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Abstract
Deep learning, despite its broad applicability, grapples with robustness chal-

lenges in real-world applications, especially when training and test distributions
differ. Reasons for the discrepancy between training and test distributions
include gradual changes in human behavior or differences in the demographics
of the environment where the service is being used. While obtaining labeled
data for anticipated distribution shifts can be daunting, unlabeled samples are
relatively cheap and abundantly available.

My research leverages unlabeled data from the target domain to identify
structural relationships between the target and source domains, and then use
them to adapt and evaluate models. The work discussed in thesis involves
understanding the behavior of deep models, both theoretically and empirically,
and using those insights to develop robust methods. In particular, this thesis
surveys my work on the following three questions:

Q1: How to adapt models in the face of distribution shifts? Absent assump-
tions on the nature of the distribution shifts, this task is impossible. My research
in this direction is focused on formulating assumptions on distribution shift
scenarios appearing in the wild and developing procedures that improve and
adapt deep models under those shifts by leveraging unlabeled data. Part I and
II of this thesis delve into this research.

Q2: How can we evaluate models’ performance without access to labeled data?
Deep learning models fail silently, i.e., they cannot flag uncertain decisions. To
build reliable machine learning systems, obtaining certificates for accuracy is as
important as robustifying these systems. Part III discusses my research in this
direction and presents techniques that leverage unlabeled data to predict model
accuracy.

Q3: How can we leverage foundation models to address distribution shift
challenges? Foundation models, such as vision language models, have demon-
strated impressive performance on a wide range of tasks. However, these models
also lack robustness due to spurious correlations, poor image-text alignment,
etc. Moreover, they also get outdated as the internet data evolves presenting
novel challenges in keeping them up-to-date. Part IV of my thesis discusses
my work on understanding the behavior of foundation models and developing
techniques to improve their robustness under distribution shifts.

Overall, this thesis expands the frontier of robust machine learning by
developing techniques that leverage unlabeled data to adapt and evaluate
models under distribution shifts. The work presented here is a step towards
developing a comprehensive toolkit for robust machine learning in the face of
distribution shifts.
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Chapter 1

Introduction

Deep learning has seen remarkable success in various applications, yet it faces significant
challenges when deployed in real-world settings where training and test distributions diverge.
This discrepancy can arise due to evolving human behaviors, demographic shifts, or changing
environmental factors where the model is used. Adapting deep learning models to these
distribution shifts is crucial for maintaining performance and reliability in deployment.

In response to these challenges, leveraging unlabeled data from the target domain has
emerged as a promising strategy. Unlabeled data is often more accessible and cost-effective
compared to obtaining labeled samples for every distribution shift. This approach forms the
foundation of research aimed at improving the robustness and adaptability of deep learning
models under changing conditions. My research focuses on harnessing unlabeled data to
understand and address distribution shift challenges in deep learning. The thesis explores
methodologies to identify structural relationships between source and target domains using
unlabeled data, subsequently using this knowledge to adapt and evaluate models.

1.1 Organization
The primary objective of this thesis is to develop techniques that enhance the robustness of
machine learning models against distribution shifts. The work presented here is structured
as follows:

Q1: How to adapt models in response to distribution shifts? This research investigates
assumptions and procedures necessary for improving and adapting deep learning models
under distribution shifts, leveraging insights from unlabeled data. Part I discusses adaptation
under label shift scenarios and Part II discusses distribution shift scenarios involving input
distribution shifts and relaxed label shift scenarios.

• Chapter 2 presents a unified view on the problem of label shift estimation.

• Chapter 3 introduces an online label shift adaptation problem and presents algorithms
for this setting.
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• Chapter 4 and Chapter 5 extends the work on label shift to scenarios where along
with shifts in label marginal, previously unseen classes may appear.

• Chapter 6 discusses the benefits of combining contrastive learning and self-training
under distribution shift.

• Chapter 7 introduces a benchmark for domain adaptation under relaxed label shift
highlighting the brittle nature of existing methods in presence of label proportion
shifts and extends our label shift methods to this setting.

Q2: How can we evaluate models’ performance without access to labeled data? Deep learning
models often lack mechanisms to detect uncertain decisions, leading to silent failures under
distribution shifts. Part III of this thesis explores techniques to predict model accuracy
using unlabeled data, crucial for building reliable machine learning systems.

• Chapter 8 discusses the problem of evaluating models without access to labeled data
and proposes a method to guarantee in-distribution generalization.

• Chapter 9 and Chapter 10 discusses the problem of predicting out-of-distribution
performance without access to labeled data.

Q3: How can we leverage foundation models to address distribution shift challenges?
Foundation models, though powerful, exhibit vulnerabilities under distribution shifts due
to spurious correlations or outdated data. Part IV of this thesis investigates strategies to
enhance the robustness of foundation models in evolving environments.

• Chapter 11 highlights temporal distribution shift problems with OpenAI CLIP models
and propose a continual learning benchmark with 12.7 B image-text pairs with time
metadata for continual training of CLIP.

• Chapter 12 discusses the brittle nature foundation models to tasks with spurious
correlations and proposes Prompting for Robustness (PfR) to leverage language
descriptions of spurious attributes to train robust foundation models.

The work presented in this thesis contributes to expanding the frontier of robust machine
learning by developing novel techniques that harness the potential of unlabeled data to
adapt and evaluate models under distribution shifts. This research aims to provide a
comprehensive toolkit for deploying reliable machine learning systems in dynamic real-world
settings. By addressing distribution shift challenges, this thesis aims to bridge the gap
between theoretical insights and practical methodologies, advancing the field of robust
machine learning.
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Part I

Adaptation Under Label Shift
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Chapter 2

A Unified View of Label Shift
Estimation

Based on Garg et al. (2020a): Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, and Zachary Lipton. A
Unified View of Label Shift Estimation. Advances in Neural Information Processing Systems (NeurIPS),
2020.

Abstract
Under label shift, the label distribution ppyq might change but the class-conditional
distributions ppx|yq do not. There are two dominant approaches for estimating the label
marginal. BBSE, a moment-matching approach based on confusion matrices, is provably
consistent and provides interpretable error bounds. However, a maximum likelihood
estimation approach, which we call MLLS, dominates empirically. In this chapter, we
present a unified view of the two methods and the first theoretical characterization of
MLLS. Our contributions include (i) consistency conditions for MLLS, which include
calibration of the classifier and a confusion matrix invertibility condition that BBSE
also requires; (ii) a unified framework, casting BBSE as roughly equivalent to MLLS for
a particular choice of calibration method; and (iii) a decomposition of MLLS’s finite-
sample error into terms reflecting miscalibration and estimation error. Our analysis
attributes BBSE’s statistical inefficiency to a loss of information due to coarse calibration.
Experiments on synthetic data, MNIST, and CIFAR10 support our findings.

2.1 Introduction

This chapter focuses on label shift (Lipton et al., 2018b; Saerens et al., 2002; Storkey, 2009),
which aligns with the anticausal setting in which the labels y cause the features x (Schölkopf
et al., 2012). Label shift arises in diagnostic problems because diseases cause symptoms. In
this setting, an intervention on ppyq induces the shift, but the process generating x given
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y is fixed (pspx|yq “ ptpx|yq). Under label shift, the optimal predictor may change, e.g.,
the probability that a patient suffers from a disease given their symptoms can increase
under a pandemic. Contrast label shift with the better-known covariate shift assumption,
which aligns with the assumption that x causes y, yielding the reverse implication that
pspy|xq “ ptpy|xq.

Under label shift, our first task is to estimate the ratios wpyq “ ptpyq{pspyq for all labels y.
Two dominant approaches leverage off-the-shelf classifiers to estimate w: (i) Black Box Shift
Estimation (BBSE) (Lipton et al., 2018b) and a variant called Regularized Learning under
Label Shift (RLLS) (Azizzadenesheli et al., 2019): moment-matching based estimators that
leverage (possibly biased, uncalibrated, or inaccurate) predictions to estimate the shift;
and (ii) Maximum Likelihood Label Shift (MLLS) (Saerens et al., 2002): an Expectation
Maximization (EM) algorithm that assumes access to a classifier that outputs the true
source distribution conditional probabilities pspy|xq.

Given a predictor pf with an invertible confusion matrix, BBSE and RLLS have known
consistency results and finite-sample guarantees (Azizzadenesheli et al., 2019; Lipton et al.,
2018b). However, MLLS, in combination with a calibration heuristic called Bias-Corrected
Temperature Scaling (BCTS), outperforms them empirically (Alexandari et al., 2021).

In this chapter, we theoretically characterize MLLS, establishing conditions for consistency
and bounding its finite-sample error. To start, we observe that given the true label
conditional pspy|xq, MLLS is simply a concave Maximum Likelihood Estimation (MLE)
problem and standard results apply. However, because we never know pspy|xq exactly,
MLLS is always applied with an estimated model pf and thus the procedure consists of
MLE under model misspecification.

First, we prove that (i) canonical calibration (Definition 2.2.1) and (ii) an invertible confusion
matrix (as required by BBSE) are sufficient conditions to ensure MLLS’s consistency
(Proposition 2.4.4, Theorems H.2.1 and 2.4.3). We also show that calibration can sometimes
be necessary for consistency (Example 1 in Section 2.4.3). Recall that neural network
classifiers tend to be uncalibrated absent post-hoc adjustments (Guo et al., 2017). Second,
we observe that confusion matrices can be instruments for calibrating a classifier. Applying
MLLS with this technique, BBSE and MLLS are distinguished only by their objective
functions. Through extensive experiments, we show that they perform similarly, concluding
that MLLS’s superior performance (when applied with more granular calibration techniques)
is not due to its objective but rather to the information lost by BBSE via confusion matrix
calibration. Third, we analyze the finite-sample error of the MLLS estimator by decomposing
its error into terms reflecting the miscalibration error and finite-sample error (Theorem 2.5.4).
Depending on the calibration method, the miscalibration error can further be divided into
two terms: finite sample error due to re-calibration on a validation set and the minimum
achievable calibration error with that technique.

We validate our results on synthetic data, MNIST, and CIFAR-10. Empirical results show
that MLLS can have 2–10ˆ lower Mean Squared estimation Error (MSE) depending on
the magnitude of the shift. Our experiments relate MLLS’s MSE to the granularity of the

5



calibration.

In summary, we contribute the following: (i) Sufficient conditions for MLLS’s consistency;
(ii) Unification of MLLS and BBSE methods under a common framework, with BBSE
corresponding to a particular choice of calibration method; (iii) Finite-sample error bounds
for MLLS; (iv) Experiments on synthetic and image recognition datasets that support our
theoretical arguments.

2.2 Problem Setup
Let X be the input space and Y “ t1, 2, . . . , ku the output space. Let Ps,Pt : X ˆY Ñ r0, 1s

be the source and target distributions and let ps and pt denote the corresponding probability
density (or mass) functions. We use Es and Et to denote expectations over the source and
target distributions. In unsupervised domain adaptation, we possess labeled source data
tpx1, y1q, px2, y2q, . . . , pxn, ynqu and unlabeled target data txn`1, xn`2, . . . , xn`mu. We also
assume access to a black-box predictor pf : X ÞÑ ∆k´1, e.g., a model trained to approximate
the true probability function f˚, where f˚pxq :“ psp¨|xq. Here and in the rest of the paper,
we use ∆k´1 to denote the standard k-dimensional probability simplex. For a vector v, we
use vy to access the element at index y.

Absent assumptions relating the source and target distributions, domain adaptation is
underspecified (Ben-David et al., 2010c). We work with the label shift assumption, i.e.,
pspx|yq “ ptpx|yq, focusing on multiclass classification. Moreover, we assume non-zero
support for all labels in the source distribution: for all y P Y , pspyq ě c ą 0 (Azizzadenesheli
et al., 2019; Lipton et al., 2018b). Under label shift, three common goals are (i) detection—
determining whether distribution shift has occurred; (ii) quantification—estimating the
target label distribution; and (iii) correction—producing a predictor that minimizes error
on the target distribution (Lipton et al., 2018b).

This paper focuses on goal (ii), estimating importance weights wpyq “ ptpyq{pspyq for
all y P Y. Given w, we can update our classifiers on the fly, either by retraining in
an importance-weighted ERM framework (Azizzadenesheli et al., 2019; Gretton et al.,
2009; Lipton et al., 2018b; Shimodaira, 2000)—a practice that may be problematic for
overparameterized neural networks (Byrd and Lipton, 2019), or by applying an analytic
correction (Alexandari et al., 2021; Saerens et al., 2002). Within the ERM framework,
the generalization result from Azizzadenesheli et al. (2019) (Theorem 1) depends only on
the error of the estimated weights, and hence any method that improves weight estimates
tightens this bound.

There are multiple definitions of calibration in the multiclass setting. Guo et al. (2017)
study the calibration of the arg-max prediction, while Kumar et al. (2019) study a notion
of per-label calibration. We use canonical calibration (Vaicenavicius et al., 2019) and the
expected canonical calibration error on the source data defined as follows:
Definition 2.2.1 (Canonical calibration). A prediction model f : X ÞÑ ∆k´1 is canonically
calibrated on the source domain if for all x P X and j P Y, Pspy “ j|fpxqq “ fjpxq .
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Definition 2.2.2 (Expected canonical calibration error). For a predictor f , the expected
squared canonical calibration error on the source domain is E2pfq “ Es ∥f ´ fc∥2, where
fc “ Pspy “ ¨|fpxqq.

Calibration methods typically work either by calibrating the model during training or by
calibrating a trained classifier on held-out data, post-hoc. We refer the interested reader
to Kumar et al. (2019) and Guo et al. (2017) for detailed studies on calibration. We focus
on the latter category of methods. Our experiments follow Alexandari et al. (2021), who
leverage BCTS 1 to calibrate their models. BCTS extends temperature scaling (Guo et al.,
2017) by incorporating per-class bias terms.

2.3 Prior Work

Two families of solutions have been explored that leverage a blackbox predictor: BBSE
(Lipton et al., 2018b), a moment matching method, uses the predictor pf to compute a
confusion matrix C

pf
:“ psppy, yq P Rkˆk on the source data. Depending on how py is defined,

there are two types of confusion matrix for a predictor pf : (i) the hard confusion matrix
py “ argmax pfpxq; and (ii) the soft confusion matrix, where py is defined as a random pre-
diction that follows the discrete distribution pfpxq over Y. Both soft and hard confusion
matrix can be estimated from labeled source data samples. The estimate pw is computed
as pw :“ pC´1

pf
pµ, where pC

pf is the estimate of confusion matrix and pµ is an estimate of ptppyq,
computed by applying the predictor pf to the target data. In a related vein, RLLS (Aziz-
zadenesheli et al., 2019) incorporates an additional regularization term of the form ∥w ´ 1∥
and solves a constrained optimization problem to estimate the shift ratios w.

MLLS estimates w as if performing maximum likelihood estimation, but substitutes the
predictor outputs for the true probabilities pspy|xq. Saerens et al. (2002), who introduce
this procedure, describe it as an application of EM. However, as observed in (Alexandari
et al., 2021; Du Plessis and Sugiyama, 2014b), the likelihood objective is concave, and
thus a variety of optimization algorithms may be applied to recover the MLLS estimate.
Alexandari et al. (2021) also showed that MLLS underperforms BBSE when applied naively,
a phenomenon that we shed more light on in this paper.

2.4 A Unified View of Label Shift Estimation with Black
Box Predictors

We now present a unified view that subsumes MLLS and BBSE and demonstrate how
each is instantiated under this framework. We also establish identifiability and consistency
conditions for MLLS, deferring a treatment of finite-sample issues to Section 2.5. For
convenience, throughout Sections 3 and 4, we use the term calibration exclusively to refer

1Motivated by the strong empirical results in Alexandari et al. (2021), we use BCTS in our experiments
as a surrogate to canonical calibration.
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to canonical calibration (Definition 2.2.1) on the source data. We relegate all technical
proofs to Appendix A.4.

2.4.1 A Unified Distribution Matching View

To start, we introduce a generalized distribution matching approach for estimating w.
Under label shift, for any (possibly randomized) mapping from X to Z, we have that
pspz|yq “ ptpz|yq since, pspz|yq “ ptpz|yq “

ş

X ppz|xqppx|yqdx. Throughout the paper, we
use the notation ppz|yq to represent either pspz|yq or ptpz|yq (which are identical). We now
define a family of distributions over Z parameterized by w P W as

pwpzq “
ÿk

y“1
ppz|yqpspyqwy “

ÿk

y“1
pspz, yqwy, (2.1)

where W “ tw | @y , wy ě 0 and
řk

y“1wypspyq “ 1u. When w “ w˚, we have that pwpzq “

ptpzq. For fixed ppz|xq, ptpzq and pspz, yq are known because ptpxq and pspx, yq are known.
So one potential strategy to estimate w˚ is to find a weight vector w such that

ÿk

y“1
pspz, yqwy “ ptpzq @z P Z . (2.2)

At least one such weight vector w must exist as w˚ satisfies (2.2). We now characterize
conditions under which the weight vector w satisfying (2.2) is unique:
Lemma 2.4.1 (Identifiability). If the set of distributions tppz|yq : y “ 1, ..., ku are linearly
independent, then for any w that satisfies (2.2), we must have w “ w˚. This condition
is also necessary in general: if the linear independence does not hold then there exists a
problem instance where we have w,w˚ P W satisfying (2.2) while w ‰ w˚.

Lemma 2.4.1 follows from the fact that (2.2) is a linear system with at least one solution
w˚. This solution is unique when pspz, yq is of rank k. The linear independence condition in
Lemma 2.4.1, in general, is sufficient for identifiability of discrete Z. However, for continuous
Z, the linear dependence condition has the undesirable property of being sensitive to changes
on sets of measure zero. By changing a collection of linearly dependent distributions on a
set of measure zero, we can make them linearly independent. As a consequence, we impose a
stronger notion of identifiability i.e., the set of distributions tppz|yq : y “ 1, ..., ku are such
that there does not exist v ‰ 0 for which

ş

Z |
ř

y ppz|yqvy|dz “ 0. We refer this condition as
strict linear independence.

In generalized distribution matching, one can set ppz|xq to be the Dirac delta function at
δx

2 such that Z is the same space as X , which leads to solving (2.2) with z replaced by x.
In practice where X is high-dimensional and/or continuous, approximating the solution to
(2.2) from finite samples can be hard when choosing z “ x. Our motivation for generalizing
distribution matching from X to Z is that the solution to (2.2) can be better approximated
using finite samples when Z is chosen carefully. Under this framework, the design of a
label shift estimation algorithm can be decomposed into two parts: (i) the choice of ppz|xq

and (ii) how to approximate the solution to (2.2). Later on, we consider how these design
choices may affect label shift estimation procedures in practice.

2For simplicity we will use z “ x to denote that ppz|xq “ δx.
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2.4.2 The Confusion Matrix Approach

If Z is a discrete space, one can first estimate pspz, yq P R|Z|ˆk and ptpzq P R, and then
subsequently attempt to solve (2.2). Confusion matrix approaches use Z “ Y , and construct
ppz|xq using a black box predictor pf . There are two common choices to construct the
confusion matrix: (i) The soft confusion matrix approach: We set ppz|xq :“ pfpxq P ∆k´1. We
then define a random variable py „ pfpxq for each x. Then we construct pspz, yq “ psppy, yq and
ptpzq “ ptppyq. (ii) The hard confusion matrix approach: Here we set ppz|xq “ δargmax pfpxq

.
We then define a random variable py “ argmax pfpxq for each x. Then again we have
pspz, yq “ psppy, yq and ptpzq “ ptppyq.

Since pspz, yq is a square matrix, the identifiability condition becomes the invertibility of
the confusion matrix. Given an estimated confusion matrix, one can find w by inverting
the confusion matrix (BBSE) or minimizing some distance between the vectors on the two
sides of (2.2).

2.4.3 Maximum Likelihood Label Shift Estimation

When Z is a continuous space, the set of equations in (2.2) indexed by Z is intractable.
In this case, one possibility is to find a weight vector rw by minimizing the KL-divergence
KLpptpzq, pwpzqq “ Et rlog ptpzq{pwpzqs, for pw defined in (2.1). This is equivalent to
maximizing the population log-likelihood: rw :“ argmaxwPW Et rlog pwpzqs . One can fur-
ther show that Et rlog pwpzqs “ Etrlog

řk
y“1 pspz, yqwys “ Etrlog

řk
y“1 pspy|zqpspzqwys “

Etrlog
řk

y“1 pspy|zqwys ` Et rlog pspzqs . Therefore we can equivalently define:

rw :“ argmax
wPW

Et

”

log
ÿk

y“1
pspy|zqwy

ı

. (2.3)

This yields a straightforward convex optimization problem whose objective is bounded
from below (Alexandari et al., 2021; Du Plessis and Sugiyama, 2014b). Assuming access to
labeled source data and unlabeled target data, one can maximize the empirical counterpart
of the objective in (2.3), using either EM or an alternative iterative optimization scheme.
Saerens et al. (2002) derived an EM algorithm to maximize the objective (2.3) when z “ x,
assuming access to pspy|xq. Absent knowledge of the ground truth pspy|xq, we can plug in
any approximate predictor f and optimize the following objective:

wf :“ argmax
wPW

Lpw, fq :“ argmax
wPW

Et

“

log fpxq
Tw

‰

. (2.4)

In practice, f is fit from a finite sample drawn from pspx, yq and standard machine learning
methods often produce uncalibrated predictors. While BBSE and RLLS are provably
consistent whenever the predictor f yields an invertible confusion matrix, to our knowledge,
no prior works have established sufficient conditions to guarantee MLLS’ consistency when
f differs from pspy|xq.

It is intuitive that for some values of f ‰ pspy|xq, MLLS will yield inconsistent estimates.
Supplying empirical evidence, Alexandari et al. (2021) show that MLLS performs poorly
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when f is a vanilla neural network predictor learned from data. However, Alexandari et al.
(2021) also show that in combination with a particular post-hoc calibration technique,
MLLS achieves low error, significantly outperforming BBSE and RLLS. As the calibration
error is not a distance metric between f and pspy|xq (zero calibration error does not indicate
f “ pspy|xq), a calibrated predictor f may still be substantially different from pspy|xq.
Some natural questions then arise:

1. Why does calibration improve MLLS so dramatically?
2. Is calibration necessary or sufficient to ensure the consistency of MLLS?
3. What accounts for the comparative efficiency of MLLS over BBSE? (Addressed in

Section 2.5)

To address the first two questions, we make the following observations. Suppose we define z
(for each x) with distribution ppz|xq :“ δfpxq, for some calibrated predictor f . Then, because
f is calibrated, it holds that pspy|zq “ fpxq. Note that in general, the MLLS objective (2.4)
can differ from (2.3). However, when ppz|xq :“ δfpxq, the two objectives are identical. We
can formalize this as follows: If f is calibrated, then the two objectives (2.3) and (2.4)
are identical when Z is chosen as ∆k´1 and ppz|xq is defined to be δfpxq. Lemma 2.4.3
follows from changing the variable of expectation in (2.4) from x to fpxq and applying
fpxq “ pspy|fpxqq (definition of calibration). It shows that MLLS with a calibrated predictor
on the input space X is in fact equivalent to performing distribution matching in the space
Z. Building on this observation, we now state our population-level consistency theorem for
MLLS:
Theorem 2.4.2 (Population consistency of MLLS). If a predictor f : X ÞÑ ∆k´1 is
calibrated and the distributions tppfpxq|yq : y “ 1, . . . , ku are strictly linearly independent,
then w˚ is the unique maximizer of the MLLS objective (2.4).

We now turn our attention to establishing consistency of the sample-based estimator. Let
x1, x2, . . . , xm

iid
„ ptpxq. The finite sample objective for MLLS can be written as

pwf :“ argmax
wPW

1

m

ÿm

i“1
log fpxiq

Tw :“ argmax
wPW

Lmpw, fq . (2.5)

Theorem 2.4.3 (Consistency of MLLS). If f satisfies the conditions in Theorem H.2.1,
then pwf in (2.5) converges to w˚ almost surely.

The main idea of the proof of Theorem 2.4.3 is to derive a metric entropy bound on the class
of functions G “

␣

pfTwq{pfTw ` fTw˚q|w P W
(

to prove Hellinger consistency (Theorem
4.6 (van de Geer, 2000)). The consistency of MLLS relies on the linear independence of the
collection of distributions tppfpxq|yq : y “ 1, . . . , ku. The following result develops several
alternative equivalent characterizations of this linear independence condition.
Proposition 2.4.4. For a calibrated predictor f , the following statements are equivalent:

(1) tppfpxq|yq : y “ 1, . . . , ku are strictly linearly independent.

(2) Es

“

fpxqfpxqT
‰

is invertible.
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(3) The soft confusion matrix of f is invertible.

Proposition 2.4.4 shows that with a calibrated predictor, the invertibility condition as
required by BBSE (or RLLS) is exactly the same as the linear independence condition
required for MLLS’s consistency.

Having provided sufficient conditions, we consider a binary classification example to provide
intuition for why we need calibration for consistency. In this example, we relate the
estimation error to the miscalibration error, showing that calibration is not only sufficient
but also necessary to achieve zero estimation error for a certain class of predictors.

Example 1. Consider a mixture of two Gaussians with pspx|y “ 0q :“ N pµ, 1q and
pspx|y “ 1q :“ N p´µ, 1q. We suppose that the source mixing coefficients are both 1

2
, while

the target mixing coefficients are αp‰ 1
2
q, 1 ´ α. Assume a class of probabilistic threshold

classifiers: fpxq “ r1 ´ c, cs for x ě 0, otherwise fpxq “ rc, 1 ´ cs with c P r0, 1s. Then the
population error of MLLS is given by

4

∣∣∣∣p1 ´ 2αqppspx ě 0|y “ 0q ´ cq

1 ´ 2c

∣∣∣∣ ,
which is zero only if c “ pspx ě 0|y “ 0q for a non-degenerate classifier.

The expression for estimation error arising from our example yields two key insights: (i) an
uncalibrated thresholded classifier has an estimation error proportional to the true shift in
label distribution i.e. 1 ´ 2α; (ii) the error is also proportional to the canonical calibration
error which is pspx ě 0|y “ 0q ´ c. While earlier in this section, we concluded that canonical
calibration is sufficient for consistency, the above example provides some intuition for why
it might also be necessary. In Appendix A.3, we show that marginal calibration (Guo
et al., 2017; Kumar et al., 2019; Vaicenavicius et al., 2019), a less restricted definition is
insufficient to achieve consistency.

2.4.4 MLLS with Confusion Matrix

So far, we have shown that MLLS with any calibrated predictor can be viewed as distribution
matching in a latent space. Now we discuss a method to construct a predictor f to perform
MLLS given any ppz|xq, e.g., those induced by confusion matrix approaches. Recall, we
already have the maximum log-likelihood objective. It just remains to construct a calibrated
predictor f from the confusion matrix.

This is straightforward when ppz|xq is deterministic, i.e., ppz|xq “ δgpxq for some function
g: setting fpxq “ pspy|gpxqq makes the objectives (2.3) and (2.4) to be the same. Recall
that for the hard confusion matrix, the induced latent space is ppz|xq “ δargmax pfpxq

. So the
corresponding predictor in MLLS is fpxq “ pspy|pyxq, where pyx “ argmax pfpxq. Then we
obtain the MLLS objective for the hard confusion matrix:

max
wPW

Et

”

log
ÿk

y“1
pspy|pyxqwy

ı

. (2.6)
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The confusion matrix C
pf and predictor pf directly give us pspy|pyxq. Given an input x, one

can first get pyx from pf , then normalize the pyx-th row of C
pf as pspy|pyxq. We denote MLLS

with hard confusion matrix calibration (2.6) by MLLS-CM.

When pspz|xq is stochastic, we need to extend (2.4) to allow f to be a random predictor:
fpxq “ pspy|zq for z „ ppz|xq3. To incorporate the randomness of f , one only needs to
change the expectation in (2.4) to be over both x and fpxq, then (2.4) becomes a rewrite
of (2.3).

Proposition 2.4.4 indicates that constructing the confusion matrix is a calibration procedure.
Thus, the predictor constructed with constructed using confusion matrix is calibrated
and suitable for application with MLLS. [Vaicenavicius et al. (2019)] For any function g,
fpxq “ pspy|gpxqq is a calibrated predictor.

We can now summarize the relationship between BBSE and MLLS: A label shift estimator
involves two design choices: (i) designing the latent space ppz|xq (which is equivalent to
designing a calibrated predictor); and (ii) performing distribution matching in the new
space Z. In BBSE, we design a calibrated predictor via the confusion matrix and then
perform distribution matching by directly solving linear equations. In general, MLLS does
not specify how to obtain a calibrated predictor, but specifies KL minimization as the
distribution matching procedure. One can apply the confusion matrix approach to obtain a
calibrated predictor and then plug it into MLLS, which is the BBSE analog under MLLS,
and is a special case of MLLS.

2.5 Theoretical Analysis of MLLS
We now analyze the performance of MLLS estimator. Even when w˚ is the unique optimizer
of (2.4) for some calibrated predictor f , assuming convex optimization can be done perfectly,
there are still two sources of error preventing us from exactly computing w˚ in practice.
First, we are optimizing a sample-based approximation (2.5) to the objective in expectation
(2.4). We call this source of error finite-sample error. Second, the predictor f we use may
not be perfectly calibrated on the source distribution as we only have access to samples
from source data distribution pspx, yq. We call this source of error miscalibration error.
We will first analyze how these two sources of errors affect the estimate of w˚ separately
and then give a general error bound that incorporates both. All proofs are relegated to
Appendix A.5.

Before presenting our analysis, we introduce some notation and regularity assumptions.
For any predictor f : X ÞÑ ∆k´1, we define wf and pwf as in (2.4) and (2.5). If f satisfies
the conditions in Theorem 2.4.3 (calibration and linear independence) then we have that
wf “ w˚. Our goal is to bound ∥ pwf ´ w˚∥ for a given (possibly miscalibrated) predictor f .
We now introduce a regularity condition:
Condition 2.5.1 (Regularity condition for a predictor f). For any x within the support of
ptpxq, i.e. ptpxq ą 0, we have both fpxqTwf ě τ , fpxqTw˚ ě τ for some universal constant

3Here, by a random predictor we mean that the predictor outputs a random vector from ∆k´1, not Y.
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τ ą 0.

Condition 2.5.1 is mild if f is calibrated since in this case wf “ w˚ is the maximizer of
Et

“

log fpxqTw
‰

, and the condition is satisfied if the expectation is finite. Since fpxqTw˚

and fpxqTwf are upper-bounded (they are the inner products of two vectors which sum to
1), they also must be lower-bounded away from 0 with arbitrarily high probability without
any assumptions. For miscalibrated f , a similar justification holds for assumption that
fpxqTwf is lower bounded. Turning our attention to the assumption that fpxqTw˚ is lower
bounded, we note that it is sufficient if f is close (pointwise) to some calibrated predictor.
This in turn is a reasonable assumption on the actual predictor we use for MLLS in practice
as it is post-hoc calibrated on source data samples.

Define σf,w to be the minimum eigenvalue of the Hessian ´∇2
wLpw, fq. To state our results

compactly we use standard stochastic order notation (see, for instance, (van der Vaart
and Wellner, 1996)). We first bound the estimation error introduced by only having finite
samples from the target distribution in Lemma 2.5.2. Next, we bound the estimation error
introduced by having a miscalibrated f in Lemma 2.5.3.
Lemma 2.5.2. For any predictor f that satisfies Condition 2.5.1, we have ∥wf ´ pwf∥ ď

σ´1
f,wf

Op

`

m´1{2
˘

.
Lemma 2.5.3. For any predictor f and any calibrated predictor fc that satisfies Condi-
tion 2.5.1, we have ∥wf ´ w˚∥ ď σ´1

f,w˚ ¨ C ¨ Et r∥f ´ fc∥s , for some constant C.

If we set fcpxq “ pspy|fpxqq, which is a calibrated predictor (Proposition 2.4.4), we can
bound the error in terms of the calibration error of f on the source data 4: ∥wf ´ w˚∥ ď

σ´1
f,w˚ ¨ C ¨ Epfq .

Note that since pspyq ą 0 for all y, we can upper-bound the error in Lemma 2.5.3 with
calibration error on the source data. We combine the two sources of error to bound the
estimation error ∥ pwf ´ w˚∥:
Theorem 2.5.4. For any predictor f that satisfies Condition 2.5.1, we have

∥ pwf ´ w˚∥ ď σ´1
f,wf

Op

`

m´1{2
˘

` C ¨ σ´1
f,w˚Epfq . (2.7)

The estimation error of MLLS can be decomposed into (i) finite-sample error, which decays
at a rate of m´1{2; and (ii) the calibration error of the predictor that we use. The proof
is a direct combination of Lemma 2.5.2 and Lemma 2.5.3 applied to the same f with the
following error decomposition:

∥ pwf ´ w˚∥ ď ∥wf ´ pwf∥
l jh n

finite-sample

` ∥wf ´ w˚∥
l jh n

miscalibration

.

Theorem 2.5.4 shows that the estimation error depends inversely on the minimum eigenvalue
of the Hessian at two different points wf and w˚. One can unify these two eigenvalues as a
single quantity σf , the minimum eigenvalue Et

“

fpxqfpxqT
‰

. We formalize this observation
in Appendix A.5.

4We present two upper bounds because the second is more interpretable while the first is tighter.
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If we use the post-hoc calibration procedure (as discussed in Section ?? and A.1) to calibrate
a blackbox predictor pf , we can obtain a bound on the calibration error of f . In more
detail, suppose that the class G used for calibration satisfies standard regularity conditions
(injectivity, Lipschitz-continuity, twice differentiability, non-singular Hessian). We have the
following lemma:
Lemma 2.5.5. Let f “ g ˝ pf be the predictor after post-hoc calibration with squared loss l
and g belongs to a function class G that satisfies the standard regularity conditions, we have

Epfq ď min
gPG

Epg ˝ pfq ` Op

`

n´1{2
˘

. (2.8)

This result is similar to Theorem 4.1 (Kumar et al., 2019). For a model class G that is rich
enough to contain a function g P G that achieves zero calibration error, i.e., mingPG Epg˝ pfq “

0, then we obtain an estimation error bound for MLLS of σ´1
f ¨ Op

`

m´1{2 ` n´1{2
˘

. This
bound is similar to rate of RLLS and BBSE, where instead of σf they have minimum
eigenvalue of the confusion matrix.

The estimation error bound explains the efficiency of MLLS. Informally, the error of MLLS
depends inversely on the minimum eigenvalue of the Hessian of the likelihood σf . When
we apply coarse calibration via the confusion matrix (in MLLS-CM), we only decrease
the value of σf . Coarse calibration throws away information (Kuleshov and Liang, 2015)
and thus results in greater estimation error for MLLS. In Section 2.6, we empricially
show that MLLS-CM’s performance is similar to that of BBSE. Moreover, on a synthetic
Gaussian mixture model, we show that the minimum eigenvalue of the Hessian obtained
using confusion matrix calibration is smaller than the minimum eigenvalue obtained with
more granular calibration. Our analysis and observations together suggest MLLS’s superior
performance than BBSE (or RLLS) is due to the granular calibration but not due to the
difference in the optimization objective.

Finally, we want to highlight one minor point regarding applicability of our result. If f
is calibrated, Theorem 2.5.4, together with Proposition 3 (in Appendix A.5), implies that
MLLS is consistent if Et

“

fpxqfpxqT
‰

is invertible. Compared to the consistency condition
in Theorem H.2.1 that Es

“

fpxqfpxqT
‰

is invertible (together with Proposition 2.4.4), these
two conditions are the same if the likelihood ratio ptpfpxqq{pspfpxqq is lower-bounded. This
is true if all entries in w˚ are non-zero. Even if w˚ contains non-zero entries, the two
conditions are still the same if there exists some w˚

y ą 0 such that ppfpxq|yq covers the full
support of pspfpxqq. In general however, the invertibility of Et

“

fpxqfpxqT
‰

is a stronger
requirement than the invertibility of Es

“

fpxqfpxqT
‰

. We leave further investigation of this
gap for future work.

2.6 Experiments
We experimentally illustrate the performance of MLLS on synthetic data, MNIST (LeCun
et al., 1998), and CIFAR10 (Krizhevsky and Hinton, 2009). Following Lipton et al. (2018b),
we experiment with Dirichlet shift simulations. On each run, we sample a target label
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(a) GMM (b) MNIST (c) CIFAR-10

(d) GMM (e) MNIST (f) CIFAR-10

Figure 2.1: (top) MSE vs the degree of shift; For GMM, we control the shift in the label
marginal for class 1 with a fixed target sample size of 1000. For multiclass problems—-
MNIST and CIFAR-10, we control the Dirichlet shift parameter with a fixed sample size
of 5000. (bottom) MSE (in log scale) vs target sample size; For GMM, we fix the label
marginal for class 1 at 0.01 whereas for multiclass problems, MNIST and CIFAR-10, we fix
the Dirichlet parameter to 0.1. In all plots, MLLS dominates other methods. All confusion
matrix approaches perform similarly, indicating that the advantage of MLLS comes from
the choice of calibration but not the way of performing distribution matching.

distribution ptpyq from a Dirichlet with concentration parameter α. We then generate each
target example by first sampling a label y „ ptpyq and then sampling (with replacement)
an example conditioned on that label . Note that smaller values of alpha correspond to
more severe shift. In our experiments, the source label distribution is uniform.

First, we consider a mixture of two Gaussians (as in Example in Section 2.4.3) with µ “ 1.
With CIFAR10 and MNIST, we split the full training set into two subsets: train and valid,
and use the provided test set as is. Then according to the label distribution, we randomly
sample with replacement train, valid, and test set from each of their respective pool to
form the source and target set. To learn the black box predictor on real datasets, we
use the same architecture as Lipton et al. (2018b) for MNIST, and for CIFAR10 we use
ResNet-18 (He et al., 2016) as in Azizzadenesheli et al. (2019)5. For simulated data, we use
the true pspy|xq as our predictor function. For each experiment, we sample 100 datasets
for each shift parameter and evaluate the empirical MSE and variance of the estimated
weights.

5We used open source implementation of ResNet-18 https://github.com/kuangliu/pytorch-cifar.
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We consider three sets of experiments: (1) MSE vs degree of target shift; (2) MSE vs target
sample sizes; and (3) MSE vs calibrated predictors on the source distribution. We refer to
MLLS-CM as MLLS with hard confusion matrix calibration as in (2.6). In our experiments,
we compare MLLS estimator with BBSE, RLLS, and MLLS-CM. For RLLS and BBSE,
we use the publicly available code 6. To post-hoc calibration, we use BCTS (Alexandari
et al., 2021) on the held-out validation set. Using the same validation set, we calculate the
confusion matrix for BBSE, RLLS, and MLLS-CM.

Figure 2.2: MSE (left-axis) with vari-
ation of minimum eigenvalue of the
Hessian (right-axis) vs number of
bins used for aggregation. With in-
crease in number of bins, MSE de-
crease and the minimum eigenvalue
increases.

We examine the performance of various estimators
across all three datasets for various target dataset
sizes and shift magnitudes (Figure 2.1). Across all
shifts, MLLS (with BCTS-calibrated classifiers) uni-
formly dominates BBSE, RLLS, and MLLS-CM in
terms of MSE (Figure 2.1). Observe for severe shifts,
MLLS is comparatively dominant. As the available
target data increased, all methods improve rapidly,
with MLLS outperforming all other methods by a
significant margin. Moreover, MLLS’s advantages
grow more pronounced under extreme shifts. No-
tice MLLS-CM is roughly equivalent to BBSE across
all settings of dataset, target size, and shift magni-
tude. This concludes MLLS’s superior performance
is not because of differences in loss function used
for distribution matching but due to differences in
the granularity of the predictions, caused by crude
confusion matrix aggregation.

Note that given a predictor f1, we can partition our input space and produce another
predictor f2 that, for any data-point gives the expected output of f1 on points belonging
to that partition. If f1 is calibrated, then f2 will also be calibrated (Vaicenavicius et al.,
2019). On synthetic data, we vary the granularity of calibration (for MLLS) by aggregating
pspy|xq over a variable number of equal-sized bins. With more bins, less information is lost
due to calibration. Consequently, the minimum eigenvalue of the Hessian increases and the
MSE decreases, supporting our theoretical bounds (Figure 2.2). We also verify that the
confusion matrix calibration performs poorly (Figure 2.2). For MLLS-CM, the minimum
eigenvalue of the Hessian is 0.195, significantly smaller than for the binned predictor for
#bin ě 4. Thus, the poor performance of MLLS-CM is predicted by its looser upper bound
per our analysis. Note that these experiments presume access to the true predictor pspy|xq

and thus the MSE strictly improves with the number of bins. In practice, with a fixed
source dataset size, increasing the number of bins could lead to overfitting, worsening our
calibration.

6BBSE: https://github.com/zackchase/label_shift, RLLS: https://github.com/Angela0428/labelshift
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2.7 Conclusion
This chapter provides a unified framework relating techniques that use off-the-shelf pre-
dictors for label shift estimation. We argue that these methods all employ calibration,
either explicitly or implicitly, differing only in the choice of calibration method and their
optimization objective. Moreover, with our analysis we show that the choice of calibration
method (and not the optimization objective for distribution matching) accounts for the
advantage of MLLS with BCTS calibration over BBSE.

In a follow-up work (Roberts et al., 2022), we study the problem of unsupervised learning
with multi-domain data under the label shift assumption between domains. This assumption,
along with additional assumptions on mixture coefficients (e.g., rank greater than number
of classes of the matrix formed by mixture proportion of different classes across domains),
allows us to learn a classifier for different classes just from multi-domain data.
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Chapter 3

Online Label Shift: Optimal Dynamic
Regret meets Practical Algorithms

Based on Baby et al. (2023): Dheeraj Baby˚, Saurabh Garg˚, Tzu-Ching Yen˚, Sivaraman Balakrishnan,
Zachary Lipton, and Yu-Xiang Wang. Online label shift: Optimal dynamic regret meets practical algorithms.
Advances in Neural Information Processing Systems, 2023

Abstract
In the previous chapter, we assumed setup with static test distribution. This chapter
focuses on supervised and unsupervised online label shift, where the class marginals Qpyq

varies over time but the class-conditionals Qpx|yq remain invariant. In the unsupervised
setting, our goal is to adapt a learner, trained on some offline labeled data, to changing
label distributions given unlabeled online data. In the supervised setting, we must
both learn a classifier and adapt to the dynamically evolving class marginals given only
labeled online data. We develop novel algorithms that reduce the adaptation problem to
online regression and guarantee optimal dynamic regret without any prior knowledge of
the extent of drift in the label distribution. Our solution is based on bootstrapping the
estimates of online regression oracles that track the drifting proportions. Experiments
across numerous simulated and real-world online label shift scenarios demonstrate the
superior performance of our proposed approaches, often achieving 1-3% improvement in
accuracy while being sample and computationally efficient. Code is publicly available
at this url.

3.1 Introduction

While static source to target distribution shift allows us to systematically study adaptation
methods, in the real world, shifts are more likely to occur continually and unpredictably,
with data arriving in an online fashion. Building on the previous chapter, in this chapter,
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```offline data

model

Nature

Figure 3.1: UOLS and SOLS setup. Dashed (double) arrows are exclusive to UOLS (SOLS)
settings. Other objects are common to both setups. Central question: how to adapt the
model in real-time to drifting label marginals based on all the available data so far?

we will allow temporal shifts in the test label marginal. Beyond the static label shift
setting, here we will face one additional challenge: since the label marginal can shift over
time, we assume access to limited number of unlabeled examples in each time step. In
particular, we will work in setting where we order 10–100 examples from each time-step.
While naively incorporating label shift estimation techniques would yield unbiased estimates,
these estimates individually will suffer from high variance. Hence, in this chapter, we will
explore how mild assumptions on the nature of shift in the label marginal can allows us to
obtain minimax estimates.

Researchers have only begun to explore the role that structures like label shift might play
in such online settings. Initial attempts to learn under unsupervised online label shifts
were made by Wu et al. (2021) and Bai et al. (2022), both of which rely on reductions to
Online Convex Optimization (OCO) (Hazan, 2016; Orabona, 2019). This line of research
aims in updating a classification model based on online data so that the overall regret is
controlled. However, Wu et al. (2021) only control for static regret against a fixed classifier
(or model) in hindsight and makes the assumption of the convexity (of losses), which is
often violated in practice. In the face of online label shift, where the class marginals can
vary across rounds, a more fitting notion is to control the dynamic regret against a sequence
of models in hindsight. Motivated by this observation, Bai et al. (2022) control for the
dynamic regret. However, their approach is based on updating model parameters (of the
classifier) with online gradient descent and relying on convex losses limits the applicability
of their methods (e.g. algorithms in Bai et al. (2022) can not be employed with decision
tree classifiers).

In this chapter, we study the problem of learning classifiers under Online Label Shift
(OLS) in both supervised and unsupervised settings (Fig.3.1). In both these settings, the
distribution shifts are an online process that respects the label shift assumption. Our
primary goal is to develop algorithms that side-step convexity assumptions and at the same
time optimally adapt to the non-stationarity in the label drift. In the Unsupervised Online
Label Shift (UOLS) problem, the learner is provided with a pool of labeled offline data
sampled iid from the distribution Q0px, yq to train an initial model f0. Afterwards, at every
online round t, few unlabeled data points sampled from Qtpxq are presented. The goal is
to adapt f0 to the non-stationary target distributions Qtpx, yq so that we can accurately
classify the unlabelled data. By contrast, in Supervised Online Label Shift (SOLS), our
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goal is to learn classifiers from only the (labeled) samples that arrive in an online fashion
from Qtpx, yq at each time step, while simultaneously adapting to the non-stationarity
induced due to changing label proportions. While SOLS is similar to online learning under
non-stationarity, UOLS differs from classical online learning as the test label is not seen
during online adaptation. Below are the list of contributions of this chapter.

• Unsupervised adaptation. For the UOLS problem, we provide a reduction to online
regression (see Defn. 3.2.1), and develop algorithms for adapting the initial classifier
f0 in a computationally efficient way leading to minimax optimal dynamic regret. Our
approach achieves the best-of-both worlds of Bai et al. (2022); Wu et al. (2021) by
controlling the dynamic regret while allowing us to use expressive black-box models
for classification (Sec. 3.3).

• Supervised adaptation. We develop algorithms for SOLS problem that lead to
minimax optimal dynamic regret without assuming convexity of losses (Sec. 3.4).
Our theoretically optimal solution is based on weighted Empirical Risk Minimization
(wERM) with weights tracked by online regression. Motivated by our theory, we also
propose a simple continual learning baseline which achieves empirical performance
competitive to the wERM from scratch at each time step across several semi-synthetic
SOLS problems while being 15ˆ more efficient in computation cost.

• Low switching regressors. We propose a black-box reduction method to convert
an optimal online regression algorithm into another algorithm that switches decisions
sparingly while maintaining minimax optimality. This method is relevant for online
change point detection. We demonstrate its application in developing SOLS algorithms
to train models only when significant distribution drift is detected, while maintaining
statistical optimality (App. B.4 and Algorithm 13).

• Extensive empirical study. We corroborate our theoretical findings with experi-
ments across numerous simulated and real-world OLS scenarios spanning vision and
language datasets (Sec. 3.5). Our proposed algorithms often improve over the best
alternatives in terms of both final accuracy and label marginal estimation. This advan-
tage is particularly prominent with limited initial holdout data (in the UOLS problem)
highlighting the sample efficiency of our approach.

Even-though online regression is a well studied technique, to the best of our knowledge,
it is not used before to address the problem of online label shift. It is precisely the usage
of regression which lead to tractable adaptation algorithms while side-stepping convexity
assumptions thereby allowing us to use very flexible models for classification. This is in stark
contrast to OCO based reductions in (Wu et al., 2021) and (Bai et al., 2022). We propose
new theoretical frameworks and identify the right set of assumptions for materializing the
reduction to online regression. It was not evident initially that this link would lead to
minimax optimal dynamic regret rates as well as consistent empirical improvement over
prior works. Proof of the lower bounds requires adapting the ideas from non-stationary
stochastic optimization (Besbes et al., 2015) in a non-trivial manner. Further, none of the
proposed methods require the prior knowledge of the extent of distribution drift.
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3.2 Problem Setup

Let X Ď Rd be the input space and Y “ rKs :“ t1, 2, . . . , Ku be the output space. Let Q be
a distribution over X ˆ Y and let qp¨q denotes the corresponding label marginal. ∆K is the
K-dimensional simplex. For a vector v P RK , vris is its ith coordinate. We assume that we
have a hypothesis class H. For a function f P H : X Ñ ∆K , we also use fpi|xq to indicate
fpxqris. With ℓpfpxq, yq, we denote the loss of making a prediction with the classifier f on
px, yq. L denotes the expected loss, i.e., L “ Epx,yq„Q rℓpfpxq, yqs. rOp¨q hides dependencies
in absolute constants and poly-logarithmic factors of horizon and failure probabilities.

In this work, we study online learning under distribution shift, where the distribution
Qtpx, yq may continuously change with time. Simialr to the previous chapter, we focus on
the label shift assumption where the distribution over label proportions qtpyq can change
arbitrarily but the distribution of the covariate conditioned on a label value (i.e., Qtpx|yq) is
assumed to be invariant across all time steps. We refer to this setting as Online Label Shift
(OLS). Here, we consider settings of unsupervised and supervised OLS settings captured in
Frameworks 1 and 3 respectively. In both settings, at round t a sample pxt, ytq is drawn
from a distribution with density Qtpxt, ytq. In the UOLS setting, the label is not revealed
to the learner. However, we assume access to offline labeled data sampled iid from Q0

which we use to train an initial classifier f0. The goal is to adapt the initial classifier f0 to
drifting label distributions. In contrast, for the SOLS setting, the label is revealed to the
learner after making a prediction and the goal is to learn a classifier ft P H for each time
step.

Next, we formally define the concept of online regression which will be central to our
discussions. Simply put, an online regression algorithm tracks a ground truth sequence
from noisy observations.
Definition 3.2.1 (online regression). Fix any T ą 0. The following interaction scheme is
defined to be the online regression protocol.

• At round t P rT s, an algorithm predicts pθt P RK.
• A noisy version of ground truth zt “ θt ` ϵt is revealed where θt, ϵt P RK, and

}ϵt}2, }θt}2 ď B. Further the noise ϵt are independent across time with Erϵts “ 0 and
Varpϵtrisq ď σ2 @i P rKs.

An online regression algorithm aims to control
řT

t“1 }pθt ´ θt}
2
2. Moreover, the regression

algorithm is defined to be adaptively minimax optimal if with probability at least 1 ´ δ,
řn

t“1 }pθt´θt}
2
2 “ rOpT 1{3V

2{3
T q without knowing VT ahead of time. Here VT :“

řT
t“2 }θt´θt´1}1

is termed as the Total Variation (TV) of the sequence θ1:T .

3.3 Unsupervised Online Label Shift

In this section, we develop a framework for handling the UOLS problem. We summarize
the setup in Framework 1. Since in practice, we may need to work with classifiers such
as deep neural networks or decision trees, we do not impose convexity assumptions on
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Framework 1 Unsupervised Online Label
Shift (UOLS) protocol
Input: Initial classifier f0 : X Ñ ∆K trained
on offline labeled dataset tpxi, yiquNi“1 sampled
iid from Q0;
1: f1 “ f0
2: for each round t P rT s do
3: Nature samples xt P X and yt P Y , with

pxt, ytq „ Qt; Only xt is revealed to the
learner.

4: Learner predicts a label i „ ftpxtq P

∆K .
5: ft`1 “ Apf0, x1:tq, where A is strategy

to adapt the classifier based on past
data.

6: end for

Algorithm 2 RegressAndReweight to han-
dle UOLS
Input: i) Online regression oracle ALG; ii)
Initial classifier f0; iii) The confusion matrix
C; iv) The label marginal q0 P D of the train-
ing distribution;
1: At round t, get the classifier covariate

xt.
2: Let pwqt “ ΠD pALGps1:t´1qq, where

ΠDpxq “ argminyPD }y ´ x}2.
3: Sample a label i with probability

9
pwqtpiq
q0piq

f0pi|xtq.
4: Let st “ C´1f0pxtq.
5: Update the online regression oracle with

the estimate st.

the (population) loss of the classifier as a function of the model parameters. Despite the
absence of such simplifying assumptions, we provide performance guarantees for our label
shift adaption techniques so that they are certified to be fail-safe.

Under the label shift assumption, we have Qtpy|xq as a re-weighted version of Q0py|xq:

Qtpy|xq “
Qtpyq

Qtpxq
Qtpx|yq “

Qtpyq

Qtpxq
Q0px|yq “

QtpyqQ0pxq

QtpxqQ0pyq
Q0py|xq9

Qtpyq

Q0pyq
Q0py|xq, (3.1)

where the second equality is due to the label shift assumption. Hence, a reasonable strategy
is to re-weight the initial classifier f0 with label proportions (estimate) at the current step,
since we only have to correct the label distribution shift. This re-weighting technique is
widely used for offline label shift correction (Alexandari et al., 2021; Azizzadenesheli et al.,
2019; Lipton et al., 2018a) and for learning under label imbalance (Cui et al., 2019; Huang
et al., 2016; Wang et al., 2017b).

Our starting point in developing a framework is inspired by Bai et al. (2022); Wu et al.
(2021) . For self-containedness, we briefly recap their arguments next. We refer interested
readers to their papers for more details. Wu et al. (2021) considers a hypothesis class of
re-weighted initial classifier f0. The loss of a hypothesis is parameterised by the re-weighting
vector. They use tools from OCO to optimise the loss and converge to a best fixed classifier.
However as noted in Wu et al. (2021), the losses are not convex with respect to the re-weight
vector in practice. Hence usage of OCO techniques is not fully satisfactory in their problem
formulation.

In a complementary direction, Bai et al. (2022) abandons the idea of re-weighting. Instead,
they update the parameters of a model at each round using online gradient descent and a loss
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function whose expected value is assumed to be convex with respect to model parameters.
They provide dynamic regret guarantees against a sequence of changing model parameters
in hindsight, and connects it to the variation of the true label marginals. More precisely,
they provide algorithms with

řT
t“1 Ltpwtq ´ Ltpw

˚
t q to be well controlled where w˚

t is the
best model parameter to be used at round t and Lt is a (population level) loss function.
However, there are some scopes for improvement in this direction as well. For example, the
convexity assumption can be easily violated when working with interpretable models based
on decision trees, or if we want to retrain few final layers of a deep classifier based on new
data. Further as noted in the experiments (Sec. 2.6), their methods based on retraining the
classifier require more data than re-weighting based methods. Our experiments also indicate
that re-weighting can be computationally cheaper than re-training without sacrificing the
classifier accuracy.

Thus, on the one hand, the work of Wu et al. (2021) allows us to use the power of expressive
initial classifiers while only controlling the static regret against a fixed hypothesis. On
the other hand, the work of Bai et al. (2022) allows controlling the dynamic regret while
limiting the flexibility of deployed models. We next provide our framework for handling
label shifts that achieves the best of both worlds by controlling the dynamic regret while
allowing the use of expressive blackbox models.

In summary, we estimate the sequence of online label marginals and leverage the idea of re-
weighting an initial classifier as in Wu et al. (2021). In particular, given an estimate pwqtpyq

of the true label marginal at round t, we compute the output of the re-weighted classifier
ft as xwqtpyq

q0pyq
f0py|xq{Z where Z “

ř

y
pwqtpyq

q0pyq
f0py|xq. However, to get around the issue of non-

convexity, we separate out the process of estimating the re-weighting vectors via a reduction
to online regression which is a well-defined and convex problem with computationally
efficient off-the-shelf algorithms readily available. Second, and more importantly, Wu et al.
(2021) competes with the best fixed re-weighted hypothesis. However, in the problem setting
of label shift, the true label marginals are in fact changing. Hence, we control the dynamic
regret against a sequence of re-weighted hypotheses in hindsight. All proofs for the next
sub-section are deferred to App. B.3.

3.3.1 Proposed algorithm and performance guarantees

We start by presenting our assumptions. This is followed by the main algorithm for UOLS
and its performance guarantees. Similar to the treatment in Bai et al. (2022), we assume
the following.
Assumption 1. Assume access to the true label marginals q0 P ∆K of the offline training
data and the true confusion matrix C P RKˆK with Cij “ Ex„Q0p¨|y“jq,f0pi|xq. Further the
minimum singular value σminpCq “ Ωp1q is bounded away from zero.

As noted in prior work (Garg et al., 2020a; Lipton et al., 2018a), the invertibility of
the confusion matrix holds whenever the classifier f0 has good accuracy and the true
label marginal q0 assigns a non-zero probability to each label. Though we assume perfect
knowledge of the label marginals of the training data and the associated confusion matrix,
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this restriction can be easily relaxed to their empirical counterparts computable from the
training data. The finite sample error between the empirical and population quantities can
be bounded by Op1{

?
Nq where N is the number of initial training data samples. To this

end, we operate in the regime where the time horizon obeys T “ Op
?
Nq. However, similar

to Bai et al. (2022), we make this assumption mainly to simplify presentation without
trivializing any aspect of the OLS problem.

Next, we present our assumptions on the loss function. Let p P ∆K . Consider a classifier
that predicts a label pwypxq, by sampling pwypxq according to the distribution that assigns a
weight ppiq

q0piq
f0pi|xq to the label i. Define Ltppq to be any non-negative loss that ascertains

the quality of the marginal p. For example, Ltppq “ Erℓppypxq, yqs where the expectation
is taken wrt the randomness in the draw px, yq „ Qt and in sampling pypxq. Here ℓ is any
classification loss (e.g. 0-1, cross-entropy).
Assumption 2 (Lipschitzness of loss functions). Let D be a compact and convex domain.
Assume that Ltppq is G Lipschitz with p P D Ď ∆K, i.e, Ltpp1q ´ Ltpp2q ď G}p1 ´ p2}2 for
any p1, p2 P D. The constant G need not be known ahead of time.

We show in Lemmas B.3.1 and B.3.2 that the above assumption is satisfied under mild
regularity conditions. Furthermore, the prior works such as Wu et al. (2021) and Bai et al.
(2022) also require that losses are Lipschitz with a known Lipschitz constant apriori to set
the step sizes for their OGD based methods.

The main goal here is to design appropriate re-weighting estimates such that the dynamic
regret :

RdynamicpT q “

T
ÿ

t“1

Ltppqtq ´ Ltpqtq ď

T
ÿ

t“1

G}pqt ´ qt}2 (3.2)

is controlled where pqt P ∆K is the estimate of the true label marginal qt. Thus we have
reduced the problem of handling OLS to the problem of online estimation of the true label
marginals.

Under label shift, we can get an unbiased estimate of the true marginals at any round
via the techniques in Alexandari et al. (2021); Azizzadenesheli et al. (2019); Lipton et al.
(2018a). More precisely, st “ C´1f0pxtq has the property that Ersts “ qt (see Lemma
B.3.3). Further, the variance of the estimate st is bounded by 1{σ2

minpCq. Unfortunately,
these unbiased estimates can not be directly used to track the moving marginals qt. This is
because the total squared error

řT
t“1Er}st ´ qt}

2
2s grows linearly in T as the sum of the

variance of the point-wise estimates accumulates unfavorably over time.

To get around these issues, one can use online regression algorithms such as FLH (Hazan
and Seshadhri, 2007) with online averaging base learners or the Aligator algorithm (Baby
et al., 2021). These algorithms use ensemble methods to (roughly) output running averages
of st where the variation in the true label marginals is small enough. The averaging within
intervals where the true marginals change slowly helps to reduce the overall variance while
injecting only a small bias. We use such online regression oracles to track the moving
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marginals and re-calibrate the initial classifier. Overall, Algorithm 2 summarizes our method
which has the following performance guarantee.
Theorem 3.3.1. Suppose we run Algorithm 2 with the online regression oracle ALG as
FLH-FTL (App. B.6) or Aligator (Baby et al., 2021). Then under Assumptions 1 and 2,
we have

ErRdynamicpT qs “ rO

˜

K1{6T 2{3V
1{3
T

σ
2{3
minpCq

`

?
KT

σminpCq

¸

, (3.3)

where VT :“
řT

t“2 }qt ´ qt´1}1 and the expectation is taken with respect to randomness in
the revealed co-variates. Further, this result is attained without prior knowledge of VT .
Remark 3.3.1. We emphasize that any valid online regression oracle ALG can be plugged
into Algorithm 2. This implies that one can even use transformer-based time series models
to track the moving marginals qt. Further, we have the flexibility of choosing the initial
classifier to be any black-box model that outputs a distribution over the labels.
Remark 3.3.2. Unlike prior works such as (Bai et al., 2022; Wu et al., 2021), we do not
need a pre-specified bound on the gradient of the losses. Consequently Eq.(3.2) holds for
the smallest value of the Lipschitzness coefficient G, leading to tight regret bounds. Further,
the projection step in Line 2 of Algorithm 2 is done only to safeguard our theory against
pathological scenarios with unbounded Lipschitz constant for losses. In our experiments, we
do not perform such projections.

We next show that the performance guarantee in Theorem 3.3.1 is optimal (modulo factors
of log T ) in a minimax sense.
Theorem 3.3.2. Let VT ď 64T . There exists a loss function, a domain D (in Assumption
2), and a choice of adversarial strategy for generating the data such that for any algorithm,
we have

řT
t“1EprLtppqtqs ´ Ltpqtqq “ Ω

´

maxtT 2{3V
1{3
T ,

?
T u

¯

, where pqt P D is the weight
estimated by the algorithm and qt P D is the label marginal at round t chosen by the
adversary. Here the expectation is taken with respect to the randomness in the algorithm
and the adversary.

3.4 Supervised Online Label Shift
In this section, we focus on the SOLS problem where the labels are revealed to the learner
after it makes decisions. Framework 3 summarizes our setup. Let f˚

t :“ argminfPH Ltpfq be
the population minimiser. We aim to control the dynamic regret against the best sequence
of hypotheses in hindsight:

RH
dynamicpT q “:

T
ÿ

t“1

Ltpftq ´ Ltpf
˚
t q . (3.5)

If the SOLS problem is convex, it reduces to OCO (Hazan, 2016; Orabona, 2019) and existing
works provide rOpT 2{3V

1{3
T q dynamic regret guarantees (Zhang et al., 2018b). However, in
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Framework 3 Supervised Online
Label Shift (SOLS) protocol
input A hypothesis class H.
1: for each round t P rT s do
2: Nature samples N iid data

points xt,1:N P X and yt,1:N P

Y, with each pxt,i, yt,iq „ Qt;
xt,1:N is revealed to the learner.

3: For each i P rN s, learner pre-
dicts a label ftpxt,iq.

4: The label yt,i P Y for each i P

rN s is revealed.
5: ft`1 “ Apft, tx1:t,1:N , y1:t,1:Nuq

where algorithm A updates
the classifier with past data.

6: end for

Algorithm 4 TrainByWeights to handle SOLS
input Online regression oracle ALG, hypothesis

class H
1: At round t P rT s, get estimated label marginal

pqt from ALGps1:t´1q.
2: Update the hypothesis with weighted ERM:

ft “ argmin
fPH

t´1
ÿ

i“1

N
ÿ

j“1

pqtpyi,jq

pqipyi,jq
ℓpfpxi,jq, yi,jq (3.4)

3: Get co-variates xt,1:N and make predictions with
ft

4: Get labels yt,1:N
5: Compute stris “ 1

N

řN
j“1 Ityt,j “ iu for all i P

rKs.
6: Update ALG with the empirical label marginals

st.

practice, since loss functions are seldom convex with respect to model parameters in modern
machine learning, the performance bounds of OCO algorithms cease to hold true. In our
work, we extend the generalization guarantees of ERM from statistical learning theory
(Bousquet et al., 2003) to the SOLS problem. All proofs of next sub-section are deferred to
App. B.5.

3.4.1 Proposed algorithms and performance guarantees

We start by providing a simple initial algorithm whose computational complexity and
flexibility will be improved later. Note that due to the label shift assumption, for any
j, t P rT s, we have Epx,yq„Qtrℓpfpxq, yqs “ Epx,yq„Qj

”

qtpyq

qjpyq
ℓpfpxq, yq

ı

. Here we assume that
the true label marginals qtpyq ą 0 for all t P rT s and all y P rKs. Based on this, we propose
a simple weighted ERM approach (Algorithm 4) where we use an online regression oracle
to estimate the label marginals from the (noisy) empirical label marginals computed with
observed labeled data. With weighted ERM and plug-in estimates of importance weights,
we can obtain our classifier ft. One can expect that by adequately choosing the online
regression oracle ALG, the risk of the hypothesis ft computed will be close to that of f˚

t .
Here the degree of closeness will also depend on the number of data points seen thus far.
Consequently, Algorithm 4 controls the dynamic regret (Eq.(3.5)) in a graceful manner.
We have the following performance guarantee:

Theorem 3.4.1. Suppose the true label marginal satisfies mint,k qtpkq ě µ ą 0. Choose the
online regression oracle in Algorithm 4 as FLH-FTL (App. G.3) or Aligator from Baby
et al. (2021) with its predictions clipped such that pqtrks ě µ. Then with probability at least
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1 ´ δ, Algorithm 4 produces hypotheses with RH
dynamic “ rO

´

T 2{3V
1{3
T `

a

T logp|H|{δq

¯

,

where VT “
řT

t“2 }qt ´ qt´1}1. Further, this result is attained without any prior knowledge
of the variation budget VT .

