bt}

]
(S−i

d
= −S−i)

=
1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
AiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
AiI{Zi ≥ −bt}

]
(Zi

d
= −Zi).

We then collapse the four summands above. Le�ing a2 := −g(1) + S−i + Si, a1 :=
−g(1) + S−i − Si, and ∆ := a2 − a1 = 2Si, we have:

(1) =
∑
i∈I

E
[(
σ(a2)− σ(a1)

)
AiI{Zi ≥ −bt}

]
=
∑
i∈I

E
[(
σ(a2)− σ(a1)

)
Ai

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
∑
i∈I

E
[
E
[(
σ(a2)− σ(a1)

)
Ai

∣∣∣ Zj ∀j ∈ I, Zi ≥ −bt] ∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
∑
i∈I

E
[(
σ(a2)− σ(a1)

) 1

ct
Zi

c2
t

c2
t + v2

t

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
ct

c2
t + v2

t

∑
i∈I

E
[(
σ(a2)− σ(a1)

)
Zi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt].

We �rst note that (σ(a2) − σ(a1))Zi ≥ 0 for all instantiations of the random variables

Zi, i ∈ I . �is is because σ is monotonically increasing and sign(Si) = sign(Zi).

�en, using the fact that σ is 1/4-Lipschitz and |Si| ≤ max{2|Zi|, |Zi|+ |bt|} ≤ 2|Zi|+ |bt|,
we upper bound |(1)| as follows:

|(1)| = |ct|
c2
t + v2

t

∑
i∈I

E
[(
σ(a2)− σ(a1)

)
Zi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

≤ |ct|
c2
t + v2

t

∑
i∈I

E
[

1

2
SiZi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]
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≤ |ct|
c2
t + v2

t

∑
i∈I

E
[

1

2
(2Z2

i + |bt||Zi|)
∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
|ct|

c2
t + v2

t

∑
i∈I

(
E[Z2

i | Zi ≥ −bt] +
1

2
|bt|E[|Zi| | Zi ≥ −bt]

)
P[Zi ≥ −bt]

≤ |ct|
c2
t + v2

t

∑
i∈I

(
E[Z2

i | Zi ≥ |bt|] +
1

2
|bt|E[|Zi| | Zi ≥ |bt|]

)
P[Zi ≥ −bt]

=
|ct|

c2
t + v2

t

∑
i∈I

(
(c2
t + v2

t )σ
2

[
1 + αt

φ(αt)

Φc(αt)

]
+

1

2
|bt|
√
c2
t + v2

t σ
φ(αt)

Φc(αt)

)
P[Zi ≥ −bt]

= |ct|
∑
i∈I

(
σ2

[
1 + αt

φ(αt)

Φc(αt)

]
+

1

2
|bt|

1√
c2
t + v2

t

σ2

σ

φ(αt)

Φc(αt)

)
P[Zi ≥ −bt]

= |ct|
∑
i∈I

(
σ2

[
1 + αt

φ(αt)

Φc(αt)

]
+

1

2
σ2αt

φ(αt)

Φc(αt)

)
P[Zi ≥ −bt]

= |ct|
∑
i∈I

(
σ2 +

3

2
σ2αt

φ(αt)

Φc(αt)

)
P[Zi ≥ −bt].

Since αt ≤ 2
√

log k by Lemma B.5, we have |(1)| ≤ A1|ct| log3 k for some constant A1 > 0.

By Lemmas B.7 and B.8, there exists a constant A2 > 0 such that (2) ≤ −A2.

�us, if |ct| ≤ H 1
log4 k

for any constant H > 0, then there exists a constant A3 > 0 such that

(1) + (2) ≤ −A3 for any su�ciently large k.

Finally, by Lemma B.4, we have with probability at least 1− e−Ω̃(k)
,∥∥∥∥∥∥ 1

n

∑
(X,y)∈Z

∇w`(ft(X), y)− E [∇w`(ft(X), y)]

∥∥∥∥∥∥
2

≤ δ

ηpoly(k)
,

and therefore with probability at least 1− e−Ω̃(k)
,∣∣∣∣∣∣ 1n

∑
(X,y)∈Z

∇w`(ft(X), y) ·w? − E [∇w`(ft(X), y)] ·w?

∣∣∣∣∣∣ ≤ δ

ηpoly(k)
.

We conclude that, with probability at least 1− e−Ω̃(k)
, we have

1

n

∑
(X,y)∈Z

∇w`(ft(X), y) ·w? ≤ −A3 +
δ

ηpoly(k)
≤ −A

for some constant A > 0, for any su�ciently large k.
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Bounded growth of ‖w(t)
⊥ ‖2

Lemma: Lemma 3.2, Full

For any t ≤ T , we have the following with probability at least 1− e−Ω̃(k)
over a mini-batch

Z ∼ Dn of n = poly(k) samples:

‖w(t)
⊥ ‖2 − ‖w(t−1)

⊥ ‖2 ≤
δ

poly(k)
.

Proof.

∇wE[`(ft(X), y)] ·w(t)
⊥ /‖w

(t)
⊥ ‖2 = E

[
−Y σ(−Y ft(X))

∑
i∈I

Bi

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
.︸ ︷︷ ︸

(1)

Let g(Y ) := ReLU

(
ctY + bt

)
− ReLU

(
−ctY + bt

)
. �en g(1) = −g(−1) and ft(X) =

S + g(Y ).

We simplify (1) as follows:

(1) = E

[
−Y σ(−Y ft(X))

∑
i∈I

Bi

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]

= E

[
−σ
(
−S − g(1)

)∑
i∈I

Bi

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
P[Y = +1]

+ E

[
σ
(
S + g(−1)

)∑
i∈I

Bi

[
I{Zi ≥ −bt}+ I{Zi ≤ bt}

]]
P[Y = −1]

=
1

2

∑
i∈I

E
[
−σ
(
−g(1)− (S−i + Si)

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
−σ
(
−g(1)− (S−i + Si)

)
BiI{Zi ≤ bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + (S−i + Si)

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + (S−i + Si)

)
BiI{Zi ≤ bt}

]
(g(−1) = −g(1))

=
1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
BiI{Zi ≤ bt}

]
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+
1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
BiI{Zi ≤ bt}

]
(S−i

d
= −S−i)

=
1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
σ
(
−g(1) + S−i + Si

)
BiI{Zi ≥ −bt}

]
+

1

2

∑
i∈I

E
[
−σ
(
−g(1) + S−i − Si

)
BiI{Zi ≥ −bt}

]
(Zi

d
= −Zi).