The above rate contains the sum of two terms. The second term is the familiar rate seen in
the supervised statistical learning theory literature under iid data (Bousquet et al., 2003).
The first term reflects the price we pay for adapting to distributional drift in the label
marginals. While we prove this result for finite hypothesis sets, the extension to infinite
sets is direct by standard covering net arguments (Vershynin, 2018).

Remark 3.4.1. Theorem 3.4.1 requires that the estimates of the label marginals to be
clipped from below by µ. This is done only to facilitate theoretical guarantees by enforcing
that the importance weights used in Eq.(8.1) do not become unbounded. However, note that
only the labels we actually observe enters the objective in Eq.(8.1). In particular, if a label
has very low probability of getting sampled at a round, then it is unlikely that it enters the
objective. Due to this reason, in our experiments, we haven’t used the clipping operation
(see Section 2.6 and Appendix G.3 for more details).

The proof of the theorem uses concentration arguments to establish that the risk of the
hypothesis ft is close to the risk of the optimal f˚

t . However, unlike the standard offline
supervised setting with iid data, for any fixed hypothesis, the terms in the summation of
Eq.(8.1) are correlated through the estimates of the online regression oracle. We handle
it by introducing uncorrelated surrogate random variables and bounding the associated
discrepancy. Next, we show (near) minimax optimality of the guarantee in Theorem
3.4.1.

Theorem 3.4.2. Let VT ď T {8. There exists a choice of hypothesis class, loss function, and
adversarial strategy of generating the data such that RH

dynamic “ Ω
´

T 2{3V
1{3
T `

a

T logp|H|q

¯

,

where the expectation is taken with respect to randomness in the algorithm and adversary.
Remark 3.4.2. Though the rates in Theorems 3.3.2 and 3.4.2 are similar, we note that
the corresponding regret definitions are different. Hence the minimax rates are not directly
comparable between the supervised and unsupervised settings.

Even-though Algorithm 4 has attractive performance guarantees, it requires retraining
with weighted ERM at every round. This can be computationally expensive. To alleviate
this issue, we design a new online change point detection algorithm (Algorithm 12 in
App. B.4) that can adaptively discover time intervals where the label marginals change
slow enough. We show that the new online change point detection algorithm can be used to
significantly reduce the number of retraining steps without sacrificing statistical efficiency
(up to constants). Due to space constraints, we defer the exact details to App. B.4. We
remark that our change point detection algorithm is applicable to general online regression
problems and hence can be of independent interest to online learning community.

Remark 3.4.3. Algorithm 12 helps to reduce the run-time complexity. However, both
Algorithms 4 and 12 have the drawback of storing all data points accumulated over the
online rounds. This is reminiscent to FTL / FTRL type algorithms from online learning.
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Figure 3.2: Results on the UOLS problem. (a) and (b): Ablation on CIFAR10 with
monotone shift over sizes of holdout data used to update model parameters and compute
confusion matrix, with amount of training data held fixed. FLH-FTL (ours) outperforms all
other alternatives throughout in classification error and mean square error in label marginal
estimation. Unlike the alternatives, the performance of FLH-FTL (ours) is unaffected by
the decrease in amount of holdout data. (c): CIFAR10 results with monotone shift using
varying amount of training data, with the remaining labeled data used as holdout (total
number of samples fixed to 50k). The performance of FLH-FTL is minimally impacted by
the reduction in the quantity of holdout data, thus yielding the greatest advantage from
utilizing a larger volume of training data.

We leave the task of deriving theoretical guarantees with reduced storage complexity under
non-convex losses as an important future direction.

3.5 Experiments1

3.5.1 UOLS Setup and Results
Setup Following the dataset setup of Bai et al. (2022), we conducted experiments on
synthetic and common benchmark data such as MNIST (LeCun et al., 1998), CIFAR-
10 (Krizhevsky and Hinton, 2009), Fashion (Xiao et al., 2017), EuroSAT (Helber et al.,
2019), Arxiv (Clement et al., 2019), and SHL (Gjoreski et al., 2018; Wang et al., 2019c). For
each dataset, the original data is split into labeled data available during offline training and
validation, and the unlabeled data that we observe during online learning. We experiment
with varying sizes of holdout offline data which is used to obtain the confusion matrix
and update the model parameters to adapt to OLS to probe the sample efficiency of all
the methods. In contrast to previous works (Bai et al., 2022; Wu et al., 2021), we have
chosen to use a smaller amount of holdout offline data for our main experiments. We made
this decision because the standard practice for deployment involves training and validating
models on training and holdout splits, respectively (e.g., with k-fold cross-validation). Then,
the final model is deployed by training on all available data (i.e., the union of train and
holdout) with the identified hyperparameters. However, to employ UOLS techniques in

1Code is publicly available at https://github.com/Anon-djiwh/OnlineLabelShift.
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Methods Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin

Base 8.6˘0.2 8.2˘0.3 4.9˘0.4 3.9˘0.0 16˘0 16˘0 13˘0 13˘0 15˘0 15˘0 23˘1 19˘0

OFC 6.4˘0.6 5.5˘0.2 4.4˘0.5 3.2˘0.3 12˘1 11˘0 11˘1 10˘1 7.9˘0.1 7.1˘0.1 20˘2 15˘0

Oracle 3.7˘0.8 3.9˘0.2 2.5˘0.5 1.5˘0.1 5.4˘0.5 5.8˘0.1 3.9˘0.3 4.1˘0.1 3.7˘0.2 3.6˘0.1 7.7˘1.0 5.1˘0.1

FTH 6.5˘0.6 5.7˘0.3 4.5˘0.6 3.3˘0.2 11˘0 11˘0 10˘0 9.6˘0.0 8.5˘0.3 6.9˘0.4 20˘1 14˘0

FTFWH 6.6˘0.5 5.7˘0.3 4.5˘0.6 3.3˘0.2 11˘1 11˘0 9.8˘0.4 9.6˘0.1 8.2˘0.6 6.9˘0.4 20˘1 14˘0

ROGD 7.9˘0.3 7.2˘0.6 6.2˘2.8 4.4˘1.5 16˘3 13˘0 14˘1 13˘1 10˘1 8.2˘0.7 23˘2 17˘1

UOGD 8.1˘0.6 7.5˘0.6 5.4˘0.6 4.0˘0.0 14˘0 14˘1 10˘1 9.8˘0.7 11˘2 11˘2 21˘1 17˘1

ATLAS 8.0˘1.0 7.5˘0.6 5.2˘0.6 3.7˘0.2 13˘0 13˘1 10˘1 9.9˘0.7 12˘2 12˘2 21˘1 16˘0

FLH-FTL (ours) 5.4˘0.7 5.4˘0.4 4.4˘0.7 3.3˘0.2 10˘0 11˘0 9.2˘0.4 9.6˘0.1 7.7˘0.4 7.0˘0.0 19˘1 14˘0

Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin

FTH 0.19˘0.01 0.10˘0.00 0.27˘0.00 0.14˘0.00 0.27˘0.01 0.14˘0.00 0.27˘0.00 0.14˘0.00 0.29˘0.01 0.14˘0.01 0.29˘0.01 0.15˘0.00

FTFWH 0.19˘0.02 0.09˘0.00 0.26˘0.02 0.13˘0.00 0.25˘0.02 0.13˘0.00 0.25˘0.01 0.13˘0.00 0.25˘0.04 0.14˘0.01 0.27˘0.02 0.15˘0.00

ROGD 0.29˘0.03 0.24˘0.01 0.41˘0.08 0.37˘0.06 0.39˘0.04 0.30˘0.05 0.43˘0.04 0.35˘0.03 0.37˘0.02 0.30˘0.01 0.34˘0.03 0.28˘0.01

FLH-FTL
(ours) 0.10˘0.01 0.08˘0.00 0.15˘0.01 0.12˘0.00 0.17˘0.01 0.13˘0.00 0.16˘0.01 0.13˘0.00 0.18˘0.02 0.14˘0.01 0.23˘0.01 0.15˘0.00

Table 3.1: Results for UOLS problems under sinusoidal (Sin) and Bernoulli (Ber) shifts.
Top: Classification Error. Bottom: Mean-squared error in estimating label marginal. For
both, lower is better. Across all datasets, we observe that FLH-FTL (ours) often improves
over best alternatives.

practice, practitioners must hold out data that was not seen during training to update the
model during online adaptation. Therefore, methods that are efficient with respect to the
amount of offline holdout data required might be preferable.

For all datasets except SHL, we simulate online label shifts with four types of shifts studied
in Bai et al. (2022): monotone shift, square shift, sinusoidal shift, and Bernoulli shift.
For SHL locomotion, we use the real-world shift occurring over time. For architectures,
we use an MLP for Fashion, SHL and MNIST, Resnets (He et al., 2016) for EuroSAT,
CINIC, and CIFAR, and DistilBERT (Sanh et al., 2019b; Wolf et al., 2019) based models
for arXiv. For alternate approaches, along with a base classifier (which does no adaptation)
and oracle classifier (which reweight using the true label marginals), we make comparisons
with adaptation algorithms proposed in prior works (Bai et al., 2022; Wu et al., 2021). In
particular, we compare with ROGD, FTH, FTFWH from Wu et al. (2021) and UOGD,
ATLAS from Bai et al. (2022). For brevity, we refer to our method as FLH-FTL (though
strictly speaking, our methods are based on FLH from Hazan and Seshadhri (2007) with
online averages as base learners). We run all the online label shift experiments with the
time horizon T “ 1000 and at each step 10 samples are revealed. We repeat all experiments
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Base Oracle ROGD FTH FTFWH FLH-FTL
(ours)

Cl Err 18˘1 6.3˘1.3 19˘3 14˘2 14˘2 13˘2

MSE NA 0.0˘0.0 0.3˘0.0 0.3˘0.0 0.3˘0.0 0.2˘0.0

Table 3.2: Results with a Random For-
est classifier on MNIST dataset. Note that
methods that update model parameters are
not applicable here. FLH-FTL outperforms
existing alternatives for both accuracy and
label marginal estimation.

CT
(base)

CT-RS (ours)
w FTH

CT-RS (ours)
w FLH-FTL

w-ERM
(oracle)

Cl Err 20.0˘0.5 18.38˘0.4 17.12˘0.8 16.32˘0.7

MSE NA 0.18˘0.01 0.12˘0.01 NA

Table 3.3: Results on SOLS setup on CI-
FAR10 SOLS with Bernoulli shift. CT with
RS improves over the base model (CT) and
achieves competitive performance with re-
spect to weighted ERM oracle. MNIST re-
sults are similar (see App. B.6).

with 3 seeds to obtain means and standard deviations of the results. For other methods that
perform re-weighting correction on softmax predictions, we use the labeled holdout data to
calibrate the model with temperature scaling, which tunes one temperature parameter (Guo
et al., 2017). We provide exact details about the datasets, label shift simulations, models,
and prior methods in App. B.6.

Results Overall, across all datasets, we observe that our method FLH-FTL performs
better than alternative approaches in terms of both classification error and mean squared
error for estimating the label marginal. Note that methods that directly update the
model parameters (i.e., UOGD, ATLAS) do not provide any estimate of the label marginal
(Table 3.1). UOGD and ATLAS also require offline holdout labeled data (i.e., from time
step 0) to make online updates to the model parameters. For this purpose, we use the same
labeled data that we use to compute the confusion matrix.

As we increase the holdout offline labeled dataset size for updating the model parameters
(and to compute the confusion matrix), we observe that classification error and MSE with
FLH-FTL stay (relatively) constant whereas the classification errors of other alternatives
improve (Fig. 3.2). This highlights that FLH-FTL can be much more sample efficient with
respect to the size of the hold-out offline labeled data. Motivated by this observation,
we perform an additional experiment in which we increase the offline training data and
observe that we can overall improve the classification accuracy significantly with FLH-FTL
(Fig. 3.2). We present results on SHL dataset with similar findings on semi-synthetic
datasets in App. B.6.2. Finally, we also experiment with a random forest model on the
MNIST dataset. Note methods that update model parameters (e.g., UOGD and ATLAS)
with OGD are not applicable here. Here, we also observe that we improve over existing
applicable alternatives (Table 3.2).

3.5.2 SOLS setup and results
Setup For the supervised problem, we experiment with MNIST and CIFAR datasets. We
simulate a time horizon of T “ 200. For each dataset, at each step, we observe 50 samples
with Bernoulli shift. Motivated by our theoretical results with weighted ERM, we propose
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a simple baseline which continually trains the model at every step instead of starting ERM
from scratch every time. We maintain a pool of all the labeled data received till that
time step, and at every step, we randomly sample a batch with uniform label marginal to
update the model. Finally, we re-weight the updated softmax outputs with estimated label
marginal. We call this method Continual Training via Re-Sampling (CT-RS). Its relation
as a close variant of weighted ERM is elaborated in App. B.6.1. To estimate the label
marginal, we try FTH and ours FLH-FTL.

Results On both datasets, we observe that empirical performance with CT-RS improves
over the naive continual training baseline. Additionally, CT-RS results are competitive with
weighted ERM while being 5–15ˆ faster in terms of computation cost (we include the exact
computational cost in App. B.6.1). Moreover, as in UOLS setup, we observe that FLH-FTL
improves over FTH for both target label marginal estimation and classification.

3.6 Conclusion
In this work, we focused on unsupervised and supervised online label shift settings. For both
settings, we developed algorithms with minimax optimal dynamic regret. Experimental
results on both real and semi-synthetic datasets substantiate that our methods improve
over prior works both in terms of accuracy and target label marginal estimation.
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Part II

Adaptation Under Input Distribution
Shift and Relaxed Label Shift Scenarios
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Chapter 4

Mixture Proportion Estimation and PU
Learning: A Modern Approach

Based on Garg et al. (2021b): Saurabh Garg, Yifan Wu, Alexander J. Smola, Sivaraman Balakrishnan, and
Zachary Lipton. Mixture proportion estimation and PU learning: A modern approach.Advances in Neural
Information Processing Systems, 2021

Abstract
In the next two chapters, we relax the label shift assumption to allow previously unseen
classes. This chapter deals with the base case which is classically studied under the
paradigm of Positive and Unlabeled (PU) learning.
Given only positive examples and unlabeled examples (containing both positive and
negative classes), the problem can be broken into two subtasks: (i) Mixture Proportion
Estimation (MPE)—determining the fraction of positive examples in the unlabeled
data; and (ii) PU-learning—given such an estimate, learning the desired positive-versus-
negative classifier. Unfortunately, classical methods for both problems break down
in high-dimensional settings. Meanwhile, recently proposed heuristics lack theoretical
coherence and depend precariously on hyperparameter tuning. We propose two simple
techniques: Best Bin Estimation (BBE) for MPE; and Conditional Value Ignoring Risk
(CVIR), for PU-learning. Both methods dominate previous approaches empirically,
and for BBE, we establish formal guarantees that hold whenever we can train a
model to cleanly separate out a small subset of positive examples. Our final algorithm
(TED)n, alternates between the two procedures, significantly improving both our mixture
proportion estimator and classifier. Code is available at this url.
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4.1 Introduction

In previous chapters, we focused on problems where the classes in the test unlabeled data
were a subset of training data classes. While this allows us to develop principled machinery
to tackle problems where additional classes are not introduced in test data, it remains
ineffective in scenarios where previously unseen classes appear in unlabeled test data. In
this and the next chapter, we will introduce algorithms and identifiablity conditions to
handle such scenarios.

When deploying k-way classifiers in the wild, what can we do when confronted with data
from a previously unseen class (k ` 1)? Theory dictates that learning under distribution
shift is impossible absent assumptions. And yet people appear to exhibit this capability
routinely. Faced with new surprising symptoms, doctors can recognize the presence of a
previously unseen ailment and attempt to estimate its prevalence. Similarly, naturalists
can discover new species, estimate their range and population, and recognize them reliably
going forward.

To begin making this problem tractable, we might make the label shift assumption (Lipton
et al., 2018b; Saerens et al., 2002; Storkey, 2009), i.e., that while the class balance ppyq

can change, the class conditional distributions ppx|yq do not. Moreover, we might begin by
focusing on the base case, where only one class has been seen previously, i.e., k “ 1. Here,
we possess (labeled) positive data from the source distribution, and (unlabeled) data from
the target distribution, consisting of both positive and negative instances. This problem
has been studied in the literature as learning from positive and unlabeled data (De Comité
et al., 1999; Letouzey et al., 2000) and has typically been broken down into two subtasks:
(i) Mixture Proportion Estimation (MPE) where we estimate α, the fraction of positives
among the unlabeled examples; and (ii) PU-learning where this estimate is incorporated
into a scheme for learning a Positive-versus-Negative (PvN) binary classifier.

Traditionally, MPE and PU-learning have been motivated by settings involving large
databases where unlabeled examples are abundant and a small fraction of the total positives
have been extracted. For example, medical records might be annotated indicating the
presence of certain diagnoses, but the unmarked passages are not necessarily negative.
This setup has also been motivated by protein and gene identification (Elkan and Noto,
2008). Databases in molecular biology often contain lists of molecules known to exhibit
some characteristic of interest. However, many other molecules may exhibit the desired
characteristic, even if this remains unknown to science.

Many methods have been proposed for both MPE (Bekker and Davis, 2018; Du Plessis
and Sugiyama, 2014a; Elkan and Noto, 2008; Ivanov, 2019; Jain et al., 2016; Ramaswamy
et al., 2016; Reeve and Kabán, 2019; Scott, 2015) and PU-learning (Du Plessis et al., 2015;
2014; Kiryo et al., 2017). However, classical MPE methods break down in high-dimensional
settings (Ramaswamy et al., 2016) or yield estimators whose accuracy depends on restrictive
conditions (Du Plessis and Sugiyama, 2014a; Scott, 2015). On the other hand, most
recent proposals either lack theoretical coherence, rely on heroic assumptions, or depend
precariously on tuning hyperparameters that are, by the very problem setting, untunable.
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Figure 4.1: Illustration of proposed methods. (left) Estimate of α with varying fraction
of unlabeled examples in the top bin. The shaded region highlights the upper and lower
confidence bounds. BBE selects the top bin that minimizes the upper confidence bound.
(right) Accuracy and MPE estimate as training proceeds. Till 100-th epoch (vertical line),
we perform PvU training, i.e., warm start for (TED)n. Post 100-th epoch, we continue with
both (TED)n and PvU training. Note that (TED)n improves both classification accuracy
and MPE compared to PvU training. Results with Resnet-18 on binary-CIFAR. For details
and comparisons with other methods, see Sec. 4.6.

For PU learning, Elkan and Noto (2008) suggest training a classifier to distinguish positive
from unlabeled data followed by a rescaling procedure. Du Plessis et al. (2015) suggest
an unbiased risk estimation framework for PU learning. However, these methods fail
badly when applied with model classes capable of overfitting and thus implementations on
high-dimensional datasets rely on extensive hyperparameter tuning and additional ad-hoc
heuristics that do not transport effectively across datasets.

In this chapter, we propose (i) Best Bin Estimation (BBE), an effective technique for
MPE that produces consistent estimates pα under mild assumptions and admits finite-
sample statistical guarantees achieving the desired Op1{

?
nq rates; and (ii) learning with

the Conditional Value Ignoring Risk (CVIR) objective, which discards the highest loss
pα fraction of examples on each training epoch, removing the incentive to overfit to the
unlabeled positive examples. Both methods are simple to implement, compatible with
arbitrary hypothesis classes (including deep networks), and dominate existing methods
in our experimental evaluation. Finally, we combine the two in an iterated Transform-
Estimate-Discard (TED)n framework that significantly improves both MPE estimation
error and classifier error.

We build on label shift methods (Alexandari et al., 2021; Azizzadenesheli et al., 2019; Garg
et al., 2020b; Lipton et al., 2018b; Rabanser et al., 2019), that leverage black-box classifiers
to reduce dimensionality, estimating the target label distribution as a functional of source
and target push-forward distributions. While label shift methods rely on classifiers trained
to separate previously seen classes, BBE is able to exploit a Positive-versus-Unlabeled
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(PvU) target classifier, which gives each input a score indicating how likely it is to be a
positive sample. In particular, BBE identifies a threshold such that by estimating the ratio
between the fractions of positive and unlabeled points receiving scores above the threshold,
we obtain the mixture proportion α.

BBE works because in practice, for many datasets, PvU classifiers, even when uncalibrated,
produce outputs with near monotonic calibration diagrams. Higher scores correspond to a
higher proportion of positives, and when the positive data contains a separable sub-domain,
i.e., a region of the input space where only the positive distribution has support, classifiers
often exhibit a threshold above which the top bin contains mostly positive examples. We
show that the existence of a (nearly) pure top bin is sufficient for BBE to produce a (nearly)
consistent estimate pα, whose finite sample convergence rates depend on the fraction of
examples in the bin and whose bias depends on the purity of the bin. Crucially, we can
estimate the optimal threshold from data.

We conduct a battery of experiments both to empirically validate our claim that BBE’s
assumptions are mild and frequently hold in practice, and to establish the outperformance
of BBE, CVIR, and (TED)n over the previous state of the art. We first motivate BBE by
demonstrating that in practice PvU classifiers tend to isolate a reasonably large, reasonably
pure top bin. We then conduct extensive experiments on semi-synthetic data, adapting a
variety of binary classification datasets to the PU learning setup and demonstrating the
superior performance of BBE and PU-learning with the CVIR objective. Moreover, we show
that (TED)n, which combines the two in an iterative fashion, improves significantly over
previous methods across several architectures on a range of image and text datasets.

4.2 Related Work

Research on MPE and PU learning date to (De Comité et al., 1999; Denis, 1998; Letouzey
et al., 2000) (see review by (Bekker and Davis, 2020)). Elkan and Noto (2008) first proposed
to leverage a PvU classifier to estimate the mixture proportion. Du Plessis and Sugiyama
(2014b) propose a different method for estimating the mixture coefficient based on Pearson
divergence minimization. While they do not require a PvU classifier, they suffer the same
shortcoming. Both methods require that the positive and negative examples have disjoint
support. Our requirements are considerably milder. Blanchard et al. (2010) observe that
without assumptions on the underlying positive and negative distributions, the mixture
proportion is not identifiable. Furthermore, (Blanchard et al., 2010) provide an irreducibility
condition that identifies α and propose an estimator that converges to the true α. While
their estimator can converge arbitrarily slowly, Scott (2015) showed faster convergence
(Op1{

?
nq) under stronger conditions. Unfortunately, despite its appealing theoretical

properties Blanchard et al. (2010)’s estimator is computationally infeasible. Building on
Blanchard et al. (2010), Sanderson and Scott (2014) and Scott (2015) proposed estimating
the mixture proportion from a ROC curve constructed for the PvU classifier. However, when
the PvU classifier is not perfect, these methods are not clearly understood. Ramaswamy
et al. (2016) proposed the first computationally feasible algorithm for MPE with convergence
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guarantees to the true proportion. Their method KM, requires embedding distributions
onto an RKHS. However, their estimator underperforms on high dimensional datasets and
scales poorly with large datasets. Bekker and Davis (2018) proposed TIcE, hoping to
identify a positive subdomain in the input space using decision tree induction. This method
also underperforms in high-dimensional settings.

In the most similar works, Jain et al. (2016) and Ivanov (2019) explore dimensionality
reduction using a PvU classifier. Both methods estimate α through a procedure operating
on the PvU classifier’s output. However, neither methods has provided theoretical backing.
(Ivanov, 2019) concede that their method often fails and returns a zero estimate, requiring
that they fall back to a different estimator. Moreover while both papers state that their
method require the Bayes-optimal PvU classifier to identify α in the transformed space, we
prove that even when hypothesis class is well specified for PvN learning, PvU training can fail
to recover the Bayes-optimal scoring function. Furthermore, we also show that the heuristic
estimator in Scott (2015) can be thought of as using PvU classifier for dimensionality
reduction. While this heuristic is similar to our estimator in spirit, we show that the
functional form of their estimator is different from ours and note that their heuristic enjoys
no theoretical guarantee. By contrast, our estimator BBE is theoretically coherent under
mild conditions and outperforms all of these methods empirically.

Given α, Elkan and Noto (2008) propose a transformation via Bayes rule to obtain the PvN
classifier. They also propose a weighted objective, with weights given by the PvU classifier.
Other propose unbiased risk estimators (Du Plessis et al., 2015; 2014) which require the
mixture proportion α. Du Plessis et al. (2014) proposed an unbiased estimator with non-
convex loss functions satisfying a specific symmetric condition, and subsequently Du Plessis
et al. (2015) generalized it to convex loss functions (denoted uPU in our experiments). in
our experiments. Noting the problem of overfitting in modern overparameterized models,
Kiryo et al. (2017) propose a regularized extension that clips the loss on unlabeled data
to zero. This is considered the current state-of-the-art in PU literature (denoted nnPU in
our experiments). More recently, Ivanov (2019) proposed DEDPUL, which finetunes the
PvU classifiers using several heuristics, Bayes rule, and Expectation Maximization (EM).
Since their method only applies a post-processing procedure, they rely on a good domain
discriminator classifier in the first place and several hyperparameters for their heuristics.
Several classical methods attempt to learn weights that identify reliable negative examples
(Lee and Liu, 2003; Li and Liu, 2003; Liu et al., 2002; 2003; Zhang and Lee, 2005). However,
these earlier methods have not been successful with modern deep learning models.

4.3 Problem Setup

By ||¨|| and x¨, ¨y, we denote the Euclidean norm and inner product, respectively. For a
vector v P Rd, we use vj to denote its jth entry, and for an event E, we let I rEs denote the
binary indicator of the event. By |A|, we denote the cardinality of set A. Let X P Rd be
the input space and Y “ t´1,`1u be the output space. Let P : X ˆ Y Ñ r0, 1s be the
underlying joint distribution and let p denote its corresponding density.
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Algorithm 5 Best Bin Estimation (BBE)
input : Validation positive (Xp) and unlabeled (Xu) samples. Blackbox model classifier

pf : X Ñ r0, 1s. Hyperparameter 0 ă δ, γ ă 1.
1: Zp, Zu “ fpXpq, fpXuq.
2: pwqppzq, pwqupzq “

ř

ziPZp
Irziězs

np
,
ř

ziPZu
Irziězs

nu
for all z P r0, 1s.

3: Estimate pwc :“ argmincPr0,1s

´

pwqupcq

pwqppcq
`

1`γ
pwqppcq

´
b

logp4{δq

2nu
`

b

logp4{δq

2np

¯¯

.

output : pwα :“ pwqup pwcq

pwqpp pwcq

Let PP and PN be the class-conditional distributions for positive and negative class and
pppxq “ ppx|y “ `1q and pnpxq “ ppx|y “ ´1q be the corresponding class-conditional
densities. PU denotes the distribution of the unlabeled data and pu denotes its density. Let
α P r0, 1s be the fraction of positives among the unlabeled population, i.e., PU “ αPP `

p1 ´ αqPN. When learning from positive and unlabeled data, we obtain i.i.d. samples from
the positive (class-conditional) distribution, which we denote as Xp “ tx1, x2, . . . , xnpu „

P
np

P and i.i.d samples from unlabeled distribution as Xu “ txnp`1, xnp`2, . . . , xnp`nuu „

Pnu
U .

MPE is the problem of estimating α. Absent assumptions on PP, PN and PU, the mixture
proportion α is not identifiable (Blanchard et al., 2010). Indeed, if PU “ αPP ` p1 ´ αqPN,
then any alternate decomposition of the form PU “ pα´γqPP ` p1´α`γqP1

N, for γ P r0, αq

and P1
N “ p1´α`γq´1pγPP`p1´αqPNq, is also valid. Since we do not observe samples from

the distribution PN, the parameter α is not identifiable. Blanchard et al. (2010) formulate
an irreducibility condition under which α is identifiable. Intuitively, the condition restricts
PN to ensure that it can not be a (non-trivial) mixture of PP and any other distribution.
While this irreducibility condition makes α identifiable, in the worst-case, the parameter
α can be difficult to estimate and any estimator must suffer an arbitrarily slow rate of
convergence (Blanchard et al., 2010). In this paper, we propose mild conditions on the
PvU classifier that make α identifiable and allows us to derive finite-sample convergence
guarantees.

With PU learning, the aim is to learn a classifier f : X Ñ r0, 1s to approximate ppy “ `1|xq.
We assume that we are given a loss function ℓ : r0, 1s ˆ Y Ñ R, such that ℓpz, yq is the
loss incurred by predicting z when the true label is y. For a classifier f and a sampled
set X “ tx1, x2, . . . , xnu, we let pwL`pf ;Xq “

řn
i“1 ℓpfpxiq,`1q{n denote the loss when

predicting the samples as positive and pwL´pf ;Xq “
řn

i“1 ℓpfpxiq,´1q{n the loss when
predicting the samples as negative. For a sample set X each with true label y, we define 0-1
error as pwEypf ;Xq “

řn
i“1 I rypfpxiq ´ tq ď 0s {n for some predefined threshold t . Unless

stated otherwise, the threshold is assumed to be 0.5.

4.4 Mixture Proportion Estimation

In this section, we introduce BBE, a new method that leverages a blackbox classifier f to
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perform MPE and establish convergence guarantees. All proofs are relegated to App. C.1.
To begin, we assume access to a fixed classifier f . For intuition, you may think of f as a
PvU classifer trained on some portion fo the positive and unlabeled examples. In Sec. 4.5,
we discuss other ways to obtain a suitable classifier from PU data.

We now introduce some additional notation. Assume f transforms an input x P X to
z P r0, 1s, i.e., z “ fpxq. For given probability density function p and a classifier f , define
a function qpzq “

ş

Az
ppxqdx, where Az “ tx P X : fpxq ě zu for all z P r0, 1s. Intuitively,

qpzq captures the cumulative density of points in a top bin, the proportion of input domain
that is assigned a value larger than z by the classifier f in the transformed space. We now
define an empirical estimator pwqpzq given a set X “ tx1, x2, . . . , xnu sampled iid from ppxq.
Let Z “ fpXq. Define pwqpzq “

řn
i“1 I rzi ě zs {n. For each pdf pp, pn and pu, we define qp,

qn and qu respectively.

Without any assumptions on the underlying distribution and the classifier f , we aim to
estimate α˚ “ mincPr0,1s qupcq{qppcq with BBE. Later, under one mild assumption that
empirically holds across numerous PU datasets, we show that α˚ “ α, i.e., α˚ matches the
true mixture proportion α.

Our procedure proceeds as follows: First, given a held-out dataset of positive (Xp) and
unlabeled examples (Xu), we push all examples through the classifier f to obtain one-
dimensional outputs Zp “ fpXpq and Zu “ fpXuq. Next, with Zp and Zu, we estimate
pwqp and pwqu. Finally, we return the ratio pwqup pwcq{ pwqpp pwcq at pwc that minimizes the
upper confidence bound (calculated using Lemma D.4.2) at a pre-specified level δ and a
fixed parameter γ P p0, 1q. Our method is summarized in Algorithm 17. For theoretical
guarantees, we multiply the confidence bound term with 1 ` γ for a small positive constant
γ. Refer to App. C.1.1 for details. We now show that the proposed estimator comes with
the following guarantee:
Theorem 4.4.1. Define c˚ “ argmincPr0,1s qupcq{qppcq. For minpnp, nuq ě

2 logp4{δq

qppc˚q
and for

every δ ą 0, the mixture proportion estimator pwα defined in Algorithm 17 satisfies with
probability 1 ´ δ:

| pwα ´ α˚| ď
c

qppc˚q

˜

d

logp4{δq

nu

`

d

logp4{δq

np

¸

,

for some constant c ě 0.

Theorem 4.4.1 shows that with high probability, our estimate is close to α˚. The proof of
the theorem is based on the following confidence bound inequality:
Lemma 4.4.2. For every δ ą 0, with probability at least 1 ´ δ, we have for all c P r0, 1s∣∣∣∣ pwqupcq

pwqppcq
´

qupcq

qppcq

∣∣∣∣ ď
1

pwqppcq

˜

d

logp4{δq

2nu

`
qupcq

qppcq

d

logp4{δq

2np

¸

.

Now, we discuss the convergence of our estimator to the true mixture proportion α. Since,
pupxq “ αpppxq ` p1 ´αqpnpxq, for all x P X , we have qupzq “ αqppzq ` p1 ´αqqnpzq, for all
z P r0, 1s.
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(a) (b)

Figure 4.2: (a) Purity and size (in terms of fraction of unlabeled samples) in the top bin
and (b) Distribution of predicted probabilities (of being positive) for unlabeled training
data as training proceeds with (TED)n. Results with ResNet-18 on binary-CIFAR. As in
Fig. 11.1, we fix W at 100. In App. C.7.3, we show that as PvU training proceeds, the
purity of top bin degrades and the distribution of predicted probabilities of positives and
negatives become less and less separable.

Corollary 4.4.3. Define c˚ “ argmincPr0,1s qnpcq{qppcq. Assume minpnp, nuq ě
2 logp4{δq

qppc˚q
.

For every δ ą 0, pwα (in Algorithm 17) satisfies with probability 1 ´ δ:

α ´
c1

qppc˚q

˜

d

logp4{δq

nu

`

d

logp4{δq

np

¸

ď pwα , and

pwα ď α ` p1 ´ αq
qnpc˚q

qppc˚q
`

c2
qppc˚q

˜

d

logp4{δq

nu

`

d

logp4{δq

np

¸

,

for some constant c1, c2 ě 0.

As a corollary to Theorem 4.4.1, we show that our estimator pwα converges to the true α
with convergence rate minpnp, nuq´1{2, as long as there exist a threshold cf P p0, 1q such
that qppcf q ě ϵp and qnpcf q “ 0 for some constant ϵp ą 0. We refer to this condition as the
pure positive bin property.

Note that in a more general case, our bound in Corollary 4.4.3 captures the tradeoff due to
the proportion of negative examples in the top bin (bias) versus the proportion of positives
in the top bin (variance).

Empirical Validation We now empirically validate the positive pure top bin property
(Fig. 4.2). We observe that as PvU training proceeds, purity of the top bin improves
for a fixed fraction of samples in the top bin. Moreover, this behavior becomes more
pronounced when learning a PvU classifier with the CVIR objective proposed in the
following section.

Comparison with existing methods Due to the intractability of Blanchard et al.
(2010) estimator, Scott (2015) implements a heuristic based on identifying a point on
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Algorithm 6 PU learning with Conditional Value Ignoring Risk (CVIR) objective
input : Labeled positive training data (Xp) and unlabeled training samples (Xu). Mixture

proportion estimate α.
1: Initialize a training model fθ and an stochastic optimization algorithm A.
2: Xn :“ Xu.
3: while training error pwE`pfθ;Xpq ` pwE´pfθ;Xnq is not converged do
4: Rank samples xu P Xu according to their loss values ℓpfθpxuq,´1q.
5: Xn :“ Xu,1´α where Xu,1´α denote the lowest ranked 1 ´ α fraction of samples.
6: Shuffle pXp, Xnq into B mini-batches. With pX i

p, X
i
nq we denote i-th mini-batch.

7: for i “ 1 to B do
8: Set the gradient ∇θ

“

α ¨ pwL`pfθ;X
i
pq ` p1 ´ αq ¨ pwL´pfθ;X

i
nq
‰

and update θ with
algo. A.

9: end for
10: end while
output : Trained classifier fθ

the AUC curve such that the slope of the line segment between this point and (1,1) is
minimized. While this approach is similar in spirit to our BBE method, there are some
striking differences. First, the heuristic estimator in Scott (2015) provides no theoretical
guarantees, whereas we provide guarantees that BBE will converge to the best estimate
achievable over all choices of the bin size and provide consistent estimates whenever a pure
top bin exists. Second, while both estimates involve thresholds, the functional form of
the estimates are different. Corroborating theoretical results of BBE, we observe that the
choices in BBE create substantial differences in the empirical performance as observed in
App. C.2. We work out details of comparison between Scott (2015) heuristic and BBE in
App. C.2.

On the other hand, recent works (Ivanov, 2019; Jain et al., 2016) that use PvU classifier for
dimensionality reduction, discuss Bayes optimality of the PvU classifier (or its one-to-one
mapping) as a sufficient condition to preserve α in transformed space. By contrast, we
show that the milder pure positive bin property is sufficient to guarantee consistency and
achieve Op1{

?
nq rates. Furthermore, in a simple toy setup in App. C.3, we show that even

when the hypothesis class is well specified for PvN learning, it will not in general contain
the Bayes optimal PvU classifier and thus PvU training will not recover the Bayes-optimal
scoring function, even in population. Contrarily, we show that any monotonic mapping of
the Bayes-optimal PvU scoring function induces a positive pure top bin property. We leave
further theoretical investigations concerning conditions under which a pure positive top bin
arises to future work.

4.5 PU-Learning

Given positive and unlabeled data, we hope not only to identify α, but also to obtain a
classifier that distinguishes effectively between positive and negative samples. In supervised
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learning with separable data (e.g., cleanly labeled image data), overparameterized models
generalize well even after achieving near-zero training error. However, with PvU training
over-parameterized models can memorize the unlabeled positives, assigning them confidently
to the negative class, which can severely hurt generalization on PN data (Zhang et al.,
2017). Moreover, while unbiased losses exist that estimate the PvN loss given PU data and
the mixture proportion α, this unbiasedness only holds before the loss is optimized, and
becomes ineffective with powerful deep learning models capable of memorization.

A variety of heuristics, including ad-hoc early stopping criteria, have been explored (Ivanov,
2019), where training proceeds until the loss on unseen PU data ceases to decrease. However,
this approach leads to severe under-fitting (results in App. C.7.2). On the other hand, by
regularizing the loss function, nnPU Kiryo et al. (2017) mitigates overfitting issues due to
memorization.

However, we observe that nnPU still leaves a substantial accuracy gap when compared to a
model trained just on the positive and negative (from the unlabeled) data (ref. experiment
in App. C.7.1). This leads us to ask the following question: can we improve performance
over nnPU of a model just trained with PU data and bridge this gap? In an ideal scenario,
if we could identify and remove all the positive points from the unlabeled data during
training then we can hope to achieve improved performance over nnPU. Indeed, in practice,
we observe that in the initial stages of PvU training, the model assigns much higher scores
to positives than to negatives in the unlabeled data (Fig. D.1(b)).

Inspired by this observation, we propose CVIR, a simple yet effective objective for PU
learning. Below, we present our method assuming an access to the true MPE. Later, we
combine BBE with CVIR optimization, yielding (TED)n, an alternating optimization that
significantly improves both the BBE estimates and the PvU classifier.

Given a training set of positives Xp and unlabeled Xu and the mixture proportion α,
we begin by ranking the unlabeled data according the predicted probability (of being
positive) by our classifier. Then, in every epoch of training, we create a (temporary) set of
provisionally negative samples Xn by removing α fraction of the unlabeled samples currently
scored as most positive. Next, we update our classifier by minimize the loss on the positives
Xp and provisional negatives Xn by treating them as negatives. We repeat this procedure
until the training error on Xp and Xn converges. Likewise nnPU, note that this procedure
does not need early stopping. Summary in Algorithm 6.

In App. C.4, we justify our loss function in the scenario when the positives and negatives
are separable. For a more general scenario, we show that each step of our alternating
procedure in CVIR cannot increase the population loss and hence, CVIR can only improve
(or plateau) after every iteration.

(TED)n Integrating BBE and CVIR We are now ready to present our algorithm
Transfer, Estimate and Discard (TED)n that combines BBE and CVIR objective.

First, we observe the interaction between BBE and CVIR objective. If we have an accurate
mixture proportion estimate, then it leads to improved classifier, in particular, we reject
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Algorithm 7 Transform-Estimate-Discard (TED)n

input : Positive data (Xp) and unlabeled samples (Xu). Hyperparameter W, δ.
1: Initialize a training model fθ and an stochastic optimization algorithm A.
2: Randomly split positive and unlabeled data into training X1

p , X
1
u and hold-out set

(X2
p , X

2
u).

3: X1
n :“ X1

u.
{// Warm start with domain discrimination training}

4: for i “ 1 to W do
5: Shuffle pX1

p , X
1
nq into B mini-batches. With pX1

p
i
, X1

n
i
q we denote i-th mini-batch.

6: for i “ 1 to B do
7: Set the gradient ∇θ

”

pwL`pfθ;X
1
p
i
q ` pwL´pfθ;X

1
n
i
q

ı

and update θ with algorithm
A.

8: end for
9: end for

10: while training error pwE`pfθ;X
1
p q ` pwE´pfθ;X

1
nq is not converged do

11: Estimate pwα using Algorithm 17 with pX2
p , X

2
uq and fθ as input.

12: Rank samples xu P X1
u according to their loss values lpfθpxuq,´1q.

13: X1
n :“ X1

u,1´ pwα where X1
u,1´ pwα denote the lowest ranked 1 ´ pwα fraction of samples.

14: Train model fθ for one epoch on pX1
p , X

1
nq as in Lines 4-7.

15: end while
output : Trained classifier fθ

accurate number of prospective positive samples from unlabeled. Consequently, updating
the classifier to minimize loss on positive versus retained unlabeled improves purity of
top bin. This leads to an obvious alternating procedure where at each epoch, we first
use BBE to estimate pwα and then update the classifier with CVIR objective with pwα as
input. We repeat this until training error has not converged. Our method is summarized in
Algorithm 7.

Note that we need to warm start with PvU (positive versus negative) training, since in
the initial stages mixture proportion estimate is often close to 1 rejecting all the unlabeled
examples. However, in next section, we show that our procedure is not sensitive to the
choice of number of warm start epochs and in a few cases with large datasets, we can even
get away without warm start (i.e., W “ 0) without hurting the performance. Moreover,
recall that our aim is to distinguish positive versus negative examples among the unlabeled
set where the proportion of positives is determined by the true mixture proportion α.
However, unlike CVIR, we do not re-weight the losses in (TED)n. While true MPE α
is unknown, one natural choice is to use the estimate pwα at each iteration. However, in
our initial experiments, we observed that re-weighted objective with estimate pwα led to
comparatively poor classification performance due to presence of bias in estimate pwα in the
initial iterations. We note that for deep neural networks (for which model mis-specification
is seldom a prominent concern) and when the underlying classes are separable (as with most
image datasets), it is known that importance weighting has little to no effect on the final
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Figure 4.3: Epoch wise results with ResNet-18 trained on binary-CIFAR when α is 0.5.
For both classification and MPE, (TED)n substantially improves over existing methods.
Additionally, (TED)n maintains the superior performance till convergence removing the
need for early stopping. Results aggregated over 3 seeds.

classifier (Byrd and Lipton, 2019). Therefore, we may not need importance-reweighting
with (TED)n on separable datasets. Consequently, following earlier works (Du Plessis et al.,
2015; Kiryo et al., 2017) we do not re-weight the loss with our (TED)n procedure. In future
work, a simple empirical strategy can be explored where we first obtain an estimate of pwα
by running the full (TED)n procedure till convergence and then discarding the (TED)n
classifier, we use estimate pwα to train a fresh classifier with CVIR procedure.

Finally, we discuss an important distinction with Dedpul which is also an alternating
procedure. While in our algorithm, after updating mixture proportion estimate we retrain
the classifier, Dedpul fixes the classifier, obtains output probabilities and then iteratively
updates the mixture proportion estimate (prior) and output probabilities (posterior). Dedpul
doesn’t re-train the classifier.

4.6 Experiments
Having presented our PU learning and MPE algorithms, we now compare their performance
with other methods empirically. We mainly focus on vision and text datasets in our
experiments. We include results on UCI datasets in App. C.7.6.

Datasets and Evaluation We simulate PU tasks on CIFAR-10 (Krizhevsky and Hinton,
2009), MNIST (LeCun et al., 1998), and IMDb sentiment analysis (Maas et al., 2011)
datasets. We consider binarized versions of CIFAR-10 and MNIST. On CIFAR-10 dataset,
we consider two classification problems: (i) binarized CIFAR, i.e., first 5 classes vs rest; (ii)
Dog vs Cat in CIFAR. Similarly, on MNIST, we consider: (i) binarized MNIST, i.e., digits
0-4 vs 5-9; (ii) MNIST17, i.e., digit 1 vs 7. IMDb dataset is binary. For MPE, we use a
held out PU validation set. To evaluate PU classifiers, we calculate accuracy on held out
positive versus negative dataset. For baselines that suffer from issues due to overfitting on
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Dataset Model (TED)n BBE˚ DEDPUL˚ AlphaMax˚ EN˚ KM2 TiCE

Binarized
CIFAR

ResNet 0.026 0.091 0.091 0.125 0.192

All Conv 0.042 0.037 0.052 0.09 0.221 0.168 0.251

MLP 0.225 0.177 0.138 0.3 0.372

CIFAR Dog vs
Cat

ResNet 0.078 0.176 0.170 0.17 0.226 0.331 0.286

All Conv 0.066 0.128 0.115 0.19 0.250

Binarized MNIST MLP 0.024 0.032 0.031 0.090 0.080 0.029 0.056

MNIST17 MLP 0.003 0.023 0.021 0.075 0.028 0.022 0.043

IMDb BERT 0.008 0.011 0.016 0.07 0.12 - -

Table 4.1: Absolute estimation error when α is 0.5. "*" denote oracle early stopping as
defined in Sec. 4.6. (TED)n significantly reduces estimation error when compared with
existing methods. Results reported by aggregating absolute error over 10 epochs and 3
seeds. For aggregate numbers with standard deviation see App. C.7.5.

unlabeled data, we report results with an oracle early stopping criterion. In particular, we
report the accuracy averaged over 10 iterations of the best performing model as evaluated
on positive versus negative data. Note that we use this oracle stopping criterion only for
previously proposed methods and not for methods proposed in this work. This allows
us to compare (TED)n with the best performance achievable by previous methods that
suffer from over-fitting issues. With nnPU and (TED)n, we report average accuracy over
10 iterations of the final model.

Architectures For CIFAR datasets, we consider (fully connected) multilayer perceptrons
(MLPs) with ReLU activations, all convolution nets (Springenberg et al., 2014), and
ResNet18 (He et al., 2016). For MNIST, we consider multilayer perceptrons (MLPs) with
ReLU activations For the IMDb dataset, we fine-tune an off-the-shelf uncased BERT
model (Devlin et al., 2019; Wolf et al., 2020). We did not tune hyperparameters or
the optimization algorithm—instead we use the same benchmarked hyperparameters and
optimization algorithm for each dataset. For our method, we use cross-entropy loss. For
uPU and nnPU, we use Adam (Kingma and Ba, 2014) with sigmoid loss. We provide
additional details about the datasets and architectures in App. C.6.

Mixture Proportion Estimation First, we discuss results for MPE (Table 4.1). We
compare our method with KM2, TiCE, DEDPUL, AlphaMax and EN. Following earlier
works (Ivanov, 2019; Ramaswamy et al., 2016), we reduce datasets to 50 dimensions
with PCA for KM2 and TiCE. We use existing implementation for other methods. For
BBE, DEDPUL and Alphamax, we use the same PvU classifier as input. On CIFAR
datasets, convolutional classifier based estimators significantly outperform KM2 and TiCE.
In contrast, the performance of KM2 is comparable to DEDPUL on MNIST datasets. On
all datasets, (TED)n achieves lowest estimation error. With the same blackbox classifier

45



Dataset Model (TED)n
(unknown α)

CVIR
(known α)

PvU˚

(known α)
DEDPUL˚

(unknown α)
nnPU

(known α)
uPU˚

(known α)

Binarized
CIFAR

ResNet 82.7 82.3 76.9 77.1 77.2 76.7

All Conv 77.9 78.1 75.8 77.1 73.4 72.5

MLP 64.2 66.9 61.6 62.6 63.1 64.0

CIFAR Dog vs
Cat

ResNet 75.2 73.3 67.3 67.0 71.8 68.8

All Conv 73.0 71.7 70.5 69.2 67.9 67.5

Binarized MNIST MLP 95.6 96.3 94.2 94.8 96.1 95.2

MNIST17 MLP 98.7 98.7 96.9 97.7 98.4 98.4

IMDb BERT 87.6 87.4 86.1 87.3 86.2 85.9

Table 4.2: Accuracy for PvN classification with PU learning. "*" denote oracle early
stopping as defined in Sec. 4.6. Results reported by aggregating over 10 epochs and 3 seeds.
Both CVIR (with known MPE) and (TED)n (with unknown MPE) significantly improve
over previous baselines with oracle early stopping and known MPE. For aggregate numbers
with standard deviation see App. C.7.5.

obtained with oracle early stopping, BBE performs similar or better than best alternate(s).
Since overparamterized models start memorizing unlabeled samples negatives, the quality
of MPE degrades substantially as PvU training proceeds for all methods but (TED)n as in
Fig. 4.3.

Classification with known MPE Now, we discuss results for classification with known
α. We compare our method with uPU, nnPU, DEDPUL and PvU training. Although, we
solve both MPE and classification, some comparison methods do not. Ergo, we compare
our classification algorithm with known MPE (Algorithm 6).

To begin, first we note that nnPU and PvU training with CVIR doesn’t need early stopping.
For all other methods, we report the best performance dictated by the aformentioned oracle
stopping criterion. On all datasets, PvU training with CVIR leads to improved classification
performance when compared with alternate approaches (Table 4.2). Moreover, as training
proceeds (Fig. 4.3), the performance of DEDPUL, PvU training and uPU substantially
degrade. We repeated experiments with the early stopping criterion mentioned in DEDPUL
(App. C.7.2), however, their early stopping criterion is too pessimistic resulting in poor
results due to under-fitting.

Classification with unknown MPE Finally, we evaluate (TED)n, our alternating
procedure for MPE and PU learning. Across many tasks, we observe substantial improve-
ments over existing methods. Note that these improvements often are over an oracle early
stopping baselines highlighting significance of our procedure.

In App. C.7.4, we show that our procedure is not sensitive to warm start epochs W, and in
many tasks with W “ 0, we observe minor-to-no differences in the performance of (TED)n.
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While for the experiments in this section, we used fixed W “ 100, in the Appendix we show
behavior with varying W. We also include ablations with different mixture proportions
α.

4.7 Conclusion and Future Work
In this chapter, we proposed two practical algorithms, BBE (for MPE) and CVIR optimiza-
tion (for PU learning). Our methods outperform others empirically and BBE’s mixture
proportion estimates leverage black box classifiers to produce (nearly) consistent estimates
with finite sample convergence guarantees whenever we possess a classifier with a (nearly)
pure top bin. Moreover, (TED)n combines our procedures in an iterative fashion, achieving
further gains. We expand our work to the multiclass problem in the next chapter, bridging
work on label shift and PU learning.
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Chapter 5

Domain Adaptation under Open Set
Label Shift

Based on Garg et al. (2022a): Saurabh Garg, Sivaraman Balakrishnan, and Zachary Lipton. Domain
adaptation under open set label shift. Advances in Neural Information Processing Systems, 2022.

Abstract
In this chapter, we extend the PU learning problem to allow multiple classes. We
introduce the problem of domain adaptation under Open Set Label Shift (OSLS)
where the label distribution can change arbitrarily and a new class may arrive during
deployment, but the class-conditional distributions ppx|yq are domain-invariant. OSLS
subsumes domain adaptation under label shift and PU learning. The learner’s goals
here are two-fold: (a) estimate the target label distribution, including the novel class;
and (b) learn a target classifier. First, we establish necessary and sufficient conditions
for identifying these quantities. Second, motivated by advances in label shift and
PU learning, we propose practical methods for both tasks that leverage black-box
predictors. Unlike typical open set domain adaptation problems, which tend to be
ill-posed and amenable only to heuristics, OSLS offers a well-posed problem amenable
to more principled machinery. Experiments across numerous semi-synthetic benchmarks
on vision, language, and medical datasets demonstrate that our methods consistently
outperform open set domain adaptation baselines, achieving 10–25% improvements
in target domain accuracy. Finally, we analyze the proposed methods, establishing
finite-sample convergence to the true label marginal and convergence to optimal classifier
for linear models in a Gaussian setup. Code is available at url..
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Figure 5.1: Left: Domain Adaptation under OSLS. An instantiation of OSDA that
applies label shift assumption but allows for a new class to show up in target domain.
Right: Aggregated results across seven semi-synthetic benchmark datasets. For both target
classification and novel class prevalence estimation, PULSE significantly outperforms other
methods (lower error is better). For brevity, we only include result for the best OSDA
method. For detailed comparison, refer Sec. 5.7.

5.1 Introduction

Literature on Open Set Domain Adaptation (OSDA) seeks to handle cases with previously
unseen classes (Baktashmotlagh et al., 2019; Cao et al., 2019b; Fu et al., 2020; Lian et al.,
2019; Panareda Busto and Gall, 2017; Saito et al., 2018b; 2020; Tan et al., 2019; You et al.,
2019)). Given access to labeled source data and unlabeled target data, the goal in OSDA is
to adapt classifiers in general settings where previous classes can shift in prevalence (and
even appearance), and novel classes separated out from those previously seen can appear.
Most work on OSDA is driven by the creation of and progress on benchmark datasets (e.g.,
DomainNet, OfficeHome). Existing OSDA methods are heuristic in nature, addressing
settings where the right answers seem intuitive but are not identified mathematically.
However, absent assumptions on: (i) the nature of distribution shift among source classes
and (ii) the relation between source classes and novel class, standard impossibility results
for domain adaptation condemn us to guesswork (Ben-David et al., 2010c).

In this chapter, we introduce domain adaptation under Open Set Label Shift (OSLS), a
coherent instantiation of OSDA that applies the label shift assumption but allows for a
new class to show up in the target distribution. Formally, the label distribution may shift
between source and target pspyq ‰ ptpyq, but the class-conditional distributions among
previously seen classes may not (i.e., @y P t1, 2, . . . , ku, pspx|yq “ ptpx|yq). Moreover, a new
class y “ k` 1 may arrive in the target period. Notably, OSLS subsumes label shift (Lipton
et al., 2018b; Saerens et al., 2002; Storkey, 2009) (when ptpy “ k ` 1q “ 0) and learning
from Positive and Unlabeled (PU) data (De Comité et al., 1999; Elkan and Noto, 2008;
Letouzey et al., 2000) (when k “ 1). As with label shift and PU learning, our goals are
two-fold. Here, we must (i) estimate the target label distribution ptpyq (including the novel
class prevalence); (ii) train a pk ` 1q-way target-domain classifier.

First, we characterize when the parameters of interest are identified (Sec. 5.4). Namely,
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we define a (necessary) weak positivity condition, which states that there exists a subset
of each label’s support that has zero probability mass under the novel class and that the
submatrix of ppx|yq consisting only of rows in that subset is full rank. Moreover, we prove
that weak positivity alone is not sufficient. We introduce two sufficient conditions: strong
positivity and separability, either of which (independently) ensures identifiability.

Focusing on cases with strong positivity, we show that OSLS reduces to k PU learning
problems (Sec. 5.5). However, we demonstrate that straightforward applications of this
idea fail because (i) bias accumulates across the k mixture proportion estimates leading to
grossly underestimating the novel class’s prevalence; and (ii) naive combinations of the k
PU classifiers are biased and inaccurate.

Thus motivated, we propose the PULSE framework, which combines methods from Positive
and Unlabeled learning and Label Shift Estimation, yielding two-stage techniques for
both label marginal estimation and classification (Sec. 5.6). Our methods build on recent
advances in label shift (Alexandari et al., 2021; Azizzadenesheli et al., 2019; Garg et al.,
2020a; Lipton et al., 2018b) and PU learning (Garg et al., 2021b; Ivanov, 2019; Kiryo
et al., 2017), that leverage appropriately chosen black-box predictors to avoid the curse
of dimensionality. PULSE first estimates the label shift among previously seen classes,
and then re-samples the source data to formulate a single PU learning problem between
(reweighted) source and target data to estimate fraction of novel class and to learn the
target classifier. In particular, our procedure builds on the BBE and CVIR techniques
proposed in Garg et al. (2021b). PULSE is simple to implement and compatible with
arbitrary hypothesis classes (including deep networks).

We conduct extensive semi-synthetic experiments adapting seven benchmark datasets span-
ning vision (CIFAR10, CIFAR100, Entity30), natural language (Newsgroups-20), biology
(Tabula Muris), and medicine (DermNet, BreakHis) (Sec. 5.7). Across numerous data
modalities, draws of the label distributions, and model architectures, PULSE consistently
outperforms generic OSDA methods, improving by 10–25% in accuracy on target domain.
Moreover, PULSE outperforms methods that naively solve k PU problems on both label
distribution estimation and classification.

Finally, we analyze our framework (Sec. 5.8). First, we extend Garg et al. (2021b)’s analysis
of BBE to derive finite-sample error bounds for our estimates of the label marginal. Next,
we develop new analyses of the CVIR objective (Garg et al., 2021b) that PULSE relies
in the classification stage. Focusing on a Gaussian setup and linear models optimized
by gradient descent, we prove that CVIR converges to a true positive versus negative
classifier in population. Addressing the overparameterized setting where parameters exceed
dataset size, we conduct an empirical study that helps to elucidate why, on separable data,
CVIR outperforms other consistent objectives, including nnPU (Kiryo et al., 2017) and
uPU (Du Plessis et al., 2015).
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5.2 Related Work

(Closed Set) Domain Adaptation (DA) Under DA, the goal is to adapt a predictor
from a source distribution with labeled data to a target distribution from which we
observe only unlabeled examples. DA is classically explored under two distribution shift
scenarios (Storkey, 2009): (i) Covariate shift (Cortes and Mohri, 2014; Cortes et al., 2010;
Gretton et al., 2009; Zadrozny, 2004; Zhang et al., 2013) where ppy|xq remains invariant
among source and target; and (ii) Label shift (Alexandari et al., 2021; Azizzadenesheli
et al., 2019; Garg et al., 2020a; Lipton et al., 2018b; Saerens et al., 2002; Zhang et al., 2021)
where ppx|yq is shared across source and target. In these settings most theoretical analysis
requires that the target distribution’s support is a subset of the source support (Ben-David
et al., 2010c). However, recent empirically work in DA (Ganin et al., 2016; Long et al.,
2015; 2017; Sohn et al., 2020; Sun and Saenko, 2016; Sun et al., 2017; Zhang et al., 2018c;
2019) focuses on settings motivated by benchmark datasets (e.g., WILDS (Koh et al., 2021;
Sagawa et al., 2021), Office-31 (Saenko et al., 2010) OfficeHome (Venkateswara et al., 2017),
DomainNet (Peng et al., 2019)) where such overlap assumptions are violated. Instead, they
rely on some intuitive notion of semantic equivalence across domains. These problems are
not well-specified and in practice, despite careful hyperparameter tuning, these methods
often do not improve over standard empirical risk minimization on source data alone for
practical, and importantly, previously unseen datasets (Sagawa et al., 2021).

Open Set Domain Adaptation (OSDA) OSDA (Bendale and Boult, 2015; Panareda Busto
and Gall, 2017; Scheirer et al., 2013) extends DA to settings where along with distribution
shift among previously seen classes, we may observe a novel class in the target data. This
setting is also known as universal domain adaptation (Saito et al., 2020; You et al., 2019).
Rather than making precise assumptions about the nature of shift between source and
target as in OSLS, the OSDA literature is primarily governed by semi-synthetic problems
on benchmark DA datasets (e.g. DomainNet, Office-31 and OfficeHome). Numerous OSDA
methods have been proposed (Baktashmotlagh et al., 2019; Bucci et al., 2020; Cao et al.,
2019b; Fu et al., 2020; Lian et al., 2019; Saito et al., 2018b; 2020; Tan et al., 2019; You
et al., 2019). At a high level, most OSDA methods perform two steps: (i) align source and
target representation for previously seen classes; and (ii) train a discrimination to reject
novel class from previously seen classes. The second step typically uses novelty detection
heuristics to identify novel samples.

Other related work A separate line of work looks at the problem of Out-Of-Distribution
(OOD) detection (Geifman and El-Yaniv, 2017; Hendrycks and Gimpel, 2017; Jiang et al.,
2018; Lakshminarayanan et al., 2016; Ovadia et al., 2019; Zhang et al., 2020). Here, the goal
is to identify novel examples, i.e., samples that lie out of the support of training distribution.
The main different between OOD detection and OSDA is that in OOD detection we do not
have access to unlabeled data containing a novel class. Recently, Cao et al. (2022) proposed
open-world semi-supervised learning, where the task is to not only identify novel classes in
target but also to separate out different novel classes in an unsupervised manner.

Our work takes a step back from the hopelessly general OSDA setup, introducing OSLS, a
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well-posed OSDA setting where the sought-after parameters can be identified.

5.3 Open Set Label Shift

Notation For a vector v P Rd, we use vj to denote its jth entry, and for an event E, we
let I rEs denote the binary indicator of the event. By |A|, we denote the cardinality of set
A.

Let X P Rd be the input space and Y “ t1, 2, . . . , k ` 1u be the output space for multiclass
classification. Let Ps and Pt be the source and target distributions and let ps and pt
denote the corresponding probability density (or mass) functions. By Es and Et, we denote
expectations over the source and target distributions. We assume that we are given a loss
function ℓ : ∆k ˆ Y Ñ R, such that ℓpz, yq is the loss incurred by predicting z when the
true label is y. Unless specified otherwise, we assume that ℓ is the cross entropy loss. As
in standard unsupervised domain adaptation, we are given independently and identically
distributed (iid) samples from labeled source data tpx1, y1q, px2, y2q, . . . , pxn, ynqu „ Pn

s and
iid samples from unlabeled target data txn`1, xn`2, . . . , xn`mu „ Pm

t .

Before formally introducing OSLS, we describe label shift and PU learning settings. Under
label shift, we observe data from k classes in both source and target where the conditional
distribution remain invariant (i.e., pspx|yq “ ptpx|yq for all classes y P r1, ks) but the target
label marginal may change (i.e., ptpyq ‰ pspyq). Additionally, for all classes in source have
a non-zero support , i.e., for all y P r1, ks, pspyq ě c, where c ą 0. Under PU learning, we
possess labeled source data from a positive class and unlabeled target data from a mixture
of positive and negative class with a goal of learning a positive-versus-negative classifier on
target. We now introduce the OSLS setting:
Definition 5.3.1 (Open set label shift). Define Yt “ Y and Ys “ Yztk ` 1u. Under OSLS,
the label distribution among source classes Ys may change but the class conditional ppx|yq

for those classes remain invariant between source and target, and the target domain may
contain a novel class, i.e.,

pspx|y “ jq “ ptpx|y “ jq @j P Ys and pspy “ k ` 1q “ 0 . (5.1)

Additionally, we have non-zero support for all k (previously-seen) labels in the source
distribution, i.e., for all y P Ys, pspyq ě c for some c ą 0.

Note that the label shift and PU learning problems can be obtained as special cases of
OSLS. When no novel class is observed in target (i.e., when ptpy “ k ` 1q “ 0), we recover
the label shift problem, and when we observe only one class in source (i.e., when k “ 1),
the OSLS problem reduces to PU learning. Under OSLS, our goal naturally breaks down
into two tasks: (i) estimate the target label marginal ptpyq for each class y P Y ; (ii) train a
classifier f : X Ñ ∆k to approximate ptpy|xq.
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5.4 Identifiablity of OSLS
We now introduce conditions for OSLS, under which the solution is identifiable. Throughout
the section, we will assume access to population distribution for labeled source data and
unlabeled target data, i.e., pspx, yq and ptpxq is given. To keep the discussion simple, we
assume finite input domain X which can then be relaxed to continuous inputs. We relegate
proofs to App. D.2.

We first make a connection between target label marginal ptpyq estimation and learning
the target classifier ptpy|xq showing that recovering ptpyq is enough to identify ptpy|xq. In
population, given access to ptpyq, the class conditional ptpx|y “ k ` 1q can be obtained in
closed form as pptpxq´

řk
j“1 ptpy“jqpspx|y“jqq{ptpy“k`1q. We can then apply Bayes rule to obtain

ptpy|xq. Henceforth, we will focus our discussion on identifiability of ptpyq which implies
identifiability of ptpy|xq. In following proposition, we present weak positivity, a necessary
condition for ptpyq to be identifiable. [Necessary conditions] Assume ptpyq ą 0 for all
y P Yt. Then ptpyq is identified only if ptpx|y “ k ` 1q and pspx|yq for all y P Ys satisfy
weak positivity, i.e., there must exists a subdomain Xwp Ă X such that:

(i) ptpXwp|y “ k ` 1q “ 0; and
(ii) the matrix rpspx|yqsxPXwp,yPYs

is full column-rank.

Intuitively, Proposition 5.4 states that if the target marginal doesn’t lie on the vertex of the
simplex ∆k, then their must exist a subdomain Xwp where the support of novel class is zero
and within Xwp, ptpyq for source classes is identifiable. While it may seem that existence
of a subdomain Xwp is enough, we show that for the OSLS problem, existence doesn’t
imply uniqueness. In App. D.2.1, we construct an example, where the weak positivity
condition is not sufficient. In that example, we show that there can exist two subdomains
Xwp and X 1

wp satisfying weak positivity, both of which lead to separate solutions for ptpyq.
Next, we extend weak positivity to two stronger conditions, either of which (alone) implies
identifiability. [Sufficient conditions] The target marginal ptpyq is identified if for all
y P Yztk ` 1u, ptpx|y “ k ` 1q and pspx|yq satisfy either:

(i) Strong positivity, i.e., there exists Xsp Ă X such that ptpXsp|y “ k ` 1q “ 0 and the
matrix rpspx|yqsxPXsp,yPYs

is full-rank and diagonal; or
(ii) Separability, i.e., there exists Xsep Ă X , such that ptpXsep|y “ k ` 1q “ 0 , pspXsepq “

1 , and the matrix rpspx|yqsxPXsep,yPYs
is full column-rank.

Strong positivity generalizes the irreducibility condition (Blanchard et al., 2010), which
is sufficient for identifiability under PU learning, to k PU learning problems. Note that
while the two conditions in Proposition 5.4 overlap, they cover independent set of OSLS
problems. Informally, strong positivity extends weak positivity by making an additional
assumption that the matrix formed by ppx|yq on inputs in Xwp is diagonal and the separa-
bility assumption extends the weak positivity condition to the full input domain of source
classes instead of just Xwp. Both of these conditions identify a support region of X which
purely belongs to source classes where we can either individually estimate the proportion of
each source classes (i.e., under strong positivity) or jointly estimate the proportion (i.e.,
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under separability).

To extend our identifiability conditions for continuous distributions, the linear independence
conditions on the matrix rpspx|yqsxPXsep,yPYs

has the undesirable property of being sensitive to
changes on sets of measure zero. We may introduce stronger notions of linear independence
as in Lemma 1 of Garg et al. (2020a). We discuss this in App. D.2.2.

5.5 Reduction of OSLS to k PU Problems

Under the strong positivity condition, the OSLS problem can be broken down into k PU
problems as follows: By treating a given source class yj P Ys as positive and grouping
all other classes together as negative we observe that the unlabeled target data is then a
mixture of data from the positive and negative classes. This yields a PU learning problem
and the corresponding mixture proportion is the fraction ptpy “ jq (proportion of class yj)
among the target data. By iterating this process for all source classes, we can solve for
the entire target label marginal ptpyq. Thus, OSLS reduces to k instances of PU learning
problem. Formally, note that ptpxq can be written as:

ptpxq “ ptpy “ jqpspx|y “ jq ` p1 ´ ptpy “ jqq

´

ÿ

iPYztju

ptpy “ iq

1 ´ ptpy “ jq
pspx|y “ iq

¯

, (5.2)

individually for all j P Ys. By repeating this reduction for all classes, we obtain k separate
PU learning problems. Hence, a natural choice is to leverage this structure and solve k PU
problems to solve the original OSLS problem. In particular, for each class j P Ys, we can
first estimate its prevalence pptpy “ jq in the unlabeled target. Then the target marginal for
the novel class is given by pptpy “ k ` 1q “ 1 ´

řk
i“1 pptpy “ iq. Similarly, for classification,

we can train k PU learning classifiers fi, where fi is trained to classify a source class i
versus others in target. An example is classified as belonging to the class y “ k ` 1, if it
rejected by all classifiers fi as other in target. We explain this procedure more formally in
App. D.1.

This reduction has been mentioned in past work (Sanderson and Scott, 2014; Xu et al.,
2017). However, to the best of our knowledge, no previous work has empirically investigated
both classification and target label marginal estimation jointly. Sanderson and Scott (2014)
focuses only on target marginal estimation for tabular datasets and Xu et al. (2017) assumes
that the target marginal is known and only trains k separate PU classifiers.

In our work, we perform the first large scale experiments to evaluate efficacy of the reduction
of the OSLS problem to k-PU problems. With plugin state-of-the-art PU learning algorithms,
we observe that this naive reduction doesn’t scale to datasets with large number of classes
because of error accumulation in each of the k MPEs and k one-versus-other PU classifiers.
To mitigate the error accumulation problem, we propose the PULSE framework in the next
section.
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5.6 The PULSE Framework for OSLS
We begin with presenting our framework for OSLS problem under strong positivity condition.
First, we explain the structure of OSLS that we leverage in PULSE framework and then
elaborate design decisions we make to exploit the identified structure.

Overview of PULSE framework Rather than simply dividing each OSLS instance
into k PU problems, we exploit the joint structure of the problem to obtain a single PU
learning problem. To begin, we note that if only we could apply a label shift correction to
source, i.e., re-sample source classes according to their relative proportion in the target
data, then we could subsequently consider the unlabeled target data as a mixture of (i) the
(reweighted) source distribution; and (ii) the novel class distribution (i.e., ptpx|y “ k ` 1q).
Formally, we have

ptpxq “
ÿ

jPYt

ptpy “ jqptpx|y “ jq “
ÿ

jPYs

ptpy “ jq

pspy “ jq
pspx, y “ jq ` ptpx|y “ k ` 1qptpy “ k ` 1q

“ p1 ´ ptpy “ k ` 1qqp1
spxq ` ptpy “ k ` 1qptpx|y “ k ` 1q , (5.3)

where p1
spxq is the label-shift-corrected source distribution, i.e., p1

spxq “
ř

jPYs
wpjqpspx, y “

jq, where wpjq “ pptpy“jq{
ř

k ptpy“kqq{pspy “ jq for all j P Ys. Intuitively, p1
tpjq “ ptpy“jq{

ř

k ptpy“kq

is re-normalized label distribution in target among source classes and wpjq’s are the im-
portance weights. Hence, after applying a label shift correction to the source distribution
p1
spxq, we have reduced the OSLS problem to a single PU learning problem, where p1

spxq

plays the part of the positive distribution and ptpx|y “ k ` 1q acts as negative distribution
with mixture coefficients 1 ´ ptpy “ k ` 1q and ptpy “ k ` 1q respectively. We now discuss
our methods (i) to estimate the importance ratios wpyq; and (ii) to tackle the PU learning
instance obtained from OSLS.

Label shift correction: Target marginal estimation among source classes While
traditional methods for estimating label shift breakdown in high dimensional settings (Zhang
et al., 2013), recent methods exploit black-box classifiers to avoid the curse of dimensional-
ity (Alexandari et al., 2021; Azizzadenesheli et al., 2019; Lipton et al., 2018b). However,
these recent techniques require overlapping label distributions, and a direct application
would require demarcation of samples from p1

spxq sub-population in target, creating a cyclic
dependency. Instead, to estimate the relative proportion of previously seen classes in target,
we leverage the k PU reduction described in Sec. 5.5 with two crucial distinctions. First, we
normalize the obtained estimates of fraction previously seen classes to obtain the relative
proportions in p1

spyq. In particular, we do not leverage the estimates of previously seen class
proportions in target to directly estimate the proportion of novel class which avoids issues
due to error accumulation. Second, we exploit a k-way source classifier fs trained on labeled
source data instead of training k one-versus-other PU classifiers. We tailor the recently
proposed Best Bin Estimation (BBE) technique from Garg et al. (2021b). We describe the
modified BBE procedure in App. D.3 (Algorithm 15). After estimating the relative fraction
of source classes in target (i.e., pwp1

tpjq “ pwptpy“jq{
ř

kPYs
pwptpy“kq for all j P Ys), we re-sample

the source data according to pwp1
tpyq to mimic samples from distribution p1

spxq.
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Algorithm 8 Positive and Unlabeled learning post Label Shift Estimation (PULSE)
framework
input : Labeled source data tXS,ySu and unlabeled target samples XT .
1: Randomly split data into training tXS

1 ,y
S
1 u, XT

1 and hold out partition tXS
2 ,y

S
2 u, XT

2 .
2: Train a source classifier fs on labeled source data tXS

1 ,y
S
1 u.

3: Estimate label shift pwp1
tpy “ jq “

pwptpy “ jq
ř

kPYs
pwptpy “ kq

using Algorithm 15 and hence

importance ratios pwwpjq among source classes j P Ys.
4: Re-sample training source data according to label distribution pwp1

t to get trXS
1 , ry

S
1 u and

trXS
2 , ry

S
2 u.

5: Using Algorithm 16, train a discriminator fd and estimate novel class fraction pwptpy “

k ` 1q.

6: Assign rftpxqsj “ pfdpxqq
pwwpjq ¨ rfspxqsj

ř

kPYs
pwwpkq ¨ rfspxqsk

for all j P Ys and rftpxqsk`1 “ 1 ´ fdpxq.

And for all j P Ys, assign pwptpy “ jq “ p1 ´ pwptpy “ k ` 1qq ¨ pwp1
tpy “ jq.

output : Target marginal estimate pwpt P ∆k and target classifier ftp¨q P ∆k.

PU Learning: Separating the novel class from previously seen classes After
obtaining a PU learning problem instance, we resort to PU learning techniques to (i)
estimate the fraction of novel class ptpy “ k ` 1q; and (ii) learn a binary classifier fdpxq to
discriminate between label shift corrected source p1

spxq and novel class ptpx|y “ k`1q. With
traditional methods for PU learning involving domain discrimination, over-parameterized
models can memorize the positive instances in unlabeled, assigning them confidently to the
negative class, which can severely hurt generalization on PN data (Garg et al., 2021b; Kiryo
et al., 2017). Rather, we employ Conditional Value Ignoring Risk (CVIR) loss proposed
in Garg et al. (2021b) which was shown to outperform alternative approaches. First, we
estimate the proportion of novel class pwptpy “ k ` 1q with BBE. Next, given an estimate
pwptpy “ k ` 1q, CVIR objective discards the highest loss p1 ´ pwptpy “ k ` 1qq fraction
of examples on each training epoch, removing the incentive to overfit to the examples
from p1

spxq. Consequently, we employ the iterative procedure that alternates between
estimating the prevalence of novel class pwptpy “ k ` 1q (with BBE) and minimizing the
CVIR loss with estimated fraction of novel class. We detail this procedure in App. D.3
(Algorithm 16).

Combining PU learning and label shift correction Finally, to obtain a pk ` 1q-
way classifier ftpxq on target we combine discriminator fd and source classifier fs with
importance-reweighted label shift correction. In particular, for all j P Ys, rftpxqsj “

pfdpxqq
wpjq¨rfspxqsj

ř

kPYs
wpkq¨rfspxqsk

and rftpxqsk`1 “ 1 ´ fdpxq. Overall, our approach outlined in
Algorithm 8 proceeds as follows: First, we estimate the label shift among previously seen
classes. Then we employ importance re-weighting of source data to formulate a single
PU learning problem to estimate the fraction of novel class pwptpy “ k ` 1q and to learn
a discriminator fd for the novel class. Combining discriminator and label shift corrected
source classifier we get pk ` 1q-way target classifier. We analyse crucial steps in PULSE in

56



Sec. 5.8.

Our ideas for PULSE framework can be extended to separability condition since (5.3)
continues to hold. However, in our initial experiments, we observe that techniques proposed
under strong positivity were empirically stable and outperform methods developed under
separability. This is intuitive for many benchmark datasets where it is natural to assume
that for each class there exists a subdomain that only belongs to that class. We describe
this in more detail in App. D.3.1.

5.7 Experiments

Baselines We compare PULSE with several popular methods from OSDA literature.
While these methods are not specifically proposed for OSLS, they are introduced for the
more general OSDA problem. In particular, we make comparions with DANCE (Saito
et al., 2020), UAN (You et al., 2019), CMU (Fu et al., 2020), STA (Liu et al., 2019a),
Backprop-ODA (or BODA) (Saito et al., 2018b). We use the open source implementation
available at https://github.com/thuml. For alternative baselines, we experiment with
source classifier directly deployed on the target data which may contain novel class and label
shift among source classes (referred to as source-only). We also train a domain discriminator
classifier for source versus target (referred to as domain disc.). This is adaptation of PU
learning baseline(Elkan and Noto, 2008) which assumes no label shift among source classes.
Finally, per the reduction presented in Sec. 5.5, we train k PU classifiers (referred to as
k-PU ). We include detailed description of each method in App. D.6.1.

Datasets We conduct experiments with seven benchmark classification datasets across
vision, natural language, biology and medicine. For each dataset, we simulate an OSLS prob-
lem as described in next paragraph. For vision, we use CIFAR10, CIFAR100 (Krizhevsky
and Hinton, 2009) and Entity30 (Santurkar et al., 2021). For language, we experiment
with Newsgroups-20 (http://qwone.com/~jason/20Newsgroups/) dataset. Additionally,
inspired by applications of OSLS in biology and medicine, we experiment with Tabula
Muris (Consortium et al., 2020) (Gene Ontology prediction), Dermnet (skin disease predic-
tion https://dermnetnz.org/), and BreakHis (Spanhol et al., 2015) (tumor cell classifica-
tion). These datasets span language, image and table modalities. We provide interpretation
of OSLS problem for each dataset along with other details in App. D.6.2.

OSLS Setup To simulate an OSLS problem, we experiment with different fraction of
novel class prevalence, source label distribution, and target label distribution. We randomly
choose classes that constitute the novel target class. After randomly choosing source and
novel classes, we first split the training data from each source class randomly into two
partitions. This creates a random label distribution for shared classes among source and
target. We then club novel classes to assign them a new class (i.e. k ` 1). Finally, we throw
away labels for the target data to obtain an unsupervised DA problem. We repeat the same
process on iid hold out data to obtain validation data with no target labels.

Training and Evaluation We use Resnet18 (He et al., 2016) for CIFAR10, CIFAR100,
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and Entity30. For newsgroups, we use a convolutional architecture. For Tabular Muris
and MNIST, we use a fully connected MLP. For Dermnet and BreakHis, we use Resnet-50.
For all methods, we use the same backbone for discriminator and source classifier. For
kPU, we use a separate final layer for each class with the same backbone. We use default
hyperparameters for all methods. For OSDA methods, we use default method specific
hyperparameters introduced in their works. Since OSDA methods do not estimate the
prevalence of novel class explicitly, we use the fraction of examples predicted in class k ` 1
as a surrogate. We train models till the performance on validation source data (labeled)
ceases to increase. Unlike OSDA methods, note that we do not use early stopping based
on performance on held-out labeled target data. To evaluate classification performance,
we report target accuracy on all classes, seen classes and the novel class. For novel class
prevalence estimation, we report absolute difference between the true and estimated marginal.
We open-source our code and by simply changing a single config file, new OSLS setups can
be generated and experimented with. We provide precise details about hyperparameters,
OSLS setup for each dataset and code in App. D.6.3.

Results Across different datasets, we observe that PULSE consistently outperforms
other methods for the target classification and novel prevalence estimation (Table 5.1). For
detection of novel classes (Acc (Novel) column), kPU achieves superior performance as
compared to alternative approaches because of its bias to default to pk ` 1qth class. This is
evident by the sharp decrease in performance on previously seen classes. For each dataset,
we plot evolution of performance with training in App. D.6.4. We observe more stability in
performance of PULSE as compared to other methods.

We observe that with default hyperparameters, popular OSDA methods significantly under
perform as compared to PULSE. We hypothesize that the primary reasons underlying
the poor performance of OSDA methods are (i) the heuristics employed to detect novel
classes; and (ii) loss functions incorporated to improve alignment between examples from
common classes in source and target. To detect novel classes, a standard heuristic employed
in popular OSDA methods involves thresholding uncertainty estimates (e.g., prediction
entropy, softmax confidence (Fu et al., 2020; Saito et al., 2020; You et al., 2019)) at a
predefined threshold κ. However, a fixed κ, may not for different datasets and different
fractions of the novel class. In App. D.6.5, we ablate by (i) removing loss function terms
incorporated with an aim to improve source target alignment; and (ii) vary threshold κ and
show improvements in performance of these methods. In contrast, our two-stage method
PULSE, first estimates the fraction of novel class which then guides the classification of
novel class versus previously seen classes avoiding the need to guess κ.

Ablations Different datasets, in our setup span different fraction of novel class prevalence
ranging from 0.22 (in CIFAR10) to 0.64 (in Tabula Muris). For each dataset, we perform
more ablations on the novel class proportion in App. D.6.6. For kPU and PULSE, in the
main paper, we include results with BBE and CVIR (Garg et al., 2021b). In App. D.6.8, we
perform experiments with alternative PU learning approaches and highlight the superiority
of BBE and CVIR over other methods. Moreover, since we have access to unlabeled target
data, we experiment with SimCLR (Chen et al., 2020a) pre-training on the mixture of
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Table 5.1: Comparison of PULSE with other methods. Across all datasets, PULSE out-
performs alternatives for both target classification and novel class prevalence estimation.
Acc (All) is target accuracy, Acc (Seen) is target accuracy on examples from previously
seen classes, and Acc (Novel) is recall for novel examples. MPE (Novel) is absolute error for
novel prevalence estimation. Results reported by averaging across 3 seeds. Detailed results
for each dataset with all methods in App. D.6.4.

CIFAR-10 CIFAR-100

Method
Acc
(All)

Acc
(Seen)

Acc
(Novel)

MPE
(Novel)

Acc
(All)

Acc
(Seen)

Acc
(Novel)

MPE
(Novel)

Source-Only 67.1 87.0 - - 46.6 66.4 - -

UAN (You et al., 2019) 15.4 19.7 25.2 0.214 18.1 40.6 14.8 0.133

BODA (Saito et al., 2018b) 63.1 66.2 42.0 0.162 36.1 17.7 81.6 0.41

DANCE (Saito et al., 2020) 70.4 85.5 14.5 0.174 47.3 66.4 1.2 0.28

STA (Liu et al., 2019a) 57.9 69.6 14.9 0.124 42.6 48.5 34.8 0.14

CMU (Fu et al., 2020) 62.1 77.9 41.2 0.183 35.4 46.0 15.5 0.161

Domain Disc. (Elkan and Noto, 2008) 47.4 87.0 30.6 0.331 45.8 66.5 39.1 0.046

k-PU 83.6 79.4 98.9 0.036 36.3 22.6 99.1 0.298

PULSE (Ours) 86.1 91.8 88.4 0.008 63.4 67.2 63.5 0.078

Entity30 Newsgroups20 Tabula Muris BreakHis DermNet

Method
Acc
(All)

MPE
(Novel)

Acc
(All)

MPE
(Novel)

Acc
(All)

MPE
(Novel)

Acc
(All)

MPE
(Novel)

Acc
(All)

MPE
(Novel)

Source-Only 32.0 - 39.3 - 33.8 - 70.0 - 41.4 -

BODA (Saito et al., 2018b) 42.2 0.189 43.4 0.16 76.5 0.079 71.5 0.077 43.8 0.207

Domain Disc. 43.2 0.135 50.9 0.176 73.0 0.071 56.5 0.091 40.6 0.083

k-PU 50.7 0.394 52.1 0.373 85.9 0.307 75.6 0.059 46.0 0.313

PULSE (Ours) 58.0 0.054 62.2 0.061 87.8 0.058 79.1 0.054 48.9 0.043

unlabeled source and target dataset. We include setup details and results in App. D.6.7.
While pre-trained backbone architecture improves performance for all methods, PULSE
continues to dominate other methods.

5.8 Analysis of PULSE Framework

In this section, we analyse key steps of our PULSE procedure for target label marginal
estimation (Step 3, 5 Algorithm 8) and learning the domain discriminator classifier (Step
5, Algorithm 8). Due to space constraints, we present informal results here and relegate
formal statements and proofs to App. D.4.

Theoretical analysis for target marginal estimation Building on BBE results from
Garg et al. (2021b), we present finite sample results for target label marginal estimation.
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When the data satisfies strong positivity, we observe that source classifiers often exhibit a
threshold cy on softmax output of each class y P Ys above which the top bin (i.e., rcy, 1s)
contains mostly examples from that class y. We give empirical evidence to this claim in
App. D.4.1. Then, we show that the existence of (nearly) pure top bin for each class in fs
is sufficient for Step 3 in Algorithm 8 to produce (nearly) consistent estimates:
Theorem 5.8.1 (Informal). Assume that for each class y P Ys, there exists a threshold cy
such that for the classifier fs, if rfspxqsy ą cy for any x then the true label for that sample
x is y. Then, we have ∥ pwpt ´ pt∥ 1 ď O

´

a

k3 logp4k{δq{n `
a

k2 logp4k{δq{m

¯

.

The proof technique simply builds on the proof of Theorem 1 in Garg et al. (2021b). By
assuming that we recover close to ground truth label marginal for source classes, we can
also extend the above analysis to Step 5 of Algorithm 8 to show convergence of estimate
pwptpy “ k`1q to true prevalence ptpy “ k`1q. We discuss this further in App. D.4.3.

Theoretical analysis of CVIR in population While the CVIR loss was proposed
in Garg et al. (2021b), no analysis was provided for convergence of the iterative gradient
descent procedure. In our work, we show that in population on a separable Gaussian
dataset, CVIR will recover the optimal classifier.

We consider a binary classification problem where we have access to positive distribution
(i.e., pp), unlabeled distribution (i.e., pu :“ αpp ` p1 ´ αqpn), and mixture coefficient α.
Making a parallel connection to Step 5 of PULSE, positive distribution pp here refers to
the label shift corrected source distribution p1

s and pu refers to pt “ ptpy “ k ` 1qptpx|y “

k ` 1q ` p1 ´ ptpy “ k ` 1qqp1
spxq. Our goal is to recover the classifier that discriminates pp

versus pn (parallel p1
s versus ptp¨|y “ k ` 1q).

First we introduce some notation. For a classifier f and loss function ℓ (i.e., logistic loss), de-
fine VIRαpfq “ inftτ P R : Px„pupℓpx,´1; fq ď τq ě 1 ´ αu. Intuitively, VIRαpfq identifies
a threshold τ to capture bottom 1´α fraction of the loss ℓpx,´1q for points x sampled from
pu. Additionally, define CVIR loss as Lpf, wq “ αEpp rℓpx, 1; fqs ` Epu rwpxqℓpx,´1; fqs for
classifier f and some weights wpxq P t0, 1u. Formally, given a classifier ft at an iterate t,
CVIR procedure proceeds as follows:

wtpxq “ I rℓpx,´1; ftq ď VIRαpftqs , (5.4)
ft`1 “ ft ´ η∇Lf pft, wtq . (5.5)

We assume that x are drawn from two half multivariate Gaussian with mean zero and identity
covariance, i.e., x „ pp ô x “ γ0θopt ` z| θToptz ě 0, and x „ pn ô x “ ´γ0θopt ` z| θToptz ă

0, where z „ N p0, Idq. Here γ0 is the margin and θopt P Rd is the true separator. Here, we
have access to distribution pp, pu “ αpp ` p1 ´ αqpn, and the true proportion α.
Theorem 5.8.2 (Informal). In the data setup detailed above, a linear classifier fpx; θq “

σ
`

θTx
˘

trained with CVIR procedure as in (5.4)-(5.5) will converge to an optimal positive
versus negative classifier.

The proof uses a key idea that for any classifier θ not separating positive and negative data
perfectly, the gradient in (5.5) is non-zero. Hence, convergence of the CVIR procedure
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(implied by smoothness of CVIR loss) implies converge to an optimal classifier. For separable
datasets in general, we can extend the above analysis with some modifications to the CVIR
procedure. We discuss this in App. D.4.4.

Empirical investigation in overparameterized models As noted in our ablation
experiments and in Garg et al. (2021b), domain discriminator trained with CVIR outper-
forms classifiers trained with other consistent objectives (nnPU (Kiryo et al., 2017) and
uPU (Du Plessis et al., 2015)). While the above analysis highlights consistency of CVIR
procedure in population, it doesn’t capture the observed empirical efficacy of CVIR over
alternative methods in overparameterized models. In the Gaussian setup described above,
we train overparameterized linear models to compare CVIR with other methods. We discuss
precise experiments and results in App. D.5, but highlight the key takeaway here. First, we
observe that when a classifier is trained to distinguish positive and unlabeled data, early
learning happens (Arora et al., 2019a; Garg et al., 2021a; Liu et al., 2020), i.e., during
the initial phase of learning classifier learns to classify positives in unlabeled correctly as
positives. Next, we show that post early learning rejection of large fraction of positives
from unlabeled training in equation (5.4) crucially helps CVIR.

5.9 Conclusion
In this chapter, we introduce OSLS a well-posed instantiation of OSDA that subsumes
label shift and PU learning into a framework for learning adaptive classifiers. We presented
identifiability conditions for OSLS and proposed PULSE, a simple and effective approach
to tackle the OSLS problem. Moreover, our extensive experiments demonstrate efficacy of
PULSE over popular OSDA alternatives when the OSLS assumptions are met. We highlight
the brittle nature of benchmark driven progress in OSDA and hope that our work can help
to stimulate more solid foundations and enable systematic progress in this area.
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Chapter 6

Complementary Benefits of Contrastive
Learning and Self-Training Under
Distribution Shift

Based on Garg et al. (2023b): Saurabh Garg˚, Amrith Setlur˚, Zachary Lipton, Sivaraman Balakrishnan,
Virginia Smith, and Aditi Raghunathan. Complementary Benefits of Contrastive Learning and Self-Training
Under Distribution Shift. Advances in Neural Information Processing Systems, 2023.

Abstract
In the previous chapters, we focused primarily on settings where ppx|yq remained invari-
ant. In this chapter, we explore the alternate setup where covariate distribution shifts
but ppyq doesn’t change. In these settings, self-training and contrastive learning have
emerged as leading techniques for incorporating unlabeled data. However, despite the
popularity and compatibility of these techniques, their efficacy in combination remains
unexplored. We undertake a systematic empirical investigation of this combination,
finding that (i) in domain adaptation settings, self-training and contrastive learning
offer significant complementary gains; and (ii) in semi-supervised learning settings,
surprisingly, the benefits are not synergistic. Across eight distribution shift datasets
(e.g ., BREEDs, WILDS), we demonstrate that the combined method obtains 3–8%
higher accuracy than either approach independently. We then theoretically analyze
these techniques in a simplified model of distribution shift, demonstrating scenarios
under which the features produced by contrastive learning can yield a good initialization
for self-training to further amplify gains and achieve optimal performance, even when
either method alone would fail.
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6.1 Introduction

Until now, we have focused on domain adaptation scenarios where ppx|yq remained invariant.
In this chapter, we will study setting where input distributions can shift due to natural
perturbations in inputs. These types of perturbations include distribution shifts which
simply do not follow the label shift assumption.

To address UDA in practice where inputs distribution shift, two popular methods have
emerged: self-training and contrastive pretraining. Self-training (Lee et al., 2013; Scudder,
1965; Sohn et al., 2020; Wang et al., 2021a; Xie et al., 2020b) and contrastive pretrain-
ing (Caron et al., 2020; Chen et al., 2020a; Zbontar et al., 2021) were both proposed, initially,
for traditional Semi-Supervised Learning (SSL) problems, where the labeled and unlabeled
data are drawn from the same distribution. Here, the central challenge is statistical: to
exploit the unlabeled data to learn a better predictor than one would get by training on
the (small) labeled data alone. More recently, these methods have emerged as favored
empirical approaches for UDA, demonstrating efficacy on many popular benchmarks (Cai
et al., 2021a; Garg et al., 2023a; Sagawa et al., 2021; Shen et al., 2022). In self-training, one
first learns a predictor using source labeled data. The predictor then produces pseudolabels
for the unlabeled target data, and a new predictor is trained on the pseudolabeled data.
Contrastive pretraining learns representations from unlabeled data by enforcing invariance
to specified augmentations. These representations are subsequently used to learn a classifier.
In UDA, the representations are trained on the union of the source and target data. Despite
the strong performance of self-training and constrastive pretraining independently, there
has been surprisingly little work explaining when either might be expected to perform best
and whether the benefits might be complementary.

In this chapter, we investigate the complementary benefits of self-training and contrastive
pretraining. Interestingly, we find that the combination yields significant gains in UDA
despite producing negligible gains in SSL. In experiments across eight distribution shift
benchmarks (e.g . BREEDs (Santurkar et al., 2021), FMoW (Koh et al., 2021), Visda (Peng
et al., 2017)), we observe that re-using unlabeled data for self-training (with FixMatch (Sohn
et al., 2020)) after learning contrastive representations (with SwAV (Caron et al., 2020)),
yields ą 5% average improvement on OOD accuracy in UDA as compared to ă 0.8%
average improvement in SSL (Fig. 6.1).

Next, we aim to understand why the combination of self-training and contrastive learning
is synergistic under distribution shift. To do so, we analyze both methods in a simplified
distribution shift setting that models domain-independent or invariant, and domain-specific
or spurious features. Our theoretical analysis highlights that: (i) under suitable augmenta-
tions contrastive pretraining on unlabeled data can learn a feature extractor that amplifies
the invariant feature over the spurious (feature amplification); and (ii) self-training (ST)
can learn the optimal target linear predictor, when initialized with a “good” classifier
(learnt over contrastive features), thus improving linear transferability. We also show that
contrastive pretrained features continue to be correlated with spurious features, and as
a result the linear predictor (CL) learnt using source labeled data over these features is
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Figure 6.1: Self-training over Contrastive learning (STOC) improves over Contrastive
Learning (CL) under distribution shift. (a) We observe that in SSL settings, where
labeled and unlabeled data are drawn from the same distribution, STOC offers negligible
improvements over CL. In contrast, in UDA settings where there is distribution shift
between labeled and unlabeled data, STOC offers gains over CL. Results aggregated across
8 benchmarks. Results on individual data in Table 6.1 and 6.2. (b) 2-D illustration of our
simplified distribution setup, depicting decision boundaries learned by ERM and CL and
how Self-Training (ST) updates those. 1○, 2○, and 3○ summarize our theoretical results in
Sec. 6.4.

suboptimal on target. Still, Cl outperforms source-only ERM in providing “good” initial
pseudolabels on the target unlabeled data. Thus, self-training over the CL predictor (STOC)
pretrained features unlearns any reliance on domain-dependent features and improves OOD
performance relative to either method independently.

Finally, we connect our theoretical understanding of feature amplification done by contrastive
learning, and improved linear transferability from self-training back to observed empirical
gains. We linearly probe representations (fix representations and train only the linear head)
learned by contrastive pretraining vs. no pretraining and find: (i) contrastive pretraining
substantially improves the ceiling on the target accuracy (performance of optimal linear
probe) compared to ERM; (ii) self-training mainly improves linear transfer, i.e. OOD
performance for the linear probe trained with source labeled data.

6.2 Setup and Preliminaries

Task. Our goal is to learn a predictor that maps inputs x P X Ď Rd to outputs y P Y . We
parameterize predictors f “ h˝Φ : Rd ÞÑ Y , where Φ : Rd ÞÑ Rk is a feature map and h P Rk

is a classifier that maps the representation to the final scores or logits. Let Ps,Pt be the
source and target joint probability measures over X ˆY with ps and pt as the corresponding
probability density (or mass) functions. The distribution over unlabeled samples from both
the union of source and target is denoted as PU “ p1{2q ¨ Pspxq ` p1{2q ¨ Ptpxq.
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We study two particular scenarios: (i) Unsupervised Domain Adaptation (UDA); and
(ii) Semi-Supervised Learning (SSL). In UDA, we assume that the source and target
distributions have the same label marginals Pspyq “ Ptpyq (i.e., no label proportion shift)
and the same Bayes optimal predictor, i.e., argmaxy pspy | xq “ argmaxy ptpy | xq. We are
given labeled samples from the source, and unlabeled pool from the target. In contrast in
SSL, there is no distribution shift, i.e., Ps “ Pt “ PU. Here, we are given a small number
of labeled examples and a comparatively large amount of unlabeled examples, both drawn
from the same distribution, which we denote as Pt.

Unlabeled data is typically much cheaper to obtain, and our goal in both these settings is to
leverage this along with labeled data to achieve good performance on the target distribution.
In the UDA scenario, the challenge lies in generalizing out-of-distribution, while in SSL, the
challenge is to generalize in-distribution despite the paucity of labeled examples. A predictor
f is evaluated on distribution P via its accuracy, i.e., Apf,Pq “ EPpargmax fpxq “ yq.

Methods. We now introduce the algorithms used for learning from labeled and unlabeled
data.

1. Source-only ERM (ERM): A standard approach is to simply perform supervised learning
on the labeled data by minimizing the empirical risk

řn
i“1 ℓph ˝ Φpxq, yq, for some

classification loss ℓ : R ˆ Y ÞÑ R (e.g ., softmax cross-entropy) and labeled points
tpxi, yiquni“1.

2. Contrastive Learning (CL): We first use the unlabeled data to learn a feature extractor. In
particular, the objective is to learn a feature extractor Φcl that maps augmentations (for
e.g. crops or rotations) of the same input close to each other and far from augmentations
of random other inputs (Caron et al., 2020; Chen et al., 2020a; Zbontar et al., 2021).
Once we have Φcl, we learn a linear classifier h on top to minimize a classification loss on
the labeled source data. We could either keep Φcl fixed or propagate gradients through.

When clear from context, we also use CL to refer to just the contrastively pretrained
backbone without training for downstream classification.

3. Self-training (ST): This is a two-stage procedure, where the first stage performs source-
only ERM by just looking at source-labeled data. In the second stage, we iteratively
apply the current classifier on the unlabeled data to generate “pseudo-labels” and then
update the classifier by minimizing a classification loss on the pseudolabeled data (Lee
et al., 2013).

6.3 Self-Training Improves Contrastive Pretraining Un-
der Distribution Shift

Self-Training Over Contrastive learning (STOC). Finally, rather than starting
with a source-only ERM classifier, we propose to initialize self-training with a CL classifier,
that was pretrained on unlabeled source and target data. ST uses that same unlabeled
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Table 6.1: Results in the UDA setup. We report accuracy on target (OOD) data from
which we only observe unlabeled examples during training. For benchmarks with multiple
target distributions (e.g ., OH, Visda), we report avg accuracy on those targets. Results
with source performance, individual target performance, and standard deviation numbers
are in App. E.3.4.

Method Living17 Nonliv26 Entity13 Entity30 FMoW (2
tgts)

Visda (2
tgts)

OH
(3
tgts)

CIFARÑ

CINIC
Avg

ERM 60.31 45.54 68.32 55.75 56.50 20.91 9.51 74.33 48.90

ST 71.29 56.79 77.93 66.37 56.79 38.03 10.47 78.19 56.98

CL 74.14 57.02 76.58 66.01 61.78 63.49 22.63 77.51 62.39

STOC (ours) 82.22 62.23 81.84 72.00 65.25 70.08 27.12 79.94 67.59

Table 6.2: Results in the SSL setup. We report accuracy on hold-out ID data. Recall that
SSL uses labeled and unlabeled data from the same distribution during training. Refer to
App. E.3.5 for ERM and ST.

Method Living17 Nonliv26 Entity13 Entity30 FMoW Visda OH CIFAR Avg

CL 91.15 84.58 90.73 85.47 43.05 97.67 49.73 91.78 79.27

STOC (ours) 92.00 85.95 91.27 86.14 44.43 97.70 49.95 93.06 80.06

data again for pseudolabeling. As we demonstrate experimentally and theoretically, this
combination of methods improves substantially over each independently.

Datasets. For both UDA and SSL, we conduct experiments across eight benchmark
datasets: four BREEDs datasets (Santurkar et al., 2021)—Entity13, Entity30, Nonliv-
ing26, Living17; FMoW (Christie et al., 2018; Koh et al., 2021) from WILDS benchmark;
Officehome (Venkateswara et al., 2017); Visda (Peng et al., 2017; 2018); and CIFAR-
10 (Krizhevsky and Hinton, 2009). Each of these datasets consists of domains, enabling us
to construct source-target pairs (e.g., CIFAR10, we consider CIFAR10ÑCINIC shift (Dar-
low et al., 2018)). In the UDA setup, we adopt the source and target domains standard to
previous studies (details in App. E.3.2). Because the SSL setting lacks distribution shift,
we do not need to worry about domain designations and default to using source alone. To
simulate limited supervision in SSL, we sub-sample the original labeled training set to
10%.

Experimental Setup and Protocols. SwAV (Caron et al., 2020) is the specific
algorithm that we use for contrastive pretraining. In all UDA settings, unless otherwise
specified, we pool all the (unlabeled) data from the source and target to perform SwAV.
For self-training, we apply FixMatch (Sohn et al., 2020), where the loss on source labeled
data and on pseudolabeled target data are minimized simultaneously. For both methods,
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we fix the algorithm-specific hyperparameters to the original recommendations. For SSL
settings, we perform SwAV and FixMatch on in-distribution unlabeled data. We experiment
with Resnet18, Resnet50 (He et al., 2016) trained from scratch (i.e. random initialization).
We do not consider off-the-shelf pretrained models (e.g ., on Imagenet (Russakovsky et al.,
2015)) to avoid confounding our conclusions about contrastive pretraining. However, we
note that our results on most datasets tend to be comparable to and sometimes exceed
those obtained with ImageNet-pretrained models. For source-only ERM, as with other
methods (FixMatch, SwAV), we default to using strong augmentation techniques: random
horizontal flips, random crops, augmentation with Cutout (DeVries and Taylor, 2017), and
RandAugment (Cubuk et al., 2020). Moreover, unless otherwise specified, we default to
full finetuning with source-only ERM, both from scratch and after contrastive pretraining,
and for ST with FixMatch. For UDA, given that the setup precludes access to labeled
data from the target distribution, we use source hold-out performance to pick the best
hyperparameters. During pretraining, early stopping is done according to lower values
of pretraining loss. For more details on datasets, model architectures, and experimental
protocols, see App. E.31.

Results on UDA setup. Both ST and CL individually improve over ERM across all
datasets, with CL significantly performing better than ST on 5 out of 8 benchmarks (see
Table 6.1). Even on datasets where ST is better than CL, their performance remains close.
Combining ST and CL with STOC shows an 3–8% improvement over the best alternative,
yielding an absolute improvement in average accuracy of 5.2%.

Note that by default, we train with CL on the combined unlabeled data from source and
target. However, to better understand the significance of unlabeled target data in contrastive
pretraining, we perform an ablation where the CL model was trained solely on unlabeled
source data (refer to this as CL (source only); see App. E.3.4). We observe that ST on top
of CL (source only) improves over ST (from scratch). However, the average performance of
ST over CL (source only) is similar to that of standalone CL, maintaining an approximate
6% performance gap observed between CL and ST. This brings two key insights to the fore:
(i) the observed benefit is not merely a result of the contrastive pretraining objective alone,
but specifically CL with unlabeled target data helps; and (ii) both CL and ST leverage
using target unlabeled data in a complementary nature.

Results on SSL setup. While CL improves over ST (as in UDA), unlike UDA, STOC
doesn’t offer any significant improvements over CL (see Table 6.2; ERM and ST results
(refer to App. E.3.5). We conduct ablation studies with varying proportions of labeled
data used for SSL, illustrating that there’s considerable potential for improvement (see
App. E.3.5). These findings highlight that the complementary nature of STOC over CL
and ST individually is an artifact of distribution shift.

1For SwAV we use the code from https://github.com/facebookresearch/swav, and for self-training
we use https://github.com/acmi-lab/RLSbench.
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6.4 Theoretical Analysis and Intuitions
Our results on real-world datasets suggest that although self-training may offer little to no
improvement over contrastive pretraining for in-distribution (i.e., SSL) settings, it leads to
substantial improvements when facing distribution shifts in UDA (Sec. ??). Why do these
methods offer complementary gains, but only under distribution shifts? In this section,
we seek to answer this question by first replicating all the empirical trends of interest in a
simple data distribution with an intuitive story (Sec. 6.4.1). In this toy model, we formally
characterize the gains afforded by contrastive pretraining and self-training both individually
(Secs. 6.4.2, 6.4.3) and when used together (Sec. 6.4.4).

Data distribution We consider binary classification and model the inputs as consisting
of two kinds of features: x “ rxin, xsps, where xin P Rdin is the invariant feature that is
predictive of the label across both source Ps and target Pt and xsp P Rdsp is the spurious
feature that is correlated with the label y only on the source domain Ps but uncorrelated
with label y in Pt. Formally, we sample y „ Unift´1, 1u and generate inputs x conditioned
on y as follows:

Ps : xin „ N pγ ¨ yw‹,Σinq xsp “ y1dsp

Pt : xin „ N pγ ¨ yw‹,Σinq xsp „ N p0,Σspq, (6.1)

where γ is the margin afforded by the invariant feature2. We set the covariance of the
invariant features Σin “ σ2

in ¨ pIdin ´ w‹w‹Jq. This makes the variance along the unknown
predictive direction w‹ to be zero. Note that the spurious feature is also completely
predictive of the label in the source data. In fact, when dsp is sufficiently large, xsp is more
predictive (than xin) of y in the source. In the target, xsp is distributed as a Gaussian with
Σsp “ σ2

spIdsp . We use win“rw‹, 0, ..., 0sJ to refer to the invariant predictor (or direction),
and wsp “ r0, ..., 0, 1dsp{

?
dspsJ for the spurious direction.

Data for UDA vs. SSL For convenience, whenever we have unlabeled data, we assume
access to infinite unlabeled data and replace their empirical quantities with population
counterparts. For SSL, we sample both finite labeled and infinite unlabeled data from the
same distribution Pt, where spurious features are absent (to exclude easy-to-generalize
features). For UDA, we further assume infinite labeled data from Ps (in addition to infinite
unlabeled from Pt). Importantly, note that due to distribution shift, population access
of Ps still captures the interesting aspects of distribution shifts—ERM on infinite labeled
source data does not achieve optimal performance on target.

Methods and objectives Recall from Section 6.2 that we learn linear classifiers h
over feature extractor Φ. For our toy setup, we consider linear feature extractors i.e. Φ
is a matrix in Rdˆk and the prediction fpxq “ sgnphJΦxq. We use the exponential loss
ℓpfpxq, yq “ exp p´yfpxqq.

Self-training. ST performs ERM in the first stage using labeled data from the source,
and then subsequently updates the head h by iteratively generating pseudolabels on the

2See App. E.4.1 for similarities and differences of our setup with prior works.
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unlabeled target:

Lstph; Φq :“ EPtpxqℓph
JΦx, sgnphJΦpxqqq

Update: ht`1
“

ht ´ η∇hLstph
t; Φq

∥ht ´ η∇hLstpht; Φq∥ 2 (6.2)

For ERM and ST, we train both h and Φ (equivalent to Φ being identity and training a
linear head).

Contrastive pretraining. We obtain Φcl :“ argminΦ LclpΦq by minimizing the Barlow Twins
objective (Zbontar et al., 2021), which prior works have shown is also equivalent to spectral
contrastive and non-contrastive objectives (Cabannes et al., 2023; Garrido et al., 2022).
Given probability distribution PApa | xq for input x, and marginal PA, we consider a
constrained form of Barlow Twins in (6.3) which enforces features of “positive pairs” a1, a2
to be close while ensuring feature diversity. We assume a strict regularization pρ “ 0q for
the theory arguments in the rest of the paper, and in App. E.4.2 we prove that all our claims
hold for small ρ as well. For augmentations, we scale the magnitude of each co-ordinate
uniformly by an independent amount, i.e., a „ PAp¨ | xq “ cd x, where c „ Unifr0, 1sd. We
try to mirror practical settings where the augmentations are fairly “generic”, not encoding
information about which features are invariant or spurious, and hence perturb all features
symmetrically.

LclpΦq :“ Ex„PU
Ea1,a2„PAp¨|xq }Φpa1q ´ Φpa2q}

2
2

s.t.
∥∥Ea„PA

“

ΦpaqΦpaq
J
‰

´ Ik
∥∥F 2

ď ρ (6.3)

Keeping the Φcl fixed, we then learn a linear classifier hcl over Φcl to minimize the exponential
loss on labeled source data (refer to as linear probing). For STOC, keeping the Φcl fixed
and initializing the linear head with the CL linear probe (instead of source only ERM), we
perform ST with (6.2).
Example 6.4.1. For the setup in (12.1), we choose γ “ 0.5, σ2

sp “ 1., and σ2
in “ 0.05 with

din “ 5 and dsp “ 20 for our running example. γ{
?

dsp controls signal to noise ratio in the
source such that spurious feature is easy-to-learn and the invariant feature is harder-to-learn.
Here, σsp controls the noise in target which we show later is critical in unlearning the
spurious feature with CL.

6.4.1 Simulations and Intuitive Story: A Comparative Study Be-
tween SSL and DA

Our setup captures real-world trends in UDA setting. Our toy setup (in
Example 6.4.1) accentuates the behaviors observed on real-world datasets (Fig. 6.2(a)): (i)
both ERM and ST yield close to random performance (though ST performs slightly worse
than ERM); (ii) CL improves over ERM but still yields sub-optimal target performance;
(iii) STOC then further improves over CL, achieving near-optimal target performance. Note
that, a linear predictor can improve target performance only by reducing its dependence on
spurious feature xsp, and increasing it on invariant feature xin (along w‹). Given this, we

69



ERM ST CL STOC

60

80

100
T

ar
ge

t
ac

cu
ra

cy

53.7 51.2

79.4

98.3

UDA setup

(a)

300 600 900
CL training epochs

60

80

100

O
O

D
A

cc
ur

ac
y

STOC vs. CL in UDA

CL

STOC

ERM

50 100 150
CL training epochs

60

80

100

ID
A

cc
ur

ac
y

STOC vs. CL in SSL

CL

STOC

ERM

(b)

0.4 0.6 0.8 1.0 1.2 1.4
γ/σsp

40

60

80

100

O
O

D
A

cc
ur

ac
y

Effect of problem parameters

ERM

ST

CL

STOC

(c)

Figure 6.2: Our simplified model of shift captures real-world trends and theoretical behaviors:
(a) Target (OOD) accuracy separation in the UDA setup (for problem parameters in
Example 6.4.1). (b) Comparison of the benefits of STOC (ST over CL) over just CL in
UDA and SSL settings, done across training iterations for contrastive pretraining. (c)
Comparison between different methods in UDA setting, as we vary problem parameters γ
and σsp, connecting our theory results in Sec. 6.4.

can explain our trends if we understand the following: (i) how ST reduces dependence on
spurious feature when done after CL; (ii) why CL helps reduce but not completely eliminate
the reliance of linear head on spurious features. Before we present intuitions, we ablate
over a key problem parameter that affects both the target performance and conditions for
ST to work.

An intuitive story. We return to the question of why self-training improves over
contrastive learning under distribution shift in our Example 6.4.1. When the classifier at
initialization of ST relies more on spurious features, ST aggravates this dependency. However,
as the problem becomes easier (with increasing γ{σsp), the source-only ERM classifier will
start relying more on invariant rather than spurious feature. Once this ERM classifier
is sufficiently accurate on the target, ST unlearns any dependency on spurious features
achieving optimal target performance. This is because the initial pseudolabels on target
unlabeled data are sufficiently accurate for self-training to improve linear transferability.
In contrast, we observe that CL performs better than ERM since contrastive pretraining
learns a feature map that is correlated more with the invariant than the spurious feature.
This implies that CL does feature amplification: decreasing reliance on spurious features (as
compared to ERM), but doesn’t completely eliminate them, thereby remaining sub-optimal
on target. Combining ST and CL, a natural hypothesis explaining our trends is that CL
provides a favorable initialization (through feature amplification) for ST to now improve
linear transferability.

Effect of γ{σsp on success of ST. Our intuitive understanding is reinforced by our
experiment that increases the ratio of margin γ and variance of spurious feature on target
σsp (keeping others constant). Doing this makes the problem becomes easier because γ
directly affects the signal on xin and reducing σsp helps ST to unlearn xsp (see App. E.4.3).
In Fig. 6.2(c), we see that a phase transition occurs for ST, i.e., after a certain threshold
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of γ{σsp, ST successfully recovers the optimal target predictor. This hints that ST has a
binary effect, where beyond a certain magnitude of γ{σsp, ST can amplify the signal on
domain invariant feature to obtain optimal target predictor. This explains the ability of
ST to improve linear transferability when the initial classifier has sufficiently low target
error. On the other hand, the performance of CL and ERM improve gradually where CL
achieves high performance due to feature amplification, which occurs at even small ratios
of γ{σsp. One way of viewing this trend with CL is that it magnifies the effective γ{σsp in its
representation space, because of which a linear head trained over these representations has
a good performance at low values of the ratio. Consequently, the phase transition of STOC
occurs much sooner then that of ST. Finally, we note that for CL the rate of performance
increase diminishes at high values of γ{σsp because CL fails to reduce dependency along xsp

beyond a certain point.

Why disparate behaviors for out-of-distribution vs. in distribution? In the SSL
setup, recall, there is no distribution shift. In Example 6.4.1, we sample 50k unlabeled
data and 100 labeled data from the same (target) distribution to simulate SSL setup.
Substantiating our findings on real-world data, we observe that STOC provides a small to
negligible improvement over CL (refer to App. E.4). To understand why such disparate
behaviors emerge, recall that in the UDA setting, the main benefit of STOC lies in picking
up reliance on “good” features for OOD data, facilitated by CL initialization. While
contrastive pretraining uncovers features that are “good” for OOD data, it also learns
more predictive source-only features (which are not predictive at all on target). As a
result, linear probing with source-labeled data picks up these source-only features, leaving
considerable room for improvement on OOD data with further self-training. On the other
hand, in the SSL setting, the limited ID labeled data might provide enough signal to pick
up features predictive on ID data, leaving little to no room for improvement for further
self-training. Corroborating our intuitions, throughout the CL training in the toy setup,
when CL doesn’t achieve near-perfect generalization, the improvements provided by STOC
for each checkpoint remain minimal. On the other hand, for UDA setup, after reaching a
certain training checkpoint in CL, STOC yields significant improvement (Fig. 6.2(b)).

In the next sections, we formalize our intuitions and analyze why ST and CL offer comple-
mentary benefits when dealing with distribution shifts. Formal statements and proofs are
in App. E.5.

6.4.2 Conditions for Success and Failure of Self-training over ERM
from Scratch

In our results on Example 6.4.1, we observe that performing ST after ERM yields a classifier
with near-random target accuracy. In Theorem 6.4.2, we characterize conditions under
which ST fails and succeeds.
Theorem 6.4.2 (Informal; Conditions for success and failure of ST over ERM). The target
accuracy of ERM classifier, is given by 0.5 ¨ erfc

`

´γ2
{p

?
2dsp¨σspq

˘

. Then ST performed in the
second stage yields: (i) a classifier with « 0.5 target accuracy when γ ă 1{2σsp and σsp ě 1;
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and (ii) a classifier with near-perfect target accuracy when γ ě σsp.

The informal theorem above abstracts the exact dependency of γ, σsp, and dsp for the success
and failure of ST over ERM. Our analysis highlights that while ERM learns a perfect
predictor along win (with norm γ), it also learns to depend on wsp (with norm

a

dsp) because
of the perfect correlation of xsp with labels on the source. Our conditions depict that when
the γ{σsp is sufficiently small, then ST continues to erroneously enhance its reliance on the
xsp feature for target prediction, resulting in near-random target performance. Conversely,
when γ{σsp is larger than 1, the signal in xin is correctly used for predictor on the majority
of target points, and ST eliminates the xsp dependency, converging to an optimal target
classifier.

Our proof analysis shows that if the ratio of the norm of the classifier along in the direction
of w‹ is smaller than wsp by a certain ratio then the generated pseudolabels (incorrectly) use
xsp for its prediction further increasing the component along wsp. Moreover, normalization
further diminishes the reliance along w‹, culminating in a near-random performance. The
opposite occurs when the ERM classifier achieves a signal along w‹ that is sufficiently
stronger than along wsp. Upon substituting the parameters used in Example 6.4.1, the
ERM and ST performances as determined by Theorem 6.4.2 align with our empirical results,
notably, ST performance on target being near-random.

6.4.3 CL Captures Both Features But Amplifies Invariant Over
Spurious Features

Here we show that minimizing the contrastive loss (6.3) on unlabeled data from both Ps

and Pt gives us a feature extractor Φcl that has a higher inner product with the invariant
feature over the spurious feature. First, we derive a closed form expression for Φcl that holds
for any linear backbone and augmentation distribution. Then, we introduce assumptions
on the augmentation distribution (or equivalently on w‹) and other problem parameters,
that are sufficient to prove amplification.
Proposition 6.4.3 (Barlow Twins solution). The solution for (6.3) is UJ

k Σ
´1{2
A where Uk

are the top k eigenvectors of Σ´1{2
A

rΣΣ
´1{2
A . Here, ΣA :“ Ea„PA

raaJs is the covariance over
augmentations, and rΣ :“ Ex„PU

rrapxqrapxqJs is the covariance matrix of mean augmentations
rapxq :“ EPApa|xqras.

The above result captures the effect of augmentations through the matrix Uk. If there were
no augmentations, then ΣA “ rΣ, implying that Uk could then be any random orthonormal
matrix. On the other hand if augmentation distributions change prevalent covariances in
the data, i.e., ΣA is very different from rΣ, the matrix Uk would bias the CL solution towards
directions that capture significant variance in marginal distribution on augmented data, but
have low conditional variance, when conditioned on original point x—precisely the directions
with low invariance loss. Hence, we can expect that CL would learn components along
both invariant win and spurious wsp because: (i) these directions explain a large fraction of
variance in the raw data; (ii) augmentations that randomly scale down dimensions would
add little variance along wsp and win compared to noise directions in their null space. On
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the other hand it is unclear which of these directions is amplified more in Φcl. The following
assumption and amplification result conveys that when the noise in target pσspq is suficiently
large, the CL solution amplifies the invariant feature over the spurious feature.
Assumption 1 (Informal; Alignment of w‹ with augmentations). We assume that w‹

aligns with PAp¨ | xq, i.e., @x, Ea|xraJw‹s “ 1{2 ¨ xJdiagp1dqw‹ is high. Hence, we assume
w‹ “ 1din{

?
din.

One implication of Assumption 1 is that when w‹ “ 1din{
?
din, only the top two eigenvectors

lie in the space spanned by win and wsp. To analyze our amplification with fewer eigenvectors
from Proposition 6.4.3 while retaining all relevant phenomena, we assume w‹ “ 1din{

?
din for

mathematical convenience. While Assumption 1 permits a tighter theoretical analysis, our
empirical results in Sec. 6.4.1 hold more generally for w‹ „ N p0, Idinq.
Theorem 6.4.4 (Informal; CL recovers both win and wsp but amplifies win). Under
Assumption 1, the CL solution Φcl“rϕ1, ϕ2, ..., ϕks satisfies ϕJ

j win “ ϕJ
j wsp “ 0 @j ě 3,

ϕ1 “ c1win ` c3wsp and ϕ2 “ c2win ` c4wsp. For constants K1, K2 ą 0, γ “ K1K2{σsp,
dsp “ σ2

sp{K2
2, @ϵ ą 0, Dσsp0, such that for σsp ě σsp0, |c1{c3 ´ K1K2

2din{2Lσ2
inpdin´1q| ď ϵ, and∣∣∣|c2{c4| ´ L

?
dsp{γ

∣∣∣ ď ϵ, where L “ 1 ` K2
2 .

We analyze the amplification of win{wsp with contrastive learning in the regime where σsp

is large enough. In other words, if the target distribution has sufficient noise along the
spurious feature, the augmentations prevent the CL solution from extracting components
along wsp. Thus, in our analysis, we first analyze the amplification factors asymptotically
pσsp Ñ 8q, and then use the asymptotic behavior to draw conclusions for the regime where
σsp is large but finite.

Theorem 6.4.4 conveys two results: (i) CL recovers components along both win and wsp

through ϕ1, ϕ2; and (ii) it increases the norm along win more than wsp. The latter is evident
because the margin separating labeled points along win is now amplified by a factor of
|c2{c4| “ ΩpL

?
dsp{γq in ϕ2. Naturally, this will improve the target performance of a linear

predictor trained over CL representations. At the same time, we also see that in ϕ1,
the component along wsp is still significant (c1{c3 “ Op1{Lσ2

inq). Intuitively, CL prefers the
invariant feature since augmentations amplify the noise along wsp in the target domain. At
the same time, the variance induced by augmentations along wsp in source is still very small
due to which the dependence on wsp is not completely alleviated. Due to the remaining
components along wsp, the target performance for CL can remain less than ideal. Both the
above arguments on target performance are captured in Corollary 6.4.5.
Corollary 6.4.5 (Informal; CL improves OOD error over ERM but is still imperfect). For
γ, σsp, dsp defined as in Theorem 6.4.4, Dσsp1 such that for all σsp ě σsp1, the target accuracy
of CL (linear predictor on Φcl) is ě 0.5 erfc p´L1 ¨ γ{

?
2σspq and ď 0.5 erfc p´4L1 ¨ γ{

?
2σspq,

where L1 “ K2
2K1{σ2

inp1´1{dinq. When σsp1 ą σin

a

1 ´ 1{din, the lower bound on accuracy is
strictly better than ERM from scratch.

While Φcl is still not ideal for linear probing, in the next part we will see how Φcl can
instead be sufficient for subsequent self-training to unlearn the remaining components along
spurious features.
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6.4.4 Improvements with Self-training Over Contrastive Learn-
ing

The result in the previous section highlights that while CL may improve over ERM, the
linear probe continues to depend on the spurious feature. Next, we characterize the behavior
STOC. Recall, in the ST stage, we iteratively update the linear head with (6.2) starting
with the CL backbone and head.
Theorem 6.4.6 (Informal; ST improves over CL). Under the conditions of Theorem 6.4.4
and dsp ď K2

1 ¨ K
2{3
2 , the target accuracy of ST over CL is lower bounded by 0.5 ¨

erfc p´ |c2{c4| ¨ γ{p
?
2σspqq « 0.5 ¨ erfc

´

´L
?

dsp{p
?
2σspq

¯

where c2 and c4 are the coefficients
of feature ϕ2 along win and wsp learned by BT.

The above theorem states that when
?

dsp{σsp " 1 the target accuracy of ST over CL is close
to 1. In Example 6.4.1, the lower bound of the accuracy of ST over CL is erfc

`

´
?
10
˘

« 2
showing near-perfect target generalization. Recall that Theorem 6.4.5 shows that CL yields
a linear head that mainly depends on both the invariant direction win and the spurious
direction wsp. At initialization, the linear head trained on the CL backbone has negligible
dependence on ϕ2 (under conditions in Theorem 6.4.5). Building on that, the analysis in
Theorem 6.4.6 captures that ST gradually reduces the dependence on wsp by learning a
linear head that has a larger reliance on ϕ2, which has a higher “effective” margin on the
target, thus increasing overall dependency on win.

Theoretical comparison with SSL. Our analysis until now shows that linear probing
with source labeled data during CL picks up features that are more predictive of source
label under distribution shift, leaving a significant room for improvement on OOD data
when self-trained further. In UDA, the primary benefit of ST lies in picking up the features
with a high “effective” margin on target data that are not picked up by linear head trained
during CL. In contrast, in the SSL setting, the limited ID labeled data may provide enough
signal in picking up high-margin features that are predictive on ID data, leaving little to
no room for improvement for further ST. We formalize this intuition in App. E.5 when
the CL/ERM predictors are trained with margin based surrogate losses for learning the
classifier.

6.4.5 Reconciling Practice: Implications for Deep Non-Linear Net-
works

In this section, we experiment with deep non-linear backbone (i.e., Φcl). When we continue
to fix Φcl during CL and STOC, the trends we observed with linear networks in Sec. 6.4.1
continue to hold. We then perform full fine-tuning with CL and STOC, i.e., propagate
gradients even to Φcl, as commonly done in practice. We present key takeaways here but
detailed experiments are in App. E.4.4.

Benefits of augmentation for self-training. ST while updating Φcl can hurt due to
overfitting issues when training with the finite sample of labeled and unlabeled data (drop
by >10% over CL). This is due to the ability of deep networks to overfit on confident but
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Figure 6.3: Target accuracy with source and target linear probes, which freezes backbones
trained with various objectives and trains only the head in UDA setup. Avg. accuracy
across all datasets. We observe that: (i) ST improves the linear transferability of source
probes, and (ii) CL improves representations.

incorrect pseudolabels on target data (Zhang et al., 2017). This exacerbates components
along wsp and we find that augmentations (and other heuristics) typically used in practice
(e.g . in FixMatch (Sohn et al., 2020)) help avoid overfitting on incorrect pseudolabels.

Can ERM and ST over contrastive pretraining improve features? We find that
self-training can also slightly improve features when we update the backbone with the
second stage of STOC and when the CL backbone is early stopped sub-optimally (i.e. at an
earlier checkpoint in Fig. 6.2(b)). This feature finetuning can now widen the gap between
STOC and CL in SSL settings, as compared to the linear probing gap (as in 6.2). This
is because STOC can now improve performance beyond just recovering the generalization
gap for the linear head (which is typically small). However, STOC benefits are negligible
when CL is not early stopped sub-optimally, i.e., trained till convergence. Thus, it remains
unclear if STOC and CL have complementary benefits for feature learning in UDA or SSL
settings. Investigating this is an interesting avenue for future work.

6.5 Connecting Experimental Gains with Theoretical
Insights

Our theory emphasizes that under distribution shift contrastive pretraining does feature
amplification which effectively improves the representations for target data, while self-
training primarily improves linear transferability for the classifier learned on top of CL
features. To investigate different methods in our UDA setup, we study the representations
learned by each of them. We fix the representations and train linear heads over them to
answer two questions: (i) How good are the representations in terms of their ceiling of
target accuracy (performance of the optimal linear probe)?—we evaluate this by training
the classifier head on target labeled data (i.e., target linear probe); and (ii) How well do
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heads trained on source generalize to target?—we assess this by training a head on source
labeled data (source linear probe) and evaluate its difference with target linear probe. For
both, we plot target accuracy. We make two intriguing observations Fig. 6.3):

Does CL improve representations over ERM features? Yes. We observe a substantial
difference in accuracy (« 14% gap) of target linear probes on backbones trained with
contrastive pretraining (i.e. CL, STOC) and without it (i.e., ERM, ST) highlighting that
CL significantly pushes the performance ceiling over non-contrastive features. As a side, our
findings also stand in contrast to recent studies suggesting that ERM features might be “good
enough” for OOD generalization (Kirichenko et al., 2022; Rosenfeld et al., 2022). Instead,
the observed gains with contrastively pretrained backbones (i.e. CL, STOC) demonstrate
that target unlabeled data can be leveraged to further improve over ERM features.

Do CL features yield perfect linear transferability from source to target? Recent
works (HaoChen et al., 2022; Shen et al., 2022) conjecture that under certain conditions CL
representations, linear probes learned with source labeled data may transfer perfectly from
source to target. However, we observe that this doesn’t hold strictly in practice, and in
fact, the linear transferability can be further improved with ST. We first note a significant
gap between the performance of source linear probes and target linear probes illustrating
that linear transferability is not perfect in practice. Moreover, while the accuracy of target
linear probes doesn’t change substantially between CL and STOC, the accuracy of the
source linear probe improves significantly. Similar observations hold for ERM and ST,
methods trained without contrastive pretraining. This highlights that ST performs “feature
refinement” to improve source to target linear transfer (with relatively small improvements
in their respective target probe performance). The findings highlight the complementary
nature of benefits on real-world data: ST improves linear transferability while CL improves
representations.

6.6 Connections to Prior Work

Our empirical results and our analyses offer a perspective that contrasts with the prior
literature that argues for the individual optimality of contrastive pretraining and self-
training. We outline the key differences from existing studies here, and delve into other
related works in App. E.1.

Limitations of prior work analyzing contrastive learning Prior works (HaoChen
et al., 2022; Shen et al., 2022) analyzing CL first make assumptions on the consistency of
augmentations with labels (Cabannes et al., 2023; HaoChen et al., 2021; Johnson et al., 2022;
Saunshi et al., 2022), and specifically for UDA make stronger ones on the augmentation
graph connecting examples from same domain or class more than cross-class/cross-domain
ones. While this is sufficient to prove linear transferability, it is unclear if this holds in
practice when augmentations are imperfect, i.e. if they fail to mask the spurious features
completely—as corroborated by our findings in Sec. 6.4.5. We show why this also fails in
our simplified setup in App. E.6.1.
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Limitations of prior work analyzing self-training Prior research views self-training
as consistency regularization, ensuring pseudolabels for original samples align with their
augmentations (Cai et al., 2021a; Sohn et al., 2020; Wei et al., 2020). This approach abstracts
the role played by the optimization algorithm and instead evaluates the global minimizer
of a population objective promoting pseudolabel consistency. It also relies on specific
assumptions about class-conditional distributions to guarantee pseudolabel accuracy across
domains. However, this framework doesn’t address issues in iterative label propagation. For
example, when augmentation distribution has long tails, the consistency of pseudolabels
depends on the sampling frequency of “favorable” augmentations (for more discussion see
App. E.6.2). Our analysis thus follows the iterative examination of self-training (Chen
et al., 2020b).

6.7 Conclusion
In this study, we highlight the synergistic behavior of self-training improving linear trans-
ferability and contrastive pretraining learning more “invariant” features under distribution
shift. Shifts in distribution are commonplace in real-world applications of machine learning,
and even under natural, non-adversarial distribution shifts, the performance of machine
learning models often drops. By simply combining existing techniques in self-training
and constrastive learning, we find that we can improve accuracy by 3–8% rather than
using either approach independently. Despite these significant improvements, we note
that one limitation of this combined approach is that performing self-training sequentially
after contrastive pretraining increases the computation cost for UDA. The potential for
integrating these benefits into one unified training paradigm is yet unclear, presenting an
interesting direction for future exploration.

Beyond this, we note that our theoretical framework primarily confines the analysis to
training the backbone and linear network independently during the pretraining and fine-
tuning/self-training phases. Although our empirical observations apply to deep networks
with full fine-tuning, we leave a more rigorous theoretical study of full fine-tuning for future
work. Our theory also relies on a covariate shift assumption (where we assume that label
distribution also doesn’t shift). Investigating the complementary nature of self-training and
contrastive pretraining beyond the covariate shift assumption would be another interesting
direction for future work.
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Chapter 7

RLSbench: Domain Adaptation Under
Relaxed Label Shift

Based on Garg et al. (2023a): Saurabh Garg, Nick Erickson, James Sharpnack, Alex Smola, Sivaraman
Balakrishnan, and Zachary Chase Lipton. Rlsbench: Domain adaptation under relaxed label shift. In
International Conference on Machine Learning, 2023.