We then collapse the four summands above. Le�ing a2 := −g(1) + S−i + Si, a1 :=
−g(1) + S−i − Si, and ∆ := a2 − a1 = 2Si, we have:

(1) =
∑
i∈I

E
[(
σ(a2)− σ(a1)

)
BiI{Zi ≥ −bt}

]
=
∑
i∈I

E
[(
σ(a2)− σ(a1)

)
Bi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
∑
i∈I

E
[
E
[(
σ(a2)− σ(a1)

)
Bi

∣∣∣ Zj ∀j ∈ I, Zi ≥ −bt] ∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
∑
i∈I

E
[(
σ(a2)− σ(a1)

) 1

vt
Zi

v2
t

c2
t + v2

t

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
vt

c2
t + v2

t

∑
i∈I

E
[(
σ(a2)− σ(a1)

)
Zi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt].

We �rst note that (σ(a2) − σ(a1))Zi ≥ 0 for all instantiations of the random variables

Zi, i ∈ I . �is is because σ is monotonically increasing and sign(Si) = sign(Zi). �en, using

the fact that σ is 1/4-Lipschitz and |Si| ≤ max{2|Zi|, |Zi|+ |bt|} ≤ 2|Zi|+ |bt|, we upper bound

(1) as follows:

(1) =
vt

c2
t + v2

t

∑
i∈I

E
[(
σ(a2)− σ(a1)

)
Zi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

≤ vt
c2
t + v2

t

∑
i∈I

E
[

1

2
SiZi

∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

≤ vt
c2
t + v2

t

∑
i∈I

E
[

1

2
(2Z2

i + |bt||Zi|)
∣∣∣ Zi ≥ −bt]P[Zi ≥ −bt]

=
vt

c2
t + v2

t

∑
i∈I

(
E[Z2

i | Zi ≥ −bt] +
1

2
|bt|E[|Zi| | Zi ≥ −bt]

)
P[Zi ≥ −bt]
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≤ vt
c2
t + v2

t

∑
i∈I

(
E[Z2

i | Zi ≥ |bt|] +
1

2
|bt|E[|Zi| | Zi ≥ |bt|]

)
P[Zi ≥ −bt]

=
vt

c2
t + v2

t

∑
i∈I

(
(c2
t + v2

t )σ
2

[
1 + αt

φ(αt)

Φc(αt)

]
+

1

2
|bt|
√
c2
t + v2

t σ
φ(αt)

Φc(αt)

)
P[Zi ≥ −bt]

= vt
∑
i∈I

(
σ2

[
1 + αt

φ(αt)

Φc(αt)

]
+

1

2
|bt|

1√
c2
t + v2

t

σ2

σ

φ(αt)

Φc(αt)

)
P[Zi ≥ −bt]

= vt
∑
i∈I

(
σ2

[
1 + αt

φ(αt)

Φc(αt)

]
+

1

2
σ2αt

φ(αt)

Φc(αt)

)
P[Zi ≥ −bt]

= vt
∑
i∈I

(
σ2 +

3

2
σ2αt

φ(αt)

Φc(αt)

)
P[Zi ≥ −bt].

Since αt ≤ 2
√

log k by Lemma B.5, we have (1) ≤ Avt log3 k for some constant A > 0. On

its own, this would cause vt to decrease toward 0. Finally, by Lemma B.4, with probability at

least 1− e−Ω̃(k)
:∥∥∥∥∥∥ 1

n

∑
(X,y)∈Z

∇w`(f(X), y)− E [∇w`(f(X), y)]

∥∥∥∥∥∥
2

≤ δ

ηpoly(k)
.

�us, for any t, ‖w(t+1)
⊥ ‖2 − ‖w(t)

⊥ ‖2 ≤ δ
poly(k)

.
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b decreasing

Lemma B.9

�ere exists a constant C1 > 0 and a constant k0 such that, for all k ≥ k0, we have the

following for all t ≤ T for which bt < 0 and for all i ∈ I :

E[|Si|] ≥ C1

√
Var[Si]

k3/4
.

Proof. Consider an arbitrary t ≤ T .

�e probability of misclassi�cation is P[S > ct + bt].

Let B denote the event that ∀i ∈ I , Zi ≤ 2st
√

log k. By Lemma B.1, P[¬B] ≤ 1/k.

Let M =
∑

i∈I I{Zi ≥ −bt}.
We �rst note that, for su�ciently large k, we have P[S > ct + bt | B,M < k1/4] = 0. �is is

because, conditioned on both B and M < k1/4
, we have:

S < k1/4 · 2st
√

log k

=
2k1/4

√
c2
t + v2

t log3/2 k√
k

=
2
√
c2
t + v2

t log3/2 k

k1/4

<
1

2
ct

< ct + bt,

by Lemmas 3.2 and B.5, for su�ciently large k.

Let P = P[Zi ≥ −bt] and let P ′ = P[Zi ≥ −bt | B], for any i ∈ I . We note that

1
2
P[Si 6= 0] = P ≥ P ′, and therefore P[Si 6= 0] ≥ 2P ′.

We then upper bound P[S > ct + bt] as follows:

0.01 ≤ P[S > ct + bt] = P[S > ct + bt | B]P[B] + P[S > ct + bt | ¬B]P[¬B]

≤ P[S > ct + bt | B] + P[¬B]

= P[S > ct + bt | B,M < k1/4]P[M < k1/4 | B]

+ P[S > ct + bt | B,M ≥ k1/4]P[M ≥ k1/4 | B] + P[¬B]

= P[S > ct + bt | B,M ≥ k1/4]P[M ≥ k1/4 | B] + P[¬B]

≤ P[M ≥ k1/4 | B] + P[¬B]

≤ P[M ≥ k1/4 | B] + 1/k.

We therefore have P[M ≥ k1/4 | B] ≥ 0.01 − 1/k ≥ 0.005 for su�ciently large k. So, via

Cherno�, we conclude that there exists a constant C6 > 0 such that P ′ ≥ C6
1

k3/4
and thus there

exists a constant C5 > 0 such that P[Si 6= 0] ≥ C5
1

k3/4
.
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Via Equations B.1 and B.2, we have

E[|Si|]√
Var[Si]

≥ C ′4
√

Φc(αt) = C4

√
P[Si 6= 0] ≥ C4C5

√
1

k3/4
,

completing the proof.

Lemma: Lemma 3.3, Full

�ere exist constants C,C2 > 0 and a constant k0 such that, for all k ≥ k0, for any t ≤ T

such that ct ≥ C2/ log4 k, we have the following with probability at least 1− e−Ω̃(k)
over a

mini-batch Z ∼ Dn of n = poly(k) samples:

1

n

∑
(X,y)∈Z

∇b`(ft(X), y) ≥ C.

Proof. Consider an arbitrary t ≤ T such that ct ≥ C2/ log4 k.

∇bE[`(ft(X), y)] =
∑
i∈I

E
[
σ′(−Y f−i(X)) (ReLU(Zi + bt) + ReLU(−Zi + bt))

]
︸ ︷︷ ︸

(1)

− E [Y σ(−Y ft(X)) (I{ctY ≥ −bt} − I{ctY ≤ bt})]︸ ︷︷ ︸
(2)

,

where (1) comes from a �rst-order Taylor expansion of the sigmoid function σ around−Y f−i(X),

σ′ is the �rst derivative of σ, and −Y f−i(X) is some value between −Y f−i(X) and −Y ft(X)
so that σ(−Y ft(X)) = σ(−Y f−i(X)) + σ′(−Y f−i(X))(−Y ft(X) + Y f−i(X)) holds with

equality.

By Corollary B.1, Var[Si] ≥ β(ct + bt)
2/k.

By Lemma B.9, when bt < 0, we have

E[|Si|] ≥ C1

√
Var[Si]

k3/4
≥ C1

√
β
ct + bt
k7/8

.

When bt ≥ 0 instead of < 0, this only increases E[|Si|]. Combined with Lemma B.5, we

conclude that, for any bt, we have: ∑
i∈I

E[|Si|] ≥ C ′1ctk
1/8,

for some constant C ′1 > 0.
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Let E1 be the event that f−i(X) ≤ C + 10. Let E2 be the event that fi(X) ≤ 1. Let

E = E1 ∩ E2. Under E and Lemma B.7, σ′(−Y f−i(X)) is at least some constant D > 0.

(1) = E
[
σ′(−Y f−i(X)) (ReLU(Zi + b) + ReLU(−Zi + b)) | E1, E2

]
P[E1]P[E2]

+ E
[
σ′(−Y f−i(X)) (ReLU(Zi + b) + ReLU(−Zi + b)) | ¬E

]
P[¬E]

≥ D′ · E[ReLU(Zi + b) + ReLU(−Zi + b) | E2],

for some constant D′ = D · P[E].

Finally, we related the conditioned expectation to the unconditioned expectation as follows:

E[ReLU(Zi + b) + ReLU(−Zi + b)]

= E[ReLU(Zi + b) + ReLU(−Zi + b) | E2]P[E2]

+ E[ReLU(Zi + b) + ReLU(−Zi + b) | ¬E2]P[¬E2]

= E[ReLU(Zi + b) + ReLU(−Zi + b) | E2](1− e−Ω̃(k)) + e−Ω̃(k),

so we have

E[ReLU(Zi + b) + ReLU(−Zi + b) | E2] =
E[ReLU(Zi + b) + ReLU(−Zi + b)]− e−Ω̃(k)

1− e−Ω̃(k)
.

�us, (1) ≥ A · E[ReLU(Zi + b) + ReLU(−Zi + b)], for some constant A > 0.

We have a trivial upper bound on (2) of 1 (because σ and the indicators are bounded).

�erefore, for ct ≥ C2/ log4 k, as speci�ed, we have ∇bE[`(ft(X), y)] = k · (1)− (2) ≥ 2C
for su�ciently large k.

Finally, by Lemma B.4, we have the following with probability at least 1 − e−Ω̃(k)
, over a

mini-batch Z ∼ Dn of n = poly(k) samples:

1

n

∑
(X,y)∈Z

∇b`(ft(X), y) ≥ C.
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Conclusion: e�ciency in time and sample complexity

�eorem: �eorem 3.1

�ere exists an absolute constant k0 such that, for every k ≥ k0, using poly(k) samples from

D, learning rate η = 1/poly(k), and T = poly(k) iterations, w.h.p. over the randomness

of the initialization and the samples, we have Pr(X,y)∼D[sign(fT (X)) 6= y] ≤ 0.01, for the

�nal network fT returned by Algorithm 3.1.

Proof. �roughout, consider the largest k0 such that all intermediate lemmas hold for all k ≥ k0.

�en, for all k ≥ k0, we have the following.

By Lemma 3.3, there exist constants C,C2 > 0 such that, for all k ≥ k0, for any t ≤ T such

that ct ≥ C2/ log4 k, the following holds with probability at least 1− e−Ω̃(k)
over a mini-batch

Z ∼ Dn of n = poly(k) samples:

1

n

∑
(X,y)∈Z

∇b`(ft(X), y) ≥ C.

By Lemma 3.1, plugging in H = 2C2, there exists a constant A > 0 such that, for all k ≥ k0,

for any t ≤ T such that |ct| ≤ 2C2/ log4 k, we have the following with probability at least

1− e−Ω̃(k)
over a mini-batch Z ∼ Dn of n = poly(k) samples:

1

n

∑
(X,y)∈Z

∇w`(ft(X), y) ·w? ≤ −A.

�erefore, within T1 = ( 2C2

log4 k
+ δ) 1

ηA
= poly(k) iterations, ct will rise to 2C2/ log4 k. Since

we only have poly(k) iterations, the overall failure probability for this �rst phase is still e−Ω̃(k)
.

Although ct is not guaranteed to continue increasing, Lemma 3.1 guarantees that ct will not drop

below C2/ log4 k a�er it reaches 2C2/ log4 k.

Once ct has reached C2/ log4 k, Lemma 3.3 says that, with probability at least 1− e−Ω̃(k)
per

iteration,
1
n

∑
(X,y)∈Z ∇b`(ft(X), y) ≥ C . �us, bt will decrease at a rate of ηbC per iteration.

By Lemma 3.2, while t ≤ poly(k), we have vt ≤ 2δ. Since ct ≥ C2/ log4 k and vt ≤ 2δ, we

have (loosely) st ≤ 2ctσ, and so
|bt|
st
≥ |bt|

2ctσ
.

By Lemma B.5, once we have αt = |bt|/st > 2
√

log k, we will have P(X,y)∼D[sign(ft(X)) 6=
y] < 0.01. By Lemma B.7, there exists a constant C3 > 0 such that ct ≤ C3. �us, once

|bt|
2C3σ

>

2
√

log k, or equivalently |bt| > 4C3
log3/2 k√

k
, we will have P(X,y)∼D[sign(ft(X)) 6= y] < 0.01.

Since b is decreasing at a rate of at least ηbC per iteration, this occurs withinT2 = (4C3
log3/2 k√

k
+

C2

log4 k
ηb
η

) 1
ηbC

iterations, where
C2

log4 k
ηb
η

accounts for b’s initial growth at the beginning of training.

Since T1 + T2 = poly(k), we reach �nal classi�cation error ≤ 0.01 within poly(k) iterations

(assuming the poly(k) in Lemma 3.2 is at least T1 + T2).
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Since a mini-batch of size n = poly(k) is used per iteration, the �nal sample complexity

over poly(k) total iterations is also poly(k).