Abstract
In this chapter, we will combine natural input perturbations and label distribution shifts.
Despite the emergence of principled methods for domain adaptation under label shift,
their sensitivity to shifts in class conditional distributions is precariously underexplored.
We introduce RLSbench, a large-scale benchmark for relaxed label shift, consisting of
ą500 distribution shift pairs spanning vision, tabular, and language modalities, with
varying label proportions. Unlike existing benchmarks, which primarily focus on shifts in
class-conditional ppx|yq, our benchmark also focuses on label marginal shifts. First, we
assess 13 popular domain adaptation methods, demonstrating more widespread failures
under label proportion shifts than were previously known. Next, we develop an effective
two-step meta-algorithm that is compatible with most domain adaptation heuristics: (i)
pseudo-balance the data at each epoch; and (ii) adjust the final classifier with a target
label distribution estimate. The meta-algorithm improves existing domain adaptation
heuristics under large label proportion shifts, often by 2–10% in accuracy, while having
a minimal negative effect in the worst-case (ă0.5%) when label proportions do not
shift. We hope that these findings and the availability of RLSbench will encourage
researchers to rigorously evaluate proposed methods in relaxed label shift settings. Code
is publicly available at https://github.com/acmi-lab/RLSbench.
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Figure 7.1: Domain adaptation under Relaxed Label Shift. (a) Overview of RLSbench
setup: Unlike existing benchmarks for which the label marginal ppyq doesn’t shift, in
RLSbench, ppyq can shift arbitrarily. The class conditionals ppx|yq shift in seemingly natural
ways following popular benchmarks. RLSbench draws on 14 multi-domain datasets spanning
vision, NLP, and tabular modalities. (b) Key results: As the severity of target label
proportion increases, the performance of existing popular DA methods degrades, often
dropping below source-only classifiers. DA methods, when paired with our meta-algorithm,
significantly improve over a source-only classifier.

7.1 Introduction

In this chapter, we develop RLSbench, the first standardized test bed of relaxed label
shift settings, where ppyq can shift arbitrarily and the class conditionals ppx|yq can shift
in seemingly natural ways (following the popular DA benchmarks). While existing DA
benchmarks typically focus on shifts in ppx|yq, our benchmarks additionally focuses on
shifts in label marginals ppyq. We evaluate a collection of popular DA methods based on
domain-invariant representation learning, self-training, and test-time adaptation across 14
multi-domain datasets spanning vision, Natural Language Processing (NLP), and tabular
modalities. The different domains in each dataset present a different shift in ppx|yq. Since
these datasets exhibit minor to no shift in label marginal, we simulate shift in target label
marginal via stratified sampling with varying severity. Overall, we obtain 560 different
source and target distribution shift pairs and train ą 30k models in our testbed.

Based on our experiments on RLSbench, we make several findings. First, we observe that
while popular DA methods often improve over a source-only classifier absent shift in target
label distribution, their performance tends to degrade, dropping below source-only classifiers
under severe shifts in target label marginal. Next, we develop a meta-algorithm with two
simple corrections: (i) re-sampling the data to balance the source and pseudo-balance the
target; (ii) re-weighting the final classifier using an estimate of the target label marginal.
We observe that in these relaxed label shift settings, the performance of existing DA
methods (e.g. CDANN, FixMatch, and BN-adapt), when paired with our meta-algorithm,
significantly improves over a source-only classifier. On the other hand, existing methods
specifically proposed for relaxed label shift (e.g., IW-CDANN and SENTRY), often fail

79



to improve over a source-only classifier and significantly underperform when compared to
existing DA methods paired with our meta-algorithm.

Overall, RLSbench provides a comprehensive and standardized suite for label distributions
shifts, bringing existing benchmarks one step closer to exhibit the sort of diversity that we
should expect to encounter when deploying models in the wild. Our findings emphasize
the effectiveness of a simple, previously overlooked baseline. We hope that the RLSbench
and our meta-algorithm (that can be paired with any DA method) provide a framework for
rigorous and reproducible future research in relaxed label shift scenarios.

7.2 Preliminaries and Prior Work

This chapter focuses on the relaxed label shift setting. In particular, we assume that the
label distribution can shift from source to target arbitrarily but that ppx|yq varies between
source and target in some comparatively restrictive way (e.g., shifts arising naturally in the
real-world like ImageNet (Russakovsky et al., 2015) to ImageNetV2 (Recht et al., 2019b)).
Mathematically, we assume a divergence-based restriction on ppx|yq. That is, for some
small ϵ ą 0 and distributional distance D, we have maxy Dppspx|yq, ptpx|yqq ď ϵ and allow
an arbitrary shift in the label marginal ppyq. We discuss several precise instantiations in
App. F.7. However, in practice, it’s hard to empirically verify these distribution distances
for small enough ϵ with finite samples. Moreover, we lack a rigorous characterization of the
sense in which those shifts arise in popular DA benchmarks, and since, the focus of our
work is on the empirical evaluation with real-world datasets, we leave a formal investigation
for future work.

The goal in DA is to adapt a predictor from a source distribution with labeled data to
a target distribution from which we only observe unlabeled examples. While prior work
addressing relaxed label shift has primarily focused on classifier performance, we also
separately evaluate methods for estimating the target label marginal. This can be beneficial
for two reasons. First, it can shed more light into how improving the estimates of target class
proportion improves target performance. Second, understanding how the class proportions
are changing can be of independent interest.

7.2.1 Prior Work

Relaxed Label Shift Exploring the problem of shift in label marginal from source to
target with natural variations in ppx|yq, a few papers highlighted theoretical and empirical
failures of DA methods based on domain-adversarial neural network training (Johansson
et al., 2019; Wu et al., 2019; Yan et al., 2017; Zhao et al., 2019). Subsequently, several
papers attempted to handle these problems in domain-adversarial training (Liu et al., 2021b;
Manders et al., 2019; Prabhu et al., 2021; Tachet et al., 2020; Tan et al., 2020). However,
these methods often lack comparisons with other prominent DA methods and are evaluated
under different datasets and model selection criteria. To this end, we perform a large scale
rigorous comparison of popular representative DA methods in a standardized evaluation
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framework.

Distinction from previous distribution shift benchmark studies Previous studies
evaluating robustness under distribution shift predominantly focuses on transfer learning
and domain generalization settings Djolonga et al. (2021); Gulrajani and Lopez-Paz (2020);
Koh et al. (2021); Wenzel et al. (2022); Wiles et al. (2021). Hendrycks et al. (2021b);
Taori et al. (2020) studies the impact of robustness interventions (e.g. data augmentation
techniques, adversarial training) on target (out of distribution) performance. Notably,
Sagawa et al. (2021) focused on evaluating DA methods on WILDS-2.0. Our work is
complementary to these studies, as we present the first extensive study of DA methods
under shift in ppyq and natural variations in ppx|yq.

7.3 RLSbench: A Benchmark for Relaxed Label Shift

In this section, we introduce RLSbench, a suite of datasets and DA algorithms that
are at the core of our study. Motivated by correction methods for the (stricter) label
shift setting (Lipton et al., 2018b; Saerens et al., 2002) and learning under imbalanced
datasets (Cao et al., 2019a; Wei et al., 2021), we also present a meta-algorithm with simple
corrections compatible with almost any DA method.

7.3.1 Datasets

RLSbench builds on 14 multi-domain datasets for classification, including tasks across
applications in object classification, satellite imagery, medicine, and toxicity detection.
Across these datasets, we obtain a total of 56 different source and target pairs. More details
about datasets are in App. F.4.

(i) CIFAR-10 which includes the original CIFAR-10 (Krizhevsky and Hinton, 2009),
CIFAR-10-C (Hendrycks and Dietterich, 2019) and CIFAR-10v2 (Recht et al., 2018); (ii)
CIFAR-100 including the original dataset and CIFAR-100-C; (iii) all four BREEDs
datasets (Santurkar et al., 2021), i.e., Entity13, Entity30, Nonliving26, Living17.
BREEDs leverages class hierarchy in ImageNet (Russakovsky et al., 2015) to repurpose
original classes to be the subpopulations and define a classification task on superclasses.
We consider subpopulation shift and natural shifts induced due to differences in the data
collection process of ImageNet, i.e, ImageNetv2 (Recht et al., 2019b) and a combination
of both. (iv) OfficeHome (Venkateswara et al., 2017) which includes four domains: art,
clipart, product, and real; (v) DomainNet (Peng et al., 2019) where we consider four
domains: clipart, painting, real, sketch; (vi) Visda (Peng et al., 2017; 2018) which contains
three domains: train, val and test; (vii) FMoW (Christie et al., 2018; Koh et al., 2021)
from WILDS benchmark which includes three domains: train, OOD val, and OOD test—
with satellite images taken in different geographical regions and at different times; (viii)
Camelyon (Bandi et al., 2018) from WILDS benchmark which includes three domains:
train, OOD val, and OOD test, for tumor identification with domains corresponding
to different hospitals; (ix) Civilcomments (Borkan et al., 2019) which includes three
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domains: train, OOD val, and OOD test, for toxicity detection with domains corresponding
to different demographic subpopulations; (x) Retiring Adults (Ding et al., 2021) where
we consider the ACSIncome prediction task with various domains representing different
states and time-period; and (xi) Mimic Readmission (Johnson et al., 2020; PhysioBank,
2000) where the task is to predict readmission risk with various domains representing data
from different time-period.

Simulating a shift in target marginal The above datasets present minor to no shift
in label marginal. Hence, we simulate such a shift by altering the target label marginal
and keeping the source target distribution fixed (to the original source label distribution).
Note that, unlike some previous studies, we do not alter the source label marginal because,
in practice, we may have an option to carefully curate the training distribution but might
have little to no control over the target label marginal.

For each target dataset, we have the true labels which allow us to vary the target label
distribution. In particular, we sample the target label marginal from a Dirichlet distribution
with a parameter α P t0.5, 1, 3.0, 10u multiplier to the original target marginal. Specifically,
ptpyq „ Dirpβq where βy “ α ¨ pt,0pyq and pt,0pyq is the original target label marginal. The
Dirichlet parameter α controls the severity of shift in target label marginal. Intuitively, as
α decreases, the severity of the shift increases. For completeness, we also include the target
dataset with the original target label marginal. For ease of exposition, we denote the shifts
as None (no external shift) in the set of Dirichlet parameters, i.e. the limiting distribution
as α Ñ 8. After simulating the shift in the target label marginal (with two seeds for each
α), we obtain 560 pairs of different source and target datasets.

7.3.2 Domain Adaptation Methods

We implement the following algorithms (a more detailed description of each method is
included in App. F.11):

Source only As a baseline, we include model trained with empirical risk minimiza-
tion (Vapnik, 1999) with cross-entropy loss on the source domain. We include source only
models trained with and without augmentations. We also include adversarial robust models
trained on source data with augmentations (Source (adv)). In particular, we use models
adversarially trained against ℓ2-perturbations.

Domain alignment methods These methods employ domain-adversarial training
schemes aimed to learn invariant representations across different domains (Ganin et al.,
2016; Tan et al., 2020; Zhang et al., 2019). For our experiments, we include the following five
methods: Domain Adversarial Neural Networks (DANN (Ganin et al., 2016)), Conditional
DANN (CDANN (Long et al., 2018), Maximum Classifier Discrepancy (MCD (Saito et al.,
2018a)), Importance-reweighted DANN and CDANN (i.e. IW-DANN & IW-CDANN
Tachet des Combes et al. (2020)).

Self-training methods These methods “pseudo-label” unlabeled examples with the
model’s own predictions and then train on them as if they were labeled examples. For vision
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Algorithm 9 Meta algorithm to handle label marginal shift
input Source training and validation data: pXS, YSq and pX 1

S, Y
1
Sq, unlabeled target training

and validation data: XT and X 1
T , classifier f , and DA algorithm A

1: rXS, rYS Ð SampleClassBalancedpXS, YSq

{Balance source data}
2: for t “ 1 to T do
3: pwYT Ð argmaxy fypXT q

4: rXT Ð SampleClassBalancedpXT , pwYT q

{Pseudo-balance target data}
5: Run an epoch of A to update f on balanced source data t rXS, rYSu and target data

t rXT u

6: end for
7: pwptpyq Ð EstimateLabelMarginalpf,X 1

S, Y
1
S, X

1
T q

8: f 1
j Ð

pwptpy “ jq ¨ fj
ř

k pwptpy “ kq ¨ fk
for all j P Y

{Re-weight classifier}
output Target label marginal pwptpyq and classifier f 1

datasets, these methods often also use consistency regularization, which encourages the
model to make consistent predictions on augmented views of unlabeled examples (Berthelot
et al., 2021; Lee et al., 2013; Xie et al., 2020b). We include the following three algorithms:
FixMatch (Sohn et al., 2020), Noisy Student (Xie et al., 2020a), Selective Entropy
Optimization via Committee Consistency (SENTRY (Prabhu et al., 2021)). For NLP
and tabular dataset, where we do not have strong augmentations defined, we consider
PseudoLabel algorithm (Lee et al., 2013).

Test-time adaptation methods These methods take a source model and adapt a few
parameters (e.g. batch norm parameters, etc.) on the unlabeled target data with an aim to
improve target performance. We include: CORAL (Sun et al., 2016) or Domain Adjusted
Regression (DARE (Rosenfeld et al., 2022)), BatchNorm adaptation (BN-adapt (Li
et al., 2016; Schneider et al., 2020)), Test entropy minimization (TENT (Wang et al.,
2021a)).

7.3.3 Meta algorithm to handle target label marginal shift

Here we discuss two simple general-purpose corrections that we implement in our framework.
First, note that, as the severity of shift in the target label marginal increases, the performance
of DA methods can falter as the training is done over source and target datasets with different
class proportions. Indeed, failure of domain adversarial training methods (one category
of deep DA methods) has been theoretically and empirically shown in the literature (Wu
et al., 2019; Zhao et al., 2019). In our experiments, we show that a failure due to a shift in
label distribution is not limited to domain adversarial training methods, but is common
with all the popular DA methods (Sec. 7.4).
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Re-sampling To handle label imbalance in standard supervised learning, re-sampling
the data to balance the class marginal is a known successful strategy (Buda et al., 2018; Cao
et al., 2019b; Chawla et al., 2002). In relaxed label shift, we seek to handle the imbalance
in the target data (with respect to the source label marginal), where we do not have access
to true labels. We adopt an alternative strategy of leveraging pseudolabels for target data
to perform pseudo class-balanced re-sampling1 (Wei et al., 2021; Zou et al., 2018). For
relaxed label shift problems, (Prabhu et al., 2021) employed this technique with their
committee consistency objective, SENTRY. However, they did not explore re-sampling
based correction for existing DA techniques. Since this technique can be used in conjunction
with any DA methods, we employ this re-sampling technique with existing DA methods
and find that re-sampling benefits all DA methods, often improving over SENTRY in our
testbed (Sec. 7.4).

Re-weighting With re-sampling, we can hope to train the classifier pwf on a mixture of
balanced source and balanced target datasets in an ideal case. However, this still leaves
open the problem of adapting the classifier pwf to the original target label distribution
which is not available. If we can estimate the target label marginal, we can post-hoc adapt
the classifier pwf with a simple re-weighting correction (Alexandari et al., 2021; Lipton et al.,
2018b). To estimate the target label marginal, we turn to techniques developed under the
stricter label shift assumption (recall, the setting where ppx|yq remains domain invariant).
These approaches leverage off-the-shelf classifiers to estimate target marginal and provide
Op1{

?
nq convergence rates under the label shift condition with mild assumptions on the

classifier (Azizzadenesheli et al., 2019; Garg et al., 2020a; Lipton et al., 2018b).

While the relaxed label shift scenario violates the conditions required for consistency of label
shift estimation techniques, we nonetheless employ these techniques and empirically evaluate
efficacy of these methods in our testbed. In particular, to estimate the target label marginal,
we experiment with: (i) RLLS (Azizzadenesheli et al., 2019); (ii) MLLS (Alexandari et al.,
2021); and (iii) baseline estimator that simply averages the prediction of a classifier f on
unlabeled target data. We provide precise details about these methods in App. F.6. Since
these methods leverage off-the-shelf classifiers, classifiers obtained with any DA methods
can be used in conjunction with these estimation methods.

Summary Overall, in Algorithm 9, we illustrate how to incorporate the re-sampling and
re-weighting correction with existing DA techniques. Fig. F.5 in App. F.5 illustrates the
method. Algorithm A can be any DA method and in Step 7, we can use any of the three
methods listed above to estimate the target label marginal. We instantiate Algorithm 9
with several algorithms from Sec. 7.3.2 in App. F.11. Intuitively, in an ideal scenario
when the re-sampling step in our meta-algorithm perfectly corrects for label imbalance
between source and target, we expect DA methods to adapt classifier f to ppx|yq shift.
The re-weighting step in our meta-algorithm can then adapt the classifier f to the target
label marginal ptpyq. We emphasize that in our work, we do not claim to propose these
corrections. But, to the best of our knowledge, our work is the first to combine these two

1A different strategy could be to re-sample target pseudolabel marginal to match source label marginal.
For simplicity, we choose to balance source label marginal and target pseudolabel marginal.
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corrections together and perform extensive experiments across diverse datasets.

7.3.4 Other choices for realistic evaluation

For a fair evaluation and comparison across different datasets and DA algorithms, we re-
implemented all the algorithms with consistent design choices whenever applicable. We also
make several additional implementation choices, described below. We defer the additional
details to App. F.12.

Model selection criteria and hyperparameters Given that we lack validation i.i.d data
from the target distribution, model selection in DA problems can not follow the standard
workflow used in supervised training. Prior works often omit details on how to choose
hyperparameters leaving open a possibility of choosing hyperparameters using the test set
which can provide a false and unreliable sense of improvement. Moreover, inconsistent
hyperparameter selection strategies can complicate fair evaluations mis-associating the
improvements to the algorithm under study.

In our work, we use source hold-out performance to pick the best hyperparameters. First,
for ℓ2 regularization and learning rate, we perform a sweep over random hyperparameters
to maximize the performance of source only model on the hold-out source data. Then
for each dataset, we keep these hyperparameters fixed across DA algorithms. For DA
methods specific hyperparameters, we use the same hyperparameters across all the methods
incorporating the suggestions made in corresponding papers. Within a run, we use hold
out performance on the source to pick the early stopping point. In appendices, we report
oracle performance by choosing the early stopping point with target accuracy.

Evaluation criteria To evaluate the target label marginal estimation, we report ℓ1
error between the estimated label distribution and true label distribution. To evaluate the
classifier performance on target data, we report performance of the (adapted) classifier on
a hold-out partition of target data.

Architectural and pretraining details We experiment with different architectures (e.g.,
DenseNet121, Resenet18, Resnet50, DistilBERT, MLP and Transformer). We experiment
with randomly-initialized models and Imagenet, and DistillBert pre-trained models. Given
a dataset, we use the same architecture across different DA algorithms.

Data augmentation Data augmentation is a standard ingredient to train vision models
which can approximate some of the variations between domains. Unless stated otherwise,
we train all the vision datasets using the standard strong augmentation technique: random
horizontal flips, random crops, augmentation with Cutout (DeVries and Taylor, 2017), and
RandAugment (Cubuk et al., 2020). To understand help with data augmentations alone,
we also experiment with source-only models trained without any data augmentation. For
tabular and NLP datasets, we do not use any augmentations.
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(a) Performance of DA methods relative to source-only training with increasing severity of
target label marginal shift
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(b) Performance of DA methods relative to source-only training when paired with our
meta-algorithm (RS and RW corrections)

Figure 7.2: Performance of different DA methods relative to a source-only model across
all distribution shift pairs in vision datasets grouped by shift severity in label marginal. We
plot the relative accuracy of the model trained with that DA method by subtracting the
accuracy of the source-only model. Smaller the Dirichlet shift parameter, the more severe
is the shift in target class proportion. (a) Shifts with α “ tNone, 10.0, 3.0u have little to
no impact on different DA methods whereas the performance of all DA methods degrades
when α P t1.0, 0.5u often falling below the performance of a source-only classifier (except
for Noisy Student). (b) RS and RW (in our meta-algorithm) together significantly improve
aggregate performance over no correction for all DA methods. While RS consistently helps
(over no correction) across different label marginal shift severities, RW hurts slightly for
BN-adapt, TENT, and NoisyStudent when shift severity is small. However, for severe shifts
(α P t3.0, 1.0, 0.5u) RW significantly improves performance for all the methods. Parallel
results on tabular and language datasets in App. F.2.
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Figure 7.3: Average accuracy of different DA methods aggregated across all distribution
pairs in each modality.
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Figure 7.4: Target label marginal estimation (ℓ1) error and accuracy with RLLS and
classifiers obtained with different DA methods. (Left) Across all shift severities in vision
datasets, RLLS with classifiers obtained with DA methods improves over RLLS with a
source-only classifier. (Right) For tabular datasets, RLLS with classifiers obtained with DA
methods improves over RLLS with a source-only classifier for severe target label marginal
shifts. Plots for each DA method and all datasets are in App. F.8.

7.4 Main Results

We present aggregated results on vision datasets in our testbed in Fig. 7.2. In App. F.2,
we present aggregated results on NLP and tabular datasets. Note that we do not
include RS results with a source only model as it is trained only on source data and we
observed no differences with just balancing the source data (as for most datasets source is
already balanced) in our experiments. Unless specified otherwise, we use source validation
performance as the early stopping criterion. Based on running our entire RLSbench suite,
we distill our findings into the following takeaways.

Popular deep DA methods without any correction falter. While DA methods
often improve over a source-only classifier for cases when the target label marginal shift is
absent or low, the performance of these methods (except Noisy Student) drops below the
performance of a source-only classifier when the shift in target label marginal is severe (i.e.,
when α “ 0.5 in Fig. 7.2a, F.1a, and F.2a). On the other hand, DA methods when paired
with RS and RW correction, significantly improve over a source-only model even when the
shift in target label marginal is severe (Fig. 7.2b, F.1b, and F.2b).
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Re-sampling to pseudobalance target often helps all DA methods across all
modalities. When the shift in target label marginal is absent or very small (i.e., α P

tNone, 10.0u in Fig. 7.2b, F.1b, and F.2b), we observe no (significant) differences in
performance with re-sampling. However, as the shift severity in target label marginal
increases (i.e., α P t3.0, 1.0, 0.5u in Fig. 7.2b, F.1b, and F.2b), we observe that re-sampling
typically improves all DA methods in our testbed.

Benefits of post-hoc re-weighting of the classifier depends on shift severity
and the underlying DA algorithm. For domain alignment methods (i.e. DANN and
CDANN) and self-training methods, in particular FixMatch and PseudoLabel, we observe
that RW correction typically improves (over no correction) significantly when the target
label marginal shift is severe (i.e., α P t3.0, 1.0, 0.5u in Fig. 7.2b, F.1b, and F.2b) and has
no (significant) effect when the shift in target label marginal is absent or very small (i.e.,
α P tNone, 10.0u in Fig. 7.2b, F.1b, and F.2b). For BN-adapt, TENT, and NoisyStudent,
RW correction can slightly hurt when target label marginal shift is absent or low (i.e.,
α P tNone, 10.0u in Fig. 7.2b) but continues to improve significantly when the target label
marginal shift is severe (i.e., α P t3.0, 1.0, 0.5u in Fig. 7.2b). Additionally, we observe that
in specific scenarios of the real-world shift in ppx|yq (e.g., subpopulation shift in BREEDs
datasets, camelyon shifts, and replication study in CIFAR-10 which are benign relative to
other vision dataset shifts in our testbed), RW correction does no harm to performance
for BN-adapt, TENT, and NoisyStudent even when the target label marginal shift is less
severe or absent.

DA methods paired with our meta-algorithm often improve over source-only
classifier but no one method consistently performs the best. First, we observe
that our source-only numbers are better than previously published results. Similar to
previous studies (Gulrajani and Lopez-Paz, 2020), this can be attributed to improved design
choices (e.g. data augmentation, hyperparameters) which we make consistent across all
methods. While there is no consistent method that does the best across datasets, overall,
FixMatch with RS and RW (our meta-algorithm) performs the best for vision datasets. For
NLP datasets, source-only with RW (our meta-algorithm) performs the best overall. For
tabular datasets, CDANN with RS and RW (our meta-algorithm) performs the best overall
(Fig. 7.3).

Existing DA methods when paired with our meta-algorithm significantly outper-
form other DA methods specifically proposed for relaxed label shift. We observe
that, with consistent experimental design across different methods, existing DA methods
with RS and RW corrections often improve over previously proposed methods specifically
aimed to tackle relaxed label shift, i.e., IW-CDANN, IW-DANN, and SENTRY (Fig. F.3).
For severe target label marginal shifts, the performance of IW-DANN, IW-CDANN, and
SENTRY often falls below that of the source-only model. Moreover, while the importance
weighting (i.e., IW-CDANN and IW-DANN) improves over CDANN and DANN resp. (Fig.
7.2a, F.1a and F.2a), RS and RW corrections significantly outweigh those improvements
(Fig. F.3).

BN-adapt and TENT with our meta-algorithm are simple and strong base-
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lines. For models with batch norm parameters, BN-adapt (and TENT) with RS and RW
steps is a computationally efficient and strong baseline. We observe that while the perfor-
mance of BN-adapt (and TENT) can drop substantially when the target label marginal
shifts (i.e., α P t1.0, 0.5u in Fig. 7.2(a)), RS and RW correction improves the performance
often improving BN-adapt (and TENT) over all other DA methods when the shift in target
label marginal is extreme (i.e., α “ 0.5 in Fig. 7.2(b)).

DA methods yield better target label marginal estimates, and hence larger
accuracy improvements with re-weighting, than source-only classifiers. Recall
that we experiment with target label marginal estimation methods that leverage off-the-shelf
classifiers to obtain an estimate. We observe that estimators leveraging DA classifiers tend
to perform better than using source-only classifiers for tabular and vision datasets (Fig. 7.4).
For NLP, we observe that DA classifier and source-only classifier have performance (with
source-only often performing slightly better). Correspondingly, as one might expect, better
estimation yields greater accuracy improvements when applying our RW correction. In
particular, RW correction with DA methods improves over the source-only classifier for
vision and tabular datasets and vice-versa for NLP datasets. (Fig. 7.4).

Early stopping criterion matters. We observe a consistent «2% and «8% accuracy
difference on vision and tabular datasets respectively with all methods (Fig. F.16). On NLP
datasets, while the early stopping criteria have «2% accuracy difference when RW and RS
corrections are not employed, the difference becomes negligible when these corrections are
employed (Fig. F.16). These results highlight that subsequent works should describe the
early stopping criteria used within their evaluations.

Data augmentation helps. Corroborating findings from previous studies in other
settings (Gulrajani and Lopez-Paz, 2020; Sagawa et al., 2021), we observe that data
augmentation can improve the performance of a source-only model on vision datasets in
relaxed label shift scenarios. Thus, whenever applicable, subsequent methods should use
data augmentations.

7.5 Conclusion

Our work is the first large-scale study investigating methods under the relaxed label
shift scenario. Relative to works operating strictly under the label shift assumption,
RLSbench provides an opportunity for sensitivity analysis, allowing researchers to measure
the robustness of their methods under various sorts of perturbations to the class-conditional
distributions. Relative to the benchmark-driven deep domain adaptation literature, our
work provides a comprehensive and standardized suite for evaluating under shifts in label
distributions, bringing these benchmarks one step closer to exhibit the sort of diversity
that we should expect to encounter when deploying models in the wild. On one hand, the
consistent improvements observed from label shift adjustments are promising. At the same
time, given the underspecified nature of the problem, practitioners must remain vigilant
and take performance on any benchmark with a grain of salt, considering the various ways
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that it might (or might not) be representative of the sorts of situations that might arise in
their application of interest.

Also, we observe that the success of target label marginal estimation techniques depends on
the nature of the shifts in ppx|yq. In follow up work (Kannan et al., 2024), we mathematically
characterize the behavior of label shift estimation techniques when the label shift assumption
is violated.
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Part III

Evaluating Models Without Access to
Labeled Data
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Chapter 8

RATT: Leveraging Unlabeled Data to
Guarantee Generalization

Based on Garg et al. (2021a): Garg, Saurabh, Sivaraman Balakrishnan, Zico Kolter, and Zachary Lipton.
Ratt: Leveraging unlabeled data to guarantee generalization. In International Conference on Machine
Learning, 2021

Abstract
To assess generalization, machine learning scientists typically either (i) bound the
generalization gap and then (after training) plug in the empirical risk to obtain a bound
on the true risk; or (ii) validate empirically on holdout data. However, (i) typically
yields vacuous guarantees for overparameterized models; and (ii) shrinks the training
set and its guarantee erodes with each re-use of the holdout set. In this chapter,
we leverage unlabeled data to produce generalization bounds. After augmenting our
(labeled) training set with randomly labeled data, we train in the standard fashion.
Whenever classifiers achieve low error on the clean data but high error on the random
data, our bound ensures that the true risk is low. We prove that our bound is valid for
0-1 empirical risk minimization and with linear classifiers trained by gradient descent.
Our approach is especially useful in conjunction with deep learning due to the early
learning phenomenon whereby networks fit true labels before noisy labels but requires
one intuitive assumption. Empirically, on canonical computer vision and NLP tasks, our
bound provides non-vacuous generalization guarantees that track actual performance
closely. This work enables practitioners to certify generalization even when (labeled)
holdout data is unavailable and provides insights into the relationship between random
label noise and generalization. Code is available at this url.
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8.1 Introduction

Addressing model adaptation in the context of unlabeled data under distribution shift is a
critical challenge. Equally crucial is the evaluation of these adapted models to gauge the
impact of distribution shift. In this section of the thesis, we delve into the evaluation of
models using only unlabeled data from the target distribution of interest. Specifically, this
chapter will concentrate on the fundamental scenario where there is no distribution shift,
aiming to assess model generalization in the absence of labeled holdout data.

Typically, machine learning scientists establish generalization in one of two ways. One
approach, favored by learning theorists, places an a priori bound on the gap between the
empirical and true risks, usually in terms of the complexity of the hypothesis class. After
fitting the model on the available data, one can plug in the empirical risk to obtain a
guarantee on the true risk. The second approach, favored by practitioners, involves splitting
the available data into training and holdout partitions, fitting the models on the former
and estimating the population risk with the latter.

Surely, both approaches are useful, with the former providing theoretical insights and
the latter guiding the development of a vast array of practical technology. Nevertheless,
both methods have drawbacks. Most a priori generalization bounds rely on uniform
convergence and thus fail to explain the ability of overparameterized networks to generalize
(Nagarajan and Kolter, 2019b; Zhang et al., 2017). On the other hand, provisioning a
holdout dataset restricts the amount of labeled data available for training. Moreover, risk
estimates based on holdout sets lose their validity with successive re-use of the holdout
data due to adaptive overfitting (Blum and Hardt, 2015; Dwork et al., 2015; Murphy, 2012).
However, recent empirical studies suggest that on large benchmark datasets, adaptive
overfitting is surprisingly absent (Recht et al., 2019b).

In this chapter, we propose Randomly Assign, Train and Track (RATT), a new method
that leverages unlabeled data to provide a post-training bound on the true risk (i.e., the
population error). Here, we assign random labels to a fresh batch of unlabeled data,
augmenting the clean training dataset with these randomly labeled points. Next, we train
on this data, following standard risk minimization practices. Finally, we track the error
on the randomly labeled portion of training data, estimating the error on the mislabeled
portion and using this quantity to upper bound the population error.

Counterintuitively, we guarantee generalization by guaranteeing overfitting. Specifically, we
prove that Empirical Risk Minimization (ERM) with 0-1 loss leads to lower error on the
mislabeled training data than on the mislabeled population. Thus, if despite minimizing the
loss on the combined training data, we nevertheless have high error on the mislabeled portion,
then the (mislabeled) population error will be even higher. Then, by complementarity,
the (clean) population error must be low. Finally, we show how to obtain this guarantee
using randomly labeled (vs mislabeled data), thus enabling us to incorporate unlabeled
data.

To expand the applicability of our idea beyond ERM on 0-1 error, we prove corresponding
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Figure 8.1: Predicted lower bound on the clean population error with ResNet
and MLP on binary CIFAR. Results aggregated over 5 seeds. ‘*’ denotes the best test
performance achieved when training with only clean data and the same hyperparameters
(except for the stopping point). The bound predicted by RATT (RHS in (8.2)) closely
tracks the population accuracy on clean data.

results for a linear classifier trained by gradient descent to minimize squared loss. Fur-
thermore, leveraging the connection between early stopping and ℓ2-regularization in linear
models (Ali et al., 2018; 2020; Suggala et al., 2018), our results extend to early-stopped
gradient descent. Because we make no assumptions on the data distribution, our results on
linear models hold for more complex models such as kernel regression and neural networks
in the Neural Tangent Kernel (NTK) regime (Allen-Zhu et al., 2019b; Chizat et al., 2019;
Du et al., 2019; 2018; Jacot et al., 2018).

Addressing practical deep learning models, our guarantee requires an additional (reasonable)
assumption. Our experiments show that the bound yields non-vacuous guarantees that track
test error across several major architectures on a range of benchmark datasets for computer
vision and Natural Language Processing (NLP). Because, in practice, overparameterized
deep networks exhibit an early learning phenomenon, fitting clean data before mislabeled
data (Arora et al., 2019a; Li et al., 2019; Liu et al., 2020), our procedure yields tight bounds
in the early phases of learning. Experimentally, we confirm the early learning phenomenon
in standard Stochastic Gradient Descent (SGD) training and illustrate the effectiveness
of weight decay combined with large initial learning rates in avoiding interpolation to
mislabeled data while maintaining fit on the training data, strengthening the guarantee
provided by our method.

To be clear, we do not advocate RATT as a blanket replacement for the holdout approach.
Our main contribution is to introduce a new theoretical perspective on generalization
and to provide a method that may be applicable even when the holdout approach is
unavailable. Of interest, unlike generalization bounds based on uniform-convergence that
restrict the complexity of the hypothesis class (Bartlett et al., 2017; Nagarajan and Kolter,
2019a; Neyshabur et al., 2015; 2017b; 2018), our post hoc bounds depend only on the
fit to mislabeled data. We emphasize that our theory does not guarantee a priori that
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early learning should take place but only a posteriori that when it does, we can provide
non-vacuous bounds on the population error. Conceptually, this finding underscores the
significance of the early learning phenomenon in the presence of noisy labels and motivates
further work to explain why it occurs.

8.2 Preliminaries
By ||¨||, and x¨, ¨y we denote the Euclidean norm and inner product, respectively. For a
vector v P Rd, we use vj to denote its jth entry, and for an event E we let I rEs denote the
binary indicator of the event.

Suppose we have a multiclass classification problem with the input domain X Ď Rd and
label space Y “ t1, 2, . . . , ku1. By D, we denote the distribution over X ˆ Y. A dataset
S :“ tpxi, yiquni“1 „ Dn contains n points sampled i.i.d. from D. By S, T , and rS, we denote
the (uniform) empirical distribution over points in datasets S, T , and rS, respectively. Let
F be a class of hypotheses mapping X to Rk. A training algorithm A: takes a dataset S
and returns a classifier fpA, Sq P F . When the context is clear, we drop the parentheses
for convenience. Given a classifier f and datum px, yq, we denote the 0-1 error (i.e.,
classification error) on that point by Epfpxq, yq :“ I

“

y R argmaxjPY fjpxq
‰

, We express the
population error on D as EDpfq :“ Epx,yq„D rEpfpxq, yqs and the empirical error on S as
ESpfq :“ Epx,yq„S rEpfpxq, yqs “ 1

n

řn
i“1 Epfpxiq, yiq.

Throughout, we consider a random label assignment procedure: draw x „ DX (the un-
derlying distribution over X ), and then assign a label sampled uniformly at random. We
denote a randomly labeled dataset by rS :“ tpxi, yiqumi“1 „ rDm, where rD is the distribution
of randomly labeled data. By D1, we denote the mislabeled distribution that corresponds
to selecting examples px, yq according to D and then re-assigning the label by sampling
among the incorrect labels y1 ‰ y (renormalizing the label marginal).

8.3 Generalization Bound for RATT with ERM
We now present our generalization bound and proof sketches for ERM on the 0-1 loss (full
proofs in App. G.1). For any dataset T , ERM returns the classifier pf that minimizes the
empirical error:

pf :“ argmin
fPF

ET pfq . (8.1)

We focus first on binary classification. Assume we have a clean dataset S „ Dn of n points
and a randomly labeled dataset rS „ rDm of m pă nq points with labels in rS are assigned
uniformly at random. We show that with 0-1 loss minimization on the union of S and rS, we
obtain a classifier whose error on D is upper bounded by a function of the empirical errors
on clean data ES (lower is better) and on randomly labeled data E

rS (higher is better):
1For binary classification, we use Y “ t´1, 1u.
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Theorem 8.3.1. For any classifier pwf obtained by ERM (8.1) on dataset S Y rS, for any
δ ą 0, with probability at least 1 ´ δ, we have

EDp pfq ď ESp pfq ` 1 ´ 2E
rSp pfq

`

´?
2E

rSp pfq ` 2 `
m

2n

¯

c

logp4{δq

m
. (8.2)

In short, this theorem tells us that if after training on both clean and randomly labeled
data, we achieve low error on the clean data but high error (close to 1{2) on the randomly
labeled data, then low population error is guaranteed. Note that because the labels in rS
are assigned randomly, the error E

rSpfq for any fixed predictor f (not dependent on rS) will
be approximately 1/2. Thus, if ERM produces a classifier that has not fit to the randomly
labeled data, then p1 ´ 2E

rSp pfqq will be approximately 0, and our error will be determined
by the fit to clean data. The final term accounts for finite sample error—notably, it (i) does
not depend on the complexity of the hypothesis class; and (ii) approaches 0 at a Op1{

?
mq

rate (for m ă n).

Our proof strategy unfolds in three steps. First, in Lemma 8.3.2 we bound EDp pwfq in terms
of the error on the mislabeled subset of rS. Next, in Lemmas 8.3.3 and 8.3.4, we show
that the error on the mislabeled subset can be accurately estimated using only clean and
randomly labeled data.

To begin, assume that we actually knew the original labels for the randomly labeled
data. By rSC and rSM , we denote the clean and mislabeled portions of the randomly
labeled data, respectively (with rS “ rSM Y rSC). Note that for binary classification, a
lower bound on mislabeled population error ED1p pwfq directly upper bounds the error on
the original population EDp pwfq. Thus we only need to prove that the empirical error on
the mislabeled portion of our data is lower than the error on unseen mislabeled data, i.e.,
E
rSM

p pwfq ď ED1p pwfq “ 1 ´ E
rSM

p pfq (upto Op1{
?
mq).

Lemma 8.3.2. Assume the same setup as in Theorem 8.3.1. Then for any δ ą 0, with
probability at least 1 ´ δ over the random draws of mislabeled data rSM , we have

EDp pfq ď 1 ´ E
rSM

p pfq `

c

logp1{δq

m
. (8.3)

Proof Sketch. The main idea of our proof is to regard the clean portion of the data (S Y rSC)
as fixed. Then, there exists a classifier f˚ that is optimal over draws of the mislabeled data
rSM . Formally,

f˚ :“ argmin
fPF

E
qDpfq,

where qD is a combination of the empirical distribution over correctly labeled data SY rSC and
the (population) distribution over mislabeled data D1. Recall that pf :“ argminfPF ESY rSpfq.
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Since, pf minimizes 0-1 error on S Y rS, we have ESY rSp pfq ď ESY rSpf˚q. Moreover, since f˚ is
independent of rSM , we have with probability at least 1 ´ δ that

E
rSM

pf˚
q ď ED1pf˚

q `

c

logp1{δq

m
.

Finally, since f˚ is the optimal classifier on qD, we have E
qDpf˚q ď E

qDp pfq. Combining the
above steps and using the fact that ED “ 1 ´ ED1 , we obtain the desired result.

While the LHS in (8.3) depends on the unknown portion rSM , our goal is to use unlabeled
data (with randomly assigned labels) for which the mislabeled portion cannot be readily
identified. Fortunately, we do not need to identify the mislabeled points to estimate the
error on these points in aggregate E

rSM
p pfq. Note that because the label marginal is uniform,

approximately half of the data will be correctly labeled and the remaining half will be
mislabeled. Consequently, we can utilize the value of E

rSp pfq and an estimate of E
rSC

p pfq to
lower bound E

rSM
p pfq. We formalize this as follows:

Lemma 8.3.3. Assume the same setup as Theorem 8.3.1. Then for any δ ą 0, with
probability at least 1´δ over the random draws of rS, we have

∣∣∣2E
rSp pfq ´ E

rSC
p pfq ´ E

rSM
p pfq

∣∣∣ ď

2E
rSp pfq

b

logp4{δq

2m
.

To complete the argument, we show that due to the exchangeability of the clean data S
and the clean portion of the randomly labeled data SC , we can estimate the error on the
latter E

rSC
p pwfq by the error on the former ESp pwfq.

Lemma 8.3.4. Assume the same setup as Theorem 8.3.1. Then for any δ ą 0, with
probability at least 1 ´ δ over the random draws of rSC and S, we have

∣∣∣E
rSC

p pfq ´ ESp pfq

∣∣∣ ď

`

1 ` m
2n

˘

b

logp2{δq

m
.

Lemma 8.3.4 establishes a tight bound on the difference of the error of classifier pf on rSC

and on S. The proof uses Hoeffding’s inequality for randomly sampled points from a fixed
population (Bardenet et al., 2015; Hoeffding, 1994).

Having established these core components, we can now summarize the proof strategy for
Theorem 8.3.1. We bound the population error on clean data (the term on the LHS of
(8.2)) in three steps: (i) use Lemma 8.3.2 to upper bound the error on clean distribution
EDp pfq, by the error on mislabeled training data E

rSM
p pfq; (ii) approximate E

rSM
p pfq by E

rSC
p pfq

and the error on randomly labeled training data (i.e., E
rSp pfq) using Lemma 8.3.3; and (iii)

use Lemma 8.3.4 to estimate E
rSC

p pfq using the error on clean training data (ESp pfq).

Comparison with Rademacher bound Our bound in Theorem 8.3.1 shows that we
can upper bound the clean population error of a classifier by estimating its accuracy on the
clean and randomly labeled portions of the training data. Next, we show that our bound’s
dominating term is upper bounded by the Rademacher complexity (Shalev-Shwartz and
Ben-David, 2014), a standard distribution-dependent complexity measure.
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Proposition 8.3.5. Fix a randomly labeled dataset rS „ rDm. Then for any classifier f P F
(possibly dependent on rS)2 and for any δ ą 0, with probability at least 1 ´ δ over random
draws of rS, we have

1 ´ 2E
rSpfq ď Eϵ,x

„

sup
fPF

ˆř

i ϵifpxiq

m

˙ȷ

`

d

2 logp2
δ
q

m
,

where ϵ is drawn from a uniform distribution over t´1, 1um and x is drawn from Dm
X .

In other words, the proposition above highlights that the accuracy on the randomly labeled
data is never larger than the Rademacher complexity of F w.r.t. the underlying distribution
over X , implying that our bound is never looser than a bound based on Rademacher
complexity. The proof follows by application of the bounded difference condition and
McDiarmid’s inequality (McDiarmid, 1989). We now discuss extensions of Theorem 8.3.1
to regularized ERM and multiclass classification.

Extension to regularized ERM Consider any function R : F Ñ R, e.g., a regularizer
that penalizes some measure of complexity for functions in class F . Consider the following
regularized ERM:

pf :“ argmin
fPF

ESpfq ` λRpfq , (8.4)

where λ is a regularization constant. If the regularization coefficient is independent of the
training data S Y rS, then our guarantee (Theorem 8.3.1) holds. Formally,
Theorem 8.3.6. For any regularization function R, assume we perform regularized ERM
as in (8.4) on S Y rS and obtain a classifier pf . Then, for any δ ą 0, with probability at least

1 ´ δ, we have EDp pfq ď ESp pfq ` 1 ´ 2E
rSp pfq `

´?
2E

rSp pfq ` 2 ` m
2n

¯

b

logp1{δq

m
.

A key insight here is that the proof of Theorem 8.3.1 treats the clean data S as fixed and
considers random draws of the mislabeled portion. Thus a data-independent regularization
function does not alter our chain of arguments and hence, has no impact on the resulting
inequality. We prove this result formally in App. G.1.

We note one immediate corollary from Theorem 8.3.6: when learning any function f
parameterized by w with L2-norm penalty on the parameters w, the population error with
pf is determined by the error on the clean training data as long as the error on randomly
labeled data is high (close to 1{2).

Extension to multiclass classification Thus far, we have addressed binary classification.
We now extend these results to the multiclass setting. As before, we obtain datasets S and
rS. Here, random labels are assigned uniformly among all classes.

2We restrict F to functions which output a label in Y “ t´1, 1u.

98



Theorem 8.3.7. For any regularization function R, assume we perform regularized ERM
as in (8.4) on S Y rS and obtain a classifier pf . For a multiclass classification problem with
k classes, for any δ ą 0, with probability at least 1 ´ δ, we have

EDp pfq ď ESp pfq ` pk ´ 1q

´

1 ´ k
k´1

E
rSp pfq

¯

` c

d

logp4
δ
q

2m
, (8.5)

for some constant c ď p2k `
?
k ` m

n
?
k
q.

We first discuss the implications of Theorem 8.3.7. Besides empirical error on clean data,
the dominating term in the above expression is given by pk ´ 1q

´

1 ´ k
k´1

E
rSp pfq

¯

. For any

predictor f (not dependent on rS), the term E
rSp pfq would be approximately pk ´ 1q{k and

for pf , the difference now evaluates to the accuracy of the randomly labeled data. Note that
for binary classification, (8.5) simplifies to Theorem 8.3.1.

The core of our proof involves obtaining an inequality similar to (8.3). While for binary
classification, we could upper bound E

rSM
with 1 ´ ED (in the proof of Lemma 8.3.2), for

multiclass classification, error on the mislabeled data and accuracy on the clean data in the
population are not so directly related. To establish an inequality analogous to (8.3), we
break the error on the (unknown) mislabeled data into two parts: one term corresponds
to predicting the true label on mislabeled data, and the other corresponds to predicting
neither the true label nor the assigned (mis-)label. Finally, we relate these errors to their
population counterparts to establish an inequality similar to (8.3).

8.4 Generalization Bound for RATT with Gradient De-
scent

In the previous section, we presented results with ERM on 0-1 loss. While minimizing
the 0-1 loss is hard in general, these results provide important theoretical insights. In this
section, we show parallel results for linear models trained with Gradient Descent (GD).

To begin, we introduce the setup and some additional notation. For simplicity, we begin
discussion with binary classification with X “ Rd. Define a linear function fpx;wq :“ wTx
for some w P Rd and x P X . Given training set S, we suppose that the parameters
of the linear function are obtained via gradient descent on the following L2 regularized
problem:

LSpw;λq :“
n
ÿ

i“1

pwTxi ´ yiq
2

` λ ∥w∥ 22 , (8.6)

where λ ě 0 is a regularization parameter. Our choice to analyze squared loss minimization
for linear networks is motivated in part by its analytical convenience, and follows recent
theoretical work which analyze neural networks trained via squared loss minimization in

99



the Neural Tangent Kernel (NTK) regime when they are well approximated by linear
networks (Arora et al., 2019a; Du et al., 2019; Hu et al., 2019; Jacot et al., 2018). Moreover,
recent research suggests that for classification tasks, squared loss minimization performs
comparably to cross-entropy loss minimization (Hui and Belkin, 2020; Muthukumar et al.,
2020).

For a given training set S, we use Spiq to denote the training set S with the ith point
removed. We now introduce one stability condition:
Condition 8.4.1 (Hypothesis Stability). We have β hypothesis stability if our training
algorithm A satisfies the following for all i P t1, 2, . . . , nu:

ES,px,yqPD
“∣∣E pfpxq, yq ´ E

`

fpiqpxq, y
˘
∣∣‰ ď

β

n
,

where fpiq :“ fpA, Spiqq and f :“ fpA, Sq.

This condition is similar to a notion of stability called hypothesis stability (Bousquet and
Elisseeff, 2002; Elisseeff et al., 2003; Kearns and Ron, 1999). Intuitively, Condition 8.4.1
states that empirical leave-one-out error and average population error of leave-one-out
classifiers are close. This condition is mild and does not guarantee generalization. We
discuss the implications in more detail in App. G.2.3.

Now we present the main result of this section. As before, we assume access to a clean
dataset S “ tpxi, yiquni“1 „ Dn and randomly labeled dataset rS “ tpxi, yiqu

n`m
i“n`1 „ rDm. Let

X “ rx1, x2, ¨ ¨ ¨ , xm`ns and y “ ry1, y2, ¨ ¨ ¨ , ym`ns. Fix a positive learning rate η such that
η ď 1{

`∥∥XTX
∥∥ op ` λ2

˘

and an initialization w0 “ 0. Consider the following gradient
descent iterates to minimize objective (8.6) on S Y rS:

wt “ wt´1 ´ η∇wLSYrSpwt´1;λq @t “ 1, 2, . . . . (8.7)

Then we have twtu converge to the limiting solution pww “
`

XTX ` λI
˘´1

XTy. Define
pfpxq :“ fpx; pwwq.
Theorem 8.4.2. Assume that this gradient descent algorithm satisfies Condition 8.4.1 with
β “ Op1q. Then for any δ ą 0, with probability at least 1 ´ δ over the random draws of
datasets rS and S, we have:

EDp pfq ď ESp pfq ` 1 ´ 2E
rSp pfq `

d

4

δ

ˆ

1

m
`

3β

m ` n

˙

`

´?
2E

rSp pfq ` 1 `
m

2n

¯

c

logp4{δq

m
. (8.8)

With a mild regularity condition, we establish the same bound on GD training with squared
loss, notably the same dominating term on the population error, as in Theorem 8.3.1. In
App. G.2.2, we present the extension to multiclass classification, where we again obtain a
result parallel to Theorem 8.3.7.
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Proof Sketch. Because squared loss minimization does not imply 0-1 error minimization, we
cannot use arguments from Lemma 8.3.2. This is the main technical difficulty. To compare
the 0-1 error at a train point with an unseen point, we use the closed-form expression for pw.
We show that the train error on mislabeled points is less than the population error on the
distribution of mislabeled data (parallel to Lemma 8.3.2).

For a mislabeled training point pxi, yiq in rS, we show that

I
“

yix
T
i pww ď 0

‰

ď I
“

yix
T
i pwwpiq ď 0

‰

, (8.9)

where pwwpiq is the classifier obtained by leaving out the ith point from the training set.
Intuitively, this condition states that the train error at a training point is less than the
leave-one-out error at that point, i.e. the error obtained by removing that point and
re-training. Using Condition 8.4.1, we then relate the average leave-one-out error (over
the index i of the RHS in (8.9)) to the population error on the mislabeled distribution to
obtain an inequality similar to (8.3).

Extensions to kernel regression Since the result in Theorem 8.4.2 does not impose
any regularity conditions on the underlying distribution over X ˆ Y , our guarantees extend
straightforwardly to kernel regression by using the transformation x Ñ ϕpxq for some
feature transform function ϕ. Furthermore, recent literature has pointed out a concrete
connection between neural networks and kernel regression with the so-called Neural Tangent
Kernel (NTK) which holds in a certain regime where weights do not change much during
training (Chizat et al., 2019; Du et al., 2019; 2018; Jacot et al., 2018). Using this concrete
correspondence, our bounds on the clean population error (Theorem 8.4.2) extend to wide
neural networks operating in the NTK regime.

Extensions to early stopped GD Often in practice, gradient descent is stopped early.
We now provide theoretical evidence that our guarantees may continue to hold for an
early stopped GD iterate. Concretely, we show that in expectation, the outputs of the GD
iterates are close to that of a problem with data-independent regularization (as considered
in Theorem 8.3.6). First, we introduce some notation. By LSpwq, we denote the objective
in (8.6) with λ “ 0. Consider the GD iterates defined in (8.7). Let rwλ “ argminw LSpw;λq.
Define ftpxq :“ fpx;wtq as the solution at the tth iterate and rfλpxq :“ fpx; rwλq as the
regularized solution. Let κ be the condition number of the population covariance matrix
and let smin be the minimum positive singular value of the empirical covariance matrix.
Proposition 8.4.3 (informal). For λ “ 1

tη
, we have

Ex„DX

”

pftpxq ´ rfλpxqq
2
ı

ď cpt, ηq ¨ Ex„DX

“

ftpxq
2
‰

,

where cpt, ηq « κ ¨ minp0.25, 1
s2mint

2η2
q. An equivalent guarantee holds for a point x sampled

from the training data.

The proposition above states that for large enough t, GD iterates stay close to a regularized
solution with data-independent regularization constant. Together with our guarantees
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in Theorem 8.4.2 for regularization solution with λ “ 1
tη

, Proposition 8.4.3 shows that
our guarantees with RATT may hold on early stopped GD. See the formal result in
App. G.2.4.

Remark Proposition 8.4.3 only bounds the expected squared difference between the tth

gradient descent iterate and a corresponding regularized solution. The expected squared
difference and the expected difference of classification errors (what we wish to bound) are
not related, in general. However, they can be related under standard low-noise (margin)
assumptions. For instance, under the Tsybakov noise condition (Tsybakov et al., 1997; Yao
et al., 2007), we can lower-bound the expression on the LHS of Proposition 8.4.3 with the
difference of expected classification error.

Extensions to deep learning Note that the main lemma underlying our bound on
(clean) population error states that when training on a mixture of clean and randomly
labeled data, we obtain a classifier whose empirical error on the mislabeled training data
is lower than its population error on the distribution of mislabeled data. We prove this
for ERM on 0-1 loss (Lemma 8.3.2). For linear models (and networks in NTK regime),
we obtained this result by assuming hypothesis stability and relating training error at a
datum with the leave-one-out error (Theorem 8.4.2). However, to extend our bound to
deep models we must assume that training on the mixture of random and clean data leads
to overfitting on the random mixture. Formally:
Assumption 2. Let pwf be a model obtained by training with an algorithm A on a mixture
of clean data S and randomly labeled data rS. Then with probability 1 ´ δ over the random
draws of mislabeled data rSM , we assume that the following condition holds:

E
rSM

p pwfq ď ED1p pwfq ` c

c

logp1{δq

2m
,

for a fixed constant c ą 0.

Under Assumption 2, our results in Theorem 8.3.1, 8.3.6 and 8.3.7 extend beyond ERM
with the 0-1 loss to general learning algorithms. We include the formal result in App. G.2.5.
Note that given the ability of neural networks to interpolate the data, this assumption
seems uncontroversial in the later stages of training. Moreover, concerning the early phases
of training, recent research has shown that learning dynamics for complex deep networks
resemble those for linear models (Hu et al., 2020; Nakkiran et al., 2019), much like the wide
neural networks that we do analyze. Together, these arguments help to justify Assumption 2
and hence, the applicability of our bound in deep learning. Motivated by our analysis on
linear models trained with gradient descent, we discuss conditions in App. G.2.6 which imply
Assumption 2 for constant values δ ą 0. In the next section, we empirically demonstrate
applicability of our bounds for deep models.
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Figure 8.2: We plot the accuracy and corresponding bound (RHS in (8.1)) at δ “ 0.1. for
binary classification tasks. Results aggregated over 3 seeds. (a) Accuracy vs fraction of
unlabeled data (w.r.t clean data) in the toy setup with a linear model trained with GD.
(b) Accuracy vs fraction of unlabeled data for a 2-layer wide network trained with SGD
on binary MNIST. With SGD and no regularization (red curve in (b)), we interpolate the
training data and hence the predicted lower bound is 0. However, with early stopping (or
weight decay) we obtain tight guarantees. (c) Accuracy vs gradient iteration on IMDb
dataset with unlabeled fraction fixed at 0.2. In plot (c), ‘*’ denotes the best test accuracy
with the same hyperparameters and training only on clean data. See App. G.3 for exact
hyperparameter values.

8.5 Empirical Study and Implications

Having established our framework theoretically, we now demonstrate its utility experimen-
tally. First, for linear models and wide networks in the NTK regime where our guarantee
holds, we confirm that our bound is not only valid, but closely tracks the generalization
error. Next, we show that in practical deep learning settings, optimizing cross-entropy loss
by SGD, the expression for our (0-1) ERM bound nevertheless tracks test performance
closely and in numerous experiments on diverse models and datasets is never violated
empirically.

Datasets To verify our results on linear models, we consider a toy dataset, where the
class conditional distribution ppx|yq for each label is Gaussian. For binary tasks, we use
binarized CIFAR-10 (first 5 classes vs rest) (Krizhevsky and Hinton, 2009), binary MNIST
(0-4 vs 5-9) (LeCun et al., 1998) and IMDb sentiment analysis dataset (Maas et al., 2011).
For multiclass setup, we use MNIST and CIFAR-10.

Architectures To simulate the NTK regime, we experiment with 2-layered wide networks
both (i) with the second layer fixed at random initialization; (ii) and updating both layers’
weights. For vision datasets (e.g., MNIST and CIFAR10), we consider (fully connected)
multilayer perceptrons (MLPs) with ReLU activations and ResNet18 (He et al., 2016).
For the IMDb dataset, we train Long Short-Term Memory Networks (LSTMs; Hochreiter
and Schmidhuber (1997)) with ELMo embeddings (Peters et al., 2018) and fine-tune an
off-the-shelf uncased BERT model (Devlin et al., 2019; Wolf et al., 2020).
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Methodology To bound the population error, we require access to both clean and
unlabeled data. For toy datasets, we obtain unlabeled data by sampling from the underlying
distribution over X . For image and text datasets, we hold out a small fraction of the clean
training data and discard their labels to simulate unlabeled data. We use the random
labeling procedure described in Sec. 12.2. After augmenting clean training data with
randomly labeled data, we train in the standard fashion. See App. G.3 for experimental
details.

Underparameterized linear models On toy Gaussian data, we train linear models
with GD to minimize cross-entropy loss and mean squared error. Varying the fraction of
randomly labeled data we observe that the accuracy on clean unseen data is barely impacted
(Fig. 8.2(a)). This highlights that in low dimensional models adding randomly labeled data
with the clean dataset (in toy setup) has minimal effect on the performance on unseen
clean data. Moreover, we find that RATT offers a tight lower bound on the unseen clean
data accuracy. We observe the same behavior with Stochastic Gradient Descent (SGD)
training (ref. App. G.3). Observe that the predicted bound goes up as the fraction of
unlabeled data increases. While the accuracy as dictated by the dominating term in the
RHS of (8.2) decreases with an increase in the fraction of unlabeled data, we observe a
relatively sharper decrease in Op p1{

?
mq term of the bound, leading to an overall increase

in the predicted accuracy bound. In this toy setup, we also evaluated a kernel regression
bound from Bartlett and Mendelson (2002) (Theorem 21), however, the predicted kernel
regression bound remains vacuous.

Wide Nets Next, we consider MNIST binary classification with a wide 2-layer fully-
connected network. In experiments with SGD training on MSE loss without early stopping
or weight decay regularization, we find that adding extra randomly label data hurts the
unseen clean performance (Fig. 8.2(b)). Additionally, due to the perfect fit on the training
data, our bound is rendered vacuous. However, with early stopping (or weight decay),
we observe close to zero performance difference with additional randomly labeled data.
Alongside, we obtain tight bounds on the accuracy on unseen clean data paying only a
small price to negligible for incorporating randomly labeled data. Similar results hold for
SGD and GD and when cross-entropy loss is substituted for MSE (ref. App. G.3).

Deep Nets We verify our findings on (i) ResNet-18 and 5-layer MLPs trained with binary
CIFAR (Fig. 8.1); and (ii) ELMo-LSTM and BERT-Base models fine-tuned on the IMDb
dataset (Fig. 8.2(c)). See App. G.3 for additional results with deep models on binary
MNIST. We fix the amount of unlabeled data at 20% of the clean dataset size and train all
models with standard hyperparameters. Consistently, we find that our predicted bounds
are never violated in practice. And as training proceeds, the fit on the mislabeled data
increases with perfect overfitting in the interpolation regime rendering our bounds vacuous.
However, with early stopping, our bound predicts test performance closely. For example, on
IMDb dataset with BERT fine-tuning we predict 79.8 as the accuracy of the classifier, when
the true performance is 88.04 (and the best achievable performance on unseen data is 92.45).
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Dataset Model Pred. Acc Test Acc. Best Acc.

MNIST MLP 93.1 97.4 97.9
ResNet 96.8 98.8 98.9

CIFAR10 MLP 48.4 54.2 60.0
ResNet 76.4 88.9 92.3

Table 8.1: Results on multiclass classification tasks. With pred. acc. we refer to the
dominating term in RHS of (8.5). At the given sample size and δ “ 0.1, the remaining
term evaluates to 30.7, decreasing our predicted accuracy by the same. We note that
test acc. denotes the corresponding accuracy on unseen clean data. Best acc. is the best
achievable accuracy with just training on just the clean data (and same hyperparamters
except the stopping point). Note that across all tasks our predicted bound is tight and
the gap between the best accuracy and test accuracy is small. Exact hyperparameters are
included in App. G.3.

Additionally, we observe that our method tracks the performance from the beginning of the
training and not just towards the end.

Finally, we verify our multiclass bound on MNIST and CIFAR10 with deep MLPs and
ResNets (see results in Table 8.1 and per-epoch curves in App. G.3). As before, we fix the
amount of unlabeled data at 20% of the clean dataset to minimize cross-entropy loss via
SGD. In all four settings, our bound predicts non-vacuous performance on unseen data.
In App. G.3, we investigate our approach on CIFAR100 showing that even though our
bound grows pessimistic with greater numbers of classes, the error on the mislabeled data
nevertheless tracks population accuracy.

8.6 Discussion and Connections to Prior Work
Implicit bias in deep learning Several recent lines of research attempt to explain the
generalization of neural networks despite massive overparameterization via the implicit bias
of gradient descent (Chizat and Bach, 2020; Gunasekar et al., 2018a;b; Ji and Telgarsky,
2019; Soudry et al., 2018). Noting that even for overparameterized linear models, there
exist multiple parameters capable of overfitting the training data (with arbitrarily low loss),
of which some generalize well and others do not, they seek to characterize the favored
solution. Notably, Soudry et al. (2018) find that for linear networks, gradient descent
converges (slowly) to the max margin solution. A complementary line of work focuses on
the early phases of training, finding both empirically (Arpit et al., 2017; Rolnick et al.,
2017) and theoretically (Arora et al., 2019a; Li et al., 2020; Liu et al., 2020) that even
in the presence of a small amount of mislabeled data, gradient descent is biased to fit
the clean data first during initial phases of training. However, to best our knowledge, no
prior work leverages this phenomenon to obtain generalization guarantees on the clean
data, which is the primary focus of our work. Our method exploits this phenomenon to
produce non-vacuous generalization bounds. Even when we cannot prove a priori that
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models will fit the clean data well while performing badly on the mislabeled data, we can
observe that it indeed happens (often in practice), and thus, a posteriori, provide tight
bounds on the population error. Moreover, by using regularizers like early stopping or
weight decay, we can accentuate this phenomenon, enabling our framework to provide even
tighter guarantees.

Generalization bounds Conventionally, generalization in machine learning has been
studied through the lens of uniform convergence bounds (Blumer et al., 1989; Vapnik,
1999). Representative works on understanding generalization in overparameterized networks
within this framework include Allen-Zhu et al. (2019a); Arora et al. (2018); Bartlett et al.
(2017); Dziugaite and Roy (2017); Li and Liang (2018); Nagarajan and Kolter (2019a);
Neyshabur et al. (2015; 2017a;b; 2018); Zhou et al. (2018). However, uniform convergence
based bounds typically remain numerically loose relative to the true generalization error.
Several works have also questioned the ability of uniform convergence based approaches to
explain generalization in overparameterized models (Nagarajan and Kolter, 2019b; Zhang
et al., 2017). Subsequently, recent works have proposed unconventional ways to derive
generalization bounds (Negrea et al., 2020; Zhou et al., 2020). In a similar spirit, we take
departure from complexity-based approaches to generalization bounds in our work. In
particular, we leverage unlabeled data to derive a post-hoc generalization bound. Our work
provides guarantees on overparameterized networks by using early stopping or weight decay
regularization, preventing a perfect fit on the training data. Notably, in our framework, the
model can perfectly fit the clean portion of the data, so long as they nevertheless fit the
mislabeled data poorly.

Leveraging noisy data to provide generalization guarantees In parallel work,
Bansal et al. (2020) presented an upper bound on the generalization gap of linear classifiers
trained on representations learned via self-supervision. Under certain noise-robustness
and rationality assumptions on the training procedure, the authors obtained bounds
dependent on the complexity of the linear classifier and independent of the complexity
of representations. By contrast, we present generalization bounds for supervised learning
that are non-vacuous by virtue of the early learning phenomenon. While both frameworks
highlight how robustness to random label corruptions can be leveraged to obtain bounds that
do not depend directly on the complexity of the underlying hypothesis class, our framework,
methodology, claims, and generalization results are very different from theirs.

Other related work. A long line of work relates early stopped GD to a corresponding
regularized solution (Ali et al., 2018; 2020; Friedman and Popescu, 2003; Neu and Rosasco,
2018; Suggala et al., 2018; Yao et al., 2007). In the most relevant work, Ali et al. (2018) and
Suggala et al. (2018) address a regression task, theoretically relating the solutions of early-
stopped GD and a regularized problem, obtained with a data-independent regularization
coefficient. Towards understanding generalization numerous stability conditions have been
discussed (Bousquet and Elisseeff, 2002; Kearns and Ron, 1999; Mukherjee et al., 2006;
Shalev-Shwartz et al., 2010). Hardt et al. (2016) studies the uniform stability property
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to obtain generalization guarantees with early-stopped SGD. While we assume a benign
stability condition to relate leave-one-out performance with population error, we do not
rely on any stability condition that implies generalization.