Since the failure probability per iteration is e−Ω̃(k)
, the total failure probability over initial-

ization and poly(k) iterations is also e−Ω̃(k)
. �is completes the proof.
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B.2 Full Proofs for Section 3.5

Lemma B.10: Small ball probability

Consider n independent Rademacher random variables ξi for i ∈ [n] and constants ai
for i ∈ [n] such that |ai| ≥ 1. �en, for any length-2∆ interval B, for ∆ > 0, we have

P
[∑

i∈[n] ξiai ∈ B
]
≤ s
√

2
π

+o(1)
√
n

whenever s ≤ n and s − 1 ≤ ∆ < s for some natural

number s.

B.2.1 Warm up: one �lter

We �rst present a proof when there is only one �lter, to help elucidate the proof skeleton. �en,

in Section B.2.2, we provide the full proof of �eorem 3.2. Readers can ignore this subsection

and skip directly to Section B.2.2 if they like; this subsection is merely provided to help make

some of the themes in Section B.2.2 a bit clearer.

Theorem B.1: m = 1

�ere exists k1 ∈ N such that, for all k ≥ k1, with probability at least 0.999 over the

random initialization w(0) ∼ N (0, σ2
0Id), the following holds for all w ∈ Rd, b ∈ R:

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 0.1.

Proof. We recall that the �nite-width CNTK is de�ned as:

kw(X) =
∑

i∈[k+1]

〈w, Xi〉1|〈w(0),Xi〉|+b≥0.

�is comes from the gradient of the CNN function fw,b(X) with respect to w:

∇wfw,b(X) =
k+1∑
i=1

Xi [I{〈w, Xi〉+ b > 0}+ I{−〈w, Xi〉+ b > 0}] .

For convenience, for a single row of the input image X , denoted x ∈ Rd
, we de�ne

g(x) := 〈w, x〉1|〈w(0),x〉|+b≥0,

which represents the total contribution to kw(X) coming from x. We thus have

kw(X) =
∑

i∈[k+1]

g(Xi) = g(yw?) +
∑
i∈I

g(εi).

If y(g(yw?)) ≤ 0, then by symmetry of g(εi), we have PX,y∼D
[
y
∑

i∈I g(εi) ≤ 0
]

= 0.5, so

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 0.5 > 0.1.
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It thus remains to consider the more complex case y(g(yw?)) > 0.

�ere exists some constant D0.999 > 0 such that

Pw(0)∼N (0,σ2
0I)

∣∣∣∣〈 w(0)

‖w(0)‖
,w?

〉∣∣∣∣ ≤ D0.999√
d︸ ︷︷ ︸

Init Event

 ≥ 0.999.

We assume w(0)
satis�es the Init Event. �en, by Lemma B.11, for any w, b, there exist

constants C > 0, pC ∈ (0, 1] such that

p := Pεi∼N (0,σ2Id)

[
|g(εi)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

Event A

]
≥ pC .

Since each noise row has the same distribution, the same C, p, pC hold for all i ∈ I .

Let I+ := {i ∈ I : |g(εi)| ≥ Cσ|g(w?)|} and let I− := I \ I+
.

By Cherno�, P[|I+| ≤ 0.5kp] ≤ e−0.52kp/2
.

Applying Lemma B.10, we obtain:

P

[∑
i∈I+

g(εi) ∈
[
−|g(w?)|, |g(w?)|

]]
= P

[∑
i∈I+

g(εi)

Cσ|g(w?)|
∈
[
− |g(w?)|
Cσ|g(w?)|

,
|g(w?)|

Cσ|g(w?)|

]]

= P

[∑
i∈I+

g(εi)

Cσ|g(w?)|
∈
[
− 1

Cσ
,

1

Cσ

]]

= O

(
1

σ
√
|I+|

)
.

�us, the probability of misclassi�cation P(X,y)∼D[sign(kw(X)) 6= y] is at least:

(We have sign(0) := 0, so kw(X) = 0 is necessarily a misclassi�cation event.)

P(X,y)∼D[sign(kw(X)) 6= y] = P(X,y)∼D[ykw(X) ≤ 0]

= P(X,y)∼D

[
y
∑
i∈I

g(εi) ≤ −yg(w?)

]

≥ P(X,y)∼D

[∑
i∈I

g(εi) ≥ |g(w?)|

]

≥ P(X,y)∼D

[∑
i∈I+

g(εi) ≥ |g(w?)|,
∑
i∈I−

g(εi) ≥ 0

]

= P(X,y)∼D

[∑
i∈I+

g(εi) ≥ |g(w?)|

]
· P(X,y)∼D

[∑
i∈I−

g(εi) ≥ 0

]
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=
1

2
P(X,y)∼D

[∑
i∈I+

g(εi) ≥ |g(w?)|

]

=
1

4
P(X,y)∼D

[∑
i∈I+

g(εi) /∈
(
−|g(w?)|, |g(w?)|

)]

=
1

4

(
1− P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)])

P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)]

= P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)
| |I+| ≤ 0.5kp

]
︸ ︷︷ ︸

≤1

P[|I+| ≤ 0.5kp]

+ P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)
| |I+| > 0.5kp

]
P[|I+| > 0.5kp]︸ ︷︷ ︸

≤1

≤ e−0.52kp/2 +O

(
1

σ
√
kp

)

≤ O

(
1

(log k)
√
pC

)

= O

(
1

log k

)
.

Pu�ing this together, we get

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 1

4
(1−O(1/ log k)) .

�us, there exists k1 ∈ N such that, for all k ≥ k1, with probability at least 0.999 over the

random initialization w(0) ∼ N (0, σ2
0Id), the following holds for all w ∈ Rd, b ∈ R:

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 0.1.

Lemma B.11: m = 1

Assume w(0)
satis�es the Init Event. �en, for any w, b, there exist constants C > 0, pC ∈
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(0, 1] such that

Pε∼N (0,σ2Id)

[
|g(ε)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

Event A

]
≥ pC .

Proof. As a reminder, in this lemma, we are looking exclusively at the m = 1 case. When m = 1,

we have:

g(w?) = 〈w,w?〉1|〈w(0),w?〉|+b≥0.

We now consider di�erent possible se�ings of w(0),w, b, via a case analysis.

Case 1: Suppose |〈w(0),w?〉|+ b < 0. �en g(w?) = 0. |g(ε)| ≥ 0, so for all C > 0, pC = 1
satis�es the lemma statement.

Case 2: Suppose |〈w(0),w?〉|+ b ≥ 0. �en g(w?) = 〈w,w?〉, so Event A becomes:

|〈w, ε〉1|〈w(0),ε〉|+b≥0| ≥ Cσ|〈w,w?〉|.

Let E be the event that |〈w(0), ε〉| ≥ |〈w(0),w?〉|. We are introducing E so that we can

condition A on E and thus simplify our analysis of P[A]. We can simplify P[E] as follows, for

use later:

Pε∼N (0,σ2Id)[E] = Px∼N (0,σ2)

[
|x| ≥

∣∣∣∣〈 w(0)

‖w(0)‖
,w?