8.7 Conclusion and Future work
Our work introduces a new approach for obtaining generalization bounds that do not
directly depend on the underlying complexity of the model class. For linear models, we
provably obtain a bound in terms of the fit on randomly labeled data added during training.
Our findings raise a number of questions to be explored next. While our empirical findings
and theoretical results with 0-1 loss hold absent further assumptions and shed light on
why the bound may apply for more general models, we hope to extend our proof that
overfitting (in terms classification error) to the finite sample of mislabeled data occurs
with SGD training on broader classes of models and loss functions. We hope to build on
some early results (Hu et al., 2020; Nakkiran et al., 2019) which provide evidence that
deep models behave like linear models in the early phases of training. We also wish to
extend our framework to the interpolation regime. Since many important aspects of neural
network learning take place within early epochs (Achille et al., 2017; Frankle et al., 2020),
including gradient dynamics converging to very small subspace (Gur-Ari et al., 2018), we
might imagine operationalizing our bounds in the interpolation regime by discarding the
randomly labeled data after initial stages of training.
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Chapter 9

Leveraging Unlabeled Data to Predict
Out-of-Distribution Performance

Based on Garg et al. (2022b): Saurabh Garg, Sivaraman Balakrishnan, Zachary C. Lipton, Behnam
Neyshabur, and Hanie Sedghi. Leveraging unlabeled data to predict out-of-distribution performance.
Internation Conference on Learning Representations (ICLR), 2022.

Abstract
Real-world machine learning deployments are characterized by mismatches between the
source (training) and target (test) distributions that may cause performance drops. In
this chapter, we investigate methods for predicting the target domain accuracy using
only labeled source data and unlabeled target data. We propose Average Thresholded
Confidence (ATC), a practical method that learns a threshold on the model’s confidence,
predicting accuracy as the fraction of unlabeled examples for which model confidence
exceeds that threshold. ATC outperforms previous methods across several model
architectures, types of distribution shifts (e.g., due to synthetic corruptions, dataset
reproduction, or novel subpopulations), and datasets (Wilds, ImageNet, Breeds,
CIFAR, and MNIST). In our experiments, ATC estimates target performance 2–4ˆ

more accurately than prior methods. We also explore the theoretical foundations of the
problem, proving that, in general, identifying the accuracy is just as hard as identifying
the optimal predictor and thus, the efficacy of any method rests upon (perhaps unstated)
assumptions on the nature of the shift. Finally, analyzing our method on some toy
distributions, we provide insights concerning when it works. Code is available at this
url.
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9.1 Introduction

The previous chapter focused on assessing model performance under distribution shift. In
this and the next chapter, we will focus on predicting performance under distribution shift.
As demonstrated in the previous chapter, we can obtain tight generalization bounds on
in-distribution performance with mild assumptions that deep models overfit. We begin
by investigating two questions: (i) the precise conditions under which we can estimate a
classifier’s target-domain accuracy; and (ii) which methods are most practically useful. To
begin, the straightforward way to assess the performance of a model under distribution shift
would be to collect labeled (target domain) examples and then to evaluate the model on that
data. However, collecting fresh labeled data from the target distribution is prohibitively
expensive and time-consuming, especially if the target distribution is non-stationary. Hence,
instead of using labeled data, we aim to use unlabeled data from the target distribution,
that is comparatively abundant, to predict model performance. Note that in this work, our
focus is not to improve performance on the target but, rather, to estimate the accuracy on
the target for a given classifier.

Recently, numerous methods have been proposed for this purpose (Chen et al., 2021b; Deng
and Zheng, 2021; Deng et al., 2021; Guillory et al., 2021; Jiang et al., 2021). These methods
either require calibration on the target domain to yield consistent estimates (Guillory
et al., 2021; Jiang et al., 2021) or additional labeled data from several target domains to
learn a linear regression function on a distributional distance that then predicts model
performance (Deng and Zheng, 2021; Deng et al., 2021; Guillory et al., 2021). However,
methods that require calibration on the target domain typically yield poor estimates since
deep models trained and calibrated on source data are not, in general, calibrated on a
(previously unseen) target domain (Ovadia et al., 2019). Besides, methods that leverage
labeled data from target domains rely on the fact that unseen target domains exhibit
strong linear correlation with seen target domains on the underlying distance measure
and, hence, can be rendered ineffective when such target domains with labeled data are
unavailable (in Sec. 9.5.1 we demonstrate such a failure on a real-world distribution shift
problem). Therefore, throughout the chapter, we assume access to labeled source data and
only unlabeled data from target domain(s).

In this work, we first show that absent assumptions on the source classifier or the nature
of the shift, no method of estimating accuracy will work generally (even in non-contrived
settings). To estimate accuracy on target domain perfectly, we highlight that even given
perfect knowledge of the labeled source distribution (i.e., pspx, yq) and unlabeled target
distribution (i.e., ptpxq), we need restrictions on the nature of the shift such that we can
uniquely identify the target conditional ptpy|xq. Thus, in general, identifying the accuracy
of the classifier is as hard as identifying the optimal predictor.

Second, motivated by the superiority of methods that use maximum softmax probability (or
logit) of a model for Out-Of-Distribution (OOD) detection (Hendrycks and Gimpel, 2017;
Hendrycks et al., 2019), we propose a simple method that leverages softmax probability
to predict model performance. Our method, Average Thresholded Confidence (ATC),
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Figure 9.1: Illustration of our proposed method ATC. Left: using source domain validation
data, we identify a threshold on a score (e.g. negative entropy) computed on model
confidence such that fraction of examples above the threshold matches the validation set
accuracy. ATC estimates accuracy on unlabeled target data as the fraction of examples
with the score above the threshold. Interestingly, this threshold yields accurate estimates
on a wide set of target distributions resulting from natural and synthetic shifts. Right:
Efficacy of ATC over previously proposed approaches on our testbed with a post-hoc
calibrated model. To obtain errors on the same scale, we rescale all errors with Average
Confidence (AC) error. Lower estimation error is better. See Table 9.1 for exact numbers
and comparison on various types of distribution shift. See Sec. 9.5 for details on our testbed.

learns a threshold on a score (e.g., maximum confidence or negative entropy) of model
confidence on validation source data and predicts target domain accuracy as the fraction of
unlabeled target points that receive a score above that threshold. ATC selects a threshold
on validation source data such that the fraction of source examples that receive the score
above the threshold match the accuracy of those examples. Our primary contribution in
ATC is the proposal of obtaining the threshold and observing its efficacy on (practical)
accuracy estimation. Importantly, our work takes a step forward in positively answering the
question raised in Deng and Zheng (2021); Deng et al. (2021) about a practical strategy to
select a threshold that enables accuracy prediction with thresholded model confidence.

ATC is simple to implement with existing frameworks, compatible with arbitrary model
classes, and dominates other contemporary methods. Across several model architectures
on a range of benchmark vision and language datasets, we verify that ATC outperforms
prior methods by at least 2–4ˆ in predicting target accuracy on a variety of distribution
shifts. In particular, we consider shifts due to common corruptions (e.g., ImageNet-C),
natural distribution shifts due to dataset reproduction (e.g., ImageNet-v2, ImageNet-R),
shifts due to novel subpopulations (e.g., Breeds), and distribution shifts faced in the wild
(e.g., Wilds).

As a starting point for theory development, we investigate ATC on a simple toy model
that models distribution shift with varying proportions of the population with spurious
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features, as in Nagarajan et al. (2020). Finally, we note that although ATC achieves superior
performance in our empirical evaluation, like all methods, it must fail (returns inconsistent
estimates) on certain types of distribution shifts, per our impossibility result.

9.2 Prior Work

Out-of-distribution detection. The main goal of OOD detection is to identify
previously unseen examples, i.e., samples out of the support of training distribution. To
accomplish this, modern methods utilize confidence or features learned by a deep network
trained on some source data. Geifman and El-Yaniv (2017); Hendrycks and Gimpel (2017)
used the confidence score of an (already) trained deep model to identify OOD points.
Lakshminarayanan et al. (2016) use entropy of an ensemble model to evaluate prediction
uncertainty on OOD points. To improve OOD detection with model confidence, Liang et al.
(2018) propose to use temperature scaling and input perturbations. Jiang et al. (2018)
propose to use scores based on the relative distance of the predicted class to the second
class. Recently, residual flow-based methods were used to obtain a density model for OOD
detection (Zhang et al., 2020). Ji et al. (2021) proposed a method based on subfunction
error bounds to compute unreliability per sample. Refer to Ji et al. (2021); Ovadia et al.
(2019) for an overview and comparison of methods for prediction uncertainty on OOD
data.

Predicting model generalization. Relevant to our work are methods for predicting
the error of a classifier on OOD data based on unlabeled data from the target (OOD)
domain. These methods can be characterized into two broad categories: (i) Methods which
explicitly predict correctness of the model on individual unlabeled points (Chen et al.,
2021a; Deng and Zheng, 2021; Deng et al., 2021; Jiang et al., 2021); and (ii) Methods which
directly obtain an estimate of error with unlabeled OOD data without making a point-wise
prediction (Chen et al., 2021b; Chuang et al., 2020; Guillory et al., 2021).

To achieve a consistent estimate of the target accuracy, Guillory et al. (2021); Jiang et al.
(2021) require calibration on target domain. However, these methods typically yield poor
estimates as deep models trained and calibrated on some source data are seldom calibrated
on previously unseen domains (Ovadia et al., 2019). Additionally, Deng and Zheng (2021);
Guillory et al. (2021) derive model-based distribution statistics on unlabeled target set that
correlate with the target accuracy and propose to use a subset of labeled target domains to
learn a (linear) regression function that predicts model performance. However, there are
two drawbacks with this approach: (i) the correlation of these distribution statistics can
vary substantially as we consider different nature of shifts (refer to Sec. 9.5.1, where we
empirically demonstrate this failure); (ii) even if there exists a (hypothetical) statistic with
strong correlations, obtaining labeled target domains (even simulated ones) with strong
correlations would require significant a priori knowledge about the nature of shift that, in
general, might not be available before models are deployed in the wild. Nonetheless, in our
work, we only assume access to labeled data from the source domain presuming no access
to labeled target domains or information about how to simulate them.
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Moreover, unlike the parallel work of Deng et al. (2021), we do not focus on methods that
alter the training on source data to aid accuracy prediction on the target data. Chen et al.
(2021b) propose an importance re-weighting based approach that leverages (additional)
information about the axis along which distribution is shifting in form of “slicing functions”.
In our work, we make comparisons with importance re-weighting baseline from Chen et al.
(2021b) as we do not have any additional information about the axis along which the
distribution is shifting.

9.3 Problem Setup
Notation. By ||¨||, and x¨, ¨y we denote the Euclidean norm and inner product, respectively.
For a vector v P Rd, we use vj to denote its jth entry, and for an event E we let I rEs denote
the binary indicator of the event.

Suppose we have a multi-class classification problem with the input domain X Ď Rd and
label space Y “ t1, 2, . . . , ku. For binary classification, we use Y “ t0, 1u. By DS and DT,
we denote source and target distribution over X ˆ Y. For distributions DS and DT, we
define pS or pT as the corresponding probability density (or mass) functions. A dataset
S :“ tpxi, yiquni“1 „ pDSqn contains n points sampled i.i.d. from DS. Let F be a class of
hypotheses mapping X to ∆k´1 where ∆k´1 is a simplex in k dimensions. Given a classifier
f P F and datum px, yq, we denote the 0-1 error (i.e., classification error) on that point
by Epfpxq, yq :“ I

“

y R argmaxjPY fjpxq
‰

. Given a model f P F , our goal in this work is to
understand the performance of f on DT without access to labeled data from DT. Note
that our goal is not to adapt the model to the target data. Concretely, we aim to predict
accuracy of f on DT. Throughout this paper, we assume we have access to the following:
(i) model f ; (ii) previously-unseen (validation) data from DS; and (iii) unlabeled data from
target distribution DT.

9.3.1 Accuracy Estimation: Possibility and Impossibility Results
First, we investigate the question of when it is possible to estimate the target accuracy
of an arbitrary classifier, even given knowledge of the full source distribution pspx, yq

and target marginal ptpxq. Absent assumptions on the nature of shift, estimating target
accuracy is impossible. Even given access to pspx, yq and ptpxq, the problem is fundamentally
unidentifiable because ptpy|xq can shift arbitrarily. In the following proposition, we show
that absent assumptions on the classifier f (i.e., when f can be any classifier in the space
of all classifiers on X ), we can estimate accuracy on the target data iff assumptions on the
nature of the shift, together with pspx, yq and ptpxq, uniquely identify the (unknown) target
conditional ptpy|xq. We relegate proofs from this section to App. H.1.
Proposition 9.3.1. Absent further assumptions, accuracy on the target is identifiable iff
ptpy|xq is uniquely identified given pspx, yq and ptpxq.

Proposition 9.3.1 states that we need enough constraints on nature of shift such that
pspx, yq and ptpxq identifies unique ptpy|xq. It also states that under some assumptions
on the nature of the shift, we can hope to estimate the model’s accuracy on target
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data. We will illustrate this on two common assumptions made in domain adaptation
literature: (i) covariate shift (Heckman, 1977; Shimodaira, 2000) and (ii) label shift (Lipton
et al., 2018b; Saerens et al., 2002; Zhang et al., 2013). Under covariate shift assumption,
that the target marginal support supppptpxqq is a subset of the source marginal support
suppppspxqq and that the conditional distribution of labels given inputs does not change
within support, i.e., pspy|xq “ ptpy|xq, which, trivially, identifies a unique target conditional
ptpy|xq. Under label shift, the reverse holds, i.e., the class-conditional distribution does
not change (pspx|yq “ ptpx|yq) and, again, information about ptpxq uniquely determines
the target conditional ptpy|xq (Garg et al., 2020b; Lipton et al., 2018b). In these settings,
one can estimate an arbitrary classifier’s accuracy on the target domain either by using
importance re-weighting with the ratio ptpxq{pspxq in case of covariate shift or by using
importance re-weighting with the ratio ptpyq{pspyq in case of label shift. While importance
ratios in the former case can be obtained directly when ptpxq and pspxq are known, the
importance ratios in the latter case can be obtained by using techniques from Alexandari
et al. (2021); Azizzadenesheli et al. (2019); Lipton et al. (2018b).

As a corollary of Proposition 9.3.1, we now present a simple impossibility result, demon-
strating that no single method can work for all families of distribution shift.
Corollary 9.3.2. Absent assumptions on the classifier f , no method of estimating accuracy
will work in all scenarios, i.e., for different nature of distribution shifts.

Intuitively, this result states that every method of estimating accuracy on target data is tied
up with some assumption on the nature of the shift and might not be useful for estimating
accuracy under a different assumption on the nature of the shift. For illustration, consider
a setting where we have access to distribution pspx, yq and ptpxq. Additionally, assume that
the distribution can shift only due to covariate shift or label shift without any knowledge
about which one. Then Corollary 9.3.2 says that it is impossible to have a single method
that will simultaneously for both label shift and covariate shift as in the following example
(we spell out the details in App. H.1):

Example 1. Assume binary classification with pspxq “ α ¨ ϕpµ1q ` p1 ´ αq ¨ ϕpµ2q,
pspx|y “ 0q “ ϕpµ1q, pspx|y “ 1q “ ϕpµ2q, and ptpxq “ β ¨ ϕpµ1q ` p1 ´ βq ¨ ϕpµ2q

where ϕpµq “ N pµ, 1q, α, β P p0, 1q, and α ‰ β. Error of a classifier f on target
data is given by E1 “ Epx,yq„pspx,yq

”

ptpxq

pspxq
I rfpxq ‰ ys

ı

under covariate shift and by E2 “

Epx,yq„pspx,yq

“`

β
α
I ry “ 0s `

1´β
1´α

I ry “ 1s
˘

I rfpxq ‰ ys
‰

under label shift. In App. H.1, we
show that E1 ‰ E2 for all f . Thus, given access to pspx, yq, and ptpxq, any method that
consistently estimates error of a classifer under covariate shift will give an incorrect estimate
of error under label shift and vice-versa. The reason is that the same ptpxq and pspx, yq can
correspond to error E1 (under covariate shift) or error E2 (under label shift) and determining
which scenario one faces requires further assumptions on the nature of shift.
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9.4 Predicting accuracy with Average Thresholded Con-
fidence

In this section, we present our method ATC that leverages a black box classifier f and
(labeled) validation source data to predict accuracy on target domain given access to
unlabeled target data. Throughout the discussion, we assume that the classifier f is
fixed.

Before presenting our method, we introduce some terminology. Define a score function
s : ∆k´1 Ñ R that takes in the softmax prediction of the function f and outputs a
scalar. We want a score function such that if the score function takes a high value at
a datum px, yq then f is likely to be correct. In this work, we explore two such score
functions: (i) Maximum confidence, i.e., spfpxqq “ maxjPYfjpxq; and (ii) Negative Entropy,
i.e., spfpxqq “

ř

j fjpxq logpfjpxqq. Our method identifies a threshold t on source data DS

such that the expected number of points that obtain a score less than t match the error of
f on DS, i.e.,

Ex„DS rI rspfpxqq ă tss “ Epx,yq„DS

„

I
„

argmax
jPY

fjpxq ‰ y

ȷȷ

, (9.1)

and then our error estimate ATCDTpsq on the target domain DT is given by the expected
number of target points that obtain a score less than t, i.e.,

ATCDTpsq “ Ex„DT rI rspfpxqq ă tss . (9.2)

In short, in (9.1), ATC selects a threshold on the score function such that the error in
the source domain matches the expected number of points that receive a score below t
and in (9.2), ATC predicts error on the target domain as the fraction of unlabeled points
that obtain a score below that threshold t. Note that, in principle, there exists a different
threshold t1 on the target distribution DT such that (9.1) is satisfied on DT. However,
in our experiments, the same threshold performs remarkably well. The main empirical
contribution of our work is to show that the threshold obtained with (9.1) might be used
effectively in condunction with modern deep networks in a wide range of settings to estimate
error on the target data. In practice, to obtain the threshold with ATC, we minimize the
difference between the expression on two sides of (9.1) using finite samples. In the next
section, we show that ATC precisely predicts accuracy on the OOD data on the desired
line y “ x. In App. H.3, we discuss an alternate interpretation of the method and make
connections with OOD detection methods.

9.5 Experiments
We now empirical evaluate ATC and compare it with existing methods. In each of our
main experiment, keeping the underlying model fixed, we vary target datasets and make a
prediction of the target accuracy with various methods given access to only unlabeled data
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Figure 9.2: Scatter plot of predicted accuracy versus (true) OOD accuracy. Each point
denotes a different OOD dataset, all evaluated with the same DenseNet121 model. We
only plot the best three methods. With ATC (ours), we refer to ATC-NE. We observe that
ATC significantly outperforms other methods and with ATC, we recover the desired line
y “ x with a robust linear fit. Aggregated estimation error in Table 9.1 and plots for other
datasets and architectures in App. H.8.

from the target. Unless noted otherwise, all models are trained only on samples from the
source distribution with the main exception of pre-training on a different distribution. We
use labeled examples from the target distribution to only obtain true error estimates.

Datasets. First, we consider synthetic shifts induced due to different visual corruptions
(e.g., shot noise, motion blur etc.) under ImageNet-C (Hendrycks and Dietterich, 2019).
Next, we consider natural shifts due to differences in the data collection process of Ima-
geNet (Russakovsky et al., 2015), e.g, ImageNetv2 (Recht et al., 2019b). We also consider
images with artistic renditions of object classes, i.e., ImageNet-R (Hendrycks et al., 2021b)
and ImageNet-Sketch (Wang et al., 2019b). Note that renditions dataset only contains a
subset 200 classes from ImageNet. To include renditions dataset in our testbed, we include
results on ImageNet restricted to these 200 classes (which we call ImageNet-200) along with
full ImageNet.

Second, we consider Breeds (Santurkar et al., 2021) to assess robustness to subpopula-
tion shifts, in particular, to understand how accuracy estimation methods behave when
novel subpopulations not observed during training are introduced. Breeds leverages
class hierarchy in ImageNet to create 4 datasets Entity-13, Entity-30, Living-17,
Non-living-26. We focus on natural and synthetic shifts as in ImageNet on same and
different subpopulations in BREEDs. Third, from Wilds (Koh et al., 2021) benchmark,
we consider FMoW-Wilds (Christie et al., 2018), RxRx1-Wilds (Taylor et al., 2019),
Amazon-Wilds (Ni et al., 2019), CivilComments-Wilds (Borkan et al., 2019) to consider
distribution shifts faced in the wild.

Finally, similar to ImageNet, we consider (i) synthetic shifts (CIFAR-10-C) due to com-
mon corruptions; and (ii) natural shift (i.e., CIFARv2 (Recht et al., 2018)) on CIFAR-
10 (Krizhevsky and Hinton, 2009). On CIFAR-100, we just have synthetic shifts due to
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common corruptions. For completeness, we also consider natural shifts on MNIST (LeCun
et al., 1998) as in the prior work (Deng and Zheng, 2021). We use three real shifted datasets,
i.e., USPS (Hull, 1994), SVHN (Netzer et al., 2011a) and QMNIST (Yadav and Bottou,
2019). We give a detailed overview of our setup in App. H.6.

Architectures and Evaluation. For ImageNet, Breeds, CIFAR, FMoW-Wilds,
RxRx1-Wilds datasets, we use DenseNet121 (Huang et al., 2017) and ResNet50 (He
et al., 2016) architectures. For Amazon-Wilds and CivilComments-Wilds, we fine-
tune a DistilBERT-base-uncased (Sanh et al., 2019a) model. For MNIST, we train
a fully connected multilayer perceptron. We use standard training with benchmarked
hyperparameters. To compare methods, we report average absolute difference between
the true accuracy on the target data and the estimated accuracy on the same unlabeled
examples. We refer to this metric as Mean Absolute estimation Error (MAE). Along with
MAE, we also show scatter plots to visualize performance at individual target sets. Refer
to App. H.7 for additional details on the setup.

Methods With ATC-NE, we denote ATC with negative entropy score function and
with ATC-MC, we denote ATC with maximum confidence score function. For all methods,
we implement post-hoc calibration on validation source data with Temperature Scaling
(TS; Guo et al. (2017)). Below we briefly discuss baselines methods compared in our work
and relegate details to App. H.5.

Average Confidence (AC). Error is estimated as the expected value of the maximum
softmax confidence on the target data, i.e, ACDT “ Ex„DT rmaxjPY fjpxqs.

Difference Of Confidence (DOC). We estimate error on target by subtracting difference of
confidences on source and target (as a surrogate to distributional distance Guillory et al.
(2021)) from the error on source distribution, i.e, DOCDT “ Ex„DS

“

I
“

argmaxjPY fjpxq ‰ y
‰‰

`

Ex„DT rmaxjPY fjpxqs ´ Ex„DS rmaxjPY fjpxqs. This is referred to as DOC-Feat in (Guillory
et al., 2021).

Importance re-weighting (IM). We estimate the error of the classifier with importance
re-weighting of 0-1 error in the pushforward space of the classifier. This corresponds
to Mandolin using one slice based on the underlying classifier confidence Chen et al.
(2021b).

Generalized Disagreement Equality (GDE). Error is estimated as the expected disagreement
of two models (trained on the same training set but with different randomization) on target
data (Jiang et al., 2021), i.e., GDEDT “ Ex„DT rI rfpxq ‰ f 1pxqss where f and f 1 are the
two models. Note that GDE requires two models trained independently, doubling the
computational overhead while training.

9.5.1 Results

In Table 9.1, we report MAE results aggregated by the nature of the shift in our testbed.
In Fig. 9.2 and Fig. 9.1(right), we show scatter plots for predicted accuracy versus OOD
accuracy on several datasets. We include scatter plots for all datasets and parallel results
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Dataset Shift
IM AC DOC GDE ATC-MC (Ours) ATC-NE (Ours)

Pre T Post T Pre T Post T Pre T Post T Post T Pre T Post T Pre T Post T

CIFAR10
Natural 6.60 5.74 9.88 6.89 7.25 6.07 4.77 3.21 3.02 2.99 2.85

Synthetic 12.33 10.20 16.50 11.91 13.87 11.08 6.55 4.65 4.25 4.21 3.87

CIFAR100 Synthetic 13.69 11.51 23.61 13.10 14.60 10.14 9.85 5.50 4.75 4.72 4.94

ImageNet200
Natural 12.37 8.19 22.07 8.61 15.17 7.81 5.13 4.37 2.04 3.79 1.45

Synthetic 19.86 12.94 32.44 13.35 25.02 12.38 5.41 5.93 3.09 5.00 2.68

ImageNet
Natural 7.77 6.50 18.13 6.02 8.13 5.76 6.23 3.88 2.17 2.06 0.80

Synthetic 13.39 10.12 24.62 8.51 13.55 7.90 6.32 3.34 2.53 2.61 4.89

FMoW-wilds Natural 5.53 4.31 33.53 12.84 5.94 4.45 5.74 3.06 2.70 3.02 2.72

RxRx1-wilds Natural 5.80 5.72 7.90 4.84 5.98 5.98 6.03 4.66 4.56 4.41 4.47

Amazon-wilds Natural 2.40 2.29 8.01 2.38 2.40 2.28 17.87 1.65 1.62 1.60 1.59

CivilCom.-wilds Natural 12.64 10.80 16.76 11.03 13.31 10.99 16.65 7.14

MNIST Natural 18.48 15.99 21.17 14.81 20.19 14.56 24.42 5.02 2.40 3.14 3.50

Entity-
13

Same 16.23 11.14 24.97 10.88 19.08 10.47 10.71 5.39 3.88 4.58 4.19

Novel 28.53 22.02 38.33 21.64 32.43 21.22 20.61 13.58 10.28 12.25 6.63

Entity-
30

Same 18.59 14.46 28.82 14.30 21.63 13.46 12.92 9.12 7.75 8.15 7.64

Novel 32.34 26.85 44.02 26.27 36.82 25.42 23.16 17.75 14.30 15.60 10.57

Nonliving-26
Same 18.66 17.17 26.39 16.14 19.86 15.58 16.63 10.87 10.24 10.07 10.26

Novel 33.43 31.53 41.66 29.87 35.13 29.31 29.56 21.70 20.12 19.08 18.26

Living-
17

Same 12.63 11.05 18.32 10.46 14.43 10.14 9.87 4.57 3.95 3.81 4.21

Novel 29.03 26.96 35.67 26.11 31.73 25.73 23.53 16.15 14.49 12.97 11.39

Table 9.1: Mean Absolute estimation Error (MAE) results for different datasets in our setup
grouped by the nature of shift. ‘Same’ refers to same subpopulation shifts and ‘Novel’ refers
novel subpopulation shifts. We include details about the target sets considered in each shift
in Table H.1. Post T denotes use of TS calibration on source. Across all datasets, we observe
that ATC achieves superior performance (lower MAE is better). For language datasets, we
use DistilBERT-base-uncased, for vision dataset we report results with DenseNet model
with the exception of MNIST where we use FCN. We include results on other architectures
in App. H.8. For GDE post T and pre T estimates match since TS doesn’t alter the argmax
prediction. Results reported by aggregating MAE numbers over 4 different seeds.

with other architectures in App. H.8. In App. H.8.1, we also perform ablations on CIFAR
using a pre-trained model and observe that pre-training doesn’t change the efficacy of
ATC.

We predict accuracy on the target data before and after calibration with TS. First, we observe
that both ATC-NE and ATC-MC (even without TS) obtain significantly lower MAE when
compared with other methods (even with TS). Note that with TS we observe substantial
improvements in MAE for all methods. Overall, ATC-NE (with TS) typically achieves the
smallest MAE improving by more than 2ˆ on CIFAR and by 3–4ˆ on ImageNet over GDE
(the next best alternative to ATC). Alongside, we also observe that a linear fit with robust
regression (Siegel, 1982) on the scatter plot recovers a line close to x “ y for ATC-NE with
TS while the line is far away from x “ y for other methods (Fig. 9.2 and Fig. 9.1(right)).
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Figure 9.3: Left: Predicted accuracy with DOC on Living17 Breeds dataset. We observe
a substantial gap in the linear fit of same and different subpopulations highlighting poor
correlation. Middle: After fitting a robust linear model for DOC on same subpopulation,
we show predicted accuracy on different subpopulations with fine-tuned DOC (i.e., DOC
(w/ fit)) and compare with ATC without any regression model, i.e., ATC (w/o fit). While
observe substantial improvements in MAE from 24.41 with DOC (w/o fit) to 13.26 with
DOC (w/ fit), ATC (w/o fit) continues to outperform even DOC (w/ fit) with MAE 10.22.
We show parallel results with other Breeds datasets in App. H.8.2. Right : Empirical
validation of our toy model. We show that ATC perfectly estimates target performance as
we vary the degree of spurious correlation in target. ‘ˆ’ represents accuracy on source.

Remarkably, MAE is in the range of 0.4–5.8 with ATC for CIFAR, ImageNet, MNIST, and
Wilds. However, MAE is much higher on Breeds benchmark with novel subpopulations.
While we observe a small MAE (i.e., comparable to our observations on other datasets)
on Breeds with natural and synthetic shifts from the same sub-population, MAE on
shifts with novel population is significantly higher with all methods. Note that even on
novel populations, ATC continues to dominate all other methods across all datasets in
Breeds.

Additionally, for different subpopulations in Breeds setup, we observe a poor linear
correlation of the estimated performance with the actual performance as shown in Fig. 9.3
(left)(we notice a similar gap in the linear fit for all other methods). Hence in such a
setting, we would expect methods that fine-tune a regression model on labeled target
examples from shifts with one subpopulation will perform poorly on shifts with different
subpopulations. Corroborating this intuition, next, we show that even after fitting a
regression model for DOC on natural and synthetic shifts with source subpopulations, ATC
without regression model continues to outperform DOC with regression model on shifts
with novel subpopulation.

Fitting a regression model on Breeds with DOC. Using label target data from
natural and synthetic shifts for the same subpopulation (same as source), we fit a robust
linear regression model (Siegel, 1982) to fine-tune DOC as in Guillory et al. (2021). We
then evaluate the fine-tuned DOC (i.e., DOC with linear model) on natural and synthetic
shifts from novel subpopulations on Breeds benchmark. Although we observe significant
improvements in the performance of fine-tuned DOC when compared with DOC (without
any fine-tuning), ATC without any regression model continues to perform better (or similar)
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to that of fine-tuned DOC on novel subpopulations (Fig. 9.3 (middle)). Refer to App. H.8.2
for details and Table H.2 for MAE on Breeds with regression model.

9.6 Investigating ATC on Toy Model

In this section, we propose and analyze a simple theoretical model that distills empirical
phenomena from the previous section and highlights efficacy of ATC. Here, our aim is not
to obtain a general model that captures complicated real distributions on high dimensional
input space as the images in ImageNet. Instead to further our understanding, we focus on
an easy-to-learn binary classification task from Nagarajan et al. (2020) with linear classifiers,
that is rich enough to exhibit some of the same phenomena as with deep networks on real
data distributions.

Consider a easy-to-learn binary classification problem with two features x “ rxinv, xsps P R2

where xinv is fully predictive invariant feature with a margin γ ą 0 and xsp P t´1, 1u is
a spurious feature (i.e., a feature that is correlated but not predictive of the true label).
Conditional on y, the distribution over xinv is given as follows: xinv|py “ 1q „ U rγ, cs and
xinv|py “ 0q „ U r´c,´γs, where c is a fixed constant greater than γ. For simplicity, we
assume that label distribution on source is uniform on t´1, 1u. xsp is distributed such
that Psrxsp ¨ p2y ´ 1q ą 0s “ psp, where psp P p0.5, 1.0q controls the degree of spurious
correlation. To model distribution shift, we simulate target data with different degree of
spurious correlation, i.e., in target distribution Ptrxsp ¨ p2y´1q ą 0s “ p1

sp P r0, 1s. Note that
here we do not consider shifts in the label distribution but our result extends to arbitrary
shifts in the label distribution as well.

In this setup, we examine linear sigmoid classifiers of the form fpxq “

”

1

1`ewT x
, ew

T x

1`ewT x

ı

where w “ rwinv, wsps P R2. While there exists a linear classifier with w “ r1, 0s that
correctly classifies all the points with a margin γ, Nagarajan et al. (2020) demonstrated
that a linear classifier will typically have a dependency on the spurious feature, i.e., wsp ‰ 0.
They show that due to geometric skews, despite having positive dependencies on the
invariant feature, a max-margin classifier trained on finite samples relies on the spurious
feature. Refer to App. H.4 for more details on these skews. In our work, we show that given
a linear classifier that relies on the spurious feature and achieves a non-trivial performance
on the source (i.e., winv ą 0), ATC with maximum confidence score function consistently
estimates the accuracy on the target distribution.
Theorem 9.6.1 (Informal). Given any classifier with winv ą 0 in the above setting, the
threshold obtained in (9.1) together with ATC as in (9.2) with maximum confidence score
function obtains a consistent estimate of the target accuracy.

Consider a classifier that depends positively on the spurious feature (i.e., wsp ą 0). Then
as the spurious correlation decreases in the target data, the classifier accuracy on the
target will drop and vice-versa if the spurious correlation increases on the target data.
Theorem 9.6.1 shows that the threshold identified with ATC as in (9.1) remains invariant as
the distribution shifts and hence ATC as in (9.2) will correctly estimate the accuracy with
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shifting distributions. Next, we illustrate Theorem 9.6.1 by simulating the setup empirically.
First we pick a arbitrary classifier (which can also be obtained by training on source samples),
tune the threshold on hold-out source examples and predict accuracy with different methods
as we shift the distribution by varying the degree of spurious correlation.

Empirical validation and comparison with other methods. Fig. 9.3(right) shows
that as the degree of spurious correlation varies, our method accurately estimates the target
performance where all other methods fail to accurately estimate the target performance.
Understandably, due to poor calibration of the sigmoid linear classifier AC, DOC and GDE
fail. While in principle IM can perfectly estimate the accuracy on target in this case, we
observe that it is highly sensitive to the number bins and choice of histogram binning (i.e.,
uniform mass or equal width binning). We elaborate more on this in App. H.4.

Biased estimation with ATC. Now we discuss changes in the above setup where ATC
yields inconsistent estimates. We assumed that both in source and target xinv|y “ 1 is
uniform between rγ, cs and x|y “ ´1 is uniform between r´c,´γs. Shifting the support of
target class conditional ptpxinv|yq may introduce a bias in ATC estimates, e.g., shrinking
the support to c1(ă c) (while maintaining uniform distribution) in the target will lead to
an over-estimation of the target performance with ATC. In App. H.4.1, we elaborate on
this failure and present a general (but less interpretable) classifier dependent distribution
shift condition where ATC is guaranteed to yield consistent estimates.

9.7 Conclusion and future work
In this chapter, we proposed ATC, a simple method for estimating target domain accuracy
based on unlabeled target (and labeled source data). ATC achieves remarkably low
estimation error on several synthetic and natural shift benchmarks in our experiments.
Notably, our work draws inspiration from recent state-of-the-art methods that use softmax
confidences below a certain threshold for OOD detection (Hendrycks and Gimpel, 2017;
Hendrycks et al., 2019) and takes a step forward in answering questions raised in Deng and
Zheng (2021) about the practicality of threshold based methods.

Our distribution shift toy model justifies ATC on an easy-to-learn binary classification
task. In our experiments, we also observe that calibration significantly improves estimation
with ATC. Since in binary classification, post hoc calibration with TS does not change
the effective threshold, in future work, we hope to extend our theoretical model to multi-
class classification to understand the efficacy of calibration. Our theory establishes that a
classifier’s accuracy is not, in general identified, from labeled source and unlabeled target
data alone, absent considerable additional constraints on the target conditional ptpy|xq.
In light of this finding, we also hope to extend our understanding beyond the simple
theoretical toy model to characterize broader sets of conditions under which ATC might
be guaranteed to obtain consistent estimates. Finally, we should note that while ATC
outperforms previous approaches, it still suffers from large estimation error on datasets
with novel populations, e.g., Breeds. We hope that our findings can lay the groundwork
for future work for improving accuracy estimation on such datasets.
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Chapter 10

Almost Provable Error Bounds Under
Distribution Shift via Disagreement
Discrepancy

Based on Rosenfeld and Garg (2023): Elan Rosenfeld, and Saurabh Garg. (Almost) Provable Error
Bounds Under Distribution Shift via Disagreement Discrepancy. Advances in Neural Information Processing
Systems, 2023.

Abstract
In the previous chapter, we investigated heuristic methods for estimating test error
under distribution shift. In this chapter, we derive an (almost) guaranteed upper bound
on the error of deep neural networks under distribution shift using unlabeled test data.
Prior methods either give bounds that are vacuous in practice or give estimates that are
accurate on average but heavily underestimate error for a sizeable fraction of shifts. Our
bound requires a simple, intuitive condition which is well justified by prior empirical
works and holds in practice effectively 100% of the time. The bound is inspired by H∆H-
divergence but is easier to evaluate and substantially tighter, consistently providing
non-vacuous guarantees. Estimating the bound requires optimizing one multiclass
classifier to disagree with another, for which some prior works have used sub-optimal
proxy losses; we devise a “disagreement loss” which is theoretically justified and performs
better in practice. Across a wide range of benchmarks, our method gives valid error
bounds while achieving average accuracy comparable to competitive estimation baselines.
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Figure 10.1: Our bound vs. three prior methods for estimation across a wide variety of shift
benchmarks and training methods. Prior methods are accurate on average, but it is impossible
to know if a given prediction is reliable. Worse, they usually overestimate accuracy, with
the gap growing as test accuracy decreases—this is precisely when a reliable, conservative
estimate is most desirable. Instead, Dis2 maximizes the disagreement discrepancy to give
a reliable error bound which holds effectively 100% of the time.

10.1 Introduction

As in previous chapter, to better estimate accuracy in the wild, some recent work instead
tries to directly predict accuracy of neural networks using unlabeled data from the test
distribution (Baek et al., 2022; Garg et al., 2022c; Lu et al., 2023). While these methods
are accurate, they lack pointwise trustworthiness: their estimates are good on average, but
they provide no signal of the quality of any individual prediction (here, each point is a
distribution, for which a method predicts a classifier’s accuracy). Indeed, it is reasonably
common for them to substantially overestimate test accuracy, which is problematic when
optimistic deployment is costly. Worse yet, we find that this gap grows with test error
(Fig. 10.1), making these predictions least reliable precisely when their reliability is most
important. Though it is impossible to give test error upper bounds for all shifts, there is
still potential for bounds that are intuitive and reasonably trustworthy.

In this work, we develop a method for (almost) provably bounding test error of classifiers
under distribution shift using unlabeled test points. Our bound’s only requirement is a
simple, intuitive, condition which describes the ability of a hypothesis class to achieve
small loss on a objective defined over the (unlabeled) train and test distributions. Inspired
by H∆H-divergence (Ben-David et al., 2010b), our method trains a critic to maximize
agreement with the classifier of interest on the source distribution while maximizing
disagreement on the target distribution; we refer to this joint objective as the disagreement
discrepancy, and so we name the method Dis2. We optimize this discrepancy over linear
classifiers using deep features—or linear functions thereof—finetuned on the training set.
Recent evidence suggests that such representations are sufficient for expressive classifiers
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even under large distribution shift (Rosenfeld et al., 2022). Experimentally, we find that our
bound is valid effectively 100% of the time,1 consistently giving non-trivial lower bounds
on test accuracy which are comparable to competitive baselines. We also show that it
is possible to test this bound’s likelihood of being satisfied, and we use this to construct
a score which can relax the original bound into successively tighter-yet-less-conservative
estimates.

While maximizing agreement is statistically well understood, our method also calls for
maximizing disagreement on the target distribution. We observe that prior works use losses
which do not correspond to minimizing the 0-1 loss of interest and are non-convex (or
even concave) in the model logits (Chuang et al., 2020; Pagliardini et al., 2023). To rectify
this, we derive a new “disagreement loss” which serves as an effective proxy for maximizing
multiclass disagreement. Experimentally, we find that minimizing this loss results in higher
disagreement.

Experiments across numerous vision datasets demonstrate the effectiveness of our bound.
Though Dis2 is competitive with prior methods for error estimation, we emphasize that
our focus is not on improving raw predictive accuracy—rather, we hope to obtain reliable
(i.e., conservative), reasonably tight bounds on the test error of a given classifier under
distribution shift.

10.2 Deriving an (Almost) Provable Error Bound
Notation. Let S, T denote the source and target (train and test) distributions, respec-
tively, over labeled inputs px, yq P X ˆ Y, and let pS, pT denote sets of samples from them
with cardinalities nS and nT (they also denote the corresponding empirical distributions).
Recall that we observe only the covariates x without the label y when a sample is drawn
from T . We consider classifiers h : X Ñ R|Y| which output a vector of logits, and we let ph
denote the particular classifier whose error we aim to bound. Generally, we use H to denote
a hypothesis class of such classifiers. Occasionally, where clear from context, we use hpxq to
refer to the argmax logit, i.e. the predicted class. We treat these classifiers as deterministic
throughout, though our analysis can easily be extended to probabilistic classifiers and labels.
For a distribution D on X ˆ Y, let ϵDph, h1q :“ EDr1targmaxy hpxqy ‰ argmaxy h

1pxqyus

denote the one-hot disagreement between classifiers h and h1 on D. Let y˚ represent the true
labeling function such that y˚pxq “ y for all samples px, yq; with some abuse of notation,
we write ϵDphq to mean ϵDph, y˚q, i.e. the 0-1 error of classifier h on distribution D.

The bound we derive in this work is extremely simple and relies on one new concept:
Definition 10.2.1. The disagreement discrepancy ∆ph, h1q is the disagreement between h
and h1 on T minus their disagreement on S: ∆ph, h1q :“ ϵT ph, h1q ´ ϵSph, h1q.

We leave the dependence on S, T implicit. Note that this term is symmetric and signed—it
can be negative. With this definition, we now have the following lemma:

1The few violations are expected a priori, have an obvious explanation, and only occur for a specific
type of learned representation. We defer a more detailed discussion of this until after we present the bound.
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Lemma 10.2.2. For any h, ϵT phq “ ϵSphq ` ∆ph, y˚q.

We cannot directly use Theorem 10.2.2 to estimate ϵT pphq because the second term is
unknown. However, observe that y˚ is fixed. That is, while a learned ph will depend on
y˚—and therefore ∆pph, y˚q may be large under large distribution shift—y˚ is not chosen to
maximize ∆pph, y˚q in response to the ph we have learned. This means that for an expressive
hypothesis class H, it should be possible to identify an alternative function h1 P H for which
∆pph, h1q ě ∆pph, y˚q (we refer to such h1 as the critic). In other words, we should be able to
find an h1 P H which, if it were the true labeling function, would imply at least as large of a
drop in accuracy from train to test as occurs in reality.

In this work we consider the class H of linear critics, with X defined as source-finetuned
deep neural representations or the resulting logits output by ph. Prior work provides
strong evidence that this class has surprising capacity under distribution shift, including the
possibility that functions very similar to y˚ lie in H (Kang et al., 2020; Kirichenko et al., 2022;
Rosenfeld et al., 2022). We formalize this intuition with the following assumption:
Assumption 3. Define h˚ :“ argmaxh1PH ∆pph, h1q. We assume ∆pph, y˚q ď ∆pph, h˚q.

Note that this statement is guaranteed for y˚ P H; it becomes meaningful when considering
restricted H, as we do here. Note also that this assumption is made on a per-classifier basis.
This is important because while the above may not hold for every classifier ph, it need only
hold for the classifiers whose error we would hope to bound, which is in practice a very
small subset of all classifiers. From Theorem 10.2.2, we immediately have the following
result:
Proposition 10.2.3. Under Assumption 3, ϵT pphq ď ϵSpphq ` ∆pph, h˚q.

Unfortunately, identifying the optimal h˚ is intractable, so this bound is still not estimable—
we present it as an intermediate result for clarity. To derive the practical bound, we need
one more step. In Section 10.3, we derive a “disagreement loss” which we use to maximize
the empirical disagreement discrepancy. Relying on this loss, we instead assume:
Assumption 4. Suppose we identify the critic h1 P H which maximizes a concave surrogate
to the empirical disagreement discrepancy. We assume ∆pph, y˚q ď ∆pph, h1q.

This is slightly stronger than Assumption 3—the difference in strength between these two
assumptions shrinks as the number of available samples grows and as the quality of our
surrogate objective improves. Ultimately, our bound holds without these terms, implying
that the stronger assumption is reasonable. We can now give our main result:
Theorem 10.2.4 (Main Bound). Under Assumption 4, with probability ě 1 ´ δ, ϵT pphq ď

ϵ
pSpphq ` p∆pph, h1q `

b

pnS`4nT q log 1{δ

2nSnT
.

The proof is in Appendix I.7. The core message behind Theorem 10.2.4 is that if there is
a simple (i.e., linear) critic h1 with large discrepancy, the true y˚ could plausibly be this
function, implying ph could have high error—likewise, if no simple y˚ could hypothetically
result in high error, we should expect low error.

Remark 10.2.1. Bounding error under distribution shift is impossible without assumptions.
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Prior works which estimate accuracy with unlabeled data rely on experiments, suggesting
that whatever condition allows their method to work holds in a variety of settings (Baek
et al., 2022; Garg et al., 2022c; Guillory et al., 2021; Lu et al., 2023); using these methods
is implicitly assuming that it will hold for future shifts. Understanding these conditions
is thus crucial for assessing whether they can be expected to be satisfied. It is therefore of
great practical value that Assumption 4 is simple and intuitive: below we demonstrate that
this simplicity allows us to identify potential failure cases a priori.

Dis2 vs. H∆H-Divergence One early attempt at bounding error under shift was
H-divergence (Ben-David et al., 2006; Mansour et al., 2009) which measures the ability
of a binary hypothesis class to discriminate between S and T . This was later refined to
H∆H-divergence (Ben-David et al., 2010b), which is equal to H-divergence where the
discriminator class comprises all xors between pairs from the original class. Though this
measure can in principle provide non-vacuous bounds, it usually does not, and evaluating it
is intractable. Furthermore, these bounds are too conservative even for simple functions
and distribution shifts because they use uniform convergence. In practice, we do not care
about bounding the error of all classifiers in H—we only care to bound the error of ph. More
importantly, one should not expect the distribution shift to be truly worst case, because
the T and y˚ are not chosen adversarially with respect to ph. Fig. I.7 in the appendix gives
a simple demonstration of this point, along with a detailed discussion.

A setting where Dis2 may be invalid. There is one setting where Assumption 4
is less likely to be satisfied: when the representation we are using is regularized to keep
maxh1PH ∆pph, h1q small. This occurs for domain-adversarial training methods which penalize
the ability to discriminate between S and T in feature space. It follows that for these
methods Dis2 should not be expected to hold universally, and we observe this in practice
(Fig. I.8). Nevertheless, when Dis2 does overestimate accuracy, it does so by significantly
less than prior methods.

10.3 Efficiently Maximizing the Discrepancy

For a classifier ph, Theorem 10.2.4 clearly prescribes how to bound its error; the difficulty
remains in identifying the maximizing h1 P H. We can approximately minimize ϵSpph, h1q

by minimizing the convex surrogate ℓlog :“ ´ log softmaxphpxqqy as justified by statistical
learning theory, but it is less clear how to maximize ϵT pph, h1q. A few prior works suggest
proxy losses for multiclass disagreement (Chuang et al., 2020; Pagliardini et al., 2023). We
observe that these losses are not theoretically justified, as they do not upper bound the 0-1
disagreement loss we hope to minimize and are non-convex (or even concave) in the model
logits. Instead, we derive a new loss which satisfies the above desiderata and thus serves as
a more principled approach to maximizing disagreement.
Definition 10.3.1. The disagreement logistic loss of a classifier h on a labeled sample
px, yq is defined as ℓdisphpxq, yq :“ 1

log 2
log

´

1 ` exp
´

hpxqy ´ 1
|Y|´1

ř

py‰y hpxq
py

¯¯

.
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Fact 10.3.2. The disagreement logistic loss is convex in hpxq and upper bounds the 0-1
disagreement loss (i.e., 1targmax

py hpxq
py “ yu). For binary classification, it is equivalent to

the logistic loss with the label flipped.

We expect that ℓdis can serve as a useful drop-in replacement for any future algorithm which
requires maximizing disagreement in a principled manner. We combine ℓlog and ℓdis to get
the empirical disagreement discrepancy objective:

pL :“
1

|pS|

ÿ

pS

ℓlogph1
pxq,phpxqq `

1

|pT |

ÿ

pT

ℓdisph
1
pxq,phpxqq.

In practice we optimize this objective with multiple initializations and hyperparameters
and select the solution with the largest empirical discrepancy on a holdout set to ensure a
conservative bound. Experimentally, we find that replacing ℓdis with either of the surrogate
losses from (Chuang et al., 2020; Pagliardini et al., 2023) results in smaller discrepancy; we
present these results in Appendix I.1.

Tightening the bound by optimizing over logits. It is clear that the value of the
bound in Theorem 10.2.4 will decrease as H is restricted. Since the number of features is
large, one may expect that Assumption 4 holds even for a reduced feature set. In particular,
it is well documented that deep networks experience neural collapse (Papyan et al., 2020),
giving representations whose effective rank is approximately equal to the number of classes.
This suggests that the logits themselves should contain most of the features’ information
about S and T . To test this, we evaluate Dis2 on the full features, the logits output by ph,
and various fractions of the top principal components (PCs) of the features. We observe that
using logits indeed results in tighter error bounds while still remaining valid—in contrast,
using fewer top PCs also results in smaller error bounds, but at some point they become
invalid (Fig. I.2). The bounds we report in this work are thus evaluated on the logits of ph,
except where we provide explicit comparisons in Section 10.4.

Identifying the ideal number of PCs via a “validity score”. Even though reducing
the feature dimensionality eventually results in an invalid bound, we may hope to identify
approximately when this occurs, giving a more accurate (though less conservative) prediction.
We find that the optimization trajectory itself provides meaningful signal about this change.
We design a “validity score” which captures this information and we observe that it is
roughly linearly correlated with the tightness of the bound (Fig. I.4). We can thus evaluate
Dis2 with successively fewer PCs and only retain those above a certain score threshold,
reducing MAE while remaining reasonably conservative (Fig. I.5). For further details, see
Appendix I.2.

10.4 Experiments
Datasets. We conduct experiments across 11 diverse vision benchmark datasets for
distribution shift on datasets that span applications in object classification, satellite imagery,

126



MAE pÓq Coverage pÒq Overest. pÓq

DA? ✗ ✓ ✗ ✓ ✗ ✓

Prediction Method

AC (Guo et al., 2017) 0.1055 0.1077 0.1222 0.0167 0.1178 0.1089
DoC (Guillory et al., 2021) 0.1046 0.1091 0.1667 0.0167 0.1224 0.1104
ATC NE (Garg et al., 2022c) 0.0670 0.0838 0.3000 0.1833 0.0842 0.0999
COT (Lu et al., 2023) 0.0689 0.0812 0.2556 0.1833 0.0851 0.0973

Dis2 (Features) 0.2807 0.1918 1.0000 1.0000 0.0000 0.0000
Dis2 (Logits) 0.1504 0.0935 0.9889 0.7500 0.0011 0.0534
Dis2 (Logits w/o δ) 0.0829 0.0639 0.7556 0.4167 0.0724 0.0888

Table 10.1: Comparing the Dis2 bound to prior methods for predicting accuracy.
DA denotes if the representations were learned via a domain-adversarial algorithm. In addi-
tion to mean absolute error (MAE), we report what fraction of predictions correctly bound
the true error (Coverage), and the average prediction error among shifts whose accuracy is
overestimated (Overest.). Dis2 has reasonably competitive MAE but substantially higher
coverage. By dropping the concentration term in Theorem 10.2.4 we can do even better, at
some cost to coverage.

and medicine. Because distribution shifts vary widely in scope, prior evaluations which
focus on only one specific type of shift (e.g., corruptions) or algorithm often do not convey
the full story. We therefore emphasize the need for more comprehensive evaluations across
many different types of shifts and training methods, as we present here. We also experiment
with Unsupervised Domain Adaptation (UDA) methods which aim to improve target
performance with unlabeled target data.

Methods and metrics. We compare Dis2 to four competitive baselines: Average Confi-
dence (AC), Difference of Confidences (DoC), Average Thresholded Confidence (ATC), and
Confidence Optimal Transport (COT). For Dis2, we report bounds evaluated on both full
features and logits as described in Section 10.3. Unless specified otherwise, we set δ “ .01
everywhere. We also experiment with dropping the lower order term in Theorem 10.2.4.
As is standard, we report the mean absolute error (MAE)—since our emphasis is on
conservative error bounds, we also report the coverage, i.e. the fraction of predictions for
which the true error does not exceed the predicted error. Finally, we measure the average
overestimation: this is the MAE among predictions which overestimate the accuracy.

Results. Table 10.1 reports metrics for all methods. We stratify only by whether the
training method is domain-adversarial (DA), as this affects Assumption 4. We find that
Dis2 achieves competitive MAE while maintaining substantially higher coverage, even for
DA features. When it does overestimate accuracy, it does so by much less, implying that
it is ideal for conservative estimation even when any given error bound is not technically
satisfied. We also visualize performance on individual distribution shifts, plotting each
source-target pair as a single point for DA (Fig. I.8) and non-DA methods (Fig. 10.1).
These plots do not include DoC, as it performed comparably to AC.
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Strengthening the baselines to improve coverage. Since the baselines prioritize
predictive accuracy over conservative estimates, their coverage might be improvable without
too much increase in error. We attempt this with a simple post-hoc adjustment in Ap-
pendix I.3. We find that (i) the baselines do not achieve the desired coverage level, though
they get somewhat close; and (ii) the adjustment causes them to suffer higher MAE than
Dis2. Thus Dis2 is on the Pareto frontier of MAE and coverage, and is preferable when
conservative bounds are desirable.

10.5 Conclusion
The ability to evaluate trustworthy, non-vacuous error bounds for deep neural networks
under distribution shift remains an extremely important open problem. Prior methods
which estimate accuracy using extra information—such as unlabeled test samples—rely on
opaque conditions whose likelihood of being satisfied is difficult to predict, and so they
sometimes provide large overestimates of test accuracy with no warning signs. This chapter
attempts to bridge this gap with a simple, intuitive condition and a new disagreement loss
which together result in competitive error prediction, while simultaneously providing an
(almost) provable probabilistic error bound. We also study how the process of evaluating the
bound can provide even more useful signal. We expect there is potential to push further in
each of these directions, hopefully extending the current accuracy-reliability Pareto frontier
for test error bounds under distribution shift.
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Part IV

Handling Distribution Shifts with Vision
Language Models
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Chapter 11

TiC-CLIP: Continual Training of CLIP
Models

Based on Garg et al. (2024): Saurabh Garg, Mehrdad Farajtabar, Hadi Pouransari, Raviteja Vemulapalli,
Sachin Mehta, Oncel Tuzel, Vaishaal Shankar, and Fartash Faghri. Tic-clip: Continual training of clip
models. International Conference on Learning Representations (ICLR), 2024.

Abstract
Keeping large foundation models up to date on latest data is inherently expensive. To
avoid the prohibitive costs of constantly retraining, it is imperative to continually train
these models. This problem is exacerbated by the lack of any large scale continual
learning benchmarks or baselines. We introduce the first set of web-scale Time-Continual
(TiC) benchmarks for training vision-language models: TiC-DataComp, TiC-YFCC, and
TiC-RedCaps. TiC-DataComp, our largest dataset, contains over 12.7B timestamped
image-text pairs spanning 9 years (2014–2022). We first use our benchmarks to curate
various dynamic evaluations to measure temporal robustness of existing models. We
show OpenAI’s CLIP (trained on data up to 2020) loses « 8% zero-shot accuracy on our
curated retrieval task from 2021–2022 compared with more recently trained models in
OpenCLIP repository. We then study how to efficiently train models on time-continuous
data. We demonstrate that a simple rehearsal-based approach that continues training
from the last checkpoint and replays old data reduces compute by 2.5ˆ when compared
to the standard practice of retraining from scratch. Code is available at this url.

11.1 Introduction

In this part of thesis, we switch our focus to distribution shift problems commonly faced
with foundations models trained on internet data. Large multimodal foundation mod-
els (Bommasani et al., 2021) have offered unprecedented advancements in image-generation

130

https://github.com/apple/ml-tic-clip


25 50 75
Imagenet accuracy

20

40

60

80
Im

ag
en

et
di

st
.

sh
if

t
ac

cu
ra

cy

Standard Evaluation Paradigm

40 60 80
Retrieval recall on 2014–2016

40

50

60

70

80

R
et

ri
ev

al
re

ca
ll

on
20

21
–2

02
2

Performance
gap

Our Proposed Evaluation Paradigm

OpenAI models trained on data before 2020 OpenClip models trained on data before 2022
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Total Compute (MACs) ×1020

20

25

30

35

40

45

50

Im
ag

en
et

an
d

it
s

di
st

.
sh

if
ts

ac
cu

ra
cy

2.7x

TiC-Datacomp (L)

Train from scratch with new +
old data (standard practice)

Warm start + new data
+ replay old data

Figure 11.1: (Left, Middle) OpenAI models show less zero-shot robustness on
retrieval task from 2021–2022. OpenCLIP models and OpenAI models have similar
robustness on standard benchmarks. However, OpenAI models show less robustness on our
retrieval task when compared with recent models in OpenCLIP repository, highlighting
susceptibility to a time-evolving data distribution (Right) Simple continual training
baseline is computationally efficient and competitive to retraining from scratch.
Different points denote models trained sequentially on our TiC-DataComp (L) as data
arrives over time. Warm start training with previous checkpoint and replaying all old data,
performs similar to Oracle which trains from scratch every time new data arrives, by using
2.7ˆ less compute.

and zero-shot generalization, and have led to a paradigm shift in multimodal learning, e.g.,
CLIP (Radford et al., 2021), Flamingo (Alayrac et al., 2022), and Stable Diffusion (Rombach
et al., 2022). These foundation models are typically trained on large web-scale datasets
which are fixed and static in nature. For example, CLIP’s training data contains 400 million
image-text pairs, and Stable Diffusion was trained on LAION-2B dataset (Schuhmann et al.,
2022). In reality, however, these models must operate in a dynamic environment, where the
world is in a state of constant change. For instance, the internet continually evolves, with
petabytes of new data being added daily (Wenzek et al., 2019; Wiener and Bronson, 2014).
It remains unclear how legacy models, e.g., OpenAI’s CLIP models which were trained on
internet-scale data up until 2020, work on future data and whether they even require any
re-training to adapt to time-evolving data.

We begin by comparing robustness of OpenAI’s CLIP models to others in OpenCLIP
repository that are trained on more recently curated web-datasets (e.g., LAION-5B, Dat-
aComp) containing data up until 2022 (Ilharco et al., 2021). Since there is no existing
benchmark to understand robustness to time-evolving vision-language data, we curate
dynamic classification and retrieval tasks for years 2014–2022 and evaluate different CLIP
models (see Sec. 11.2.2 for our evaluation tasks). We make an intriguing observation that
OpenAI models exhibit a significant gap in retrieval performance on data from 2021–2022
compared with 2014–2016 whereas OpenCLIP models retain their performance. In contrast,
standard evaluations such as accuracy on ImageNet distribution shifts paint an incomplete
picture that OpenAI’s CLIP models are slightly more robust than OpenCLIP models
(Fig. 11.1). Our findings not only demonstrate the critical need for models to adapt and
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evolve alongside dynamic data distributions, but also underscores the limitations of relying
solely on static benchmarks (e.g. ImageNet).

One naive but common practice for adapting to time-evolving data is to train a new CLIP
model from scratch every time we obtain a new pool of image-text data. This practice has
its rationale: initiating training from a pre-existing model can make it difficult to change
the model’s behavior in light of new data (Achille et al., 2018; Ash and Adams, 2020;
Liu et al., 2023). However, training foundation models from scratch demands significant
computational resources and is often infeasible to repeat frequently. For example, ViT-g-14
in Cherti et al. (2022); Schuhmann et al. (2022) was trained for 240K A100 GPU hours
which is approximately one month on 400 GPUs. The prevailing training guidelines centered
around scaling laws for CLIP training have only looked at training from scratch (Cherti
et al., 2023). This leads to a pivotal question: How can we continuously update models as
the data distribution evolves over time given computational constraints?

There exists a vast literature on continual learning, with a focus on adapting models to
dynamic environments (De Lange et al., 2021; Hadsell et al., 2020; Parisi et al., 2019).
Traditionally, this field concentrated on synthetic incremental benchmarks that lack natural
evolution between tasks, and hence, continual learning methods are seldom used in real-
world scenarios (Cossu et al., 2022; Lin et al., 2021). In contrast, recent works focusing
on continual learning methods for CLIP models, primarily target improving performance
on a single or a sequence of disjoint downstream tasks (Ding et al., 2022; Ilharco et al.,
2022; Zheng et al., 2023; Zhou et al., 2023b). While some recent works have started to
address these problems, existing benchmarks are comparatively much smaller in scale, or
lack paired image-text data (Lin et al., 2021; Ni et al., 2023). Simply put, there is a scarcity
of work focusing on continual training of CLIP models on naturally evolving data with time
at web-scale.

We take the first step towards Time-Continual (TiC) training of CLIP models where
data distribution evolves naturally over time (overview in Fig. 11.2). We introduce TiC-
DataComp, a new benchmark for Time-Continual training of CLIP models, which we create
by appending “crawl time” information to existing CommonPool dataset (Gadre et al.,
2023). We also repurpose other web-scale datasets gathered from diverse sources, such as
Reddit and Flickr. Specifically, we curate TiC-YFCC and TiC-RedCaps by leveraging
time information available in YFCC (Thomee et al., 2016) and Redcaps (Desai et al., 2021)
respectively. The primary objective of our study on this benchmark is to develop continual
learning methods that operate within a constrained computational budget (say C) each
time a fresh batch of data becomes available. These methods compete with an Oracle,
which starts training from scratch every time new data arrives, utilizing a cumulative
computational budget.

To assess models trained in our TiC-CLIP framework, we evaluate models on our proposed
dynamic evaluation tasks that evolve with time along with 28 standard classification and
retrieval tasks including ImageNet (Krizhevsky et al., 2012), ImageNet distributions shifts,
and Flickr (Plummer et al., 2015), in a zero-shot manner following the work of Gadre et al.
(2023); Radford et al. (2021).
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Figure 11.2: Experimental protocol on our proposed continual benchmarks. (A)
Combine new and old data given buffer constraints. (B) Continually train a model with a
compute budget (say C) either by starting with previous checkpoint or from scratch. (C)
Evaluate models on standard datasets and our proposed dynamic datasets. Comparison
with other benchmarks in Appendix J.1.

Finally, we develop continual learning methods on our benchmarks and perform over two
hundred experiments with different baselines that utilize previous checkpoints (e.g., warm
start, patching, and distillation), replay buffers, and learning rate schedules. Our findings
highlight a key takeaway: Cumulative method that warm starts training with the latest
checkpoint and replays all old data, achieves performance competitive to an Oracle while
being 2.7ˆ computationally more efficient. Additionally, our experiments demonstrate
interesting trade-offs between buffer sizes for static and dynamic performance and provide
valuable insights into learning rate schedules for sequential training. Our results span
over various dataset scales (from 11M samples to 3B) and highlight trends with different
methods that are largely consistent across scales.

To make our benchmarks accessible, we publicly release the code and the time information
we collect on top of existing datasets here. Our work is just an initial step towards continual
training of foundation models, and we believe our research would spur more attention to
this understudied area.

11.2 TiC-CLIP: Benchmarks and Experimental Proto-
col

In this section, we introduce our benchmark (Fig. 11.2) focusing on the training of a vision-
language foundation model with the Contrastive Language Image Pretraining (CLIP) (Rad-
ford et al., 2021)) objective. Notably, we train on image-text data that arrives sequentially
unlike the conventional image-text datasets which are static (e.g. WiT in CLIP, DataComp
in Gadre et al. (2023)). We curate TiC-DataComp, TiC-YFCC, and TiC-RedCaps that
are image-text pairs sourced from the internet which we augment with auxiliary time
information. We also introduce dynamic evaluation tasks to assess performance of our
continually trained models on data evolving with time. The goal of a learner is to train
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a deployable model at each step as new data becomes available with a fixed compute
budget.

11.2.1 Benchmark Design: How we Create Time-Continual Datasets?

To instantiate continual training of CLIP, we extend existing image-text datasets with
time information collected from the original source of the datasets. Our largest dataset is
TiC-DataComp which contains 12.7 billion image-text pairs with “crawl-time” metadata.
We create this dataset on top of the existing DataComp benchmark (Gadre et al., 2023).
We also create TiC-YFCC and TiC-RedCaps on top of existing YFCC15M (Radford et al.,
2021; Thomee et al., 2016) and Redcaps (Desai et al., 2021) datasets to highlight that our
findings are broadly applicable to carefully curated datasets from diverse sources such as
Reddit and Flickr. While time-related metadata is absent in the DataComp benchmark,
it is available in the original releases of YFCC and Redcaps. Nevertheless, to the best of
our knowledge, no prior work utilizes such time information for continual training of CLIP
models. We show dataset statistics for all datasets, e.g., number of examples in each year
in App. J.3.3.

TiC-DataComp We collect timestamps for the CommonPool dataset introduced in
DataComp which contains 12.7B image-text pairs (not including 0.1B inaccessible ones).
This dataset stands as the largest public image-text dataset to date. The source of
DataComp is Common Crawl, which periodically releases web-crawled data snapshots,
typically on a monthly basis since 2014 with new and updated webpages. To construct
TiC-DataComp, we augment each image-text pair in DataComp with their first timestamp.
We followed the same construction process as DataComp but retained only the image-text
pair found in the earliest snapshot during the deduplication stage. This process provides
timestamps at the granularity of months, spanning years 2014–2022. See App. J.3.7 for
details on the construction process. We note that while this augmented time information
may contain some noise, on average, we find it to be a reasonably accurate proxy for the
upload time of web pages (see App. J.3.7).