〉∣∣∣∣] .
We therefore analyze P[A] as follows:

Pε∼N (0,σ2Id)[A] = Pε∼N (0,σ2Id)[A | E]Pε∼N (0,σ2Id)[E] + Pε∼N (0,σ2Id)[A | ¬E]Pε∼N (0,σ2Id)[¬E]

≥ Pε∼N (0,σ2Id)[A | E]Pε∼N (0,σ2Id)[E]

= Pε∼N (0,σ2Id)[|〈w, ε〉| ≥ Cσ|〈w,w?〉| | E]Pε∼N (0,σ2Id)[E]

≥ Pε∼N (0,σ2Id)[|〈w, ε〉| ≥ Cσ|〈w,w?〉|]Pε∼N (0,σ2Id)[E]

= Pε∼N (0,σ2Id)

[
1

σ

∣∣∣∣〈 w

‖w‖
, ε

〉∣∣∣∣ ≥ C

∣∣∣∣〈 w

‖w‖
,w?

〉∣∣∣∣]Pε∼N (0,σ2Id)[E]

= Px∼N (0,1)

[
|x| ≥ C

∣∣∣∣〈 w

‖w‖
,w?

〉∣∣∣∣]Pε∼N (0,σ2Id)[E]

= Px∼N (0,1)

[
|x| ≥ C

∣∣∣∣〈 w

‖w‖
,w?

〉∣∣∣∣]Px∼N (0,σ2)

[
|x| ≥

∣∣∣∣〈 w(0)

‖w(0)‖
,w?

〉∣∣∣∣]
�e �rst probability depends on C and the angle between w and w?.

�e second probability depends on σ and the angle between w(0)
and w?.

B.2.2 Multiple �lters

�roughout, we use the shorthand w(0)
to denote {w(0)

j }j∈[m], w to denote {wj}j∈[m], and b to

denote {bj}j∈[m].
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�eorem: �eorem 3.2

For any C > 0, if there exists k0 such that m ≤ C for all k ≥ k0, then there exists k1 ≥ k0

such that, for all k ≥ k1, with probability at least 0.999 over the random initialization

{w(0)
j }j∈[m] where each w

(0)
j i.i.d. ∼ N (0, σ2

0I), the following holds for every set of weights

w := {wj}j∈[m] and every set of biases b := {bj}j∈[m],

Pr
X,y∼D

[sign(kw(X)) 6= y] ≥ 0.1.

Proof. We recall that the �nite-width CNTK is de�ned as:

kw(X) =
∑

i∈[k+1]

∑
j∈[m]

〈wj, Xi〉1|〈w(0)
j ,Xi〉|+bj≥0

.

�is comes from the gradient of the CNN function fw,b(X) with respect to w:

∇wfw,b(X) =
k+1∑
i=1

Xi [I{〈w, Xi〉+ b > 0}+ I{−〈w, Xi〉+ b > 0}] .

�ere exist some positive constants D
(l)
0.999, D

(u)
0.999, D

(p)
0.999 > 0 such that

Pw(0)

[
∀j ∈ [m],

D
(l)
0.999√
d
≤

∣∣∣∣∣
〈

w
(0)
j

‖w(0)
j ‖

,w?

〉∣∣∣∣∣ ≤ D
(u)
0.999√
d︸ ︷︷ ︸

Init Event

⋂

∀(j, j′) ∈ J ,

∣∣∣∣∣
〈

w
(0)
j

‖w(0)
j ‖2

,
w

(0)
j′

‖w(0)
j′ ‖2

〉∣∣∣∣∣ ≤ D
(p)
0.999√
d

]
≥ 0.999.

For convenience, for a single row of the input image X , denoted x ∈ Rd
, we de�ne

g(x) :=
∑
j∈[m]

〈wj, x〉1|〈w(0)
j ,x〉|+bj≥0

,

which represents the total contribution to kw(X) coming from x. We thus have

kw(X) =
∑

i∈[k+1]

g(Xi) = g(yw?) +
∑
i∈I

g(εi).

�roughout the remainder of the proof, we consider arbitrary initialization w(0)
satisfying

the above criteria and arbitrary w, b.

If y(g(yw?)) ≤ 0, then by symmetry of g(εi), we have PX,y∼D
[
y
∑

i∈I g(εi) ≤ 0
]

= 0.5, so

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 0.5 > 0.1.
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It thus remains to consider the more complex case y(g(yw?)) > 0.

By Lemma B.12, for any w, b, there exist constants C > 0, pC ∈ (0, 1] such that

p := Pεi∼N (0,σ2Id)

[
|g(εi)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

Event A

]
≥ pC .

Since each noise row has the same distribution, the same C, p, pC hold for all i ∈ I .

Let I+ := {i ∈ I : |g(εi)| ≥ Cσ|g(w?)|} and let I− := I \ I+
.

By Cherno�, P[|I+| ≤ 0.5kp] ≤ e−0.52kp/2
.

Applying Lemma B.10, we obtain:

P

[∑
i∈I+

g(εi) ∈
[
−|g(w?)|, |g(w?)|

]]
= P

[∑
i∈I+

g(εi)

Cσ|g(w?)|
∈
[
− |g(w?)|
Cσ|g(w?)|

,
|g(w?)|

Cσ|g(w?)|

]]

= P

[∑
i∈I+

g(εi)

Cσ|g(w?)|
∈
[
− 1

Cσ
,

1

Cσ

]]

= O

(
1

σ
√
|I+|

)
.

�us, the probability of misclassi�cation P(X,y)∼D[sign(kw(X)) 6= y] is at least:

(We have sign(0) := 0, so kw(X) = 0 is necessarily a misclassi�cation event.)

P(X,y)∼D[sign(kw(X)) 6= y] = P(X,y)∼D[ykw(X) ≤ 0]

= P(X,y)∼D

[
y
∑
i∈I

g(εi) ≤ −yg(w?)

]

≥ P(X,y)∼D

[∑
i∈I

g(εi) ≥ |g(w?)|

]

≥ P(X,y)∼D

[∑
i∈I+

g(εi) ≥ |g(w?)|,
∑
i∈I−

g(εi) ≥ 0

]

= P(X,y)∼D

[∑
i∈I+

g(εi) ≥ |g(w?)|

]
· P(X,y)∼D

[∑
i∈I−

g(εi) ≥ 0

]

=
1

2
P(X,y)∼D

[∑
i∈I+

g(εi) ≥ |g(w?)|

]

=
1

4
P(X,y)∼D

[∑
i∈I+

g(εi) /∈
(
−|g(w?)|, |g(w?)|

)]

=
1

4

(
1− P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)])
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P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)]

= P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)
| |I+| ≤ 0.5kp

]
︸ ︷︷ ︸

≤1

P[|I+| ≤ 0.5kp]

+ P(X,y)∼D

[∑
i∈I+

g(εi) ∈
(
−|g(w?)|, |g(w?)|

)
| |I+| > 0.5kp

]
P[|I+| > 0.5kp]︸ ︷︷ ︸

≤1

≤ e−0.52kp/2 +O

(
1

σ
√
kp

)

≤ O

(
1

(log k)
√
pC

)

= O

(
1

log k

)
.

Pu�ing this together, we get

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 1

4
(1−O(1/ log k)) .

�us, there exists k1 ∈ N such that, for all k ≥ k1, with probability at least 0.999 over the

random initialization w(0) ∼ N (0, σ2
0Id), the following holds for all w ∈ Rd, b ∈ R:

P(X,y)∼D[sign(kw(X)) 6= y] ≥ 0.1.

Lemma B.12: general case: 1 ≤ m ≤ C

Assume w(0)
satis�es the Init Event. �en, for any w, b, there exist constants C > 0, pC ∈

(0, 1] such that

Pε∼N (0,σ2Id)

[
|g(ε)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

Event A

]
≥ pC .

Proof. We �rst consider the trivial case where g(w?) = 0. We necessarily have |g(ε)| ≥ 0, so

for all C > 0, pC = 1 satis�es the lemma statement. So throughout the rest of this proof, we

focus on the case where g(w?) 6= 0.
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For any w ∈ Rd
, de�ne

M(w) := {j ∈ [m] : |〈w(0)
j ,w〉|+ bj ≥ 0}.

Note that, for any w,M(w) depends on the random initialization w(0)
and the chosen bias b.

We useM to write g(w?), g(ε) as follows:

g(w?) =
∑
j∈[m]

〈wj,w?〉1|〈w(0)
j ,w?〉|+bj≥0

=
∑

j∈M(w?)

〈wj,w?〉 =

〈 ∑
j∈M(w?)

wj,w?

〉

g(ε) =
∑
j∈[m]

〈wj, ε〉1|〈w(0)
j ,ε〉|+bj≥0

=
∑

j∈M(ε)

〈wj, ε〉 =

〈 ∑
j∈M(ε)

wj, ε

〉
.

We �rst show that P[M(ε) = M(w?)] ≥ q, for some constant q > 0, the proof of which

continues until (B.9).

For j ∈ [m], let v̂j :=
w

(0)
j

‖w(0)
j ‖

, and let {uj}j∈[m] be the unnormalized output of Gram-Schmidt

applied to {v̂j}j∈[m]. Formally, Gram-Schmidt will yield:

u1 = v̂1

uj = v̂j −
j−1∑
i=1

〈v̂j, ui〉
〈ui, ui〉

ui.

We will show that the following invariant holds for all j ∈ [m]:

uj = v̂j ±O
(

1√
d

)
v̂1 ± · · · ± O

(
1√
d

)
v̂j−1. (B.7)

By the triangle inequality, (B.7) yields ‖uj‖ ≤ 1 +O
(

1√
d

)
and ‖uj‖ ≥ 1−O

(
1√
d

)
, which

implies

‖uj‖ = Θ(1). (B.8)

For j = 1, (B.7) holds because uj = v̂1 by de�nition.

For any j > 1, assuming (B.7) holds for all i < j (and thus its corollary (B.8)), we have

uj = v̂j −
j−1∑
i=1

〈
v̂j, v̂i ±O

(
1√
d

)
v̂1 ± · · · ± O

(
1√
d

)
v̂i−1

〉
‖ui‖2

[
v̂i ±O

(
1√
d

)
v̂1 ± · · · ± O

(
1√
d

)
v̂i−1

]
= v̂j ±O

(
1√
d

)
v̂1 ± · · · ± O

(
1√
d

)
v̂j−1.

With invariants (B.7) and (B.8) holding for all j ∈ [m], we can now lower bound P[M(ε) =
M(w?)].
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We �rst de�ne E1 as the event that, for all j ∈M(w?), |〈v̂j, ε〉| ≥ |〈v̂j,w?〉|.
We de�ne E2 as the event that, for all j ∈ [m] \M(w?), |〈v̂j, ε〉| ≤ |〈v̂j,w?〉|.
We then have

P[M(ε) =M(w?)] ≥ P [E1 ∩ E2] .

We will then lower bound P [E1 ∩ E2] by considering the probability that each |〈v̂j, ε〉|
belongs to a particular interval.

We de�ne the two intervals

I(l) :=

[
D

(l)
0.999

2
√
d
,
D

(l)
0.999√
d

]
, I(u) :=

[
D

(u)
0.999√
d
,
2D

(u)
0.999√
d

]
.

Since the Init Event holds, we can see that |〈v̂j, ε〉| ∈ I(l) =⇒ |〈v̂j, ε〉| ≤ |〈v̂j,w?〉|.
Analogously, |〈v̂j, ε〉| ∈ I(u) =⇒ |〈v̂j, ε〉| ≥ |〈v̂j,w?〉|.
�us, for all j ∈M(w?), let Ij represent I(u)

, and for all j ∈ [m] \M(w?), let Ij represent

I(l)
.

We then have

P [E1 ∩ E2] ≥ P[(∀j ∈ [m]) |〈v̂j, ε〉| ∈ Ij]

=
m∏
j=1

P
[
|〈v̂j, ε〉| ∈ Ij

∣∣∣ |〈v̂1, ε〉| ∈ I1, . . . , |〈v̂j−1, ε〉| ∈ Ij−1

]
.

We consider P
[
|〈v̂j, ε〉| ∈ Ij

∣∣∣ |〈v̂1, ε〉| ∈ I1, . . . , |〈v̂j−1, ε〉| ∈ Ij−1

]
for an arbitrary j ∈ [m].

P
[
|〈v̂j, ε〉| ∈ Ij

∣∣∣ |〈v̂1, ε〉| ∈ I1, . . . , |〈v̂j−1, ε〉| ∈ Ij−1

]
= P

[∣∣∣∣〈uj ±O( 1√
d

)
v̂1 ± · · · ± O

(
1√
d

)
v̂j−1, ε

〉∣∣∣∣ ∈ Ij
∣∣∣∣∣ |〈v̂1, ε〉| ∈ I1, . . . , |〈v̂j−1, ε〉| ∈ Ij−1

]

= P

[∣∣∣∣〈uj, ε〉 ± O(1

d

)∣∣∣∣ ∈ Ij
∣∣∣∣∣ |〈v̂1, ε〉| ∈ I1, . . . , |〈v̂j−1, ε〉| ∈ Ij−1

]

= P
[∣∣∣∣〈uj, ε〉 ± O(1

d

)∣∣∣∣ ∈ Ij]
= Px∼N (0,‖uj‖2σ2)

[∣∣∣∣x±O(1

d

)∣∣∣∣ ∈ Ij]

=


Px∼N (0,‖uj‖2σ2)

[
|x| ∈

[
D

(l)
0.999

2
√
d

+O
(

1
d

)
,
D

(l)
0.999√
d
−O

(
1
d

)]]
if Ij = I(l)

Px∼N (0,‖uj‖2σ2)

[
|x| ∈

[
D

(u)
0.999√
d

+O
(

1
d

)
,

2D
(u)
0.999√
d
−O

(
1
d

)]]
if Ij = I(u)

.
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Since ‖uj‖σ = Θ
(

1√
d

)
, in either case the probability is at least a constant.