Although our benchmark contains time information at the granularity of months, we limit
our experiments to granularity of years by consolidating data for all months in a year.
Similar to DataComp, our benchmark has an inclusive design, accommodating participants
with varying levels of computational resources. In particular, we experiment with medium,
large, and xlarge sizes from CommonPool. (Gadre et al., 2023) leverage different filtering
strategies to select the training subset. We are concerned that filtering techniques bias
the selected training data. In App. J.3.1, we provide preliminary evidence that “Bestpool”
filtering that uses off-the-shelf CLIP models, indeed biases the selected data to old time
steps. Nevertheless, to highlight significance of our findings even for state-of-the filtering
techniques, we experiment with both Bestpool and Basic filtering (no CLIP filtering) at
xlarge scale. For large and medium scales, we only experiment with Basic filtering.

TiC-YFCC We experiment with the 15M subset of YFCC100M (Thomee et al., 2016),
namely YFCC15M, selected by OpenAI (Radford et al., 2021). This filtering retains only
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for 4 categories. We observe that not only objects evolve over time but also images from
recent timestamps are captured more in the wild.
images with natural text in captions. YFCC100M contains data from years 2008–2014 and
was originally released with upload timestamps. We use this information to create continual
splits at the granularity of years.

TiC-RedCaps RedCaps contains 12M image-caption pairs from manually curated set
of subreddits across 2011–2020 (Desai et al., 2021). We use the creation timestamps of
the posts to create splits for continual learning. Similar to the other two datasets, we
experiment at the granularity of years.

11.2.2 Evaluation Testbed
Dynamic tasks We leverage the temporal information in our benchmarks to create
dynamic evaluation tasks. Here, the test data comprises samples varying over years as
the world evolved. For our largest dataset which is TiC-DataComp, we create dynamic
tasks for both retrieval and classification as described below. (examples in Figure 11.3 and
additional examples in App. J.3.5):

I. Dynamic retrieval task : To create a retrieval task, we sample a batch of IID image-
text pairs from different timestamps and evaluate text retrieval performance given the
corresponding image (similarly, image retrieval given the corresponding text). We refer to
the dataset as TiC-DataComp-Retrieval.

II. Dynamic classification task : We also create a classification dataset TiC-DataComp-Net
with ImageNet classes from CommonPool and augmented with timestamps. Inspired by
LAIONNet (Shirali and Hardt, 2023), we first filter examples where the corresponding
caption contains one and only one of the synsets of ImageNet. Then we only retain examples
where the similarity between ImageNet synset definition and the caption exceeds a threshold
of 0.5. We evaluate the similarity using an off-the-shelf sentence embedding model (Reimers
and Gurevych, 2019). Crucially, unlike LAIONNet, we do not filter the image-text pairs with
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CLIP similarity scores to avoid biasing the selection process. We describe the construction
process in more details in App. J.3.5. On TiC-DataComp-Net, we report average accuracy
over all classes and over selected nodes (e.g., motor vehicles) at each time step.

Similarly, we create retrieval tasks for TiC-YFCC and TiC-RedCaps. Note that we remove
the extracted image-text pairs for dynamic retrieval and classification tasks from the training
sets. Evaluations on dynamic tasks are done in a zero shot manner.

Static tasks We also evaluate models on numerous classification and retrieval tasks in a
zero-shot manner as in Radford et al. (2021). In particular, we consider 28 standard tasks:
27 image classification tasks, e.g., ImageNet and its 6 distribution shifts (e.g., ImageNetv2,
ImageNet-R, ImageNet-Sketch, and Objectnet), datasets from VTAB and Flickr30k retrieval
task. We refer to these as static evaluation tasks. We list all the datasets in App. J.3.2.

Evaluation metrics We define metrics for classification tasks and retrieval tasks based on
accuracy and Recall@1, respectively. Let T represent the number of time steps for which we
have data. For each training method, we generate a total of T models, each corresponding
to the end of training at a particular time step. For static datasets (e.g., ImageNet), we
report average performance of T models. However, when dealing with dynamic evaluation
datasets, we assess the performance of each of the T models on evaluation datasets collected
at all time steps. Consequently, for each model and a dynamic evaluation task, we obtain
T performance values. We represent these values using the performance matrix E , where
each entry Ei,j signifies the performance of the model obtained after observing training data
at time step i when evaluated on a dataset from time step j. The performance matrix E
can also be succinctly summarized using three standard metrics commonly employed in
continual learning evaluations (Díaz-Rodríguez et al., 2018; Lin et al., 2021):
• In-domain performance: average performance at each training time step (i.e., the diagonal

of E)

• Backward transfer : average on time steps before each training step (i.e., the lower
triangular of E)

• Forward transfer : average on time steps following each training step (i.e., the upper
triangular of E)

Sometimes, the metrics described above can cause the backward transfer metric to be
influenced by later evaluation time steps, biasing the backward transfer metric (refer to
App. J.6 for details). Therefore, in App. J.6, we present results using revised metrics that
mitigate this issue.

While the static tasks capture performance on standard benchmarks, dynamic tasks capture
problems due to distribution shift (for forward transfer) and forgetting (for backward
transfer). The goal in our benchmark is to develop continual learning methods that
maximize performance on static tasks while simultaneously optimizing for performance on
dynamic tasks.
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11.2.3 Experimental Protocol For Training

Streaming protocol We follow a streaming protocol, where data is progressively revealed
to the learner in large batches with the objective of achieving a deployable model as early
as possible after each batch arrives. We conduct experiments with data streaming at
the granularity of years and our benchmark supports future research at the granularity
of months. Additionally, as the amount of data from earlier time steps is limited (see
App. J.3.3), we aggregate data from the earlier time steps into a single larger batch and
timestamp it by the latest year in the range. After this aggregation, we have 7 time steps
for TiC-DataComp (2016–2022) and 4 for both TiC-YFCC (2011–2014) and TiC-RedCaps
(2017–2020). While the number of image-text pairs revealed at each time step are of similar
orders of magnitude, the exact number does vary across steps and we do not artificially
alter the sizes.

Memory budget We allow methods to use the last model checkpoint at each step as
the cost of keeping one checkpoint per month is often negligible. In contrast, the cost of
retaining old data can be high and might not be permitted due to data expiration policies.
Thus, along with studying methods that retain all old data, we also explore strategies that
restrict data persistence (see Sec. 11.3 for details).

Compute budget To ensure a fair comparison between methods, we establish a consistent
total compute budget, quantified in terms of Multiply-Accumulate Operations (MACs),
and allocate it evenly for training at every time step. Unless specified otherwise, for all
methods except Oracle and LwF, we use the same compute budget. For experiments on
TiC-DataComp, we refer to compute configurations in DataComp for overall compute. For
TiC-RedCaps and TiC-YFCC, we use compute of order medium scale in TiC-DataComp.
Compute budget details are in App. J.3.4.

11.2.4 Analyzing Distribution Shifts in the Constructed Bench-
marks

TiC-DataComp analysis through the lens of constructed evaluation tasks First,
we qualitatively analyze the examples in our retrieval and classification dataset (Fig. 11.3).
We observe that over time, in the retrieval task, new concepts like COVID-19 emerge.
Likewise, certain ImageNet classes evolve, such as the shift from “masquerad” masks to
“surgical/protective” masks in their definitions. Moreover, as time evolves, we observe that
image quality improves and more images tend to appear in the wild in contrast to centered
white background images. Next, we compare performance of OpenAI and OpenCLIP models
on our datasets. Here, we only present the main findings, and delegate a detailed discussion
to App. J.3.6. We observe a significant performance gap between OpenAI and OpenCLIP
models on our dynamic retrieval task (Fig. 11.1). This gap widens notably on retrieval
queries where captions mention COVID-19. On the other hand, OpenAI and OpenCLIP
models exhibit similar robustness for retrieval on data coming from Flickr highlighting
that data from some domains do not exhibit shifts that cause performance drops. For
our classification task, we observe a very small drop (« 1%) when averaged across all
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categories. However, we observe a substantial gap on specific subtrees in ImageNet. For
example, classes in “motor vehicle” subtree show an approximate 4% performance drop,
when comparing OpenAI and OpenCLIP models. These findings highlight that while overall
ImageNet classes may remain timeless, certain categories tend to evolve faster than others.
Our qualitative and quantitative analysis on TiC-DataComp clearly highlights evolution of
distributions and captures different properties than standard benchmarks.

Quantitative analysis on TiC-YFCC We analyze TiC-YFCC using off-the-shelf
sentence and image encoders. We first embed images from different time steps with an
OpenAI CLIP encoder and then compute Frechet Inception Distance (FID; Seitzer (2020)).
As time progresses, we observe that FID distance increases with respect to data from first
time step (Fig. J.14 in App. J.3.6). Similarly, we use pretrained sentence transformer to
extract top-5 categories from Wordnet Nouns for each caption. We observe that the TV
distance over distribution of WordNet Nouns evolves over time when compared to data
from the first time step. More details in App. J.3.6.

11.3 TiC-CLIP: How to Continually Train CLIP Mod-
els?

Table 11.1: Table summarizing our methods.
D: data size in each step, T total time steps,
t: current time step, C: compute budget (it-
erations).

Method Each Step Total

Train Size Init. Compute Compute

Cumulative-All tD Last C TC
Cumulative-Exp 2D Last C TC
Cumulative-Equal 2D Last C TC
Sequential D Last C TC
Restart tD Rand C TC
Patching D Last Patch C TC
LwF D Last 1.2 ˆ C 1.2 ˆ TC

Oracle˚˚ tD Rand tC pT`1qT
2

C

In this section, we lay out different meth-
ods specifically focus on the following ques-
tions (Table 11.1): (i) How to utilize/replay
data from previous time steps; (ii) How
to leverage previously trained model check-
points? (iii) What should be the train-
ing/optimization procedure?

Data replay methods initialized from the
last checkpoint demonstrate strong perfor-
mance on standard continual learning bench-
marks (??). We consider replay methods
with/without initialization from last checkpoint(s):

I. Oracle: Train a CLIP model from scratch (i.e., random initialization) on all image-text
data received till time t using a large compute budget of t ˆ C. Oracle represents a
prohibitively expensive method that is the most common practice in training large-scale
foundation models. The goal of other methods is to perform as close as possible to the
Oracle within their limited budget.

II. Cumulative: Train each model initialized from last checkpoint on the union of all data
up to t with compute budget C. This method is analogous to experience replay (Hayes et al.,
2019; Robins, 1995) but with substantially larger buffers than common in the continual
learning literature. Given a fixed buffer size for each past step, we observe minimal to no
difference between random subsampling and other strategies. After sampling the replay
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data, we randomly shuffle it together with new data for training. We consider the following
strategies for sampling buffer sizes per step:
• -All: Replay all previous data.

• -Exp: Replay a buffer of size D and reduce the amount of old data by half at each step.
For example, at 3-rd time step, we retain D{2, D{2 of old data and at 4-th, we retain
D{4, D{4, D{2 of old data. Along with D data from current step, this method trains on
at most 2D data in each step.

• -Equal: Replay a buffer of size D but split the buffer equally among all previous years.
For example, at 4-th step, we retain D{3, D{3, D{3 of old data. Along with D data from
current time step, this method trains on at most 2D data in each step.

III. Sequential: Train only on the new data starting from the best checkpoint of the
previous time step. Sequential is similar to Cumulative but without any replay buffer.

IV. Restart: Train each model from scratch (i.e., random initialization) on all the data till
time t for compute budget C. Restart is similar to the Oracle but with compute budget C
at each time step and similar to Sequential but with random initialization. As such, Restart
helps us understand the forward transfer and loss of plasticity in our benchmark (Ash and
Adams, 2020; Dohare et al., 2023).

V. Patching: We use sequential patching from Ilharco et al. (2022). Initialize from a
patched model of last step and train only on the new data. To obtain a patched model at
each time step, we apply weight interpolation with the patched model (if any) trained at
time step t ´ 1 and the model trained at time step t. We tune the mixing coefficients by
optimizing average retrieval performance on previous tasks.

VI. LwF: Train only on the new data with a KL divergence penalty between the image-text
similarity matrix of last checkpoint and current model on each batch (Ding et al., 2022;
Li and Hoiem, 2017). See App. J.5 for results with other continual learning methods, e.g.,
EWC (Kirkpatrick et al., 2017).

Learning rate schedule The defacto Learning Rate (LR) schedule for training CLIP
models is an initial linear increase to a maximum value, i.e., warm up, followed by a cosine
decay (Gadre et al., 2023; Radford et al., 2021). We default to using a cosine LR schedule
for each sequential run, resulting in a cyclic schedule and observe a significant increase in
training loss early in subsequent runs when the LR is high. However, as training progresses,
we observe that the increased loss decreases at a faster rate (when compared to training
from scratch) allowing us to train with cyclic schedules. We discuss this more and explore
an alternate learning rate schedule in App. J.2.5.

Other Training details and hyperparameters Unless specified otherwise, we
closely follow the original CLIP training recipe (Radford et al., 2021). We train the CLIP
variant with ViT-B/16 as the image encoder (Dosovitskiy et al., 2020). All training and
hyperparameters can be found in App. J.4.2.
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Table 11.2: Zero shot performance on our time-continual benchmarks. ˚ and ˚˚ de-
note methods that violate the compute budget. For static tasks, we tabulate accuracy of the
models obtained on the final timestamp. For dynamic tasks, we tabulate forward/backward
transfer and ID performance on retrieval tasks (Sec. 11.2.3). For TiC-DataComp (XL), we
include results with Bestpool filtering (basic filtering in Table J.2). For all metrics, higher
is better.

Benchmark Method
Compute
(MACs)

Static Tasks Dynamic Retrieval Tasks

ImageNet
ImageNet
dist.
shift

Flickr30k Average over
28 datasets

Backward
Transfer

ID Per-
formance

Forward
Transfer

TiC-YFCC

Restart 3.4 ˆ 1018 5.2 3.6 3.0 12.9 13.2 41.4 18.6
Sequential 3.4 ˆ 1018 17.3 10.5 15.9 21.9 42.2 48.4 23.7
Patching 3.4 ˆ 1018 18.9 11.3 18.5 23.3 44.7 53.4 24.5

Cumulative-Exp 3.4 ˆ 1018 24.1 14.3 20.4 25.9 60.4 60.1 27.1
Cumulative-Equal 3.4 ˆ 1018 23.9 13.8 20.5 26.3 60.4 60.4 27.1
Cumulative-All 3.4 ˆ 1018 29.3 17.6 26.8 29.6 66.4 60.2 27.6

LwF˚ 4.1 ˆ 1018 16.9 9.8 14.7 21.2 36.6 56.0 23.2
Cumulative-All˚ 3.6 ˆ 1018 29.2 17.5 27.4 29.3 66.8 60.3 27.6

Oracle˚˚ 8.5 ˆ 1018 29.2 17.0 25.9 29.0 66.1 61.8 26.9

TiC-RedCaps

Restart 3.4 ˆ 1018 11.7 8.5 3.7 18.4 21.3 25.4 22.4
Sequential 3.4 ˆ 1018 19.3 13.7 6.2 25.8 33.0 33.6 27.5
Patching 3.4 ˆ 1018 21.3 15.2 7.7 26.8 34.8 34.8 27.8

Cumulative-Exp 3.4 ˆ 1018 27.3 19.1 10.5 30.0 44.5 42.0 32.6
Cumulative-Equal 3.4 ˆ 1018 27.8 19.4 10.0 30.5 44.4 42.0 32.6
Cumulative-All 3.4 ˆ 1018 32.2 18.7 14.5 31.7 48.9 43.2 33.4

LwF˚ 4.1 ˆ 1018 21.6 14.8 8.2 27.3 35.4 36.0 28.4
Cumulative-All˚ 3.6 ˆ 1018 32.9 23.7 14.1 32.9 49.0 43.4 33.4

Oracle˚˚ 8.5 ˆ 1018 32.7 22.7 14.3 32.3 48.5 43.1 33.4

TiC-DataComp (M)

Sequential 3.0 ˆ 1018 19.2 16.4 16.4 26.0 25.7 26.4 14.9
Patching 3.0 ˆ 1018 19.3 16.8 18.5 26.4 26.9 25.4 14.5

Cumulative-Exp 3.0 ˆ 1018 22.1 18.4 20.4 28.8 31.7 27.1 15.2
Cumulative-Equal 3.0 ˆ 1018 22.1 18.4 19.2 28.0 31.8 26.8 15.1
Cumulative-All 3.0 ˆ 1018 24.0 20.2 20.9 30.0 33.8 26.4 15.1

LwF˚ 3.8 ˆ 1018 19.2 16.5 17.7 27.0 25.6 26.6 14.9
Cumulative-All˚ 3.9 ˆ 1018 30.0 25.0 28.6 35.1 36.7 28.3 15.5

Oracle˚˚ 1.2 ˆ 1019 25.5 21.2 23.3 30.8 34.9 27.8 15.6

TiC-DataComp (L)

Sequential 2.7 ˆ 1019 44.7 37.4 48.4 45.7 52.6 58.4 41.1
Patching 2.7 ˆ 1019 45.8 38.9 49.7 46.9 55.2 57.5 40.9

Cumulative-Exp 2.7 ˆ 1019 47.3 39.6 50.8 47.6 60.4 58.4 41.4
Cumulative-Equal 2.7 ˆ 1019 47.7 40.3 51.8 47.7 60.9 58.2 41.4
Cumulative-All 2.7 ˆ 1019 48.9 41.3 50.9 48.0 62.1 57.3 41.2
Cumulative-All˚ 4.1 ˆ 1019 53.0 44.3 54.4 51.3 63.0 57.8 41.2

Oracle˚˚ 1.1 ˆ 1020 53.6 44.0 53.9 50.4 64.3 58.6 41.8

TiC-DataComp (XL)
Sequential 2.7 ˆ 1020 66.5 54.2 61.2 61.0 63.1 68.9 56.8

Cumulative-All 2.7 ˆ 1020 71.6 58.8 65.1 64.8 70.7 68.5 57.1
Cumulative-All˚ 3.5 ˆ 1020 72.8 60.4 66.5 66.7 71.0 68.6 57.1

Oracle˚˚ 1.1 ˆ 1021 73.3 61.3 68.0 65.8 - - -

11.4 Experiments and Main Results

Our main results are in Table 11.2 and more detailed plots on each dataset are in App. J.2.1.
Recall, our goal is compete with an Oracle that re-trains from scratch every time new data
is observed, both on dynamic and static tasks, while being computationally efficient. Here,
we summarize our key findings:

Cumulative-All saves up to 4ˆ the cost. On dynamic evaluation tasks, we observe
that Cumulative-All where we replay all the past data, achieves performance close to the
Oracle (within 1%) using significantly less compute (4ˆ less on TiC-DataComp and 2.5ˆ

less on TiC-YFCC and TiC-RedCaps). On static tasks, the gap remains small at small
scales but grows to 4.7% on large, 1.8% on xlarge Bestpool, and 4% on xlarge Basic
(see Table 11.2 and Table J.2). In these cases, training Cumulative models with slightly
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Figure 11.4: (Left) Dynamic and static evaluations rank models differently. Models
with similar performance on static datasets, have ą 6% difference on retrieval task from
2021-2022 TiC-DataComp (L). Different points denote models trained sequentially over
time. (Right) Performance of Oracle on future time steps drops highlighting
distribution shift in dataset. Each row evaluates the Oracle trained on TiC-DataComp
(L) at a particular time step across all dynamic retrieval tasks.

extra compute bridges the gap while remaining at least 2.7ˆ more computationally efficient
(see rows with ˚ in Table 11.2). This highlights that with unconstrained access to past data,
we can simply train sequentially and save significant computational resources.

At scale, Sequential has strong forward transfer but lacks on static tasks. On
TiC-YFCC and TiC-RedCaps, which are at the smallest scale, we observe a significant gap
(ą 10%) between Sequential (with no data replay) and Oracle on all tasks. On the other
hand, on all scales in TiC-DataComp, Sequential shows strong performance on forward
transfer and ID dynamic evaluations. However, on static tasks and backward transfer
evaluations, Sequential significantly underperforms the Oracle.

Patching and LwF improve over Sequential but lag behind Cumulative-All. On
static tasks, LwF improves over Sequential by 2%, while on dynamic tasks, LwF improves
backward transfer by 7% on TiC-DataComp (M). However, its computation cost is higher
than even Cumulative-All˚ which outperforms LwF on all tasks. Patching improves over
Sequential on backward transfer on all datasets (e.g., 5% boost on TiC-DataComp L)
highlighting that Patching combines benefits of previously patched model and the new
Sequential model without additional computation cost. However, such benefits do not show
up on static tasks. These results hint that to continuously improve on static tasks with
time, replaying old data as in Cumulative-All plays a crucial role.

-Exp and -Equal significantly reduce replay buffer size and maintain static task
performance and backward transfer. Recall, that -Exp and -Equal reduce the replay
buffer size to a maximum 2D of old data. In particular, at the last time step, -Exp and
-Equal reduce the buffer size by 3.5ˆ for TiC-DataComp datasets. While reducing the
buffer sizes, these methods still achieve performance close to Cumulative-All (within 2%)
on both static and dynamic tasks, with -Equal consistently better than -Exp strategy.
As we go to large scale, e.g., from medium to large, the gap between these methods and
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Cumulative-All reduces. These findings demonstrate that even a small amount of replay
data from old time steps stays competitive with replaying all data and significantly improves
over no replay at all.

Warm up helps training on data from first time step, but hurts on subsequent
time steps. Cosine LR is commonly coupled with an initial warm-up that linearly increases
the LR from zero to maximum LR. We investigate the effectiveness of warm-up in first
versus subsequent time steps. Surprisingly, we observe that not using warmup for subsequent
training runs is strictly more beneficial than using warm up on both static and dynamic
tasks. In particular, on TiC-DataComp (L), we observe about 1.5% improvement in
ImageNet accuracy and 4.3% improvement on ID dynamic retrieval when not using warmup
with Cumulative (see App. J.2.3). Moreover, we also ablate over not using warm up for the
first training run and observe a drop of approximately 4.8% accuracy in the first time step
on TiC-DataComp (L). Hence, we default to using warmup when training on the first time
step and not using it on the subsequent time steps with all methods except for training on
TiC-DataComp (XL) where we add a smaller warm up (10% of the warm up iterations
used in first step) to stabilize training.

Same maximum LR works best across all runs when using cosine schedule. We
ablate on TiC-DataComp (M) to investigate how to change LR after training on data from
the first time step. Unlike conventional pretraining and finetuning settings where LR is
typically decreased for subsequent training, we observe that decaying maximum LR for
subsequent steps in our setup hurts on static and dynamic tasks and consequently, we use
same maximum LR across our runs (see App. J.2.3).

Filtering strategy changes the ordering of performance on static and dynamic
retrieval tasks. We observe that while bestpool filtering models outperform basic filterining
models on TiC-DataComp (XL) by 6% on static tasks, they underperform by over 5% on
dynamic retrieval task (see Fig. J.3).

Dynamic tasks provide complimentary information for model selection compared
to static tasks. Choosing models solely based on static task performance may inadvertently
select models that underperform on dynamic tasks. For example, Cumulative models that
show relatively modest improvements on static tasks continue to improve by ą 6% for
retrieval on 2021-2022 (Fig. 11.4).

Table 11.3: ImageNet continual
training. Cumulative-All remains
close to Oracle.

Method Number of splits

1 (Oracle) 2 4 8

Cumulative-All 80.9 80.8 80.6 80.0

Cumulative-All remains competitive to Oracle
even on ImageNet on up to 8 splits. CLIP
models are often trained for fewer epochs and are
typically not trained until they reach an “overfitting”
regime. Here, we investigate how Cumulative-All
performs when compared to Oracle when training is
done for longer. Specifically, we assess Cumulative-
All on 2, 4 and 8 IID splits including the full dataset
(see App. J.4.1 for details). Table 11.3 summmarizes our key findings. Notably, even with
up to 8 splits, the difference in accuracy between Oracle and Cumulative-All remains below
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0.9%. These results underscore the feasibility of continual training with Cumulative-All
even on ImageNet.

11.5 Related Work
Benchmarks for continual learning Traditionally, the continual learning community
has focused on domain, class, and task incremental benchmarks (Hsu et al., 2018; Van de Ven
and Tolias, 2019; Zhou et al., 2023a) with artificial task boundaries (e.g., Split-CIFAR, Perm-
MNIST). These benchmarks are often task-specific and present minimal or no meaningful
evolution between adjacent tasks. Consequently, continual learning methods are often
confined to these benchmarks and seldom scale to practical real-world scenarios (Cossu
et al., 2022; Lin et al., 2021). On the other hand, continual learning methods for CLIP models
are primarily aimed at fine-tuning to improve performance on a single or on a sequence of
disjoint downstream tasks (Ilharco et al., 2022; Thengane et al., 2022; Zheng et al., 2023).
Existing large-scale benchmarks for training CLIP models, e.g., Datacomp (Gadre et al.,
2023) and LAION-5B (Schuhmann et al., 2022), are curated to investigate methods and
scaling laws to train state-of-the-art CLIP models in a single training run. In our work,
we augment these existing datasets with temporal information to create benchmarks for
continual pertaining of CLIP models.

Continual learning methods Common methods can be categorized into three categories:
i) regularization, ii) replay, and iii) architecture-based methods. Regularization methods add
a penalty to keep the fine-tuned model close to its initialization and often incur additional
memory/compute costs (Farajtabar et al., 2020; Kirkpatrick et al., 2017; Mirzadeh et al.,
2020a;b). Data replay methods retain all or a subset of the prior data for subsequent
training (Chaudhry et al., 2018; Lopez-Paz and Ranzato, 2017; Rebuffi et al., 2017). Simple
replay-based baselines surpass various methods on standard benchmarks (Balaji et al., 2020;
Lomonaco et al., 2022; Prabhu et al., 2020). Lastly, architecture-based methods expand
the model as new tasks arrive, limiting their applicability in evolving environments without
clear task boundaries (Rusu et al., 2016; Schwarz et al., 2018). In this work, we compare
popular continual learning methods with simple alternatives for continually pretraining of
CLIP.

11.6 Conclusion and Future Work
We view TiC-DataComp as the initial stride toward the continual training of large-scale
vision-language foundation models. We believe that our benchmark, alongside the pre-
liminary results obtained using simple baselines will foster future research for large-scale
continual-learning. There are several pivotal directions for future work: (i) Compare our
baselines on continually streaming data at finer granularity, e.g., streaming data at the
monthly level; (ii) Investigate alternate learning rate schedules (e.g., Const-Cosine as in
App. J.2.5) that are forward looking, and are better suited to continual learning; (iii) Better
data filtering techniques that are more inclusive of future data;
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Chapter 12

Prompting is a Double-Edged Sword:
Improving Worst-Group Robustness of
Foundation Models

Based on Amrith et al. (2024): Amrith Setlur˚, Saurabh Garg˚, Virginia Smith, Sergey Levine Prompting
is a Double-Edged Sword: Improving Worst-Group Robustness of Foundation Models, To appear in
Internation Conference on Machine Learning, 2024.

Abstract
In this chapter, we first note that for shifts governed by spurious correlations (features
spuriously correlated with the label on the training data, but not on test), the zero-
shot and few-shot performance of foundation models is no better than ERM models,
and remains unchanged when pretrained data/model size is scaled. Secondly, even in
these situations, foundation models are quite accurate at predicting the value of the
spurious feature. In a simplified setup, we theoretically analyze both these findings.
Specifically, we show that the simplicity bias of foundation models is vulnerable to
spurious correlations in contrastive pretraining, and learns features that mostly rely on
the spurious attribute, compared to more robust features. We leverage these observations
to propose Prompting for Robustness (PfR) which first uses foundation models to zero-
shot predict the spurious attribute on labeled examples, and then learns a classifier with
balanced performance across different groups of labels and spurious attribute. Across 5
vision and language tasks, we show that PfR’s performance nearly equals that of an
oracle algorithm (group DRO) that leverages human labeled spurious attributes.
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Figure 12.1: (a): Foundation models are not robust to spurious correlations, but can predict
them; Averaged across four tasks with spurious correlations, we see that while zero-shot
foundation models performance much worse on groups where the spurious correlation is
absent, they are highly accurate at predicting the spurious attribute itself, across all groups.
(b): Prompting for Robustness (PfR): Leveraging this we propose our method PfR that
learns robust classifiers from foundation models in two steps. In Step 1, armed with a text
description of the spurious feature, PfR prompts foundation models to zero-shot predict the
spurious attribute on a labeled dataset with spurious correlations, and in Step 2 it learns a
robust classifier by minimizing worst group loss, across groups given by the combination of
the predicted attribute and label.

12.1 Introduction
In this chapter, we show that gains obtained by foundation models in zero-shot prediction
on benchmarks like ImageNet with distribution shifts (Radford et al., 2021) do not transfer
to other forms of distribution shift such as when confounders that are highly predictive of
the label in training distribution are no longer correlated with the label on test (Hall et al.,
2023; Tu et al., 2020; Yang et al., 2023). Thus, robustness to hidden confounders in the
training data remains an open challenge.

We aim to improve the performance of foundation models on paritions of the distribution
(groups) where the confounder is not correlated with the label (minority group). One
way is to incorporate downstream labeled data. Unfortunately, unless we have access to
deconfounded data (without the spurious correlation), simply fine-tuning naïvely would
result in the same issues as standard ERM training, as we confirm experimentally. However,
with open-vocabulary foundation models, we can provide for robustness by telling the model
about the confounder directly (i.e., by describing it in a prompt). One natural way to use
this knowledge is to incorporate the description into the classification prompt. However, we
observe that even this doesn’t improve zero-shot robustness (see Sec. 12.3.2).

We make an intriguing observation: while foundation models are not robust zero-shot
classifiers of the true label, they perform remarkably well in predicting the presence of
spurious attributes. Moreover, we observe that while scaling up the model size and
pretraining data does not improve the performance of label prediction on minority groups,
the worst group performance of spurious attribute prediction does. Motivated by these
findings, we propose a simple technique that we call Prompting for Robustness (PfR). PfR
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learns robust classifiers for downstream tasks with a few labeled examples and a language
description of the confounding attribute. PfR first uses the language description to prompt
for a zero-shot classifier that accurately predicts the spurious feature on each labeled
example. The value of the label and the predicted confounder jointly define a set of disjoint
groups in our data. Then, a robust predictor is learnt by minimizing worst group loss, similar
to group DRO, as described by Sagawa et al. (2019), but without ground-truth knowledge
of examples in the minority group. This simple method yields surprising performance gains
of ě 40% (averaged across datasets) relative to zero-shot performance of foundation mdoels
and ERM on downstream data alone. We further illustrate the applicability of our findings
by showcasing its efficacy in extracting group annotations for auditing zero-shot (or ERM)
models to assess their robustness. Specifically, we prompt GPT-4V to annotate Chest-Xray
14 dataset (Wang et al., 2017a) for the presence of chest drains (the spurious attribute)
and observe a significant robustness gap among ERM models.

Finally, in a simplified setup for multimodal contrastive pretraining, we show that when the
spurious correlations in the downstream task are also present in the pretraining distribution
over image, and text pairs, then contrastive pretraining learns: (i) image features that
couple the spurious feature with other robust features, while placing a higher weight on the
spurious one; and (ii) text features that are almost identical for the text descriptions of the
label and the spurious attribute. As a consequence of this, we prove that even with infinite
pretraining data, the zero-shot performance for the pretrained model would be provably
worse than random on examples where label and spurious attributed are uncorrelated. On
the other, when it comes to predicting the spurious attribute it has almost perfect accuracy
on all examples — precisely the observations we make empirically as well.

In summary our key contributions are as follows. First, we study the performance of foun-
dation models across five vision and language classification tasks with hidden confounders,
and observe that while foundation models have poor zero-shot performance on minority
examples (that does not improve with scale), they are accurate at predicting the value of
the confounder. Second, we leverage this finding to propose a new and simple method: PfR
which first zero-shot predicts the confounder when given a text description of it, and then
learns a robust classifier across predicted groups. Theoretically, we tie the performance of
PfR to the zero-shot accuracy of foundation models on tasks with spurious correlations.
Thus, in a simplified setup we provide a theoretical analysis for the zero-shot performance
of solutions learned by multimodal contrastive pretraining, and reconcile our theoretical
insights with practical findings. Empirically, we show PfR’s worst group performance nearly
matches the oracle (group DRO) on all datasets.

12.2 Problem setup

We aim to study the robustness of zero/few-shot foundation models, to distribution shifts
in classification tasks with spurious correlations. We ground this statement more formally
by first defining the task distribution, the model of distribution shift, and what it means to
be robust to it.
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Figure 12.2: Robustness gap versus average performance as pretraining data and model sizes
increase. We observe that while the robustness gap for confounder prediction decreases the
gap between average and worst case increases or remains the same for label prediction.

For a classification task, we use X to denote input text/image and Y for the set of
labels. Additionally, we also define a set C of spurious attributes (or confounders). With
G “: tG1, G2, . . . , Gku, we define a set of disjoint subsets of X ˆ Y ˆ C where each Gi

has distribution Pipx, y, cq. Then, our task distribution is a mixture of distributions over
G , i.e,

ř

i αiPipx, y, cq where αi is the proportion of data from each group. In particular,
each group Gi corresponds to a unique pair of label and confounder values pyi, ciq, i.e.
1ppx, y, cq P Giq “ 1py “ yiq1pc “ ciq. When the label y and spurious attribute c are heavily
correlated, a classifier that only learns the spurious feature c can easily predict the label
y. But, this creates a performance disparity across groups where correlations do not hold.
For e.g . in Waterbirds (Sagawa et al., 2019), the spurious attribute is the background of
the bird, the labels are the category of the bird (landbird vs waterbird) and the groups are
defined over the joint space of the bird category and its background.

Under distribution P , the average error of a label classifier f is erravgy pfq “: EP r1pfpxq ‰ yqs

and spurious atribute classifier g is erravgsp pgq “: EP r1pgpxq ‰ cqs. Similarly, their correspond-
ing worst-case error counterparts, taken over groups is: errwg

y pfq “: maxGPG EP |G r1pfpxq ‰ yqs

and errwg
sp pgq “: maxGPG EP |G r1pgpxq ‰ cqs. We define the robustness gap as the difference

between the average case and worst case performance. Consequently, a classifier with
low robustness gap for label prediction performs similarly on any distribution that only
reweights group proportions αi. Alternatively, robustness to such group shifts is achieved
by having a low robustness gap.

In this work, our goal is to learn a label classifier with (i) high average accuracy, and
(ii) low robustness gap. For this, we assume that we are given a text description tc of
the confounder c, along with a few i.i.dlabeled samples D from P px, yq. Unless specified
otherwise, we assume that group annotations are not given to us. Finally, we use FM to
denote a foundation model, whose zero-shot prediction of the spurious attribute in input x
is FMpx, tcq.

12.3 Zero-shot robustness of foundation models
In this section, we examine the zero-shot performance of open-vocabulary foundation
models on commonly used benchmarks for spurious correlations that involve known con-
founders.
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We find that the zero-shot performance of foundation models suffers from a large robustness
gap, indicating a substantial difference between average-case and worst-group performance
(as previously demonstrated by Lee et al. (2023); Tu et al. (2020); Yang et al. (2023)). As we
increase the scale of pretraining datasets for foundation models, although the models might
become better, the robustness gap stays the same or widens, indicating that scale alone does
not provide robustness to confounders. Subsequently, we experiment with incorporating a
natural language description of the spurious attribute. Our findings indicate that while the
inclusion of spurious attribute descriptions through naïve zero-shot prompting does not
yield improvements, these models demonstrate high accuracy in predicting the presence of
the spurious attribute itself. Building on these findings, we propose our method, Prompting
for Robustness (PfR), in the next section.

Finally, we evaluate efficacy of our observation in identifying spurious correlations on a
practical task in medical diagnosis. In particular, we annotate Chest Xray-14 dataset for
the presence of chest-drain which is known spurious correlation for predicting pneumoth-
orax (Oakden-Rayner et al., 2020). On the annotated groups, ERM models trained on
MedCLIP features (Wang et al., 2022a) show large difference between average case and
worst case performance. This highlights efficacy of our observation in auditing models to
evaluate their robustness to spurious correlations.

12.3.1 Setup

Datasets. We experiment with datasets in both language and vision modalities. For
language, we experiment with: (i) MNLI (Williams et al., 2017), where the prediction task
is relationship between two input sentences as being contradiction, entailment, or none
of the two. Here the spurious attribute is the presence of negation words, e.g., ‘no’, and
‘never’. (ii) CivilComments (Borkan et al., 2019; Koh et al., 2021), where the task is toxicity
prediction and the spurious correlation is with the underlying attribute annotating the
comment, e.g., male versus female, Christian versus Muslim, etc. For the vision modality,
we experiment with: (iii) Waterbirds (Sagawa et al., 2019), where the prediction task is
water bird versus land bird classification, and the spurious attribute is the background of
the image (i.e., land versus water background); (iv) CelebA (Sagawa et al., 2019), where the
prediction task is gender and the spurious attribute is the color of hair. We also experiment
with the CXR-drain dataset introduced in Sec. 12.3.3.

Experimental setup. For our zero-shot probing results, we experiment with a number
of pretrained foundation models. For vision, we experiment with CLIP (Gadre et al., 2023;
Radford et al., 2021). For language, we experiment with RoBerta (Liu et al., 2019b), Llama-
2 (Touvron et al., 2023) and Pythia models (Biderman et al., 2023). We also experiment
with publicly available models where we vary the model and pretraining dataset sizes in
each category. For our ERM experiments, we train linear classifiers on the penultimate
layer outputs (representation). For our zero-shot probes, we leverage standard prompts
commonly used in the literature. Precise details about prompts used on each dataset are in
App. K.3.1.
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Evaluation metrics. Along with the prediction accuracy of the label on the worst-case
group, we also report average performance. Additionally, we also evaluate the performance
of predicting the spurious attribute.

Prompt Predict Waterbirds CelebA CivilComments MNLI
WG Avg WG Avg WG Avg WG Avg

Is this label L? L 59.38 91.97 77.69 81.11 59.25 85.75 76.54 84.79
Is this label L? Ignore confounder C. L 61.37 92.58 86.73 90.28 52.81 87.41 77.95 80.56

Is this label L and confounder C? L,C 57.38 88.15 78.54 83.11 54.29 86.60 75.73 82.91
Is this confounder C? C 90.55 96.33 95.01 99.15 86.73 92.70 92.37 96.19

Table 12.1: Naively incorporating the confounder description into the label classification
prompt does not improve robustness. Results with leveraging natural language description
of the group and label for zero-shot classification.

12.3.2 Observations
Large zero-shot performance gap between the average and worst group. Zero-
shot results are in Table 12.2. When evaluating CLIP L/14 models on vision datasets, a
notable drop of 32% is observed between average and worst group accuracy on Waterbirds
dataset, and a drop of 3.5% is observed on CelebA. Turning to language datasets, the
evaluation of the Llama-2 13b model indicates a significant 25% performance decline in
CivilComments and a 7% drop in MNLI. Notably, the drops observed here are similar to
the performance drops observed with models trained with ERM on their corresponding
labeled data (Idrissi et al., 2022; Sagawa et al., 2019). The decline seen with ERM models
is typically ascribed to the existence of hidden confounders in the training data (Sagawa
et al., 2019), suggesting that pretraining datasets also frequently suffer from analogous
spurious correlations. We formalize this intuition in Sec. 12.4.

Incorporating the group description naïvely does not help out of the box. We
incorporate spurious attribute description in our zero-shot prompt to predict the label and
the spurious attribute jointly. Results are shown in Table 12.1. However, the zero-shot
performance for the worst-case group doesn’t improve – there is less than a 1% change
between the zero-shot and zero-shot with spurious attribute description rows in Table 12.1.
We also evaluated other variants, where we explicitly instructed the model to ignore spurious
attributes, but this did not substantively impact worst-group performance (details are in
App. K.3.2).

Foundation models are surprisingly good at predicting the presence of hidden
confounders. Results are in Table 12.1. Instead of incorporating spurious attribute
description together with the label, we experiment with predicting the presence of a spurious
attribute alone. On all standard spurious correlation benchmarks, we observe that the
average performance of predicting the presence of the spurious attribute is around 95%
with a similar worst-case group performance. This consistent performance is observed
across different groups, emphasizing that, despite foundation models exhibiting significant
robustness gaps in the joint prediction of spurious attributes and labels, the predictive
accuracy for spurious attributes alone remains superior.
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Scaling pretraining datasets and models does not improve zero-shot group
robustness. The scaling trend results are presented in Fig. 12.2 (a)-(c), showcasing the
performance plotted on average against the difference between average performance and
worst-case performance. We analyze this difference in comparison to the average case for both
zero-shot label and spurious attribute prediction. As we scale up the pretraining datasets
and models, we observe that while the difference reduces for the cofounder prediction, the
difference doesn’t improve for the label prediction task. This highlights that the prediction
performance on standard spurious correlation benchmarks don’t improve with scaling and
will require post-training interventions.

Scaling pretraining datasets and models does improve underlying representations.
As expected we observe that the average and worst-case accuracy (trained with DRO on
downstream labeled data) improves as we increase the scale of model size and pretraining
data (Fig. 12.2 (d)).

12.3.3 CXR-Drain: Annotating confounders with GPTV-4
In this section, we evaluate the ability to predict spurious correlation in a zero-shot way on
a task where ground truth annotations are not publicly available. We choose to annotate
2400 images from Chest Xray-14 dataset (Wang et al., 2017a) for the presence of chest
drain with GPT4-V (details are in App. K.3.3). On this dataset, the goal is to predict the
whether the patient suffers from pneumothorax disease given their chest x-ray image and
the presence of a chest tube in the chest cavity acts as a confounder. It is noteworthy that
while previous studies have underscored the issue of spurious correlations in pneumothorax
prediction (Oakden-Rayner et al., 2020), the spurious attributes pertinent to this task are
not openly available. We refer to the subset of Chest Xray 14 with annotated spurious
attributes as CXR-Drain.

While the annotations obtained with GPT4-V are expected to be noisy (different from
ground truth annotations for the presence of chest drain), we observe that models trained
with ERM show a significant performance gap on the constructed CXR-Drain dataset
(Table 12.2). Next, we also note that CXR-drain differs from existing semi-synthetic
spurious correlation benchmarks, e.g., the worst group is not the minority group which,
and hence, re-weighting based methods (Idrissi et al., 2022; Kirichenko et al., 2022) that
simply re-weight different groups may perform poorly when compared with DRO. Due to
its unique properties, we believe that CXR-drain will also serve as a crucial benchmark for
future research on spurious correlations, and we plan to publicly release the dataset.

12.4 Theoretical analysis of multimodal contrastive pre-
training

From Section 12.3, we recall that the worst group zero-shot performance in some cases
(like predicting the label of a task with hidden confounders) never improves with scale. So,
why does confounder prediction improve? In this section, we analyze both these trends
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theoretically when pretraining on data where the label is correlated with the confounder,
just as the task. We conduct our analysis for multimodal contrastive pretraining. Not only
is the contrastive objective more amenable to theoretical analysis, it is commonly used
in practice for training some vision-language foundation models (e.g . CLIP) that aligns
features of image and caption (text) pairs (Radford et al., 2021; Wang et al., 2022a).

Broadly speaking, we show that when certain spurious correlations are also present in
pretraining, then contrastive learning only learns image features that heavily couple the
spurious feature with other robust features predictive of the label. In this coupling, the
component along the spurious feature is higher when the signal-to-noise ratio along the
robust feature is poor. Further, the text encoder learns almost identical representations for
the confounder and label. As a result, even when trained with infinite pretraining data, we
show that the worst group accuracy of the zero-shot label predictor is worse than random,
while that of the confounder predictor is nearly perfect.

Setup. The downstream task T has joint distribution P px, y, cq over image, label and
confounder, where both y and c take values in t`1,´1u (see (12.1)). Label and confounder
are tied by b sampled from a Bernoulli with mean p, where higher p implies stronger
correlation between y and c. The input x is split into three components, i.e. x “ rxr, xc, xns,
where xr P R is the robust feature determined solely by label, xc P R by the confounder,
xn P Rdn is high dimensional noise.

y „ Unift`1,´1u, b „ Bernppq, c “ yp2b ´ 1q (12.1)
xr „ N py,∇2

q, xc “ c, xn „ N p0dn , \2Idnq.

Contrastive pretraining. The pretraining distribution Qpx, tq for multimodal learning
is defined over X ˆT where X is the set of images and T is the set of text inputs. Contrastive
pretraining learns an image encoder ϕ : X ÞÑ Rk and a text encoder ω : T ÞÑ Rk by pushing
together representations of image and text pair sampled from Qpx, tq, and pulling apart
representations of independent sampled pairs of images from Qpxq and texts from Qptq.
We analyze the setting where contrastive pretraining learns ϕ, ω by minimizing spectral
contrastive loss (HaoChen et al., 2021):

´2Epx,tq„Qϕpxq
Jωptq `Ex„QEt„Qpϕpxq

Jωptqq
2. (12.2)

For simplicity, we consider Qpx, tq that is relevant for the downstream task T . Thus, the
set of text descriptions T is: tty,1, ty,´1, tc,1, tc,´1u. The marginal Qptq is uniform. For the
conditionals, given a P t´1, 1u , Qpx | ty,aq “ P px | y “ aq, and Qpx | tc,aq “ P px | c “ aq.
Note that, as p in (12.1) increases, not only does it increase downstream correlation
EP rycs, it also increases the overlap between Qpx | ty,aq and Qpx | tc,aq in the pretraining
distribution.

Zero-shot predictors. In practice, pretrained ϕ, ω are used as zero-shot classifiers
by evaluating ϕpxqJωptq, where t is the labels’s text description. Adhering to this, we
define zero-shot label classifier f “: 2 ¨ 1pϕpxqJpωpty,1q ´ ωpty,´1qq ě 0q ´ 1, and zero-shot
confounder classifier g “: 2 ¨ 1pϕpxqJpωptc,1q ´ ωptc,´1qq ě 0q ´ 1.
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12.4.1 Key insights and main result.

In Theorem 12.4.1 we provide an informal statement of our main result on the worst group
zero-shot performance of label and confounder classifiers. We note that as the spurious
correlation p increases, the worst group error worsens for the label predictor and on the
other end, improves for the confounder predictor.
Theorem 12.4.1. (zero-shot robustness; informal) Let the zero-shot label pfq and con-
founder classifier pgq be obtained by minimizing the loss in (12.2) on infinite pretraining
data for linear functions ϕ, ω. Then, for ∇ “ Ωp1q, label classifier is worse than random
on the worst group, since errwg

y pfq “ 1{2 erfcp´c1p∇q. On the other hand, the confounder
classifier suffers small error on all groups since errwg

sp pgq “ 1{2 erfcpc2p∇q. Here, c1, c2 ą 0
are constants.

Our analysis in 12.4.2 will show that the above result is a consequence of (i) image encoder
relying more on non-robust compared to robust xr when ∇ is higher; (ii) text encoder
failing to learn separate representations for the label and confounder descriptions.

Intuition. During multimodal contrastive pretraining feature alignment of the image
and corresponding text features is achieved when images xi, xj „ Qpx | tq sampled from the
text have well clustered representations, and the clusters of different text inputs are well
separated. Our understanding relies on two key observations. First, when the pretraining
distribution replicates the task distribution’s spurious correlations (as Qpx, tq does with
P px, y, cq), then the clusters learned for the label and confounder necessarily overlap since
Qpx | ty,aq « Qpx | tc,aq (matches on all but the group where correlation is absent). Thus,
given this distribution overlap the optimal text encoder’s features for the label and the
confounder would be very similar. Second, when the noise along the robust feature ∇ is
high, the intra cluster variance along the non-robust feature xc is relatively lower. This
biases contrastive learning to place higher weight on the non-robust feature, in learning
features that separate clusters corresponding to the different text inputs with large margins.
Together, this would lead to poor robustness for the label predictor, and opposite for the
spurious attribute predictor, as we note in Theorem 12.4.1.

12.4.2 Optimal solutions for spectral contrastive loss.
In this subsection, we present Theorem 12.4.2 which states the solutions for the image and
text encoders learned by minimizing the objective in (12.2), for linear ϕ and k “ 2. In
Appendix K.2.2 we prove results for more general families. We make two observations that
are consistent with our intuition above. First, we see that when the noise along robust
feature p∇q is large, then any increase in spurious correlation ppq, increases the optimal
image features’ weights along spurious atttribute pxcq, as θ decreases. Second, we see
that the optimal solution for the text learns identical features for label and confounder.
Thus, on any group that they disagree, the upweighted xc feature contributes more to the
prediction.
Theorem 12.4.2 (Optimal solutions for (12.2); informal). Let ϕpxq “ rϕJ

1 x, ϕ
J
2 xs for

ϕ1, ϕ2 P Rd. When p ą 0.5,∇ “ Ωp1q, the optimal values for norm bounded ϕ1, ϕ2 that
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minimize the objective in (12.2), are

ϕ1 “ rcospθq{
?
∇2`1, sinpθqs

J, and

ϕ2 “ r´sinpθq{
?
∇2`1, cospθqs

J,

where θ “ 1{p∇2. Also, the text features match for label and confounder, i.e. ωpty,aq “

ωptc,aq “ r1, asJ for a P t1,´1u.

12.5 Prompting for Robustness
Our results in Section 12.3 suggest that zero-shot classification with foundation models
often attains high average group accuracy but low worst-group accuracy. However, we note
that they are surprisingly accurate at predicting the presence of a confounder. We leverage
this finding to propose a simple but effective method: Prompting for Robustness (PfR).
PfR learns a robust classifier given a few labeled examples and a text description of the
confounder. While standard techniques of using labeled data or foundation model alone fail,
we show that PfR efficiently uses both to recover a classifier with worst group performance
close to that of methods that have ground truth group information (i.e., Group DRO).

Method Waterbirds CelebA CivilComments MNLI CXR-Drain
WG Avg WG Avg WG Avg WG Avg WG Avg

Zero-shot 59.38 91.97 77.69 81.11 59.25 85.75 76.54 84.79 ´ ´

ERM 70.71 98.75 54.84 94.96 61.35 92.42 67.30 87.71 51.79 76.10
JTT 85.86 95.47 82.49 92.74 72.73 90.54 72.75 86.73 56.52 77.53

Yang et al. 90.13 95.80 88.12 91.64 ´ ´ ´ ´ 59.37 74.58
Zhang et al. 86.90 96.20 84.60 90.40 50.10 54.20 ´ ´ ´ ´

PfR (ours) 91.05 94.32 88.05 91.97 77.83 88.70 81.28 84.60 68.55 76.73

Group DRO
(oracle)

93.23 94.40 90.79 92.32 80.21 86.52 81.54 84.37 ´ ´

Table 12.2: PfR improves worst group performance over ERM and zero-shot foundation
models: On five benchmarks from Section 12.3 we evaluate average and worst-group
performance of PfR and compare it with baselines JTT, ERM, and zero-shot.

Prompting for Robustness (PfR). PfR (summarized in Algorithm 10) runs in two
stages. In the first stage, PfR prompts an open vocabulary foundation model FM with the
text description tc of the confounding attribute and recovers a zero-shot prediction of the
confounder c on any given input (for e.g . in the case of CivilComments the confounder is
described as “race, religion or gender”). Using this, each training example (xi), which was
previously annotated only for the label of interest (yi), is additionally annotated with the
value of the confounding attribute (pci) (for e.g . “black/white and christian/muslim”). The
training dataset is then split into disjoint groups xG based on the paired value pyi,pciq of
the label and predicted confounder. In the second stage, PfR learns a robust classifier by
minimizing the worst group loss over each predicted group, minimizing

min
f

max
GPxG

E rℓpfpxq, yq | x P Gs . (12.3)
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Algorithm 10 Prompting for Robustness (PfR)
Input: Foundation model FM, text description of counfounder tc, labeled dataset
D “ txi, yiu

n
i“1.

Stage I: Predict confounder (spurious attribute)
• Prompt FM with tc to get zero-shot head FMp¨, tcq.
• For each datapoint predict confounder pci Ð FMpxi, tcq.
• Partition dataset into set of disjoint groups xG based on value of label and predicted

confounder: py,pcq.
Stage II: Optimize worst group loss with DRO

• Learn robust classifier f by minimizing the worst loss over predicted groups in (12.3).

The above objective can be optimized with an online algorithm that treats f and G as players
in a minimax game, analogously to the group DRO algorithm described by Sagawa et al.
(2020). Hence, we reuse their Algorithm 1 to optimize our objective in Equation (12.3). The
key difference between our objective and standard Group DRO is that the latter minimizes
worst group loss over ground truth groups obtained by using human annotations of the
confounder attribute. Based on our findings from Section 12.3, we should expect that the
confounder can be predicted accurately in zero shot, enabling PfR to possibly match the
performance of Group DRO. This is indeed what we will see in experiments.

12.5.1 PfR is more robust than zero-shot and ERM
On the five datasets we introduced previously, we evaluate the performance of PfR and
compare with both zero-shot and few-shot algorithms that have access to a few labels (but
not the ground-truth group labels).

Setup and baselines. On the language tasks we use Llama2-7b and Llama2-13b
models (Touvron et al., 2023) for zero-shot prediction (reporting max of the two), and on
the vision tasks we use CLIP-ViT-L/16 (Radford et al., 2021). We compare to JTT (Liu
et al., 2021a), a prior method for robustness that does not require group labels, as well as
standard ERM. We also include Group DRO (Sagawa et al., 2019) as an oracle baseline
that has access to true group labels. All few-shot methods including PfR are used to train a
linear head over fixed features. In the language task we train a linear head on top of features
learned by finetuning a RoBERTa encoder (Liu et al., 2019b) on the MNLI/CivilComments
dataset, and for vision tasks we train a linear head over CLIP’s image encoder.

Results. In Table 12.2, we compare average and worst group performance for different
methods. First, we observe that averaged across datasets, PfR reduced worst group error
by 47% compared to zero-shot, and 52% and 30% compared to ERM and JTT, respectively.
On some datasets like Waterbirds, the worst group gains are as high as ą 75%. More
importantly, PfR’s performance closely matches that of the oracle Group DRO algorithm
across all datasets. Additionally, unlike overly pessimistic DRO objectives like CVaR-
DRO (Hu et al., 2018), the average performance is not significantly compromised from
trying to improve worst group accuracy. Thus, we see that PfR learns a classifier robust to
spurious correlations without much human annotation overhead beyond a description of
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Figure 12.3: In-context learning with 128 examples does not improve robustness gap, instead
hurts it: Average and worst-group performance of ICL, ERM and PfR on language tasks.

the confounder.

12.5.2 Comparing PfR with in-context learning
For language tasks, in-context learning (ICL) is a commonly used few-shot method to
improve performance when zero-shot methods are poor (Brown et al., 2020). In ICL, some
labeled training examples are fed along with a language description of the classification task
to large language models (e.g . GPT-3.5, Llama). Since PfR also uses labeled examples, we
compare our method with ICL on CivilComments and MNLI (see Fig. 12.3). We observe
that while ICL improves over zero-shot inference on average, the worst-group performance
remains almost unchanged for CivilComments and worsens for MNLI. We can therefore
see that ICL is not a viable alternative to PfR. One reason for why ICL can hurt worst
group performance is prior works have shown ICL in language models to make predictions
consistent with ERM models trained with gradient descent (Ahn et al., 2023; Akyürek et al.,
2022; Von Oswald et al., 2023). Since such ERM models are known to latch onto spurious
correlations in the training data (Nagarajan et al., 2020; Shah et al., 2020), we would expect
ICL to improve average performance at the expense of worst group performance.

12.5.3 Theoretical analysis of PfR

PfR relies on foundation models to accurate predict the confounding attribute (Sec. 12.3),
even when they cannot in zero shot disentangle this confounder from the class label. Given
the description tc, the confounder prediction error suffered by the zero-shot model in the first
stage of PfR is errcpFMp¨, tcqq. In Theorem 12.5.1 we provide worst-group generalization
error guarantees for PfR.
Theorem 12.5.1 (PfR’s worst group error; informal). For PfR output pf , w.h.p. 1 ´ δ,
worst group generalization error of pf is ă

„

a

log CpFqK{δ{n ` errcpFMptcqq, where CpFq is
complexity of F , K is number of groups and latter term is FM’s zero-shot performance on
confounder prediction.

The above result shows that the worst group accuracy of PfR is upper bounded by two
terms. The first term is the generalization error suffered by the oracle algorithm (Group
DRO), and the second is the zero-shot error in predicting the confounder. Thus, as the the
zero-shot accuracy of confounder prediction improves, it linearly affects worst-group error
guarantees for PfR.
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12.6 Related Work
Several prior works use distribution robust optimization (DRO) to learn predictors robust
to shifts in an uncertainty set (Ben-Tal et al., 2013; Blanchet and Murthy, 2019; Duchi
et al., 2016; Duchi and Namkoong, 2021). For spurious correlation problems that result
in more specific group shifts, DRO tends to be overly pessimistic (worse than ERM) (Hu
et al., 2018). To address this, previous works assume knowledge of the spurious attribute,
and either only minimize worst loss over known groups (Sagawa et al., 2019) or average loss
over re-weighted ones (Idrissi et al., 2022; Kirichenko et al., 2022). Since it is restrictive to
assume group knowledge, other works used relied on two observations: spurious attributes
are easier to learn (than robust features) and ERM suffers from a simplicity bias (Sagawa
et al., 2020; Shah et al., 2020). Using this, they either reconfigure DRO’s uncertainty
set (Setlur et al., 2023) (or make it random (Zhai et al., 2021)), while other works (Liu
et al., 2021a; Nam et al., 2020) exploit it to recover the hidden minority group with ERM
losses. Finally, some other works on robustness to hidden confounders (Bao and Barzilay,
2022; Creager et al., 2021; Sohoni et al., 2021) either rely on dataset dependent heuristics,
or the ability to query test samples (Lee et al., 2022). Different from the above, we assume
a language description of the confounder (as opposed to groups). Armed with this, we use
open vocabulary models to predict the presence of a confounder, and then learn robust
predictors with DRO over predicted groups. Thus, while we leverage DRO formulation
for robustness guarantees, we also avoid its pitfalls by relying on zero-shot foundation
models.

12.7 Conclusion and Limitations
In this work, we focus on the robustness of zero-shot models to tasks with spurious
correlations. While foundation models have shown unprecedented zero-shot capabilities,
we show that these models struggle when confounders lose correlation with labels. To
address this, we propose Prompting for Robustness (PfR), leveraging language descriptions
to prompt zero-shot classifiers and train robust models. Empirical results reveal significant
performance gains in the worst accuracy groups. Overall, this work offers insights and a
practical approach to enhance foundation model robustness against hidden confounders,
contributing to bias mitigation and improved fairness in machine learning.

156



Chapter 13

Conclusion and Future Work

In conclusion, the work in this thesis demonstrates the pivotal role of leveraging unlabeled
data to enhance the robustness and adaptability of deep learning models, addressing critical
challenges posed by distribution shifts in real-world applications. A common theme across
my work involves leveraging unlabeled data to aid in uncertainty estimation and self-training
to improve classification models under distribution shift. Uncertainty estimation plays a
crucial role in decision-making, while self-training enables models to improve themselves
iteratively. These techniques have shown promise in various distribution shift scenarios,
showcasing their potential to enhance model performance and robustness. As we are
building strong foundation models, the insights gained here pave a way for exciting future
work in the following directions:

• Understanding and improving uncertainty estimation in LLMs and VLMs:
Uncertainty estimation for natural language tasks with generative foundation models
presents interesting challenges and opportunities for future research. Question an-
swering tasks or abstractive tasks, such as text summarization or paraphrasing, often
require models to generate novel and coherent outputs, making uncertainty estimation
crucial for assessing the reliability of these outputs. LLMs demonstrate the capability
to predict uncertainty by emitting confidence scores in predictions, which are often
calibrated (Kadavath et al., 2022; Tian et al., 2023). However, the underlying factors
influencing this capability are not fully understood. Moreover, it remains unclear
how these capabilities are transferred to VLMs obtained by instruction fine-tuning of
LLMs. Future research could delve deeper into elucidating these factors, including
the impact of input data characteristics and training dynamics. By gaining insights
into the limitations and biases inherent in current uncertainty estimation techniques,
efforts can be directed towards enhancing the interpretability and calibration of
uncertainty scores. This understanding can pave the way for improved techniques for
uncertainty estimation in LLMs. By accurately quantifying uncertainty associated
with generated abstractions, these advancements could lead to more reliable and
contextually appropriate outputs from generative foundation models.
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• Self-training to improve reasoning capabilities in LLMs: Self-training involves
leveraging unlabeled data to iteratively improve model performance, which could
be particularly impactful for fine-tuning reasoning abilities in these models. One
avenue of investigation could involve designing self-training strategies that focus on
refining reasoning skills through exposure to diverse and contextually rich unlabeled
text data (Chen et al., 2024). By iteratively updating the model based on self-
generated labels from the most confident predictions, coupled with human verification
and feedback loops, it may be possible to boost the model’s ability to infer logical
relationships, draw nuanced conclusions, and generalize effectively across different
tasks and domains. This approach has the potential to improve reasoning abilities in
LLMs beyond what is achievable by pretraining alone.

• Continual Training of LLMs: Building on our work on continual training with
CLIP (Garg et al., 2024), a interesting veneue to expand our investigation is generative
language and vision models. Large language models (LLMs), in particular, are prone
to “hallucination” of factually incorrect information on queries involving dynamically
evolving concepts, e.g., GPT-3.5’s and Llama-2-70b-chat response to “Who is 56th
prime minister of United Kingdom?” is Boris Johnson (which is incorrect as Rishi
Sunak is 56th prime minister). How can we make these models more robust to the
evolving nature of the world?

While one obvious solution is to keep these models up to date on the latest data
via retraining, this solution is extremely compute inefficient. An alternate approach
would be to instead develop approaches that allow us to quickly adapt the parameters
of a foundation model based on limited amounts of new data, without requiring
a fresh training run. Recently, researchers have started exploring solutions to the
adaptation of foundation models. For LLMs, Vu et al. (2023) introduced FreshLLMs
highlighting the need to update LLMs to evolving factual information and proposed a
simple method that involves augmenting the input query with corresponding results
retrieved from an internet search. This solution doesn’t involve any learning/updating
LLMs and hence even for repeated queries, such a system can substantially increase
the inference time and cost of the deployed system. Another interesting question
is around investigating learning rate schedules that are more amenable to continual
learning while training models that are deployable at intermediate time steps.
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Appendix

159



Appendix A

Appendix: A Unified View of Label Shift
Estimation

A.1 MLLS Algorithm

Algorithm 11 Maximum Likelihood Label Shift estimation
input : Labeled validation samples from source and unlabeled test samples from target.

Trained blackbox model pf , model class G and loss function l for calibration (for instance,
MSE or negative log-likelihood).

1: On validation data minimize the loss l over class G to obtain f “ g ˝ pf .
2: Solve the optimization problem (2.5) using f to get pw.

output : MLLS estimate pw

Step 1. description. Let the model class used for post-hoc calibration be represented by G.
Given a validation dataset tpxv1, yv1q, . . . , pxvn, yvnqu sampled from the source distribution
Ps we compute, tp pfpxv1q, yv1q, p pfpxv2q, yv2q, . . . , p pfpxvnq, yvnqu, applying our classifier pf to
the data. Using this we estimate a function,

pg “ argmin
gPG

n
ÿ

i“1

ℓpg ˝ pfpxviq, yviq , (A.1)

where the loss function ℓ can be the negative log-likelihood or squared error. Experimentally
we observe same performance with both the loss functions. Subsequently, we can apply the
calibrated predictor pg ˝ pf .

Our experiments follow Alexandari et al. (2021), who leverage BCTS 1 to calibrate their
models. BCTS extends temperature scaling (Guo et al., 2017) by incorporating per-class

1Motivated by the strong empirical results in Alexandari et al. (2021), we use BCTS in our experiments
as a surrogate for canonical calibration.
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bias terms. Formally, a function g : ∆k´1 ÞÑ ∆k´1 in the BCTS class G, is given by

gjpxq “
exp rlogpxjq{T ` bjs

ř

i exp rlogpxiq{T ` bis
@j P Y

where tT, b1, . . . , b|Y|u are the |Y| ` 1 parameters to be learned.

A.2 Prior Work on Label Shift Estimation
Dataset shifts are predominantly studied under two scenarios: covariate shift and label
shift (Storkey, 2009). Schölkopf et al. (2012) articulates connections between label shift
and covariate shift with anti-causal and causal models respectively. Covariate shift is well
explored in past (Cortes and Mohri, 2014; Cortes et al., 2010; Gretton et al., 2009; Zadrozny,
2004; Zhang et al., 2013).