�us, for some constant qj > 0, we have

P
[
|〈v̂j, ε〉| ∈ Ij

∣∣∣ |〈v̂1, ε〉| ∈ I1, . . . , |〈v̂j−1, ε〉| ∈ Ij−1

]
= qj.

So we obtain

P[M(ε) =M(w?)] ≥ P [E1 ∩ E2] ≥ P[(∀j ∈ [m]) |〈v̂j, ε〉| ∈ Ij] =
m∏
j=1

qj =: q, (B.9)

for some constant q > 0.

Let

v̂ :=

∑
j∈M(w?) wj

‖
∑

j∈M(w?) wj‖2

.

Unless otherwise speci�ed, P means Pε∼N (0,σ2Id):

P
[
|g(ε)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

Event A

]
≥ P

M(ε) =M(w?),

∣∣∣∣∣∣
〈 ∑
j∈M(w?)

wj, ε

〉∣∣∣∣∣∣ ≥ Cσ|g(w?)|


1− P

[
|g(ε)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

Event A

]
≤ 1− P

M(ε) =M(w?),

∣∣∣∣∣∣
〈 ∑
j∈M(w?)

wj, ε

〉∣∣∣∣∣∣ ≥ Cσ|g(w?)|


= P

¬
M(ε) =M(w?),

∣∣∣∣∣∣
〈 ∑
j∈M(w?)

wj, ε

〉∣∣∣∣∣∣ ≥ Cσ|g(w?)|


= P

¬(M(ε) =M(w?)

)
∪ ¬

∣∣∣∣∣∣
〈 ∑
j∈M(w?)

wj, ε

〉∣∣∣∣∣∣ ≥ Cσ|g(w?)|


≤ 1− P[M(ε) =M(w?)] + P

∣∣∣∣∣∣
〈 ∑
j∈M(w?)

wj, ε

〉∣∣∣∣∣∣ < Cσ|g(w?)|


≤ 1− q + P

[
1

σ
|〈v̂, ε〉| < C |〈v̂,w?〉|

]
= 1− q + Px∼N (0,1) [|x| < C |〈v̂,w?〉|] .

�ere exists a C > 0 such that Px∼N (0,1) [|x| < C |〈v̂,w?〉|] = q/2.

We thus have 1− P
[
|g(ε)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

Event A

]
≤ 1− q/2, so P

[
|g(ε)| ≥ Cσ|g(w?)|︸ ︷︷ ︸

Event A

]
≥ q/2.
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B.3 Experiment Details

Details of all experiments are reported here. Code to reproduce the experiments is available at

h�ps://github.com/skarp/local-signal-adaptivity. All experiments were run on a single Nvidia

GeForce RTX 2080 Ti GPU on an internal cluster and took between 2 and 10 hours per run.

Models were implemented using the jax python library (Bradbury et al., 2018), with the

neural-tangents library (Novak et al., 2020) used for the NTK implementation and some

code borrowed from the autol2 library (Lewkowycz and Gur-Ari, 2020). All three libraries

are available under an Apache License, Version 2.0.

Synthetic data. �e experiments with our model on synthetic data (Figure 3.3) were run on

data with the following parameters: k = 1000, d = 10, and σ = 1. �e model was trained

for 10,000 steps of SGD with learning rates ηw = 0.1 and ηb = 0.1/1000 and minibatches of

size 500, with new i.i.d. samples generated for each batch. Batch size and learning rate were

chosen as large (resp. small) as possible given computational constraints, to best simulate the

population-gradient se�ing.

CIFAR variants. All experiments on CIFAR variants, including the sparsity experiments in

Figure 3.2, all experiments in Section 3.6, and the experiments in Appendix B.4 below, use the

following:

• Dataset details. �e ImageNet Plants synset was constructed using all WordNet IDs

which are subclasses of the Plants ID n00017222. �e CIFAR-Vehicles task is to classify

betweenCIFAR-10 classes airplane, automobile, ship and truck, with animal classes as noise

(bird, cat, deer, dog, frog, and horse). ImageNet and CIFAR-10 are both datasets of public-

domain images. Our modi�cations do not add any personally-identi�able information or

o�ensive content. Example images are included in the code repository.

• Model architectures. We use the same architectures as those in Allen-Zhu and Li,

2020a. WRN: we use a WideResNet WRN10-10, meaning depth=10 and widening factor

k=10. �is corresponds to a total of 3 residual blocks and 7 total convolutional layers.

NTK: We use the corresponding �nite-width (linearized) NTK of the WRN.

• Training details. We again largely follow the protocol of Allen-Zhu and Li, 2020a.

However, we do not use data augmentation or Cutout since it is unclear how these may

interact with the constructed noise images. WRN: Momentum optimizer with mass =

0.9, initial lr = 0.1, batch size = 128, weight decay = 0.0005, 200 epoch, and decay lr by 0.2

at epochs 80, 100, and 120 epochs. For the WRN experiments on larger images reported

below, we reduced batch size to 50 due to computational constraints. In order to maintain

stable training with this smaller batch size, we also had to reduce the initial learning rate

to 0.05. NTK: Adam optimizer, initial lr = 0.001, batch size = 50, no weight decay, 200

epoch, and decay lr by 0.2 at epochs 140 and 170 epochs.
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B.4 Additional Experiments

In Section 3.6 we saw that as the background noise level increases, NTK performance degrades

signi�cantly more quickly than WRN performance. �ose experiments are done with 16x16

images on a 32x32 noise background, and all but the CIFAR-Vehicles experiment place the

image at a random location on the background. Here we conduct additional experiments to show

that the performance gap is not due to varying image location or small image size. Speci�cally,

we replicate the experiment on CIFAR-2 with Gaussian noise, but with two additional image-

placement methods and at a larger size of 32x32 images on a 64x64 background. �e image is

either placed at a random location on the background, in a random corner, or in �xed corner.