Approaches for estimating label shift (or prior shift) can be categorized into three classes:

1. Methods that leverage Mixture Proportion Estimation (MPE) (Blanchard et al.,
2010; Ramaswamy et al., 2016) techniques to estimate the target label distribution.
MPE estimate in general (e.g. Blanchard et al. (2010)) needs explicit calculations of
pspx|yqp“ ptpx|yqq which is infeasible for high dimensional data. More recent methods
for MPE estimation, i.e. Ramaswamy et al. (2016), uses Kernel embeddings, which
like many kernel methods, require the inversion of an n ˆ n Gram matrix. The Opn3q

complexity makes them infeasible for large datasets, practically used in deep learning
these days;

2. Methods that directly operate in RKHS for distribution matching (Du Plessis and
Sugiyama, 2014b; Zhang et al., 2013). Zhang et al. (2013) extend the kernel mean
matching approach due to Gretton et al. (2009) to the label shift problem. Instead of
minimizing maximum mean discrepancy, Du Plessis and Sugiyama (2014b) explored
minimizing PE divergence between the kernel embeddings to estimate the target label
distribution. Again, both the methods involve inversion of an n ˆ n kernel matrix,
rendering them infeasible for large datasets; and

3. Methods that work in low dimensional setting (Azizzadenesheli et al., 2019; Lipton
et al., 2018b; Saerens et al., 2002) by directly estimating ptpyq{pspyq to avoid the
curse of dimensionality. These methods leverage an off-the-shelf predictor to estimate
the label shift ratio.

In this paper, we primarily focus on unifying methods that fall into the third category.

A.3 Marginal calibration is insufficient to achieve con-
sistency

In this section, we will illustrate insufficiency of marginal calibration to achieve consistency.
For completeness, we first define margin calibration:
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Definition A.3.1 (Marginal calibration). A prediction model f : X ÞÑ ∆k´1 is marginally
calibrated on the source domain if for all x P X and j P Y,

Pspy “ j|fjpxqq “ fjpxq .

Intuitively, this definition captures per-label calibration of the classifier which is strictly less
restrictive than requiring canonical calibration. In the example, we construct a classifier
on discrete X which is marginally calibrated, but not canonically calibrated. With the
constructed example, we show that the population objective (2.4) yields inconsistent
estimates.

Example. Assume X “ tx1, x2, x3, x4, x5, x6u and Y “ t1, 2, 3u. Suppose the predictor
fpxq and Pspy|fpxqq are given as,

fpxq y=1 y=2 y=3
x1 0.1 0.2 0.7
x2 0.1 0.7 0.2
x3 0.2 0.1 0.7
x4 0.2 0.7 0.1
x5 0.7 0.1 0.2
x6 0.7 0.2 0.1

Pspy|fpxqq y=1 y=2 y=3
x1 0.2 0.1 0.7
x2 0.0 0.8 0.2
x3 0.1 0.2 0.7
x4 0.3 0.6 0.1
x5 0.8 0.0 0.2
x6 0.6 0.3 0.1

Clearly, the prediction fpxq is marginally calibrated. We have one more degree to freedom
to choose, which is the source marginal distribution on X . For simplicity let’s assume
pspxiq “ 1{6 for all i “ t1, . . . , 6u. Thus, we have pspy “ jq “ 1{3 for all j “ t1, 2, 3u. Note,
with our assumption of the source marginal on x, we get Ptpxi|y “ jq “ Pspxi|y “ jq “

Pspy “ j|fpxiqq{2. This follows as x ÞÑ fpxq is an one-to-one mapping.

Now, assume a shift i.e. prior on Y for the target distribution of the form rα, β, 1 ´ α ´ βs.
With the label shift assumption, we get

@i ptpxiq “
1

2
pαPspy “ 1|fpxiqq ` βPspy “ 2|fpxiqq ` p1 ´ β ´ αqPspy “ 3|fpxiqqq .

Assume the importance weight vector as w. Clearly, we have w1 ` w2 ` w3 “ 3. Re-writing
the population MLLS objective (2.4), we get the maximisation problem as

argmax
w

6
ÿ

i“1

ptpxiq logpfpxiq
Twq . (A.2)

Differentiating (A.2) with respect to w1 and w2, we get two high order equations, solving
which give us the MLLS estimate wf . To show inconsistency, it is enough to consider
one instantiation of α and β such that |3α ´ w1| ` |3β ´ w2| ` |w1 ` w2 ´ 3α ´ 3β| ‰ 0.
Assuming α “ 0.8 and β “ 0.1 and solving (A.2) using numerical methods, we get
wf “ r2.505893, 0.240644, 0.253463s. As w “ r2.4, 0.3, 0.3s, we have wf ‰ w concluding the
proof.
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A.4 Proofs from Section 2.4

Lemma A.4.1 (Identifiability). If the set of distributions tppz|yq : y “ 1, ..., ku are linearly
independent, then for any w that satisfies (2.2), we must have w “ w˚. This condition
is also necessary in general: if the linear independence does not hold then there exists a
problem instance where we have w,w˚ P W satisfying (2.2) while w ‰ w˚.

Proof. First we prove sufficiency. If there exists w ‰ w˚ such that (2.2) holds, then
we have

řk
y“1 pspz, yqpwy ´ w˚

y q “ 0 for all z P Z. As w ´ w˚ is not the zero vector,
tpspz, yq, y “ 1, ..., ku are linearly dependent. Since pspz, yq “ pspyqppz|yq and pspyq ą 0 for
all y (by assumption), we also have that tppz|yq, y “ 1, ..., ku are linearly dependent. By
contradiction, we show that the linear independence is necessary.

To show necessity, assume w˚
y “ 1

kpspyq
for y “ 1, ..., k. We know that w˚ satisfies (2.2) by

definition. If linear independence does not hold, then there exists a vector v P Rk such
that v ‰ 0 and

řk
y“1 pspz, yqvy “ 0 for all z P Z. Since the w˚ we construct is not on the

boundary of W , we can scale v such that w˚ ` αv P W where α ě 0 and v ‰ 0. Therefore,
setting w “ w˚ ` αv gives another solution for (2.2), which concludes the proof.

If f is calibrated, then the two objectives (2.3) and (2.4) are identical when Z is chosen as
∆k´1 and ppz|xq is defined to be δfpxq.

Proof. The proof follows a sequence of straightforward manipulations. In more detail,

Et

“

log fpxq
Tw

‰

“

ż

ptpxq logrfpxq
Twsdx

“

ż ż

ptpxqppz|xq logrfpxq
Twsdxdz

“

ż ż

ptpxqppz|xqIfpxq “ z logrfpxq
Twsdxdz

“

ż ż

ptpxqppz|xq logrzTwsdxdz

“

ż

ptpzq logrzTwsdz

“

ż

ptpzq log
”

k
ÿ

y“1

pspy|zqw
ı

dz ,

where the final step uses the fact that f is calibrated.

Theorem 2.4.2 (Population consistency of MLLS). If a predictor f : X ÞÑ ∆k´1 is
calibrated and the distributions tppfpxq|yq : y “ 1, . . . , ku are strictly linearly independent,
then w˚ is the unique maximizer of the MLLS objective (2.4).

163



Proof. According to Lemma 2.4.3 we know that maximizing (2.4) is the same as maximizing
(2.3) with ppz|xq “ δfpxq, thus also the same as minimizing the KL divergence between ptpzq

and pwpzq. Since ptpzq ” pw˚pzq we know that w˚ is a minimizer of the KL divergence
such that the KL divergence is 0. We also have that KLpptpzq, pwpzqq “ 0 if and only if
ptpzq ” pwpzq, so all maximizers of (2.4) should satisfy (2.2). According to Lemma 2.4.1, if
the strict linear independence holds, then w˚ is the unique solution of (2.2). Thus w˚ is
the unique maximizer of (2.4).

Proposition A.4.2. For a calibrated predictor f , the following statements are equivalent:

(1) tppfpxq|yq : y “ 1, . . . , ku are strictly linearly independent.

(2) Es

“

fpxqfpxqT
‰

is invertible.

(3) The soft confusion matrix of f is invertible.

Proof. We first show the equivalence of (1) and (2). If f is calibrated, we have pspfpxqqfypxq “

pspyqppfpxq|yq for any x, y. Then for any vector v P Rk we have

k
ÿ

y“1

vyppfpxq|yq “

k
ÿ

y“1

vy
pspyq

pspyqppfpxq|yq “

k
ÿ

y“1

vy
pspyq

pspfpxqqfypxq “ pspfpxqq

k
ÿ

y“1

vy
pspyq

fypxq .

(A.3)

On the other hand, we can have

Es

“

fpxqfpxq
T
‰

“

ż

fpxqfpxq
Tpspfpxqqdpfpxqq . (A.4)

If tppfpxq|yq : y “ 1, . . . , ku are linearly dependent, then there exist v ‰ 0 such that (A.3)
is zero for any x. Consequently, there exists a non-zero vector u with uy “ vy{pspyq such that
uTfpxq “ 0 for any x satisfying pspfpxqq ą 0, which means uTEs

“

fpxqfpxqT
‰

u “ 0 and thus
Es

“

fpxqfpxqT
‰

is not invertible. On the other hand, if Es

“

fpxqfpxqT
‰

is non-invertible, then
there exist some u ‰ 0 such that uTEs

“

fpxqfpxqT
‰

u “ 0. Further as uTEs

“

fpxqfpxqT
‰

u “
ş

uTfpxqfpxqTu pspxqdx “
ş
∣∣fpxqTu

∣∣ pspxqdx. As a result, the vector v with vy “ pspyquy

satisfies that (A.3) is zero for any x, which means tppfpxq|yq : y “ 1, . . . , ku are not strictly
linearly independent.

Let C be the soft confusion matrix of f , then

Cij “ psppy “ i, y “ jq “

ż

dpfpxqq fipxqppfpxq|y “ jqpspy “ jq

“

ż

fipxqfjpxqpspfpxqqdpfpxqq .

Therefore, we have C “ Es

“

fpxqfpxqT
‰

, which means (2) and (3) are equivalent.
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We introduce some notation before proving consistency. Let P “ txf, wy|w P Wu be the
class of densities2 for a given calibrated predictor f . Suppose ppn, p0 P P are densities
corresponding to MLE estimate and true weights, respectively. We use hpp1, p2q to denote
the Hellinger distance and TVpp1, p2q to denote the total variation distance between two
densities p1, p2. Hrpδ,P, P q denotes δ-entropy for class P with respect to metric LrpP q.
Similarly, Hr,Bpδ,P, P q denotes the corresponding bracketing entropy. Moreover, Pn

denotes the empirical random distribution that puts uniform mass on observed samples
x1, x2, . . . xn. Before proving consistency we need to re-state two results:
Lemma A.4.3 (Lemma 2.1 (van de Geer, 2000)). If P is a probability measure, for all
1 ď r ă 8, we have

Hr,Bpδ,G , P q ď H8pδ{2,G q for all δ ą 0 .

Lemma A.4.4 (Corollary 2.7.10 (van der Vaart and Wellner, 1996)). Let F be the class
of convex functions f : C ÞÑ r0, 1s defined on a compact, convex set C Ă Rd such that
|fpxq ´ fpyq| ď L ∥x ´ y∥ for every x,y. Then

H8pδ,Fq ď K

ˆ

L

δ

˙d{2

,

for a constant K that depends on the dimension d and C.

We can now present our proof of consistency, which is based on Theorem 4.6 from van de
Geer (2000):
Lemma A.4.5 (Theorem 4.6 (van de Geer, 2000)). Let P be convex and define class
G “

!

2p
p`p0

|p P P
)

. If
1

n
H1pδ,G , Pnq ÑP 0 , (A.5)

then hpppn, p0q Ñ 0 almost surely.
Theorem 2.4.3 (Consistency of MLLS). If f satisfies the conditions in Theorem H.2.1,
then pwf in (2.5) converges to w˚ almost surely.

Proof. Assume the maximizer of (2.5) is pwf and p0 “ xf, w˚y. Define class G “

!

2p
p`p0

|p P P
)

.
To prove consistency, we first bound the bracketing entropy for class G using Lemma A.4.3
and Lemma A.4.4.

Clearly P is linear in parameters and hence, convex. Gradient of function g P G is given by
2p0

pp`p0q2
which in turn is bounded by 2

p0
. Under assumptions of Condition 2.5.1, the functions

in G are Lipschitz with constant 2{τ . We can bound the bracketing entropy H2,Bpδ,G , P q

using Lemma A.4.4 and Lemma A.4.3 as

H2,Bpδ,G , P q ď H8pδ,G q ď K1

ˆ

1

δτ

˙k{2

,

2Note that we use the term density loosely here for convenience. The actual density is xfpxq, wy ¨ pspxq

but we can ignore pspxq because it does not depend on our parameters.
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for some constant K1 that depends on k.

On the other hand, for cases where p0 can be arbitrarily close to zero, i.e., Condition 2.5.1
doesn’t hold true, we define τpδq and Gτ as

τpδq “ sup

"

τ ě 0 |

ż

p0ďτ

p0dx ď δ2
*

, (A.6)

Gτ “

"

2p

p ` p0
Ip0 ě τ | p P P

*

.

Using triangle inequality, for any g1, g2 P G , we have
ż

∥g1 ´ g2∥2 dx ď

ż

∥g1 ´ g2∥2 Ip0 ď τdx `

ż

∥g1 ´ g2∥2 Ip0 ě τdx

ď 2

ż

Ip0 ď τdx `

ż

∥g1 ´ g2∥2 Ip0 ě τdx . (A.7)

Assume τpδq such that (A.6) is satisfied. Using (A.7), we have

H2,Bpδ,G , P q ď H2,Bp
?
3δ,Gτpδq, P q .

Thus, for the cases where p0 can be arbitrarily close to zero, instead of bounding H2,Bpδ,G , P q,
we we bound HBpδ,Gτpδq, P q. For any δ ą 0, there is a compact subset Kδ P X , such that
pspXzKδq ă δ. Using arguments similar to above, function g P Gτpδq is Lipschitz with
constant 2{τpδq ą 0. Again using Lemma A.4.4 and Lemma A.4.3, we conclude

H2,Bp2δ,Gτpδq, P q ď H8pδ,Gτpδqq ď K2

ˆ

1

δτpδq

˙k

,

for some constant K2 that depends on k. Finally, we use Lemma A.4.5 to conclude
hpppn, p0q Ña.s. 0. Further, as TVpppn, p0q ď hpppn, p0q, we have hpppn, p0q Ña.s. 0 implies
TVpppn, p0q Ña.s. 0. Further

∥ pwf ´ w˚∥2 ď
1

λmin

ż ∣∣fpxq
T

p pwf ´ w˚
q
∣∣2 pspxqdx

ď
supx

␣∣∣fpxqT p pwf ´ w˚q
∣∣(

λmin

ż ∣∣fpxq
T

p pwf ´ w˚
q
∣∣ pspxqdx

l jh n

TVpppn,p0q

, (A.8)

where λmin is the minimum eigenvalue of covariance matrix
“ş

fpxqfpxqTpspxqdx
‰

. Note
using Proposition 2.4.4, we have λmin ą 0. Thus, we conclude ∥ pwf ´ w˚∥ Ña.s. 0.

Example 1. Consider a mixture of two Gaussians with pspx|y “ 0q :“ N pµ, 1q and
pspx|y “ 1q :“ N p´µ, 1q. We suppose that the source mixing coefficients are both 1

2
, while
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the target mixing coefficients are αp‰ 1
2
q, 1 ´ α. Assume a class of probabilistic threshold

classifiers: fpxq “ r1 ´ c, cs for x ě 0, otherwise fpxq “ rc, 1 ´ cs with c P r0, 1s.

Then the population error of MLLS is given by

4

∣∣∣∣p1 ´ 2αqppspx ě 0|y “ 0q ´ cq

1 ´ 2c

∣∣∣∣ ,
which is zero only if c “ pspx ě 0|y “ 0q for a non-degenerate classifier.

Proof. The intuition behind the construction is, for such an Example, we can get a closed
form solution for the population MLLS and hence allows a careful analysis of the estimation
error. The classifier fpxq predicts class 0 with probability c and class 1 with probability
1 ´ c for x ě 0, and vice-versa for x ă 0. Using such a classifier, the weight estimator is
given by:

pw “ argmin
w

Elogxfpxq, wy

(i)
“ argmin

w0

„
ż 0

´8

logpp1 ´ cqw0 ` cp2 ´ w0qqptpxqdx `

ż 8

0

logpcw0 ` p1 ´ cqp2 ´ w0qqptpxqdx

ȷ

(ii)
“ argmin

w0

rlogpp1 ´ cqw0 ` cp2 ´ w0qqptpx ď 0q ` logpcw0 ` p1 ´ cqp2 ´ w0qqptpx ě 0qs ,

where equality (i) follows from w1 “ 2 ´ w0 and the predictor function and (ii) follows from
the fact that within each integral, the term inside the log is independent of x. Differentiating
w.r.t. to w0, we have:

1 ´ 2c

2c ` w0 ´ 2cw0

ptpx ď 0q `
2c ´ 1

2cw0 ` 2 ´ 2c ´ w0

ptpx ě 0q “ 0

1

2c ` w0 ´ 2cw0

ptpx ď 0q `
´1

2cw0 ` 2 ´ 2c ´ w0

p1 ´ ptpx ď 0qq “ 0

p2cw0 ` 2 ´ 2c ´ w0qptpx ď 0q ´ p2c ` w0 ´ 2cw0qp1 ´ ptpx ď 0qq “ 0

2ptpx ď 0q ´ 2c ´ w0 ` 2cw0 “ 0 ,

which gives w0 “
2ptpxď0q´2c

1´2c
. Thus for the population MLLS estimate, the estimation error

is given by

∥ pw ´ w˚∥ “ 2|w0 ´ 2α| “ 4

∣∣∣∣p1 ´ 2αqppspx ě 0|y “ 0q ´ cq

1 ´ 2c

∣∣∣∣ .
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A.5 Proofs from Section 2.5
The gradient of the MLLS objective can be written as

∇wLpw, fq “ Et

„

fpxq

fpxqTw

ȷ

, (A.9)

and the Hessian is

∇2
wLpw, fq “ ´Et

„

fpxqfpxqT

pfpxqTwq
2

ȷ

. (A.10)

We use λminpXq to denote the minimum eigenvalue of the matrix X.
Lemma A.5.1 (Theorem 5.1.1 (Tropp et al., 2015)). Let X1, X2, . . . , Xn be a finite sequence
of identically distributed independent, random, symmetric matrices with common dimension
k. Assume 0 ĺ X ĺ R ¨ I and µminI ĺ EX ĺ µmaxI. With probability at least 1 ´ δ,

λmin

˜

1

n

n
ÿ

i“1

Xi

¸

ě µmin ´

d

2Rµmin logpk
δ
q

n
. (A.11)

Lemma A.5.2. For any predictor f that satisfies Condition 2.5.1, we have ∥wf ´ pwf∥ ď

σ´1
f,wf

Op

`

m´1{2
˘

.

Proof. We present our proof in two steps. Step-1 is the non-probabilistic part, i.e., bounding
the error ∥ pwf ´ wf∥ in terms of the gradient difference ∥∇wLpwf , fq ´ ∇wLmpwf , fq∥. This
step uses Taylor’s expansion upto second order terms for empirical log-likelihood around
the true w˚. Step-2 involves deriving a concentration on the gradient difference using
the Lipschitz property implied by Condition 2.5.1. Combining these two steps along with
Lemma A.14 concludes the proof. Now we detail each of these steps.

Step-1. We represent the empirical Negative Log-Likelihood (NLL) function with Lm by
absorbing the negative sign to simplify notation. Using a Taylor expansion, we have

Lmp pwf , fq “ Lmpwf , fq ` x∇wLmpwf , fq, pwf ´ wfy `
1

2
p pwf ´ wf q

T∇2
wLmp rw, fcqp pwf ´ wf q ,

where rw P r pwf , wf s. With the assumption fTwf ě τ , we have ∇2
wLmp rw, fq ě τ2

min pspyq2
∇2

wLmpwf , fq.
Let κ “ τ2

min pspyq2
. Using this we get,

Lmp pwf , fq ě Lmpwf , fq ` x∇wLmpwf , fq, pwf ´ wfy `
κ

2
p pwf ´ wf q

T∇2
wLmpwf , fqp pwf ´ wf q

Lmp pwf , fq ´ Lmpwf , fq
l jh n

I

´x∇wLmpwf , fq, pwf ´ wfy ě
κ

2
p pwf ´ wf q

T∇2
wLmpwf , fqp pwf ´ wf q ,

where term-I is less than zero as pwf is the minimizer of empirical NLL Lmp pwf , fq. Ignoring
term-I and re-arranging a few terms we get:

´x∇wLmpwf , fq, pwf ´ wfy ě
κ

2
p pwf ´ wf q

T∇2
wLmpwf , fqp pwf ´ wf q ,
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With first order optimality on wf , x∇wLpwf , fq, pwf ´ wfy ě 0. Plugging in this, we have,

x∇wLpwf , fq ´ ∇wLmpwf , fq, pwf ´ wfy ě
κ

2
p pwf ´ wf q

T∇2
wLmpwf , fqp pwf ´ wf q ,

Using Holder’s inequality on the LHS we have,

∥∇wLpwf , fq ´ ∇wLmpwf , fq∥ ∥ pwf ´ wf∥ ě
κ

2
p pwf ´ wf q

T∇2
wLmpwf , fqp pwf ´ wf q .

Let pσf,wf
be the minimum eigenvalue of ∇2

wLmpw˚, fcq. Using the fact that p pwf ´

wf qT∇2
wLmpwf , fqp pwf ´ wf q ě pσmin ∥ pwf ´ wf∥2, we get,

∥∇wLpwf , fq ´ ∇wLmpwf , fq∥ ě
κpσf,wf

2
∥ pwf ´ wf∥ . (A.12)

Step-2. The empirical gradient is ∇wLmpwf , fq “
řm

i“1
∇wL1pxi,wf ,fq

m
where ∇L1pxi, wf , fq “

”

f1pxiq

xfpxiq,wf y
. . . flpxiq

xfpxiq,wf y
. . . fkpxiq

xfpxiq,wf y

ı

pkq
. With the lower bound τ on fTwf , we can upper bound

the gradient terms as

∥∇wL1px,wf , fq∥ ď
∥f∥
τ

ď
∥f∥1
τ

ď
1

τ
.

As the gradient terms decompose and are independent, using Hoeffding’s inequality we
have with probability at least 1 ´ δ

2
,

∥∇wLpwf , fq ´ ∇wLmpwf , fq∥ ď
1

2τ

c

logp4{δq

m
. (A.13)

Let σf,wf
be the minimum eigenvalue of ∇2

wLpwf , fq. Using lemma A.5.1, with probability
at least 1 ´ δ

2
,

pσf,wf

σf,wf

ě 1 ´ τ

c

logp2k{δq

m
. (A.14)

Plugging (A.13) and (A.14) in (A.12), and applying a union bound, we conclude that with
probability at least 1 ´ δ,

} pwf ´ wf}2 ď
1

κτ

´

σf,wf
´ σf,wf

τ

c

logp2k{δq

m

¯´1´
c

logp4{δq

m

¯

ď
1

κτ

1

σf,wf

´

1 ` τ

c

logp2k{δq

m

¯

c

logp4{δq

m
.

Neglecting the order m term and letting c “ 1
κτ

, we have

∥ pwf ´ wf∥ ď
c

σf,wf

c

logp4{δq

m
.
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Lemma A.5.3. For any predictor f and any calibrated predictor fc that satisfies Condi-
tion 2.5.1, we have ∥wf ´ w˚∥ ď σ´1

f,w˚ ¨ C ¨ Et r∥f ´ fc∥s , for some constant C.

If we set fcpxq “ pspy|fpxqq, which is a calibrated predictor (Proposition 2.4.4), we can
bound the error in terms of the calibration error of f on the source data 3: ∥wf ´ w˚∥ ď

σ´1
f,w˚ ¨ C ¨ Epfq .

Proof. We present our proof in two steps. Note, all calculations are non-probabilistic. Step-1
involves bounding the error ∥wf ´ w˚∥ in terms of the gradient difference ∥∇wLpw˚, fcq ´ ∇wLpw˚, fq∥.
This step uses Taylor’s expansion on Lpwf , fq upto the second orderth term for popula-
tion log-likelihood around the true w˚. Step-2 involves deriving a bound on the gradient
difference in terms of the difference ∥f ´ fc∥ using the Lipschitz property implied by Condi-
tion 2.5.1. Further, for a crude calibration choice of fcpxq “ psp¨|xq, the gradient difference
can be bounded by miscalibration error. We now detail both of these steps.

Step-1. Similar to Lemma 2.5.2, we represent with L by absorbing the negative sign to
simplify notation. Using the Taylor expansion, we have

Lpwf , fq ě Lpw˚, fq ` x∇wLpw˚, fq, wf ´ w˚
y `

1

2
pwf ´ w˚

q
T∇2

wLp rw, fqpwf ´ w˚
q ,

where rw P rwf , w
˚s. With the assumption fTw˚ ě τ , we have ∇2

wLp rw, fq ě τ2

min pspyq2
∇2

wLpw˚, fq

. Let κ “ τ2

min pspyq2
. Using this we get,

Lpwf , fq ě Lpw˚, fq ` x∇wLpw˚, fq, wf ´ w˚
y `

κ

2
pwf ´ w˚

q
T∇2

wLpw˚, fqpwf ´ w˚
q

Lpwf , fq ´ Lpw˚, fq
l jh n

I

ě x∇wLpwf , fq, wf ´ w˚
y `

κ

2
pwf ´ w˚

q
T∇2

wLpw˚, fqpwf ´ w˚
q ,

where term-I is less than zero as wf is the minimizer of NLL Lpw, fq. Ignoring that term
and re-arranging a few terms we get

´x∇wLpw˚, fq, wf ´ w˚
y ě

κ

2
pwf ´ w˚

q
T∇2

wLpw˚, fqpwf ´ w˚
q .

With first order optimality on w˚, x∇wLpw˚, fcq, wf ´ w˚y ě 0. Using this we have:

x∇wLpw˚, fcq, wf ´ w˚
y ´ x∇wLpw˚, fq, wf ´ w˚

y ě
κ

2
pwf ´ w˚

q
T∇2

wLpw˚, fqpwf ´ w˚
q ,

x∇wLpw˚, fcq ´ ∇wLpw˚, fq, wf ´ w˚
y ě

κ

2
pwf ´ w˚

q
T∇2

wLpw˚, fqpwf ´ w˚
q .

3We present two upper bounds because the second is more interpretable while the first is tighter.
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As before, let σf,w be the minimum eigenvalue of ∇2
wLpw˚, fq. Using the fact that pwf ´

w˚qT∇2
wLpw˚, fqpwf ´ w˚q ě σf,w ∥wf ´ w˚∥2, we get

x∇wLpw˚, fcq ´ ∇wLpw˚, fq, wf ´ w˚
y ě

κσf,w

2
∥wf ´ w˚∥2 .

Using Holder’s inequality on the LHS and re-arranging terms gives

∥∇wLpw˚, fcq ´ ∇wLpw˚, fq∥ ě
κσf,w

2
∥wf ´ w˚∥ . (A.15)

Step-2. By lower bound assumptions fT
c w

˚ ě τ and fTw˚ ě τ , we have

∥∇wLpw˚, fcq ´ ∇Lpw˚, fq∥ ď Et r∥∇L1px,w
˚, fcq ´ ∇L1px,w

˚, fq∥s ď
1

τ 2
Et r∥fcpxq ´ fpxq∥s ,

(A.16)
where the first inequality is implied by Jensen’s inequality and the second is implied by the
Lipschitz property of the gradient. Further, we have

Et r∥fcpxq ´ fpxq∥s “ Es

„

ptpxq

pspxq
∥fcpxq ´ fpxq∥

ȷ

ď Es

„

max
y

ptpyq

pspyq
∥fcpxq ´ fpxq∥

ȷ

ď max
y

ptpyq

pspyq
Es r∥fcpxq ´ fpxq∥s . (A.17)

Combining equations (A.15), (A.16), and (A.17), we have

∥wf ´ w˚∥ ď
2

κσf,wτ 2
max

y

ptpyq

pspyq
Es r∥fcpxq ´ fpxq∥s . (A.18)

Further, if we set fcpxq “ psp¨|fpxqq, which is a calibrated predictor according to Propo-
sition 2.4.4, we can bound the error on the RHS in terms of the calibration error of f .
Moreover, in the label shift estimation problem, we have the assumption that pspyq ě c ą 0
for all y. Hence, we have maxy ptpyq{pspyq ď 1{c. Using Jensen’s inequality, we get

Es∥fcpxq ´ fpxq∥ ď
`

Es∥fcpxq ´ fpxq∥2
˘

1
2 “ Epfq . (A.19)

Plugging (A.19) back in (A.18),we get the required upper bound.

Proposition 3. For any w P W, we have σf,w ě ps,minσf where σf is the minimum
eigenvalue of Et

“

fpxqfpxqT
‰

and ps,min “ minyPY pspyq. Furthermore, if f satisfies Condi-
tion 2.5.1, we have p2s,min ¨ σf ď σf,w ď τ´2 ¨ σf , for w P twf , w

˚u.
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Proof. For any v P Rk, we have

vT
`

´∇2
wLpw, fq

˘

v “ Et

«

`

vTfpxq
˘2

pfpxqTwq
2

ff

P

„

1

a2
,
1

b2

ȷ

¨ vTEt

“

fpxqfpxq
T
‰

v ,

where

a “ max
x:pspxqą0

fpxq
Tw ď

1

ps,min

and

b “ min
x:pspxqą0

fpxq
Tw ě τ

if f satisfies Condition 2.5.1 and w P twf , w
˚u. Therefore, we have

p2s,min ¨ σf ď σf,w ď τ´2
¨ σf

for w P twf , w
˚u.

Lemma A.5.4. Let f “ g ˝ pf be the predictor after post-hoc calibration with squared loss l
and g belongs to a function class G that satisfies the standard regularity conditions, we have

Epfq ď min
gPG

Epg ˝ pfq ` Op

`

n´1{2
˘

. (2.8)

Proof. Assume regularity conditions on the model class Gθ (injectivity, Lipschitz-continuity,
twice differentiability, non-singular Hessian, and consistency) as in Theorem 5.23 of Stein
(1981) hold true. Using the injectivity property of the model class as in Kumar et al. (2019),
we have for all g1, g2 P G,

MSEg1 ´ MSEg2 “ Epg1q
2

´ Epg2q
2 . (A.20)

Let pg, g˚ P G be models parameterized by pθ and θ˚, respectively. Using the strong convexity
of the empirical mean squared error we have,

MSEnppgq ě MSEnpg˚
q ` x∇θMSEnpg˚

q, pθ ´ θ˚
y `

µ2

2

∥∥∥pθ ´ θ˚

∥∥∥2

2
,

where µ is the parameter constant for strong convexity. Re-arranging a few terms, we have

MSEnppgq ´ MSEnpg˚
q

l jh n

I

´x∇θMSEnpg˚
q, pθ ´ θ˚

y ě
µ2

2
}pθ ´ θ˚

}
2
2 ,

where term-I is less than zero because pg is the empirical minimizer of the mean-squared
error. Ignoring term-I, we get:

µ2

2
}pθ ´ θ˚

}
2
2 ď ´x∇θMSEnpg˚

q, pθ ´ θ˚
y ď ∥∇θMSEnpg˚

q∥
∥∥∥pθ ´ θ˚

∥∥∥ .
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As the assumed model class is Lipschitz w.r.t. θ, the gradient is bounded by Lipschitz
constant L “ c1. E∇θMSEnpg˚q “ 0 as g˚ is the population minimizer. Using Hoeffding’s
bound for bounded functions, we have with probability at least 1 ´ δ,

}pθ ´ θ˚
}2 ď

c1
µ2

c

logp2{δq

n
. (A.21)

Using the smoothness of the MSEg, we have

MSEpg ´ MSEg˚
ď c2}pθ ´ θ˚

}
2
2 , (A.22)

where c2 is the operator norm of the ∇2MSEg˚. Combining (A.20), (A.21), and (A.22), we
have for some universal constant c “ c1c2

µ2 with probability at least 1 ´ δ,

Eppgq
2

´ Epg˚
q
2

ď c
logp2{δq

n
.

Moreover, with Lemma 2.5.3, depending on the degree of the miscalibration and the method
involved to calibrate, we can bound the Epfq. For example, if using vector scaling on a held
out training data for calibration, we can use Lemma 2.5.5 to bound the calibration error
Epfq, i.e., with probability at least 1 ´ δ, we have

Epfq ď

d

min
gPG

Epg ˝ fq2 ` c
logp2{δq

n
ď min

gPG
Epg ˝ fq `

c

c
logp2{δq

n
. (A.23)

Plugging (A.19) and (A.23) into (A.18), we have with probability at least 1 ´ δ that

∥wf ´ w˚∥ ď
1

κσf,wτ 2

˜

}w˚
}2

˜

c

c
logp2{δq

n
` min

gPG
Epg ˝ fq

¸¸

.
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Appendix B

Appendix: Online label shift: Optimal
dynamic regret meets practical
algorithms

B.1 Limitations
Our work is based on the label shift assumption which restricts the applicability of our
methods to scenarios where this assumption holds. However, as noted in Section 12.1,
the problem of adaptation to changing data distribution is intractable without imposing
assumptions on the nature of the shift.

Furthermore, as noted in Remark 3.4.2, our methods in the SOLS settings have a memory
requirement that scales linearly with time, which may not be feasible in scenarios where
memory is limited. This is reminiscent to FTL / FTRL type algorithms from online learning.
We leave the task of deriving theoretical guarantees with reduced storage complexity under
non-convex losses as an important future direction.

B.2 Related work
Offline total variation denoising The offline problem of Total Variation (TV) denoising
constitutes estimating the ground truth under the observation model in Definition 3.2.1 with
the caveat that all observations are revealed ahead of time. This problem is well studied
in the literature of locally adaptive non-parametric regression (Donoho and Johnstone,
1994a;b; 1998; Guntuboyina et al., 2020; Kim et al., 2009; Mammen and van de Geer,
1997; Sadhanala et al., 2016b; Tibshirani, 2014; van de Geer, 1990; Wang et al., 2016).
The optimal total squared error (TSE) rate for estimation is known to be rOpT 1{3V

2{3
T ` 1q

(Donoho et al., 1990). Estimating sequences of bounded TV has received a lot of attention
in literature mainly because of the fact that these sequences exhibit spatially varying
degree of smoothness. Most signals of scientific interest are known to contain spatially
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localised patterns (Johnstone, 2017). This property also makes the task of designing optimal
estimators particularly challenging because the estimator has to efficiently detect localised
patterns in the ground truth signal and adjust the amount of smoothing to be applied to
optimally trade-off bias and variance.

Non-stationary online learning The problem of online regression can be casted into
the dynamic regret minimisation framework of online learning. We assume the notations in
Definition 3.2.1. In this framework, at each round the learner makes a decision pθt. Then
the learner suffers a squared error loss ℓtppθtq “ }zt ´ pθt}

2
2. The gradient of the loss at the

point of decision, ∇ℓtppθtq “ 2ppθt ´ ztq, is revealed to the learner. The expected dynamic
regret against the sequence of comparators θ1:T is given by

Rpθ1:T q “

T
ÿ

t“1

Erℓtppθtq ´ ℓtpθtqs (B.1)

“

T
ÿ

t“1

Er}zt ´ pθt}
2
2s ´ Er}zt ´ θt}

2
2s (B.2)

“

T
ÿ

t“1

E
”

}pθt}
2
2 ´ }θt}

2
2 ´ 2zTt

pθt ` 2zTt θt

ı

(B.3)

“

T
ÿ

t“1

Er}pθt ´ θt}
2
2s, (B.4)

where in the last line we used the fact that the noise ϵt (see Definition 3.2.1) is zero mean
and independent of the online decisions pθt. Due to this relation, we conclude that any
algorithm that can optimally control the dynamic regret with respect to squared error losses
ℓtpxq “ }zt ´ x}22 can be directly used to control the TSE from the ground truth sequence
θ1:T .

The minimax estimation rate is defined as follows:

R˚
pT, VT q “ min

pθ1:T

max
θ1:T

řT
i“2 }θi´θi´1}1ďVT

T
ÿ

t“1

Er}pθt ´ θt}
2
2s (B.5)

Algorithms that can control the dynamic regret with respect to convex losses such as
those presented in the works of Baby and Wang (2023); Besbes et al. (2015); Chang
and Shahrampour (2021); Chen et al. (2018); Goel and Wierman (2019); Jacobsen and
Cutkosky (2022); Jadbabaie et al. (2015); Yang et al. (2016); Zhang et al. (2018a); Zhao
and Zhang (2021); Zhao et al. (2020; 2022) can lead to sub-optimal estimation rates of
order Op

a

T p1 ` VT qq.

On the other hand, algorithms presented in Baby and Wang (2019; 2021; 2022); Baby et al.
(2021); Daniely et al. (2015); Hazan and Seshadhri (2007); Raj et al. (2020) exploit the
curvature of the losses and attain the (near) optimal estimation rate of rOpT 1{3V

2{3
T `1q.
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Algorithm Run-time Memory
FLH-FTL (Hazan and Seshadhri, 2007) OpT 2q OpT 2q

Aligator (Baby et al., 2021) OpT log T q OpT q

Arrows (Baby and Wang, 2019) OpT log T q Op1q

Table B.1: Run-time and memory complexity of various adaptively minimax optimal online
regression algorithms (see Definition 3.2.1). For practical purposes, the storage requirement
is negligible even for FLH-FTL. For example, with 10 classes and T “ 1000, the storage
requirement of FLH-FTL is only 40KB, which is insignificant compared to the storage
capacity of most modern devices.

Online non-parametric regression The task of estimating a sequence of TV bounded
sequence from noisy observations can be cast into the online non-parametric regression
framework of Rakhlin and Sridharan (2014). Results on online non-parametric regression
against reference class of Lipschitz sequences, Sobolev sequences and isotonic sequences can
be found in (Gaillard and Gerchinovitz, 2015; Koolen et al., 2015; Kotłowski et al., 2016)
respectively. However as noted in Baby and Wang (2019), these classes feature sequences
that are more regular than TV bounded sequences. In fact they can be embedded inside a
TV bounded sequence class (Sadhanala et al., 2016a) . So the minimax optimality of an
algorithm for TV class implies minimax optimality for the smoother sequence classes as
well.

B.3 Omitted proofs from Section 3.3
In the next two lemmas, we verify Assumption 2 for some important loss functions.
Lemma B.3.1 (cross-entropy loss). Consider a sample px, yq „ Q. Let p P RK

` and
rppxq P ∆K be a distribution that assigns a weight proportional ppiq

q0piq
f0pi|xq to the label

i . Let ℓprppxq, yq “
řK

i“1 Ity “ iu logp1{ppxqrisq be the cross-entropy loss. Let Lppq :“
Epx,yq„Qrℓpppxq, yqs be its population analogue. Then Lppq is 2

?
K{µ Lipschitz in } ¨ }2 norm

over the clipped box D :“ tp P RK
` : µ ď ppiq ď 1 @i P rKsu which is compact and convex.

Further, the true marginals qt P D whenever qtpiq ě µ for all i P rKs.

Proof. We have

Lppq “ ´

K
ÿ

i“1

ErErQtpi|xq logprppxqrisq|xss (B.6)

“ Erlogp

K
ÿ

i“1

wippiqqs ´

K
ÿ

i“1

ErErQtpi|xq logpwippiqq|xss, (B.7)

where we define wi :“ f0pi|xq{q0piq. Then we can see that

∇Lppqris “ E

«

wi
řK

j“1wjppjqq

ff

´ E

„

Qtpi|xq

ppiq

ȷ

. (B.8)
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So if mini ppiq ě µ, we have that wi
řK

j“1 wjppjq
ď 1{µ and Qtpi|xq{ppiq ď 1{µ. So by triangle

inequality, |∇Lppqris| ď 1{µ ` 1{µ.

Lemma B.3.2 (binary 0-1 loss). Consider a sample px, yq „ Q. Let p P RK
` and rppxq P ∆K

be a distribution that assigns a weight proportional ppiq
q0piq

f0pi|xq to the label i. Let pypxq be
a sample obtained from the distribution rppxq. Consider the binary 0-1 loss ℓppypxq, yq “

Ippypxq ‰ yq. Let Lppq :“ Epx,yq„Q,pypxq„rppxqIppypxq ‰ yq be its population analogue. Let
q0piq ě α ą 0. Then Lppq is 2K3{2{pατq Lipschitz in } ¨ }2 norm over the domain D :“ tp P

RK
` :

řK
i“1 ppiqf0pi|xq ě τ, ppiq ď 1 @i P rKsu which is compact and convex. Further, the

true marginals qt P D whenever qtpiq ě µ for all i P rKs.

Proof. We have that

Lppq “

K
ÿ

i“1

ErQpy ‰ i|xqrppxqriss. (B.9)

Denote rppxqris “ ppiqwi{
řK

j“1 ppjqwj with wj :“ f0pi|xq{q0piq. Then we see that

ˇ

ˇ

ˇ

ˇ

Brppxqris

Bppiq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

wi
řK

j“1wjppjq
´

pwippiqqwi
´

řK
j“1wjppjq

¯2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(B.10)

ď
1

ατ
`

wi
řK

j“1wjppjq
(B.11)

ď 2{pατq. (B.12)

Similarly,
ˇ

ˇ

ˇ

ˇ

Brppxqris

Bppjq

ˇ

ˇ

ˇ

ˇ

“
wippiqwj

´

řK
j“1wjppjq

¯2 (B.13)

ď 1{pατq. (B.14)

Thus we conclude that }∇rppxqris}2 ď 2
?
K{pατq, where the gradient is taken with respect

to p P RK
` .

Therefore,

}∇Lppq}2 ď

K
ÿ

i“1

}∇rppxqris}2 (B.15)

ď 2K3{2
{pατq. (B.16)
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Remark B.3.1. The condition
řK

i“1 f0pi|xqppiq ě τ is closely related to Condition 1 of
Garg et al. (2020a). Note that this is strictly weaker than imposing the restriction that the
distribution ppiq ě µ for each i.
Remark B.3.2. We emphasize that the conditions in Lemmas B.3.1 and B.3.2 are only
sufficient conditions that imply bounded gradients. However, they are not necessary for
satisfying bounded gradients property.
Lemma B.3.3. Let µ, ν P ∆K be such that µris “ qtpiq. Let st “ C´1f0pxtq, where C is the
confusion matrix defined in Assumption 1. We have that Ersts “ µ and Varpstq ď 1{σ2

minpCq

Proof. Let rqtppytq “ Ext„QX
t ,pypxtq„f0pxtqItpypxtq “ pytu be the probability that the classifier f0

predicts the label pyt. Here QX
t pxq :“

řK
i“1Qtpx, iq. Let’s denote Qtppypxtq “ pyt|yt “ iq :“

Ext„Qtp¨|y“iq,pypxtq„f0pxtqItpypxtq “ pytu. By law of total probability, we have that

rqtppytq “

K
ÿ

i“1

Qtppypxtq “ pyt|yt “ iqqtpiq (B.17)

“

K
ÿ

i“1

Q0ppypxtq “ pyt|yt “ iqqtpiq, (B.18)

where the last line follows by the label shift assumption.

Let µ, ν P RK be such that µris “ qtpiq and νris “ rqtpiq. Then the above equation can be
represented as ν “ Cµ. Thus µ “ C´1ν.

Given a sample xt P Qt, the vector f0pxtq forms an unbiased estimate of ν. Hence we have
that the vector pµ :“ C´1f0pxtq is an unbiased estimate of µ. Moreover,

}pµ}2 ď }C´1
}2}f0pxtq} (B.19)

ď 1{σminpCq. (B.20)

Hence the variance of the estimate pµ is bounded by 1{σ2
minpCq.

We have the following performance guarantee for online regression due to Baby et al.
(2021).
Proposition B.3.4 (Baby et al. (2021)). Let st “ C´1f0pxtq. Let pqt :“ ALGps1:t´1q be the
online estimate of the true label marginal qt produced by the Aligator algorithm by taking
s1:t´1 as input at a round t. Then we have that

T
ÿ

t“1

E
“

}pqt ´ qt}
2
2

‰

“ rOpK1{3T 1{3V
2{3
T p1{σ

4{3
minpCqq ` Kq, (B.21)

where VT :“
řT

t“2 }qt ´ qt´1}1. Here rO hides dependencies in absolute constants and poly-
logarithmic factors of the horizon. Further this result is attained without prior knowledge of
the variation VT .
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By following the arguments in Baby and Wang (2021), a similar statement can be derived
also for the FLH-FTL algorithm of Hazan and Seshadhri (2007) (Algorithm 14).
Theorem 3.3.1. Suppose we run Algorithm 2 with the online regression oracle ALG as
FLH-FTL (App. B.6) or Aligator (Baby et al., 2021). Then under Assumptions 1 and 2,
we have

ErRdynamicpT qs “ rO

˜

K1{6T 2{3V
1{3
T

σ
2{3
minpCq

`

?
KT

σminpCq

¸

, (3.3)

where VT :“
řT

t“2 }qt ´ qt´1}1 and the expectation is taken with respect to randomness in
the revealed co-variates. Further, this result is attained without prior knowledge of VT .

Proof. Owing to our carefully crafted reduction from the problem of online label shift to
online regression, the proof can be conducted in just a few lines. Let rqt be the value of
ALGps1:t´1q computed at line 2 of Algorithm 2. Recall that the dynamic regret was defined
as:

RdynamicpT q “

T
ÿ

t“1

Ltppqtq ´ Ltpqtq ď

T
ÿ

t“1

G}pqt ´ qt}2 (B.22)

Continuing from Eq.(B.22), we have

ErRdynamicpT qs ď

T
ÿ

t“1

G ¨ Er}pqt ´ qt}2s (B.23)

ď

T
ÿ

t“1

G ¨ Er}rqt ´ qt}2s (B.24)

ď

T
ÿ

t“1

G
b

E}rqt ´ qt}22 (B.25)

ď G

g

f

f

eT
T
ÿ

t“1

Er}rqt ´ qt}22s (B.26)

“ rO

˜

K1{6T 2{3V
1{3
T p1{σ

2{3
minpCqq `

?
KT {σminpCq

¸

, (B.27)

where the second line is due to non-expansivity of projection, the third line is due to
Jensen’s inequality, fourth line by Cauchy-Schwartz and last line by Proposition B.3.4. This
finishes the proof.

Next, we provide matching lower bounds (modulo log factors) for the regret in the unsuper-
vised label shift setting. We start from an information-theoretic result which will play a
central role in our lower bound proofs.
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Proposition B.3.5 (Theorem 2.2 in Tsybakov (2008)). Let P and Q be two probability
distributions on H, such that KLpP||Qq ď β ă 8, Then for any H-measurable real function
ϕ : H Ñ t0, 1u,

maxtPpϕ “ 1q,Qpϕ “ 0qu ě
1

4
expp´βq. (B.28)

Theorem 3.3.2. Let VT ď 64T . There exists a loss function, a domain D (in Assumption
2), and a choice of adversarial strategy for generating the data such that for any algorithm,
we have

řT
t“1EprLtppqtqs ´ Ltpqtqq “ Ω

´

maxtT 2{3V
1{3
T ,

?
T u

¯

, where pqt P D is the weight
estimated by the algorithm and qt P D is the label marginal at round t chosen by the
adversary. Here the expectation is taken with respect to the randomness in the algorithm
and the adversary.

Proof. We start with a simple observation about KL divergence. Consider distributions
with density P px, yq “ P0px|yqppyq and Qpx, yq “ P0px|yqqpyq where px, yq P Rˆ rKs. Note
that these distributions are consistent with the label shift assumption. We note that

KLpP ||Qq “

K
ÿ

i“1

ż

R
P0px|iqppiq log

ˆ

P0px|iqppiq

P0px|iqqpiq

˙

dx (B.29)

“

K
ÿ

i“1

ż

R
P0px|iqppiq log

ˆ

ppiq

qpiq

˙

dx (B.30)

“

K
ÿ

i“1

ppiq log

ˆ

ppiq

qpiq

˙

(B.31)

Thus we see that under the label shift assumption, the KL divergence is equal to the KL
divergence between the marginals of the labels.

Next, we define a problem instance and an adversarial strategy. We focus on a binary
classification problem where the labels is either 0 or 1. As noted before, the KL divergence
only depends on the marginal distribution of labels. So we fix the density Q0px|yq to be
any density such that under the uniform label marginals (q0p1q “ q0p0q “ 1{2) we can find
a classifier with invertible confusion matrix (recall from Fig. 1 that Q0 corresponds to the
data distribution of the training data set).

Divide the entire time horizon T is divided into batches of size ∆. So there are M :“ T {∆
batches (we assume divisibility). Let Θ “

␣

1
2

´ δ, 1
2

` δ
(

be a set of success probabilities,
where each probability can define a Bernoulli trial. Here δ P p0, 1{4q which will be tuned
later.

The problem instance is defined as follows:

• For batch i P rM s, adversary selects a probability q̊i P Θ uniformly at random.
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• For any round t that belongs to the ith batch, sample a label yt „ Berpqtq and
co-variate xt „ Q0p¨|ytq. Here qt “ q̊i. The co-variate xt is revealed.

• Let pqt be any estimate of qt at round t. Define the loss as Ltppqtq :“ Itqt ě 1{2up1 ´

pqtq ` Itqt ă 1{2upqt.

We take the domain D in Assumption 2 as r1{2 ´ δ, 1{2 ` δs. It is easy to verify that Ltppqtq
is Lipschitz over D. Note that unlike Besbes et al. (2015), we do not have an unbiased
estimate of the gradient of loss functions.

Let’s compute an upperbound on the total variation incurred by the true marginals. We
have

T
ÿ

t“2

|qt ´ qt´1| “

M
ÿ

i“2

|̊qi ´ q̊i´1| (B.32)

ď 2δM (B.33)
ď VT , (B.34)

where the last line is obtained by choosing δ “ VT {p2Mq “ VT∆{p2T q.

Since at the beginning of each batch, the sampling probability is chosen uniformly at
random, the loss function in the current batch is independent of the history available at
the beginning of the batch. So only the data in the current batch alone is informative in
minimising the loss function in that batch. Hence it is sufficient to consider algorithms that
only use the data within a batch alone to make predictions at rounds that falls within that
batch.

Now we proceed to bound the regret incurred within batch 1. The computation is identical
for any other batches.

Let P be the joint probability distribution in which labels py1, . . . , y∆q within batch 1 are
sampled with success probability 1{2 ´ δ (i.e qt “ 1{2 ´ δ)

Ppy1, . . . , y∆q “ Π∆
i“1p1{2 ´ δq

yip1{2 ` δq
1´yi . (B.35)

Define an alternate distribution Q such that

Qpy1, . . . , y∆q “ Π∆
i“1p1{2 ` δq

yip1{2 ´ δq
1´yi . (B.36)

According to the above distribution the data are independently sampled from Bernoulli
trials with success probability 1{2 ` δ. (i.e qt “ 1{2 ` δ)

Moving forward, we will show that by tuning ∆ appropriately, any algorithm won’t be
able to detect between these two alternate worlds with constant probability resulting in
sufficiently large regret.

We first bound the KL distance between these two distributions. Let

KLp1{2 ´ δ||1{2 ` δq :“ p1{2 ` δq log

ˆ

1{2 ` δ

1{2 ´ δ

˙

` p1{2 ´ δq log

ˆ

1{2 ´ δ

1{2 ` δ

˙

(B.37)
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ďpaq p1{2 ` δq
2δ

1{2 ` δ
´ p1{2 ´ δq

2δ

1{2 ` δ
(B.38)

“
16δ2

1 ´ 4δ2
(B.39)

ďpbq

64δ2

3
, (B.40)

where in line (a) we used the fact that logp1 ` xq ď x for x ą ´1 and observed that
´4δ{p1 ` 2δq ą ´1 as δ P p0, 1{4q. In line (b) we used δ P p0, 1{4q.

Since P and Q are product of the marginals due to independence we have that

KLpP||Qq “

∆
ÿ

t“1

KLp1{2 ´ δ||1{2 ` δq (B.41)

ď p64∆{3q ¨ δ2 (B.42)
“ 16{3 (B.43)
:“ β, (B.44)

where we used the choices δ “ ∆VT {p2T q and ∆ “ pT {VT q2{3.

Suppose at the beginning of batch, we reveal the entire observations within that batch
y1:∆ to the algorithm. Note that doing so can only make the problem easier than the
sequential unsupervised setting. Let pqt be any measurable function of y1:∆. Define the
function ϕt :“ Itpqt ě 1{2u. Then by Proposition B.3.5, we have that

maxtPpϕt “ 1q,Qpϕt “ 0qu ě
1

4
expp´βq, (B.45)

where β is as defined in Eq.(B.44).

Notice that if qt “ 1{2 ´ δ, then Ltppqtq ě 1{2 for any pqt ě 1{2. Similarly if qt “ 1{2 ` δ, we
have that Ltppqtq ě 1{2 for any pqt ă 1{2.

Further note that Ltpqtq “ 1{2 ´ δ by construction.

For notational clarity define Lp
t pxq :“ x and Lq

t pxq :“ 1 ´ x. We can lower-bound the
instantaneous regret as:

ErLtppqtqs ´ Ltpqtq “paq

1

2
pEPrLp

t ppqtqs ´ Lp
t p1{2 ´ δqq `

1

2
pEQrLq

t ppqtqs ´ Lq
t p1{2 ` δqq

(B.46)

ěpbq

1

2
pEPrLp

t ppqtq|pqt ě 1{2s ´ Lp
t p1{2 ´ δqPpϕt “ 1q (B.47)

`
1

2
pEQrLq

t ppqtq|pqt ă 1{2s ´ Lq
t p1{2 ` δqQpϕt “ 0q (B.48)

ěpcq

1

2
δPpϕt “ 1q `

1

2
δQpϕt “ 0q (B.49)
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ě δ{2maxtPpϕt “ 1q,Qpϕt “ 0qu (B.50)

ěpdq

δ

8
expp´βq, (B.51)

where in line (a) we used the fact the success probability for a batch is selected uniformly
at random from Θ. In line (b) we used the fact that Lp

t ppqtq ´ Lp
t p1{2 ´ δq ě 0 since

pqt P D “ r1{2 ´ δ, 1{2 ` δs. Similarly term involving Lq
t is also handled. In line (c)

we applied pEPrLp
t ppqtq|pqt ě 1{2s ´ Lp

t p1{2 ´ δqq ě δ since EPrLp
t ppqtq|pqt ě 1{2s ě 1{2 and

Lp
t p1{2 ´ δq “ 1{2 ´ δ. Similar bounding is done for the term involving EQ as well. In line

(d) we used Eq.(B.45).

Thus we get the total expected regret within batch 1 as

∆
ÿ

t“1

ErLtppqtqs ´ Ltpqtq ě
δ∆

8
expp´βq (B.52)

The total regret within any batch i P rM s can be lower bounded using exactly the same
arguments as above. Hence summing the total regret across all batches yields

T
ÿ

t“1

ErLtppqtqs ´ Ltpqtq ě
T

∆
¨
δ∆

8
expp´βq (B.53)

“
VT∆

16
¨ expp´βq (B.54)

“ T 2{3V
1{3
T expp´βq{16. (B.55)

The Ωp
?
T q part of the lowerbound follows directly from Theorem 3.2.1 in Hazan (2016) by

choosing D with diameter bounded by Ωp1q.

B.4 Design of low switching online regression algorithms
Even-though Algorithm 4 has attractive performance guarantees, it requires retraining
with weighted ERM at every round. This is not satisfactory since the retraining can be
computationally expensive. In this section, we aim to design a version of Algorithm 4 with
few retraining steps while not sacrificing the statistical efficiency (up to constants). To
better understand why this goal is attainable, consider a time window r1, ns Ď rT s where
the true label marginals remain constant or drift very slowly. Due to the slow drift, one
reasonable strategy is to re-train the model (with weighted ERM) using the past data only
at time points within r1, ns that are powers of 2 (i.e via a doubling epoch schedule). For
rounds t P r1, ns that are not powers of 2, we make predictions with a previous model hprev

computed at tprev :“ 2tlog2 tu which is trained using data seen upto the time tprev. Observe
that this constitutes at least half of the data seen until round t. This observation when

183



Algorithm 12 LPA: a black-box reduction to produce a low-switching online regression
algorithm
input Online regression oracle ALG, failure probability δ, maximum standard deviation σ

(see Definition 3.2.1).
1: Initialize prev “ 0 P RK , b “ 1
2: Get estimate rθt from ALGpz1:t´1q

3: Output pθt “ prev
4: Receive an observation zt

// test to detect non-staionarity
5: if

řt
j“b`1 }prev ´ rθj}

2
2 ą 5Kσ2 logp2T {δq then

6: Set b “ t ` 1, prev “ zt
7: Restart ALG
8: else if t ´ b ` 1 is a power of 2 then
9: Set prev “

řt
j“b zj{t´b`1

10: end if
11: Update ALG with zt

combined with the slow drift of label marginals implies that the performance of the model
hprev at round t will be comparable to the performance of a model obtained by retraining
using entire data collected until round t.

To formalize this idea, we need an efficient online change-point-detection strategy that can
detect intervals where the TV of the true label marginals is low and retrain only (modulo
at most log T times within a low TV window) when there is enough evidence for sufficient
change in the TV of the true marginals. We address this problem via a two-step approach.
In the first step, we construct a generic black-box reduction that takes an online regression
oracle as input and converts it into another algorithm with the property that the number
of switches in its predictions is controlled without sacrificing the statistical performance.
Recall that the purpose of the online regression oracles is to track the true label marginals.
The output of our low-switching online algorithm remains the same as long as the TV of
the true label marginals (TV computed from the time point of the last switch) is sufficiently
small. Then we use this low-switching online regression algorithm to re-train the classifier
when a switch is detected.

We next provide the Low switching through Phased Averaging (LPA) (Algorithm 12),
our black-box reduction to produce low switching regression oracles. We remark that this
algorithm is applicable to the much broader context of online regression or change point
detection and can be of independent interest.

We now describe the intuition behind Algorithm 12. The purpose of Algorithm 12 is to
denoise the observations zt and track the underlying ground truth θt in a statistically efficient
manner while incurring low switching cost. Hence it is applicable to the broader context
of online non-parametric regression (Baby and Wang, 2019; Baby et al., 2021; Raj et al.,
2020) and offline non-parametric regression (Tibshirani, 2014; Wang et al., 2015).
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Algorithm 12 operates by adaptively detecting low TV intervals. Within each time window
it performs a phased averaging in a doubling epoch schedule. i.e consider a low TV window
rb, ns. For a round t P rb, ns let tprev :“ 2tlog2pt´b`1qu. In round t, the algorithm plays the
average of the observations zb:tprev . So we see that in any low TV window, the algorithm
changes its output only at-most Oplog T q times.

For the above scheme to not sacrifice statistical efficiency, it is important to efficiently
detect windows with low TV of the true label marginals. Observe that the quantity prev
computes the average of at-least half of the observations within a time window that start
at time b. So when the TV of the ground truth within a time window rb, ts is small, we
can expect the average to be a good enough representation of the entire ground truth
sequence within that time window. Consider the quantity Rt :“

řt
j“b`1 }prev ´ θj}

2
2 which

is the total squared error (TSE) incurred by the fixed decision prev within the current time
window. Whenever the TV of the ground truth sequence θb:t is large, there will be a large
bias introduced by prev due to averaging. Hence in such a scenario the TSE will also be
large indicating non-stationarity. However, we can’t compute Rt due to the unavailability
of θj. So we approximate Rt by replacing θj with the estimates rθj coming from the input
online regression algorithm that is not constrained by switching cost restrictions. This is the
rationale behind the non-stationarity detection test at Step 5. Whenever a non-staionarity
is detected we restart the input online regression algorithm as well as the start position for
computing averages (in Step 6).

We have the following guarantee for Algorithm 12.
Theorem B.4.1. Suppose the input black box ALG given to Algorithm 12 is adaptively
minimax optimal (see Definition 3.2.1). Then the number of times Algorithm 12 switches its
decision is at most rOpT 1{3V

2{3
T q with probability at least 1´δ. Further, Algorithm 12 satisfies

řT
t“1 }pθt ´ θt}

2
2 “ rOpT 1{3V

2{3
T q with probability at least 1 ´ δ, where VT “

řT
t“2 }θt ´ θt´1}1.

Remark B.4.1. Since Algorithm 12 is a black-box reduction, there are a number of possible
candidates for the input policy ALG that are adaptively minimax. Examples include FLH
with online averages as base learners (Hazan and Seshadhri, 2007) or Aligator algorithm
(Baby et al., 2021).

Armed with a low switching online regression oracle LPA, one can now tweak Algorithm
4 to have sparse number of retraining steps while not sacrificing the statistical efficiency
(up to multiplicative constants). The resulting procedure is described in Algorithm 13 (in
App. B.5) which enjoys similar rates as in Theorem 3.4.1 (see Theorem B.5.3).

B.5 Omitted proofs from Section 3.4

First we recall a result from Baby et al. (2021).
Proposition B.5.1 (Theorem 5 of Baby et al. (2021)). Consider the online regression
protocol defined in Definition 3.2.1. Let pθt be the estimate of the ground truth produced by
the Aligator algorithm from Baby et al. (2021). Then with probability at-least 1 ´ δ, the
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total squared error (TSE) of Aligator satisfies

T
ÿ

t“1

}θt ´ pθt}
2
2 “ rOpT 1{3V

2{3
T ` 1q, (B.56)

where VT “
řT

t“2 }θt ´ θt´1}1. This bound is attained without any prior knowledge of the
variation VT .

The high probability guarantee also implies that

T
ÿ

t“1

Er}θt ´ pθt}
2
2s “ rOpT 1{3V

2{3
T ` 1q, (B.57)

where the expectation is taken with respect to randomness in the observations.

By following the arguments in Baby and Wang (2021), a similar statement can be derived
also for the FLH-FTL algorithm of Hazan and Seshadhri (2007) (Algorithm 14).

Next, we verify that the noise condition in Definition 3.2.1 is satisfied for the empirical
label marginals computed at Step 5 of Algorithm 4.
Lemma B.5.2. Let st be as in Step 5 of Algorithm 4. Then it holds that st “ qt ` ϵt with
ϵt being independent across t and Varpϵtq ď 1{N .

Proof. Since st is simply the empirical label proportions, it holds that Ersts “ qt. Further
Varpstq ď 1 as the indicator function is bounded by 1{N . This concludes the proof.

Theorem 3.4.1. Suppose the true label marginal satisfies mint,k qtpkq ě µ ą 0. Choose the
online regression oracle in Algorithm 4 as FLH-FTL (App. G.3) or Aligator from Baby
et al. (2021) with its predictions clipped such that pqtrks ě µ. Then with probability at least
1 ´ δ, Algorithm 4 produces hypotheses with RH

dynamic “ rO
´

T 2{3V
1{3
T `

a

T logp|H|{δq

¯

,

where VT “
řT

t“2 }qt ´ qt´1}1. Further, this result is attained without any prior knowledge
of the variation budget VT .

Proof. In the proof we first proceed to bound the instantaneous regret at round t. Re-write
the population loss as:

Ltphq “
1

Npt ´ 1q

t´1
ÿ

i“1

N
ÿ

j“1

E

„

qtpyijq

qipyijq
ℓphpxijq, yijq

ȷ

, (B.58)

where the expectation is taken with respect to randomness in the samples.

We define the following quantities:

Lemp
t phq :“

1

Npt ´ 1q

t´1
ÿ

i“1

N
ÿ

j“1

qtpyijq

qipyijq
ℓphpxijq, yijq, (B.59)
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rLtphq :“
1

Npt ´ 1q

t´1
ÿ

i“1

N
ÿ

j“1

E

„

pqtpyijq

pqipyijq
ℓphpxijq, yijq

ȷ

, (B.60)

and

rLemp
t phq :“

1

Npt ´ 1q

t´1
ÿ

i“1

N
ÿ

j“1

pqtpyijq

pqipyijq
ℓphpxijq, yijq. (B.61)

We decompose the regret at round t as

Ltphtq ´ Ltph
˚
t q “ Ltphtq ´ rLtphtq ` rLtphtq ´ rLemp

t phtq ` Lemp
t ph˚

t q ´ Ltph
˚
t q ` rLemp

t phtq ´ Lemp
t ph˚

t q

(B.62)

ď Ltphtq ´ rLtphtq
l jh n

T1

` rLtphtq ´ rLemp
t phtq

l jh n

T2

`Lemp
t ph˚

t q ´ Ltph
˚
t q

l jh n

T3

` rLemp
t ph˚

t q ´ Lemp
t ph˚

t q
l jh n

T4

,

(B.63)

where in the last line we used Eq.(8.1). Now we proceed to bound each terms as note above.

Note that for any label m,
ˇ

ˇ

ˇ

ˇ

qtpmq

qipmq
´

pqtpmq

pqipmq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

qtpmq

qipmq
´

qtpmq

pqipmq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

qtpmq

pqipmq
´

pqtpmq

pqipmq

ˇ

ˇ

ˇ

ˇ

(B.64)

ď
1

µ2
p|qipmq ´ pqipmq| ` |qtpmq ´ pqtpmq|q , (B.65)

where in the last line, we used the assumption that the minimum label marginals (and
hence of the online estimates via clipping) is bounded from below by µ. So by applying
triangle inequality and using the fact that the losses are bounded by B in magnitude, we
get

T1 ď
B

Npt ´ 1qµ2

t´1
ÿ

i“1

N
ÿ

j“1

E r}pqi ´ qi}1 ` }pqt ´ qt}1s (B.66)

ď
B

?
K

pt ´ 1qµ2

t´1
ÿ

i“1

E r}pqi ´ qi}2 ` }pqt ´ qt}2s (B.67)

ďpaq

B
?
K

µ2

¨

˝Er}pqt ´ qt}2s `

d

řt´1
i“1 Er}qi ´ pqi}22s

t ´ 1

˛

‚ (B.68)

ďpbq

B
?
K

µ2

˜

Er}pqt ´ qt}2s ` ϕ ¨
V

1{3
T

pt ´ 1q1{3

¸

, (B.69)
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where line (a) is a consequence of Jensen’s inequality. In line (b) we used the following fact:
by Lemma B.5.2 and Proposition B.3.4, the expected cumulative error of the online oracle at
any step is bounded by ϕt1{3V

2{3
t for some multiplier ϕ which can contain poly-logarithmic

factors of the horizon (see Proposition B.5.1).