Table B.1: Test accuracy of WRN and NTK on CIFAR-2 with various levels of Gaussian noise. �e image

is placed on the noise background in a random location, random corner, or �xed corner. �e image is

sized 16x16 on a 32x32 background (�rst two rows) or 32x32 on a 64x64 background (last two rows).

random location random corner �xed corner

noise σ noise σ noise σ
size 0.0 0.5 1.0 2.0 0.0 0.5 1.0 2.0 0.0 0.5 1.0 2.0

16x16

on 32x32

WRN 94.7 94.0 92.8 91.7 94.3 94.2 92.7 92.6 94.4 94.3 94.0 92.9

NTK 89.9 87.3 83.7 76.9 91.6 88.3 84.5 78.3 92.0 88.8 85.2 80.0

32x32

on 64x64

WRN 96.1 96.2 95.8 94.9 96.5 96.5 96.5 95.9 96.9 96.6 96.0 95.6

NTK 91.2 89.4 84.6 82.2 91.8 89.1 85.3 79.1 93.1 91.0 88.3 82.9

Overall, we �nd that the gap in WRN vs NTK performance degradation persists in all cases.

With respect to image size, we note that all models perform be�er on the larger images. However,

the WRN appears slightly less impacted by noise on the larger images, while degradation a�ects

the NTK roughly equally on large and small images. With respect to image placement, virtually

all models perform best with �xed-corner placement, followed by random-corner, followed by

random-location. It is not clear that either the WRN or NTK is more a�ected by placement than

the other.
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Appendix C
Landscape-Aware Growing:

Additional Details

C.1 Training Details

C.1.1 BERT growing.

We train BERT-base on Books and Wikipedia following Devlin et al., 2018. We use batch size

256 and sequence length 512, AdamW as the optimizer (Loshchilov and Hu�er, 2019), 10,000

steps of linear learning rate warmup, and a constant learning rate of 0.0001 following warmup.

We train BERT-Base for a total of 500,000 steps and then grow it from 12 layers to 16 layers.

We ensure that all models see the data in the same order, to ensure that this does not impact

relative performance.

C.1.2 UL2 growing.

Our pretrained UL2 model is a 12-layer decoder-only model with model dimension 2048, hidden

dimension 5120, and 32 a�ention heads. We train this model using the UL2 objective (Tay et al.,

2022) with 60% causal LM, 20% pre�x LM, and 20% span corruption. We train on a mixture of C4

(57%) (Ra�el et al., 2020), Wikipedia (17%) (Foundation, n.d.), GitHub (17%), and Arxiv (9%). We

use AdaFactor (Shazeer and Stern, 2018) as the optimizer, with batch size 256, sequence length

1280, and 10,000 steps of linear warmup to a peak learning rate of 0.01, followed by a cosine

decay schedule so that step 400,000 would end with learning rate 0.001. However, we pause

training at 300,000 steps and then grow the 12-layer model to 16 layers, a�er which we train

for another 100,000 steps (totaling 400,000 steps). We ensure that all models see the data in the

same order, to ensure that this does not impact relative performance.
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C.1.3 BERT stacking.

Here, we present the training details for last stacking and adaptive stacking. Broadly, we follow

the stagewise paradigm of Reddi et al., 2023. We train BERT-large on Books and Wikipedia

following Devlin et al., 2018. We use batch size 256 and sequence length 512, AdamW as the

optimizer (Loshchilov and Hu�er, 2019), 10,000 steps of linear learning rate warmup, and a

constant learning rate of 0.0001 following warmup. We train for a total of 1,000,000 steps divided

among 6 stages. �e �rst 5 stages have 160,000 steps each, and the �nal stage has 200,000 steps.

In each stage, the total number of layers is increased by 4.

Last stacking. In each stage, we duplicate the �nal 4 layers and stack them at the end of the

network (i.e., “post-stacking” from Reddi et al., 2023).

Adaptive stacking. In each stage, we consider a set of growth operators as in Section 5.2. To

keep the design space more manageable, we restrict the design space to parameter duplication

(i.e., no random initialization, beyond the very �rst stage). We train with each growth operator

for 200 steps (i.e., LAG@200) before choosing the best-performing growth operator according to

its validation loss and then continuing training with just this operator for the rest of the stage.

�e set of growth operators considered when initializing each stage is as follows:

• Stage 1 (4 layers): random initialization (no existing layers to use)

• Stage 2 (8 layers): indices {0}, block sizes {1, 2, 4}
• Stage 3 (12 layers): indices {0, 1, 2, 3, 4}, block sizes {1, 2, 4}
• Stage 4 (16 layers): indices {0, 1, 2, 3, 4, 5, 6, 7, 8}, block sizes {1, 2, 4}
• Stage 5 (20 layers): indices {0, 2, 4, 6, 8, 10, 12}, block sizes {1, 2, 4}
• Stage 6 (24 layers): indices {0, 2, 4, 6, 8, 10, 12, 14, 16}, block sizes {1, 2, 4}

Note that we switch from every index to only even indices at Stage 5, in order to keep the search

space more manageable.
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C.2 Further Empirical Results

Here, we present downstream metrics for UL2 and the adaptive stacking vs. last stacking results

in table form.

Table C.1: Performance of LAG@2000 compared to other growing strategies, when growing UL2 from 12

layers to 16 layers, on 3 di�erent downstream evaluations. �e “Oracle” strategy refers to the best possible

strategy within the search space. LAG@0 roughly follows the “loss preservation” heuristic (i.e., choosing

the strategy whose loss is least perturbed by growing). �e �nal two rows most closely resemble gradual

stacking (Reddi et al., 2023): (1) stacking the last block on top, and (2) stacking a randomly-initialized

block on top. Overall, across the 3 downstream metrics, LAG@2000 outperforms all strategies other than

the “Oracle” strategy.

Strategy TyDi QA (en) Trivia QA LAMBADA

exact match - 1 shot exact match - 1 shot accuracy - 1 shot

Oracle 28.18 13.84 8.32

LAG@2000 25.23 13.44 7.60

Best at initialization (LAG@0) 21.82 12.19 6.89

Stack last block on top 21.59 12.39 6.90

Stack random block on top 21.82 12.19 6.89

Table C.2: Final validation loss of adaptive stacking vs. last stacking. In both adaptive stacking and last

stacking, a 24-layer BERT-large model is trained in 6 stages, using a roughly uniform stacking schedule

(160,000 steps per stage for the �rst 5 stages, and 200,000 steps in the �nal stage). In adaptive stacking,

we use k = 200 steps: at each stage of stacking, multiple growing strategies are spawned in parallel and

trained for 200 steps, and then the strategy with the lowest validation loss is chosen to be trained for the

rest of this stacking stage. Overall, we see that adaptive stacking outperforms last stacking (i.e., lower

�nal validation loss).

Strategy Final validation loss

Adaptive stacking 1.5301

Last stacking 1.5432
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