Proceeding in a similar fashion, the term T4 can be bounded by Eq.(B.69).

Next, we proceed to handle T3. Let h P H be any fixed hypothesis. Then each summand
in Eq.(B.59) is an independent random variable assuming values in r0, B{µs (recall that
the losses lie within r0, Bs). Hence by Hoeffding’s inequality we have that

Lemp
t phq ´ Ltphq ď

B

µ

d

logp3T |H|{δq

Npt ´ 1q
, (B.70)

ď
B

µ

d

logp3T |H|{δq

pt ´ 1q
, (B.71)

with probability at-least 1 ´ δ{p3T |H|q. Now taking union bound across all hypotheses in
H, we obtain that:

T3 ď
B

µ

d

logp3|H|{δq

pt ´ 1q
, (B.72)

with probability at-least 1 ´ δ{p3T q.

To bound T2, we notice that it is not possible to directly apply Hoeffding’s inequality
because the summands in Eq.(B.60) are correlated through the estimates of the online
algorithm. So in the following, we propose a trick to decorrelate them. For any hypothesis
h P H, we have that

pqtpyijq

pqipyijq
ℓphpxij, yijqq ´ E

„

pqtpyijq

pqipyijq
ℓphpxij, yijqq

ȷ

(B.73)

“

ˆ

pqtpyijq

pqipyijq
´

qtpyijq

qipyijq

˙

ℓphpxij, yijqq

l jh n

Uij

´

(B.74)

E

„ˆ

pqtpyijq

pqipyijq
´

qtpyijq

qipyijq

˙

ℓphpxij, yijqq

ȷ

l jh n

Vij

`

(B.75)
qtpyijq

qipyijq
ℓphpxij, yijqq ´ E

„

qtpyijq

qipyijq
ℓphpxij, yijqq

ȷ

l jh n

Wij

.

(B.76)
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Now using Eq.(B.65) and proceeding similar to the bouding steps of Eq.(B.69), we obtain

1

Npt ´ 1q

t´1
ÿ

i“1

N
ÿ

j“1

Uij ď
B

Npt ´ 1qµ2

t´1
ÿ

i“1

N
ÿ

j“1

}pqi ´ qi}1 ` }pqt ´ qt}1 (B.77)

ď
B

?
K

µ2pt ´ 1q

t´1
ÿ

i“1

}pqi ´ qi}2 ` }pqt ´ qt}2 (B.78)

ďpaq

B
?
K

µ2

¨

˝}pqt ´ qt}2 `

d

řt´1
i“1 }qi ´ pqi}22

t ´ 1

˛

‚ (B.79)

ďpbq

B
?
K

µ2

˜

}pqt ´ qt}2 ` ϕ ¨
V

1{3
T

pt ´ 1q1{3

¸

, (B.80)

with probability at-least 1 ´ δ{3. In line (a) we used Jensen’s inequlaity and in the last line
we used the fact the the online oracle attains a high probability bound on the total squared
error (TSE) (see Proposition B.5.1).

1
Npt´1q

řt´1
i“1

řN
j“1 Vij can be bounded using the same expression as above using similar logic.

To bound 1
Npt´1q

řt´1
i“1

řN
j“1Wij , we note that it is the sum of independent random variables.

Hence using the same arguments used to obtain Eq.(B.71), we have that

1

Npt ´ 1q

t´1
ÿ

i“1

N
ÿ

j“1

Wij ď
B

µ

d

logp3T |H|{δq

pt ´ 1q
, (B.81)

with probability at-least 1 ´ δ{p3T |H|q. Hence taking a union bound across all hypothesis
classes and across the high probability event of low TSE for the online algorithm yields that

T2 ď
2B

?
K

µ2

˜

}pqt ´ qt}2 ` ϕ ¨
V

1{3
T

pt ´ 1q1{3

¸

`
B

µ

d

logp3T |H|{δq

pt ´ 1q
, (B.82)

with probability at-least 1 ´ 2δ{p3T q.

Combining the bounds developed for T1,T2,T3 and T4 and by taking a union bound across
the event that resulted in Eq.(B.72), we obtain the following bound on instantaneous regret.

Ltphtq ´ Ltph
˚
t q ď

2B
?
K

µ2

˜

}pqt ´ qt}2 ` Er|pqt ´ qt}2s ` ϕ ¨
V

1{3
T

pt ´ 1q1{3
`

d

logp3T |H|{δq

pt ´ 1q

¸

,

(B.83)
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with probability at-least 1 ´ δ{T .

Note that via Jensen’s inequality:

T
ÿ

t“1

Er}qt ´ pqt}2s ď

g

f

f

eT
T
ÿ

t“1

Er}qt ´ pqt}22s (B.84)

ď ϕT 2{3V
1{3
T , (B.85)

where in the last line we used Proposition B.5.1.

Similarly it can be shown that

T
ÿ

t“1

}qt ´ pqt}2 ď ϕT 2{3V
1{3
T , (B.86)

under the event that resulted in Eq.(B.83).

Observe that

T
ÿ

t“1

V
1{3
T

t1{3
ď 2T 2{3V

1{3
T . (B.87)

Finally note that

T
ÿ

t“1

1
?
t

ď 2
?
T . (B.88)

Hence combining the above bounds and adding Eq.(B.83) across all time steps, followed by
a union bound across all rounds, we obtain that

T
ÿ

t“1

Ltphtq ´ Ltph
˚
t q ď

4B
?
K

µ2

´

3ϕT 2{3V
1{3
T `

a

T logp3T |H|{δq

¯

, (B.89)

with probability at-least 1 ´ δ.

Next, we prove Theorem B.4.1.
Theorem B.4.1. Suppose the input black box ALG given to Algorithm 12 is adaptively
minimax optimal (see Definition 3.2.1). Then the number of times Algorithm 12 switches its
decision is at most rOpT 1{3V

2{3
T q with probability at least 1´δ. Further, Algorithm 12 satisfies

řT
t“1 }pθt ´ θt}

2
2 “ rOpT 1{3V

2{3
T q with probability at least 1 ´ δ, where VT “

řT
t“2 }θt ´ θt´1}1.

190



Proof. First we proceed to bound the number of switches. Observe that between two time
points where condition in Line 5 of Algorithm 12 evaluates true, we can have at-most log T
switches due to the doubling epoch schedule in Line 8.

We first bound the number of times, condition in Line 5 is satisfied. Suppose for some
some time t, we have that

řt
j“b`1 }prev ´ rθj}

2
2 ą 4Kσ2 logpT {δq. Suppose throughout the

run of the algorithm, this is ith time the previous condition is satisfied. Let ni :“ t ´ b ` 1
and let Ci “ TVrb Ñ ts where TVrp Ñ qs “

řq
t“p`1 }θt ´ θt´1}1. Due to the doubling

epoch schedule, we have that that prev “ 1
ℓ

řℓ
j“b yj and Erprevs “ 1

ℓ

řℓ
j“b θj for some

ni ě ℓ ě pt ´ b ` 1q{2 “ ni{2.

So we have
t
ÿ

j“b`1

}prev ´ rθj}
2
2 ď

t
ÿ

j“b`1

2}prev ´ θj}
2
2 ` 2}rθj ´ θj}

2
2 (B.90)

ď

t
ÿ

j“b`1

2}Erprevs ´ θj}
2
2 ` 2}prev ´ Erprevs}

2
2 ` 2}rθj ´ θj}

2
2 (B.91)

ďpaq 2pℓC2
i ` 2σ2K logp2T {δqq ` 2ϕn

1{3
i C

2{3
i (B.92)

ď 4maxtniC
2
i , ϕn

1{3
i C

2{3
i u ` 4σ2K logp2T {δqq, (B.93)

with probability at-least 1 ´ δ{pT q. In line (a) we used the following facts: i) Due to
Hoeffding’s inequality, }prev ´ Erprevs}22 ď σ2K logp4T {δqq{ℓ ď 2σ2K logp2T {δqq{ni with
probability at-least 1´δ{p2T q; ii) }Erprevs´θj}2 “ }1

ℓ

řℓ
i“b θi´θj}2 ď 1

ℓ

řℓ
i“b }θi´θj}2s ď Ci;

iii) }rθj ´ θj}
2
2 ď ϕn

1{3
i C

2{3
i with probability at-least 1 ´ δ{p2T q due to condition in Theorem

B.4.1; iv) Union bound over the events in (i) and (iii).

Since the condition in Line 5 is satisfied at round t, Eq.(B.93) will imply that 5Kσ2 logp2T {δq ď

4maxtniC
2
i , ϕn

1{3
i C

2{3
i u ` 4σ2K logp2T {δqq. Rearranging the above, we find that

Ci Á K{
?
ni, (B.94)

where we suppress the dependence on constants and log T .

Let the condition in Line 5 be satisfied M number of times. By union bound, we have that
with probability at-least 1 ´ δ

VT ě

M
ÿ

i“1

Ci (B.95)

Á

M
ÿ

i“1

K{
?
ni (B.96)

Ápaq KM
1

b

p1{Mq
řM

i“1 ni

(B.97)
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Á KM3{2
{
?
T , (B.98)

where in Line (a) we used Jensen’s inequality. Rearranging we get that

M “ rOpT 1{3V
2{3
T K´2{3

q, (B.99)

with probability at-least 1 ´ δ.

Now we proceed to bound the total squared error (TSE) incurred by Algorithm 12. Let
pθj be the output of Algorithm 12 at round j. Suppose at times b ´ 1 and c ` 1, the
condition in Line (5) is satisfied. Observe that the condition in Line 5 is not satisfied
for any times in rb, cs. Then we can conclude that within the interval rb, cs we have that
řc

j“b }pθj ´ rθj}
2
2 ď 5Kσ2 logp4T {δq logpT q, since there are only at-most log T times within

rb, cs where condition in Line 9 is satisfied. So we have that

c
ÿ

j“b

}pθj ´ θj}
2
2 ď

c
ÿ

j“b

}pθj ´ rθj}
2
2 ` }θj ´ rθj}

2
2 (B.100)

ď 5Kσ2 logp2T {δq logpT q ` ϕ ¨ n
1{3
i C

2{3
i , (B.101)

with probability at-least 1 ´ δ{T . Here ni :“ b ´ c ` 1 and Ci :“ TVrb Ñ cs. Further we
have that }pθc`1 ´ θc`1}

2
2 ď 2B2 due to the boundedness condition in Definition 3.2.1.

Thus overall we have that
řc`1

j“b “ rOpK ` n
1{3
i C

2{3
i q, with probability at-least 1 ´ δ for any

interval [b,c+1] such that condition in Line 5 is satisfied at times b ´ 1 and c ` 1. Thus we
have that

T
ÿ

t“1

}pθj ´ θj}
2
2 À

M
ÿ

i“1

K ` n
1{3
i C

2{3
i (B.102)

Àpaq T
1{3V

2{3
T K1{3

`

M
ÿ

i“1

n
1{3
i C

2{3
i (B.103)

Àpbq T
1{3V

2{3
T K1{3

`

˜

M
ÿ

i“1

ni

¸1{3˜M
ÿ

i“1

Ci

¸2{3

(B.104)

À T 1{3V
2{3
T K1{3, (B.105)

with probability at-least 1 ´ δ. In line (a) we used Eq.(B.99). In line (b) we used Holder’s
inequality with the dual norm pair p3, 3{2q. This concludes the proof.

We now present the tweak of Algorithm 4 by instantiating ALG with Algorithm 12 and
prove its regret guarantees. The resulting algorithm is described in Algorithm 13.
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Algorithm 13 Lazy-TrainByWeights: handling label shift with sparse ERM calls
Input: Instance ALG of Algorithm 12, A hypothesis Class H
1: At round t P rT s, get estimated label marginal pqt P RK from ALGps1:t´1q.
2: if pqt ““ pqt´1 then
3: ht “ ht´1

4: else
5: Update the hypothesis by calling a weighted-ERM oracle:

ht “ argmin
hPH

t´1
ÿ

i“1

N
ÿ

j“1

pqtpyi,jq

pqipyi,jq
ℓphpxi,jq, yi,jq (B.106)

6: end if
7: Get N co-variates xt,1:N and make predictions according to ht

8: Get labels yt,1:N
9: Compute stris “ 1

N

řN
j“1 Ityt,j “ iu for all i P rKs.

10: Update ALG with the empirical label marginals st.

Theorem B.5.3. Assume the same notations as in Theorem 3.4.1. Suppose we run
Algorithm 13 (see Appendix B.5) with ALG instantiated using Algorithm 12 with σ2 “ 1{N
and predictions clipped as in Theorem 3.4.1. Further let the online regression oracle given
to Algorithm 12 be chosen as one of the candidates mentioned in Remark B.4.1. Then with
probability at-least 1 ´ δ, we have that

RH
dynamic “ rO

´

T 2{3V
1{3
T `

a

T logp|H|{δq

¯

. (B.107)

Further, the number of number of calls to ERM oracle (via Step 5) is at-most rOpT 1{3V
2{3
T q

with probability at-least 1 ´ δ.

Sketch. The proof of this theorem closely follows the steps fused for proving Theorem 3.4.1.
So we only highlight the changes that need to be incorporated to the proof of Theorem
3.4.1.

Replace the use of Proposition B.5.1 in the proof of Theorem 3.4.1 with Theorem B.4.1.

For any round t, where Step 5 of Algorithm 13 is triggered, we can use the same arguments
as in the Proof of Theorem B.5.3 to bound the instantaneous regret by Eq.(B.83). i.e:

Ltphtq ´ Ltph
˚
t q ď

2B
?
K

µ2

˜

}pqt ´ qt}2 ` Er|pqt ´ qt}2s ` ϕ ¨
V

1{3
T

pt ´ 1q1{3
`

d

logp3T |H|{δq

pt ´ 1q

¸

,

(B.108)

with probability at-least 1 ´ δ{T .

For a round t, where Step 5 is not triggered, we proceed as follows:
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Let t1 be the most recent time step prior to t when Step 5 is executed. Notice that the
population loss can be equivalently represented as

Ltphq “
1

Npt1 ´ 1q

t1´1
ÿ

i“1

N
ÿ

j“1

E

„

qtpyijq

qipyijq
ℓphpxijq, yijq

ȷ

, (B.109)

where the expectation is taken with respect to randomness in the samples.

We define the following quantities:

Lemp
t phq :“

1

Npt1 ´ 1q

t1´1
ÿ

i“1

N
ÿ

j“1

qtpyijq

qipyijq
ℓphpxijq, yijq, (B.110)

rLtphq :“
1

Npt1 ´ 1q

t1´1
ÿ

i“1

N
ÿ

j“1

E

„

pqtpyijq

pqipyijq
ℓphpxijq, yijq

ȷ

, (B.111)

and

rLemp
t phq :“

1

Npt1 ´ 1q

t1´1
ÿ

i“1

N
ÿ

j“1

pqtpyijq

pqipyijq
ℓphpxijq, yijq. (B.112)

We decompose the regret at round t as

Ltphtq ´ Ltph
˚
t q “ Ltphtq ´ rLtphtq ` rLtphtq ´ rLemp

t phtq ` Lemp
t ph˚

t q ´ Ltph
˚
t q ` rLemp

t phtq ´ Lemp
t ph˚

t q

(B.113)

ď Ltphtq ´ rLtphtq
l jh n

T1

` rLtphtq ´ rLemp
t phtq

l jh n

T2

`Lemp
t ph˚

t q ´ Ltph
˚
t q

l jh n

T3

` rLemp
t ph˚

t q ´ Lemp
t ph˚

t q
l jh n

T4

,

(B.114)

where in the last line we used Eq.(8.1). Now we proceed to bound each terms as note above.

By using the same arguments as in Proof of Theorem 3.4.1 and replacing the use of Propo-
sition B.5.1 with Theorem B.4.1, we can bound T1-4. This will result in an instantaneous
regret bound at round t (which doesn’t trigger step 5) as:

Ltphtq ´ Ltph
˚
t q ď

2B
?
K

µ2

˜

}pqt ´ qt}2 ` Er|pqt ´ qt}2s ` ϕ ¨
V

1{3
T

pt1 ´ 1q1{3
`

d

logp3T |H|{δq

pt1 ´ 1q

¸

,

(B.115)
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ď
2B

?
K

µ2

˜

}pqt ´ qt}2 ` Er|pqt ´ qt}2s ` ϕ ¨ 41{3
¨

V
1{3
T

pt ´ 1q1{3
`

d

4 logp3T |H|{δq

pt ´ 1q

¸

,

(B.116)

with probability at-least 1 ´ δ{T . In the last line we used the fact that t1 ´ 1 ě pt{2q ´ 1 ě

pt ´ 1q{4 for all t ě 3.

Now adding Eq.(B.108) and (B.116) across all rounds and proceeding similar to the proof of
Theorem 3.4.1 (and replacing the use of Proposition B.5.1 with Theorem B.4.1) completes
the argument.

We next prove the matching (up to factors of log T ) lower bound.
Theorem 3.4.2. Let VT ď T {8. There exists a choice of hypothesis class, loss function, and
adversarial strategy of generating the data such that RH

dynamic “ Ω
´

T 2{3V
1{3
T `

a

T logp|H|q

¯

,

where the expectation is taken with respect to randomness in the algorithm and adversary.

Proof. First we fix the hypothesis class and the data generation strategy. In the problem
instance we consider, there are no co-variates. The hypothesis class is defined as

H :“ thp : hp predicts a label y „ Berppq; p P r|H|su. (B.117)

Further we design the hypothesis class such that both h0, h1 P H. Next we fix the data
generation strategy:

• Divide the time horizon into batches of length ∆.

• At the beginning of a batch i, the adversary picks q̊i uniformly at random from
t1{2 ´ δ, 1{2 ` δu.

• For all rounds t that falls within batch i, the label yt „ Berpqtq is sampled with
qt :“ q̊i.

• Learner predicts a label pyt P t0, 1u and then the actual label yt is revealed (hence
N “ 1 in the protocol of Fig.3).

• Learner suffers a loss given by ℓtppytq “ Itpyt ‰ ytu.

It is easy to see that the losses are bounded in r0, 1s. Now let’s examine the two possibilities
of generating labels within a batch. Let’s upper bound the variation incurred by the label
marginals:

T
ÿ

t“2

|qt ´ qt´1| “

M
ÿ

i“2

|̊qi ´ q̊i´1| (B.118)

ď 2δM (B.119)
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ď VT , (B.120)

where the last line is obtained by choosing δ “ VT {p2Mq “ VT∆{p2T q.

Since at the beginning of each batch, the sampling probability of true labels is independently
renewed, the historical data till the beginning of a batch is immaterial in minimising the loss
within the batch. So we can lower bound the regret within each batch separately and add
them up. Below, we focus on lower bounding the regret in batch 1 and the computations
are similar for any other batch.

Suppose that the probability that an algorithm predict label yt “ 1 is pqt, where pqt is a
measurable function of the past data y1:t´1. Then we have that the population loss Ltppqtq :“
Erℓtppytqs “ p1 ´ pqtqqt ` pqtp1 ´ qtq. Here we abuse the notation Lpqtq :“ Lphqtq. We see that
the population loss Ltppqtq are convex and its gradient obeys ∇Ltppqtq “ 1´ 2qt “ Er1´ 2yts
since by our construction yt „ Berpqtq. Thus the population losses are convex and its
gradients can be estimated in an unbiased manner from the data.

We use the following Proposition due to Besbes et al. (2015).

Proposition B.5.4 (due to Lemma A-1 in Besbes et al. (2015)). Let rP denote the joint
probability of the label sequence y1:∆ within a batch when they are generated using Berp1{2´δq.
So

rPpy1, . . . , y∆q “ Π∆
i“1p1{2 ´ δq

yip1{2 ` δq
1´yi . (B.121)

Similarly define rQ as

rQpy1, . . . , y∆q “ Π∆
i“1p1{2 ` δq

yip1{2 ´ δq
1´yi . (B.122)

According to the above distribution the data are independently sampled from Bernoulli trials
with success probability 1{2 ` δ. Let pqt be the decision of the online algorithm qt round t so
that the algorithm predicts label 1 with probability pqt.

Let P denote the joint probability distribution across the decisions pq1:∆ of any online algorithm
under the sampling model rP. Similarly define Q. Note that any online algorithm can make
decisions at round t only based on the past observed data y1:t´1. Further after making the
decision pqt at round t, an unbiased estimate of the population loss can be constructed due to
the fact that ∇Ltppqtq “ Er1 ´ 2yts. Under the availability of unbiased gradient estimates of
the losses, it holds that

KLpP||Qq ď 4∆δ2. (B.123)

By choosing δ “ VT {p2Mq “ VT∆{p2T q and ∆ “ pT {VT q2{3, we get that KLpP||Qq ď 1.

Since VT ď T {8, the above choice implies that δ P p0, 1{4q.
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For notational clarity, define LPpqq “ p1´qqp1{2´δq`qp1{2`δq and LQpqq “ p1´qqp1{2`

δq`qp1{2´δq. These corresponds to the population losses according to the sampling models
P and Q respectively. Observe that minq L

Ppqq “ minq L
Qpqq “ 1{2 ´ δ. The minimum of

LP and LQ are achieved at 0 and 1 respectively. Note that both h0, h1 P H. So there is
always a hypothesis in H that corresponds the minimiser of the loss.

Further whenever pq ě 1{2 we have that

LP
pqq “ p1{2 ´ δq ` qp2δq (B.124)

ě 1{2. (B.125)

Similarly whenever q ă 1{2 we have LQpqq ě 1{2. So we define the selector function as
ϕt :“ Itpqt ě 1{2u. Let q˚

t P t0, 1u be the minimiser of the loss at round t. Now we can lower
bound the instantaneous regret similar as

ErLtppqtq ´ Ltpq
˚
t qs “

1

2
pEPrLP

t ppqtq ´ LP
t p0qs `

1

2
pEQrLQ

t ppqtq ´ LQ
t p1qs (B.126)

ě
1

2
pEPrLP

t ppqtq ´ LP
t p0q|ϕt “ 1sPpϕt “ 1q `

1

2
pEQrLQ

t ppqtq ´ LQ
t p1q|ϕt “ 0sQpϕt “ 0q

(B.127)
ě δ{2maxtPpϕt “ 1q,Qpϕt “ 0qu (B.128)
ě pδ{8qe´1, (B.129)

where the last line is obtained by Propositions B.5.4 and B.3.5.

Thus we get a total lower bound on the instantanoeus regret as

T
ÿ

t“1

ErLtppqtq ´ Ltpq
˚
t qs ě Tδ{p8eq (B.130)

“ ∆VT {p16eq (B.131)

“ T 2{3V
1{3
T {p16eq, (B.132)

where the last line is obtained by using our choices of δVT∆{p2T q and ∆ “ pT {VT q2{3.

The second term of of Ωp
a

T log |H|q can be obtained from the existing results on statistical
learning theory without distribution shifts. (see for example Theorem 3.23 in Mohri et al.
(2012)).

B.6 More details on experiments
In Algorithm Algorithm 14, we describe the FLH-FTL algorithm from Hazan and Seshadhri
(2007) when specialised to squared error losses. When specialized to squared error losses,
this algorithm runs FLH with online averages as the base experts.
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Algorithm 14 An instance of FLH-FTL from Hazan and Seshadhri (2007) with squared
error losses
1: Parameter α is defined to be a learning rate

// initializations and definitions
2: For FLH-FTL instantiations within UOLS algorithms (as in Algorithm 2), we set α Ð

σ2
minpCq{p8Kq, where C is the confusion matrix as in Assumption 1. For instantiations

within SOLS algorithms (as in Algorithm 4) we set α Ð 1{p8Kq

3: For each round t P rT s, vt :“ pv
p1q

t , . . . , v
ptq
t q is a probability vector in Rt. Initialize

v
p1q

1 Ð 1
4: For each j P rT s, define a base learner Ej. For each t ą j, the base expert outputs

Ejptq :“ 1
t´j

řt´1
i“j zj, where zj to be specified as below. Further Ejpjq :“ 0 P RK

// execution steps
5: In round t P rT s, set @j ď t, xj

t Ð Ejptq (the prediction of the jth base learner at time
t). Play xt “

řt
j“1 v

pjq

t x
pjq

t .
6: Receive feedback zt, set pvpt`1q

t`1 Ð 0 and perform update for 1 ď i ď t:

pv
piq
t`1 Ð

v
piq
t e´α}x

piq
t ´zt}22

řt
j“1 v

pjq

t e´α}x
pjq
t ´zt}22

(B.133)

7: Addition step - Set v
pt`1q

t`1 to 1{pt ` 1q and for i ‰ t ` 1:

v
piq
t`1 Ð p1 ´ pt ` 1q

´1
qpv

piq
t`1 (B.134)
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Rationale behind the learning rate setting at Line 2 of Algorithm 14 The loss
that is incurred by Algorithm 14 and any of its base learners at round t is defined to be the
squared error loss ℓtpxq “ }zt ´ x}22. Whenever }zt}

2
2 ď B2 and }x}22 ď B2, the losses ℓtpxq

are 1{p8B2q exp-concave (see for eg. Chapter 3 of (Cesa-Bianchi and Lugosi, 2006)). The
notion of exp-concavity is crucial for FLH-FTL algorithm since the learning rate is set to
be equal to the exp-concavity factor of the loss functions (see Theorem 3.1 in Hazan and
Seshadhri (2007)).

For the UOLS problem, from Algorithm 2, we have }zt}2 “ }C´1f0pxtq}2 ď
?
K{σminpCq.

Since the decisions of the algorithm is a convex combination of the previously seen zt, we
conclude that the losses ℓtpxq are σ2

minpCq{p8Kq exp-concave.

For the SOLS problem, let zt “ st where st is as defined in Algorithm 4. We have that
}zt}2 ď

?
K. Hence arguing in a similar fashion as above, we conclude that the losses ℓtpxq

are 1{p8Kq exp-concave for the SOLS problem.

This is the motivation behind Line 2 in Algorithm 14, where the learning rates are set
according to the problem setting.

Dataset and model details.

• Synthetic: For the synthetic data, we generated 72k samples as described in Bai et al.
(2022). There are three classes each with 24k samples generated from three Gaussian
distributions in R12. Each Gaussian distribution is defined by a randomly generated
unit-norm centre v and covariance matrix 0.215 ¨ I. 60k samples are used as source
data, and 12k samples are used as target data to be sampled from during online
learning. We used logistic regression to train a linear model. It is trained for a single
epoch with learning rate 0.1, momentum 0.9, batch size 200, and l2 regularization
1 ˆ 10´4.

• MNIST (LeCun et al., 1998): An image dataset of 10 types of handwritten digits.
60k samples are used as source data and 10k as target data. We used an MLP for
prediction with three consecutive hidden layers of sizes 100, 100, and 20. It is trained
for a single epoch with a learning rate 0.1, momentum 0.9, batch size 200, and l2
regularization 1 ˆ 10´4.

• CIFAR-10 (Krizhevsky and Hinton, 2009): A dataset of colored images of 10 items:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. 50k samples
are used as source data and 10k as target data. We train a ResNet18 model (He et al.
(2016)) from scratch. It is finetuned for 70 epochs with learning rate 0.1, momentum
0.9, batch size 200, and l2 regularization 1 ˆ 10´4. The learning rate decayed by 90%
at the 25th and 40th epochs.

• Fashion (Xiao et al., 2017): An image dataset of 10 types of fashion items: T-shirt,
trouser, pullover, dress, coat, sandals, shirt, sneaker, bag, and ankle boots. 60k
samples are used as source data and 10k as target data. We trained an MLP for
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prediction. It is trained for 50 epochs with learning rate 0.1, momentum 0.9, batch
size 200, and l2 regularization 1 ˆ 10´4.

• EuroSAT (Helber et al., 2019): An image dataset of 10 types of land uses: industrial
buildings, residential buildings, annual crop, permanent crop, river, sea & lake,
herbaceous vegetation, highway, pasture, and forest. 60k samples are used as source
data and 10k as target data. We cropped the images to the size p3, 64, 64q. We train
a ResNet18 model for 50 epochs with learning rate 0.1, momentum 0.9, batch size
200, and l2 regularization 1 ˆ 10´4.

• Arxiv (Clement et al., 2019): A natural language dataset of 23 classes over different
publication subjects. 198k samples are used as source data and 22k as target data.
We trained a DistilBERT model (Sanh et al. (2019b)) for 50 epochs with learning
rate 2 ˆ 10´5, batch size 64, and l2 regularization 1 ˆ 10´2.

• SHL (Gjoreski et al., 2018; Wang et al., 2019c): A tabular locomotion dataset of
6 classes of human motion: still, walking, run, bike, car and bus. 30k samples are
used as source data and 70k as target data. We trained an MLP for prediction for 50
epochs with learning rate 0.1, momentum 0.9, batch size 200, and l2 regularization
1 ˆ 10´4.

For all the datasets above, the initial offline data are further split by 80 : 20 into training
and holdout data, where the former is used for offline training of the base model and the
latter for computing the confusion matrix and retraining (e.g. updating the linear head
parameters with UOGD or updating the softmax prediction with our FLT-FTL) during
online learning. To examine how well the algorithms adapt when holdout data is limited,
we use 10% of the holdout data (i.e., 2% of the initial offline data) in the main paper unless
stated otherwise. In App. ??, we ablate with full hold-out data.

Types of Simulated Shifts. We simulate four kinds of label shifts to capture different
non-stationary environments. These shifts are similar to the ones used in Bai et al. (2022).
For each shift, the label marginals are a mixture of two different constant marginals
µ1, µ2 P ∆K with a time-varying coefficient αt: µyt “ p1 ´ αtqµ1 ` αtµ2, where µyt denotes
the label distribution at round t and αt controls the shift non-stationarity and patterns.
In particular, we have: Sinusoidal Shift (Sin): αt “ sin iπ

L
, where i “ t mod L and L is a

given periodic length. In the experiments, we set L “
?
T . Bernoulli Shift (Ber): at every

iteration, we keep the αt “ αt´1 with probability p P r0, 1s and otherwise set αt “ 1 ´ αt´1.
In the experiments, the parameter is set as p “ 1{

?
T , which implies Vt “ Θp

?
T q. Square

Shift (Squ): at every L rounds we set αt “ 1´αt´1. Monotone Shift (Mon): we set αt “ t{T .
Square, sinusoidal, and Bernoulli shifts simulate fast-changing environments with periodic
patterns.

Methods for UOLS Adaptation.

• Base: the base classifier without any online modifications.
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CT
(base)

CT-RS (ours)
w FLH

CT-RS (ours)
w FLT-FTL

w-ERM
(oracle)

MNIST
Cl Err 5.0˘0.5 4.71˘0.2 4.53˘0.1 3.2˘0.4

MSE NA 0.12˘0.01 0.08˘0.01 NA

Table B.2: Results on SOLS setup. We report results with MNIST SOLS setup runs for
T “ 200 steps. We observe that continual training with re-sampling improves over the base
model which continually trains on the online data and achieves competitive performance
with respect to weighted ERM oracle.

• OFC: the optimal fixed classifier predicts with an optimal fixed re-weighting in
hindsight as in Wu et al. (2021).

• Oracle: re-weight the base model’s predictions with the true label marginal of the
unlabeled data at each time step.

• FTH: proposed by Wu et al. (2021), follow-the-history classifier re-weights the base
model’s predictions with a simple online average of all marginal estimates seen thus
far.

• FTFWH: proposed by Wu et al. (2021), follow-the-fixed-window-history classifier is a
version of FTH that tracks only the k most recent marginal estimates. We choose
k “ 100 throughout the experiments in this work.

• ROGD: proposed by Wu et al. (2021), ROGD uses online gradient descent to update
its re-weighting vector based on current marginal estimate.

• UOGD: proposed by Bai et al. (2022), retrains the last linear layer of the model based
on current marginal estimate.

• ATLAS: proposed by Bai et al. (2022) is a meta-learning algorithm that has UOGD
as its base learners.

The learning rates of ROGD, UOGD, and ATLAS are set according to suggestions in the
original works. The learning rate of FLH-FTL is set to 1{K. This corresponds to a faster
rate than the theoretically optimal learning rate given in Line 2 of Algorithm 14. It has
been observed in prior works such as Baby et al. (2021) that the theoretical learning rate is
often too conservative and faster rates lead to a better performance.

B.6.1 Supervised Online Label Shift Experiment Details

For each dataset, we first fix the number of time steps and then simulate the label marginal
shift. To train the learner with all the methods, we store all the online data observed
giving the storage complexity of OpT q. We observe N “ 50 examples at every iteration
and we split the observed labeled examples into 80:20 split for training and validation. The
validation examples are used to decide the number of gradient steps at every time step, in
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CT-RS (ours) w-ERM
(oracle)

CIFAR 145˘3.7 1882˘14

MNIST 20˘2.7 107˘3.6

Table B.3: Comparison on computation time (in minutes). We report results with MNIST
and CIFAR SOLS setup runs for T “ 200 steps. We observe that continual training with
re-sampling is approximately 5–15ˆ more efficient than weighted ERM oracle.

particular, we take gradient steps till the validation error continues to decrease.

Dataset and model details.

• MNIST (LeCun et al., 1998): An image dataset of 10 types of handwritten digits. At
each step, we sample 50 samples with the label marginal that step without replacement
and reveal the examples to the learner. We used an MLP for prediction with three
consecutive hidden layers of sizes 100, 100, and 20. It is trained for a single epoch
with a learning rate 0.1, momentum 0.9, batch size 200, and l2 regularization 1ˆ 10´4.

• CIFAR-10 (Krizhevsky and Hinton, 2009): A dataset of colored images of 10 items:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. At each step,
we sample 50 samples with the label marginal that step without replacement and
reveal the examples to the learner. It is finetuned for 70 epochs with learning rate
0.1, momentum 0.9, batch size 200, and l2 regularization 1 ˆ 10´4.

We simulate Bernoulli label shifts to capture different non-stationary environments.

Connection of CT-RS to weighted ERM Before making the connection, we first
re-visit the CT-RS algorithm. Step 1: Maintain a pool of all the labeled data received
till that time step, and at every iteration, we randomly sample a batch with uniform label
marginal to update the model. Step 2: Re-weight the softmax outputs of the updated
model with estimated label marginal. Below we show that it is equivalent to wERM:

ft “ argmin
fPH

t´1
ÿ

i“1

N
ÿ

j“1

pqtpyi,jq

pqipyi,jq
ℓpfpxi,jq, yi,jq

“ argmin
fPH

K
ÿ

k“1

pqtpkq

t´1
ÿ

i“1

N
ÿ

j“1

1 pyi,j “ kq

pqipkq
ℓpfpxi,jq, kq

“ argmin
fPH

K
ÿ

k“1

pqtpkq

p1{Kq

t´1
ÿ

i“1

N
ÿ

j“1

1 pyi,j “ kq

K ¨ pqipkq
ℓpfpxi,jq, kq
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“ argmin
fPH

K
ÿ

k“1

pµt,k

t´1
ÿ

i“1

N
ÿ

j“1

1 pyi,j “ kq

pµi,k

ℓpfpxi,jq, kq

l jh n

Lt´1,k

where pµt,k “ pqtpkq{p1{Kq is the importance ratio at time i with respect to uniform label
marginal. Similarly, we define pµi,k “ pqipkq{p1{Kq. Here, Lt´1,k is the aggregate loss at t-th
time step for k-th class such that at each step the sampling probability of that class is
uniform. By continually training a classifier with CT-RS, Step 1 approximates the classifier
rft trained to minimize the average of Lt´1,k over all classes with uniform proportion for
each class. To update the classifier rft according to label proportions at time t, we update
the softmax output of rft according to pµt.

The primary benefit of CT-RS over wERM is to avoid re-training from scratch at every
iteration. Instead, we can leverage the model trained in the previous iteration to warm-start
training in the next iteration.

B.6.2 Additional results and details on the SHL dataset
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Figure B.1: Additional results and details on the SHL datasets with real shift. (a) and
(b): The accuracies and mean square errors in label marginal estimation on SHL dataset
over 7,000 time steps with limited amount of holdout data. (c): Label marginals of the six
classes of SHL dataset. Each time step here shows the marginals over 700 samples.
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Appendix C

Appendix: Mixture Proportion
Estimation and PU Learning: A Modern
Approach

C.1 Proofs from Sec. 4.4
Proof of Lemma D.4.2. The proof primarily involves using DKW inequality (Dvoretzky
et al., 1956) on pwqupcq and pwqppcq to show convergence to their respective means qupcq and
qppcq. First, we have

∣∣∣∣ pwqupcq

pwqppcq
´

qupcq

qppcq

∣∣∣∣ “
1

pwqupcq ¨ qupcq
| pwqupcq ¨ qppcq ´ qppcq ¨ qupcq ` qppcq ¨ qupcq ´ pwqppcq ¨ qupcq|

ď
1

pwqppcq
| pwqupcq ´ qupcq| `

qupcq

pwqppcq ¨ qupcq
| pwqppcq ´ qppcq| . (C.1)

Using DKW inequality, we have with probability 1 ´ δ: | pwqppcq ´ qppcq| ď

b

logp2{δq

2np
for all

c P r0, 1s. Similarly, we have with probability 1 ´ δ: | pwqupcq ´ qupcq| ď

b

logp2{δq

2nu
for all

c P r0, 1s. Plugging this in (C.1), we have∣∣∣∣ pwqupcq

pwqppcq
´

qupcq

qppcq

∣∣∣∣ ď
1

pwqppcq

˜

d

logp4{δq

2nu

`
qupcq

qppcq

d

logp4{δq

2np

¸

.

Proof of Theorem 4.4.1. The main idea of the proof is to use the confidence bound derived
in Lemma D.4.2 at pwc and use the fact that pwc minimizes the upper confidence bound.
The proof is split into two parts. First, we derive a lower bound on pwqpp pwcq and next, we
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use the obtained lower bound to derive confidence bound on pwα. All the statements in the
proof simultaneously hold with probability 1 ´ δ. Recall,

pwc :“ argmin
cPr0,1s

pwqupcq

pwqppcq
`

1

pwqppcq

˜

d

logp4{δq

2nu

` p1 ` γq

d

logp4{δq

2np

¸

and (C.2)

pwα :“
pwqup pwcq

pwqpp pwcq
. (C.3)

Moreover,

c˚ :“ argmin
cPr0,1s

qupcq

qppcq
and α˚ :“

qupc˚q

qppc˚q
. (C.4)

Part 1: We establish lower bound on pwqpp pwcq. Consider c1 P r0, 1s such that pwqppc1q “
γ

2`γ
pwqppc˚q. We will now show that Algorithm 17 will select pwc ă c1. For any c P r0, 1s, we

have with with probability 1 ´ δ,

pwqppcq ´

d

logp4{δq

2np

ď qppcq and qupcq ´

d

logp4{δq

2nu

ď pwqupcq . (C.5)

Since qupc˚q

qppc˚q
ď

qupcq

qppcq
, we have

pwqupcq ě qppcq
qupc˚q

qppc˚q
´

d

logp4{δq

2nu

ě

˜

pwqppcq ´

d

logp4{δq

2np

¸

qupc˚q

qppc˚q
´

d

logp4{δq

2nu

. (C.6)

Therefore, at c we have

pwqupcq

pwqppcq
ě α˚

´
1

pwqppcq

˜

d

logp4{δq

2nu

`
qupc˚q

qppc˚q

d

logp4{δq

2np

¸

. (C.7)

Using Lemma D.4.2 at c˚, we have

pwqupcq

pwqppcq
ě

pwqupc˚q

pwqppc˚q
´

ˆ

1

pwqppc˚q
`

1

pwqppcq

˙

˜

d

logp4{δq

2nu

`
qupc˚q

qppc˚q

d

logp4{δq

2np

¸

(C.8)

ě
pwqupc˚q

pwqppc˚q
´

ˆ

1

pwqppc˚q
`

1

pwqppcq

˙

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸

, (C.9)

where the last inequality follows from the fact that α˚ “
qupc˚q

qppc˚q
ď 1. Furthermore, the upper

confidence bound at c is lower bound as follows:

pwqupcq

pwqppcq
`

1 ` γ

pwqppcq

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸

(C.10)
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ě
pwqupc˚q

pwqppc˚q
`

ˆ

1 ` γ

pwqppcq
´

1

pwqppc˚q
´

1

pwqppcq

˙

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸

(C.11)

“
pwqupc˚q

pwqppc˚q
`

ˆ

γ

pwqppcq
´

1

pwqppc˚q

˙

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸

(C.12)

Using (D.13) at c “ c1, we have the following lower bound on ucb at c1:

pwqupc1q

pwqppc1q
`

1 ` γ

pwqppc1q

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸

(C.13)

ě
pwqupc˚q

pwqppc˚q
`

1 ` γ

pwqppc˚q

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸

, (C.14)

Moreover from (D.13), we also have that the lower bound on ucb at c ě c1 is strictly greater
than the lower bound on ucb at c1. Using definition of pwc, we have

pwqupc˚q

pwqppc˚q
`

1 ` γ

pwqppc˚q

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸

(C.15)

ě
pwqup pwcq

pwqpp pwcq
`

1 ` γ

pwqpp pwcq

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸

, (C.16)

and hence

pwc ď c1 . (C.17)

Part 2: We now establish an upper and lower bound on pwα. We start with upper confidence
bound on pwα. By definition of pwc, we have

pwqup pwcq

pwqpp pwcq
`

1 ` γ

pwqpp pwcq

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸

(C.18)

ď min
cPr0,1s

«

pwqupcq

pwqppcq
`

1 ` γ

pwqppcq

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸ff

(C.19)

ď
pwqupc˚q

pwqppc˚q
`

1 ` γ

pwqppc˚q

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸

. (C.20)

Using Lemma D.4.2 at c˚, we get

pwqupc˚q

pwqppc˚q
ď

qupc˚q

qppc˚q
`

1

pwqppc˚q

˜

d

logp4{δq

2nu

`
qupc˚q

qppc˚q

d

logp4{δq

2np

¸
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“ α˚
`

1

pwqppc˚q

˜

d

logp4{δq

2nu

` α˚

d

logp4{δq

2np

¸

. (C.21)

Combining (D.21) and (D.22), we get

pwα “
pwqup pwcq

pwqpp pwcq
ď α˚

`
2 ` γ

pwqppc˚q

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸

. (C.22)

Using DKW inequality on pwqppc˚q, we have pwqppc˚q ě qppc˚q ´

b

logp4{δq

2np
. Assuming

np ě
2 logp4{δq

q2ppc˚q
, we get pwqppc˚q ď qppc˚q{2 and hence,

pwα ď α˚
`

4 ` 2γ

qppc˚q

˜

d

logp4{δq

2nu

`

d

logp4{δq

2np

¸

. (C.23)

Finally, we now derive a lower bound on pwα. From Lemma D.4.2, we have the following
inequality at pwc

qup pwcq

qpp pwcq
ď

pwqup pwcq

pwqpp pwcq
`

1

pwqpp pwcq

˜

d

logp4{δq

2nu

`
qup pwcq

qpp pwcq

d

logp4{δq

2np

¸

. (C.24)

Since α˚ ď
qup pwcq

qpp pwcq
, we have

α˚
ď

qup pwcq

qpp pwcq
ď

pwqup pwcq

pwqpp pwcq
`

1

pwqpp pwcq

˜

d

logp4{δq

2nu

`
qup pwcq

qpp pwcq

d

logp4{δq

2np

¸

. (C.25)

Using (D.24), we obtain a very loose upper bound on pwqup pwcq

pwqpp pwcq
. Assuming minpnp, nuq ě

2 logp4{δq

q2ppc˚q
, we have pwqup pwcq

pwqpp pwcq
ď α˚ ` 4 ` 2γ ď 5 ` 2γ. Using this in (D.26), we have

α˚
ď

pwqup pwcq

pwqpp pwcq
`

1

pwqpp pwcq

˜

d

logp4{δq

2nu

` p5 ` 2γq

d

logp4{δq

2np

¸

. (C.26)

Moreover, as pwc ě c1, we have pwqpp pwcq ě
γ

2`γ
pwqppc˚q and hence,

α˚
´

γ ` 2

γ pwqppc˚q

˜

d

logp4{δq

2nu

` p5 ` 2γq

d

logp4{δq

2np

¸

ď
pwqup pwcq

pwqpp pwcq
“ pwα . (C.27)

As we assume np ě
2 logp4{δq

q2ppc˚q
, we have pwqppc˚q ď qppc˚q{2, which implies the following lower

bound on α:

α˚
´

2γ ` 4

γqppc˚q

˜

d

logp4{δq

2nu

` p5 ` 2γq

d

logp4{δq

2np

¸

ď pwα . (C.28)
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Proof of Corollary 4.4.3. Note that since α ď α˚, the lower bound remains the same as
in Theorem 4.4.1. For upper bound, plugging in qupcq “ αqppcq ` p1 ´ αqqnpcq, we have
α˚ “ α ` p1 ´ αqqnpc˚q{qppc˚q and hence, the required upper bound.

C.1.1 Note on γ in Algorithm 17

We multiply the upper bound in Lemma D.4.2 to establish lower bound on pwqpp pwcq.
Otherwise, in an extreme case, with γ “ 0, Algorithm 17 can select pwc with arbitrarily low
pwqpp pwcq (! qppc˚q) and hence poor concentration guarantee to the true mixture proportion.
However, with a small positive γ, we can obtain lower bound on pwqpp pwcq and hence tight
guarantees on the ratio estimate ( pwqup pwcq{ pwqpp pwcq) in Theorem 4.4.1.

In our experiments, we choose γ “ 0.01. However, we didn’t observe any (significant)
differences in mixture proportion estimation even with γ “ 0. implying that we never
observe pwqpp pwcq taking arbitrarily small values in our experiments.

C.2 Comparison of BBE with Scott (2015)
Heuristic estimator due to Scott (2015) is motivated by the estimator in Blanchard et al.
(2010). The estimator in Blanchard et al. (2010) relies on VC bounds, which are known to
be loose in typical deep learning situations. Therefore, Scott (2015) proposed an heuristic
implementation based on the minimum slope of any point in the ROC space to the point
p1, 1q. To obtain ROC estimates, authors use direct binomial tail inversion (instead of VC
bounds as in Blanchard et al. (2010)) to obtain tight upper bounds for true positives and
lower bounds for true negatives. Finally, using these conservatives estimates the estimator
in Scott (2015) is obtained as the minimum slope of any of the operating points to the
point p1, 1q.

While the estimate of one minus true positives at a threshold t is similar in spirit to our
number of unlabeled examples in the top bin and the estimate of one minus true negatives
at a threshold t is similar in spirit to our number of positive examples in the unlabeled
data, the functional form of these estimates are very different. Scott (2015) estimator is the
ratio of quantities obtained by binomial tail inversion (i.e. upper bound in the numerator
and lower bound in the denominator). By contrast, the final BBE estimate is simply the
ratio of empirical CDFs at the optimal threshold. Mathematically, we have

pwαScott “
pwqupcScottq ` binvpnu, pwqupcScottq, δ{nuq

pwqppcScottq ´ binvpnp, pwqppcScottq, δ{npq
and (C.29)

pwαBBE “
pwqupcBBEq

pwqppcBBEq
, (C.30)

where cScott “ argmincPr0,1s

pwqupcq`binvpnu, pwqupcq,δ{nuq

pwqppcq´binvpnp, pwqppcq,δ{npq
and binvpnp, qppcq, δ{npq is the tightest

possible deviation bound for a binomial random variable (Scott, 2015) and and cBBE is
given by Algorithm 17. Moreover, Scott (2015) provide no theoretical guarantees for their
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Dataset Model (TED)n BBE˚ DEDPUL˚ Scott˚

Binarized CIFAR ResNet 0.018 0.072 0.075 0.091

CIFAR
Dog vs

Cat
ResNet 0.074 0.120 0.113 0.158

Binarized
MNIST

MLP 0.021 0.028 0.027 0.063

MNIST17 MLP 0.003 0.008 0.006 0.037

Table C.1: Absolute estimation error when α is 0.5. "*" denote oracle early
stopping as defined in Sec. 2.6. As mentioned in Scott (2015) implementation in
https://web.eecs.umich.edu/~cscott/code/mpe_v2.zip, we use the binomial inversion at δ
instead of δ{n (rescaling using the union bound). Since we are using Binomial inversion at
n discrete points simultaneously, we should use the union-bound penalty. However, using
union bound penalty substantially increases the bias in their estimator.

heuristic estimator pwαScott. On the hand, we provide guarantees that our estimator pwαBBE

will converge to the best estimate achievable over all choices of the bin size and provide
consistent estimates whenever a pure top bin exists. Supporting theoretical results of
BBE, we observe that these choices in BBE create substantial differences in the empirical
performance as observed in Table C.1. We repeat experiment for MPE from Sec. 2.6 where
we compare other methods with the Scott (2015) estimator as defined in (C.29).

As a side note, a naive implementation of pwαScott instead of (C.29) where we directly
minimize the empirical ratio yields poor estimates due to noise introduced with finite
samples. In our experiments, we observed that pwαScott improves a lot over this naive
estimator.

C.3 Toy setup

Jain et al. (2016) and Ivanov (2019) discuss Bayes optimality of the PvU classifier (or its
one-to-one mapping) as a sufficient condition to preserve α in transformed space. However,
in a simple toy setup (in App. C.3), we show that even when the hypothesis class is well
specified for PvN learning, it will not in general contain the Bayes optimal scoring function
for PvU data and thus PvU training will not recover the Bayes-optimal scoring function,
even in population.

Consider a scenario with X “ R2. Assume points from the positive class are sampled
uniformly from the interior of the triangle defined by coordinates tp´1, 0.1q, p0, 4q, p1, 0.1qu

and negative points are sampled uniformly from the interior of triangle defined by coordinates
tp´1,´0.1q, p4,´4q, p1,´0.1qu. Ref. to Fig. C.1 for a pictorial representation. Let mixture
proportion be 0.5 for the unlabeled data. Given access to distribution of positive data and
unlabeled data, we seek to train a linear classifier to minimize logistic or Brier loss for PvU
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(a)

Figure C.1: Blue points show samples from the positive distribution and orange points show
samples from the negative distribution. Unalabeled data is obtained by mixing positive
and negative distribution with equal proportion. BCE (or Brier) loss minimization on P vs
U data leads to a classifiers that is not consistent with the ranking of the Bayes optimal
score function.

training.

Since we need a monotonic transformation of the Bayes optimal scoring function, we want
to recover a predictor parallel to x-axis, the Bayes optimal classifier for PvN training.
However, minimizing the logistic loss (or Brier loss) using numerical methods, we obtain a
predictor that is inclined at a non-zero acute angle to the x-axis. Thus, the PvU classifier
obtained fails to satisfy the sufficient condition from Jain et al. (2016) and Ivanov (2019).
On the other hand, note that the linear classifier obtained by PvU training satisfies the
pure positive bin property.

Now we show that under the subdomain assumption (Ramaswamy et al., 2016; Scott, 2015),
any monotonic transformation of Bayes optimal scoring function induces positive pure bin
property. First, we define the subdomain assumption.
Assumption 5 (Subdomain assumption). A family of subsets S Ď 2X , and distributions pp,
pn are said to satisfy the anchor set condition with margin γ ą 0, if there exists a compact
set A P S such that A Ď supppppq{suppppnq and pppAq ě γ.

Note that any monotonic mapping of the Bayes optimal scoring function can be represented
by τ 1 “ g ˝ τ , where g is a monotonic function and

τpxq “

#

pppxq{pupxq if pppxq ą 0

0 o.w .
(C.31)

For any point x P A and x1 P X {A, we have τpxq ą τpx1q which implies τ 1pxq ą τ 1px1q.
Thus, any monotonic mapping of Bayes optimal scoring function yields the positive pure
bin property with ϵp ě γ.
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C.4 Analysis of CVIR

First we analyse our loss function in the scenario when the support of positives and neg-
atives is separable. We assume that the true alpha α is known and we have access to
populations of positive and unlabeled data. We also assume that their exists a separa-
tor f˚ : X ÞÑ t0, 1u that can perfectly separate the positive and negative distribution,
i.e.,

ş

dxpppxqI rf˚pxq ‰ 1s `
ş

dxpnpxqI rf˚pxq ‰ 0s “ 0. Our learning objective can be
written as jointly optimizing a classifier f and a weighting function w on the unlabeled
distribution:

min
fPF ,w

ż

dxpppxqlpfpxq, 1q `
1

1 ´ α

ż

dxpupxqwpxqlpfpxq, 0q ,

s.t. w : X ÞÑ r0, 1s ,

ż

dxpupxqwpxq “ 1 ´ α . (C.32)

The following proposition shows that minimizing the objective (C.32) on separable positive
and negative distributions gives a perfect classifier.
Proposition C.4.1. For α P p0, 1q, if there exists a classifier f˚ P F that can perfectly
separate the positive and negative distributions, optimizing objective (C.32) with 0-1 loss
leads to a classifier f that achieves 0 classification error on the unlabeled distribution.

Proof. First we observe that having wpxq “ 1 ´ f˚pxq leads to the objective value being
minimized to 0 as well as a perfect classifier f . This is because

1

1 ´ α

ż

dxpupxqp1 ´ f˚
pxqqlpfpxq, 0q “

ż

dxpnpxqlpfpxq, 0q

thus the objective becomes classifying positive v.s. negative, which leads to a perfect
classifier if F contains one. Now we show that for any f such that the classification error is
non-zero then the objective (C.32) must be greater than zero no matter what w is. Suppose
f satisfies

ż

dxpppxqlpfpxq, 1q `

ż

dxpnpxqlpfpxq, 0q ą 0 .

We know that either
ş

dxpppxqlpfpxq, 1q ą 0 or
ş

dxpnpxqlpfpxq, 0q ą 0 will hold. If
ş

dxpppxqlpfpxq, 1q ą 0 we know that (C.32) must be positive. If
ş

dxpppxqlpfpxq, 1q “ 0
and

ş

dxpnpxqlpfpxq, 0q ą 0 we have lpfpxq, 0q “ 1 almost everywhere in pppxq thus

1

1 ´ α

ż

dxpupxqwpxqlpfpxq, 0q

“
α

1 ´ α

ż

dxpppxqwpxqlpfpxq, 0q `

ż

dxpnpxqwpxqlpfpxq, 0q

“
α

1 ´ α

ż

dxpppxqwpxq `

ż

dxpnpxqwpxqlpfpxq, 0q .
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If
ş

dxpppxqwpxq ą 0 we know that (C.32) must be positive. If
ş

dxpppxqwpxq “ 0, since we
know that

ż

dxpupxqwpxq “ α

ż

dxpppxqwpxq ` p1 ´ αq

ż

dxpnpxqwpxq “ 1 ´ α

we have
ş

dxpnpxqwpxq “ 1 which means wpxq “ 1 almost everywhere in pnpxq. This
leads to the fact that

ş

dxpnpxqlpfpxq, 0q ą 0 indicates
ş

dxpnpxqwpxqlpfpxq, 0q ą 0, which
concludes the proof.

The intuition is that, any classifier that discards an rα ą 0 proportion of negative distribution
from unlabeled will have loss strictly greater than zero with our CVIR objective. Since only
a perfect linear separator (with weights Ñ 8) can achieves loss Ñ 0, CVIR objective will
(correctly) discard the α proportion of positive from unlabeled data achieving a classifier
that perfectly separates the data.

We leave theoretic investigation on non-separable distributions for future work. However,
as an initial step towards a general theory, we show that in the population case one step of
our alternating procedure cannot increase the loss.

Consider the following objective function

Lpft, wtq “ Ex„Pprlpftpxq, 0qs ` Ex„Purwtpxqlpftpxq, 1qs (C.33)
such that Ex„Purwpxqs “ 1 ´ α and wpxq P t0, 1u

Given ft and wt, CVIR can be summarized as the following two step iterative procedure:
(i) Fix ft, optimize the loss to obtain wt`1; and (ii) Fix wt`1 and optimize the loss to
obtain ft`1. By construction of CVIR, we select wt`1 such that we discard points with
highest loss, and hence Lpft, wt`1q ď Lpft, wtq. Fixing wt`1, we minimize the Lpft, wt`1q

to obtain ft`1 and hence Lpft`1, wt`1q ď Lpft, wt`1q. Combining these two steps, we get
Lpft`1, wt`1q ď Lpft, wtq.

C.5 Prior Method Details
PU learning Next, we briefly discuss recent methods for MPE that operate in the
classifier output space to avoid curse of dimensionality:

(i) EN: Given a domain discriminator classifier fd trained to discriminate between
positive and unlabeled, Elkan and Noto (2008) proposed the following estimator:
ř

xiPXp
fdpxiq{

ř

xiPXu
fdpxiq where Xp is the set of positive examples and Xu is the

set of unlabeled examples.

(ii) DEDPUL: Given a domain discriminator classifier fd, Ivanov (2019) proposed an
estimator that leverages density of the data in the output space of the classifier fd to
directly estimate min pupfpxqq{pppfpxqq.

212



(iii) BBE: BBE (Garg et al., 2021b) identifies a threshold on probability scores assigned
by the classifier fd such that by estimating the ratio between the fractions of positive
and unlabeled points receiving scores above the threshold, we obtain proportion of
positives in unlabeled.

After obtaining an estimate for mixture proportion α, following methods can be employed
for PU classification:

(i) Domain Discriminator: Given positive and unlabeled data, Elkan and Noto (2008)
trained a classifier fd to discriminator between them. To make a prediction on test
point from unlabeled data, we can then use Bayes rule to obtain the following trans-
formation on probabilistic output of the domain discriminator: f “ α

`

m
n

˘

´

fdpxq

1´fdpxq

¯

,
where n and m are the number of positives and unlabeled examples used to train
fd (Elkan and Noto, 2008).

(ii) uPU: Du Plessis et al. (2015) proposed an unbiased loss estimator for positive versus
negative training. In particular, since pu “ αpp ` p1 ´ αqpn, the loss on negative
examples Epn rℓpfpxq;´1qs can be estimated as:

Epn rℓpfpxq;´1qs “
1

1 ´ α

“

Epu rℓpfpxq;´1qs ´ αEpp rℓpfpxq;´1qs
‰

. (C.34)

Thus, a classifier can be trained with the following uPU loss:

LuPUpfq “ αEpp rℓpfpxq;`1qs ` Epu rℓpfpxq;´1qs ´ αEpp rℓpfpxq;´1qs . (C.35)

(iii) nnPU: While unbiased losses exist that estimate the PvN loss given PU data and
the mixture proportion α, this unbiasedness only holds before the loss is optimized,
and becomes ineffective with powerful deep learning models capable of memorization.
Kiryo et al. (2017) proposed the following non-negative regularization for unbiased
PU learning:

LnnPUpfq “ αEpp rℓpfpxq;`1qs ` max
␣

Epu rℓpfpxq;´1qs ´ αEpp rℓpfpxq;´1qs , 0
(

.
(C.36)

(iv) CVIR: Garg et al. (2021b) proposed CVIR objective, which discards the highest
loss α fraction of unlabeled examples on each training epoch, removing the incentive
to overfit to the unlabeled positive examples. CVIR loss is defined as

LCVIRpfq “ αEpp rℓpx, 1; fqs ` Epu rwpxqℓpx,´1; fqs , (C.37)

where weights wpxq “ I rℓpx,´1; fq ď VIRαpfqs for VIRαpfq defined as VIRαpfq “

inftτ P R : Px„pupℓpx,´1; fq ď τq ě 1´αu. Intuitively, VIRαpfq identifies a threshold
τ to capture bottom 1 ´ α fraction of the loss ℓpx,´1q for points x sampled from pu.
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C.6 Experimental Details
Below we present dataset details. We present experiments with MNIST Overlap in
App. C.7.7.

Dataset Simula7ed PU Dataset P vs N #Positives #Unlabeled
Train Val Train Val

CIFAR10
Binarized CIFAR [0-4] vs [5-9] 12500 12500 2500 2500

CIFAR Dog vs Cat 3 vs 5 2500 2500 500 500

MNIST
Binarized MNIST [0-4] vs [5-9] 15000 15000 2500 2500

MNIST 17 1 vs 7 3000 3000 500 500
MNIST Overlap [0-7] vs [3-9] 150000 15000 2500 2500

IMDb IMDb pos vs neg 6250 6250 5000 5000

For CIFAR dataset, we also use the standard data augementation of random crop and
horizontal flip. PyTorch code is as follows:

(transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip())

C.6.1 Architecture and Implementation Details

All experiments were run on NVIDIA GeForce RTX 2080 Ti GPUs. We used Py-
Torch (Paszke et al., 2019) and Keras with Tensorflow (Abadi et al., 2016) backend
for experiments.

For CIFAR10, we experiment with convolutional nets and MLP. For MNIST, we train MLP.
In particular, we use ResNet18 (He et al., 2016) and all convolution net (Springenberg et al.,
2014) . Implementation adapted from: https://github.com/kuangliu/pytorch-cifar.
git. We consider a 4-layered MLP. The PyTorch code for 4-layer MLP is as follows:

nn.Sequential(nn.Flatten(),
nn.Linear(input_dim, 5000, bias=True),
nn.ReLU(),
nn.Linear(5000, 5000, bias=True),
nn.ReLU(),
nn.Linear(5000, 50, bias=True),
nn.ReLU(),
nn.Linear(50, 2, bias=True)
)

For all architectures above, we use Xaviers initialization (Glorot and Bengio, 2010). For all
methods except nnPU and uPU, we do cross entropy loss minimization with SGD optimizer
with momentum 0.9. For convolution architectures we use a learning rate of 0.1 and MLP
architectures we use a learning rate of 0.05. For nnPU and uPU, we minimize sigmoid loss
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with ADAM optimizer with learning rate 0.0001 as advised in its original paper. For all
methods, we fix the weight decay param at 0.0005.

For IMDb dataset, we fine-tune an off-the-shelf uncased BERT model (Devlin et al., 2019).
Code adapted from Hugging Face Transformers (Wolf et al., 2020): https://huggingface.
co/transformers/v3.1.0/custom_datasets.html. For all methods except nnPU and
uPU, we do cross entropy loss minimization with Adam optimizer with learning rate 0.00005
(default params). With the same hyperparameters and Sigmoid loss, we could not train
BERT with nnPU and uPU due to vanishing gradients. Instead we use learning rate
0.00001.

C.6.2 Division between training set and hold-out set

Since the training set is used to learn the classifier (parameters of a deep neural network)
and the hold-out set is just used to learn the mixture proportion estimate (scalar), we use
a larger dataset for training. Throughout the experiments, we use an 80-20 split of the
original set.

At a high level, we have an error bound on the mixture proportion estimate and we can
use that to decide the split in general. As long as we use enough samples to make the
Op1{

?
nq small in our bound in Theorem 4.4.1, we can use the rest of the samples to learn

the classifier.

C.7 Additional Experiments

C.7.1 nnPU vs PN classification

In this section, we compare the performance of nnPU and PvN training on the same positive
and negative (from the unlabeled) data at α “ 0.5. We highlight the huge classification
performance gap between nnPU and PvN training and show that training with CVuO
objective partially recovers the performance gap. Note, to train PvN classifier, we use the
same hyperparameters as that with PvU training.

C.7.2 Under-Fitting due to pessimistic early stopping

Ivanov (2019) explored the following heuristics for ad-hoc early stopping criteria: training
proceeds until the loss on unseen PU data ceases to decrease. In particular, the authors
suggested early stopping criterion based on the loss on unseen PU data doesn’t decrease in
epochs separated by a pre-defined window of length l. The early stopping is done when this
happens consecutively for l epochs. However, this approach leads to severe under-fitting.
When we fix l “ 5, we observe a significant performance drop in CIFAR classification and
MPE.

With PvU training, the performance of ResNet model on Binarized CIFAR (in Table 4.2)
drops from 78.3 (orcale stopping) to 60.4 (with early stopping). Similar on CIFAR CAT
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Dataset Model nnPU
(known α) PvN CVuO

(known α)
(TED)n

(unknown α)

Binarized
CIFAR

ResNet 76.8 86.9 82.6 82.7

All Conv 72.1 76.7 77.1 76.8

MLP 63.9 65.1 65.9 63.2

CIFAR Dog vs Cat
ResNet 72.6 80.4 74.0 76.1

All Conv 68.4 77.9 71.0 72.2

Binarized MNIST MLP 95.9 96.7 96.4 95.9

MNIST17 MLP 98.2 99.0 98.6 98.6

IMDb BERT 86.2 89.1 87.4 88.1

Table C.2: Accuracy for PvN classification with nnPU, PvN, CVuO objective and (TED)n
training. Results reported by aggregating aggregating over 10 epochs.

vs Dog, the performance of the same architecture drops from 71.6 (orcale stopping) to
58.4 (with early stopping). Note that the decrease in accuracy is less or not significant
for MNIST. With PvU training, the performance of MLP model on Binarized MNIST (in
Table 4.2) drops from 94.5 (orcale stopping) to 94.1 (with early stopping). This is because
we obtain good performance on MNIST early in training.

C.7.3 Overfitting on unlabeled data as PvU training proceeds

0.0 0.2 0.4 0.6 0.8
Output Prob

0
2
4
6
8

10
12

De
ns

ity

Epoch 5
pos
neg

0.0 0.2 0.4 0.6 0.8
Output Prob

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

De
ns

ity

Epoch 50
pos
neg

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Output Prob

0
1
2
3
4
5

De
ns

ity

Epoch 100
pos
neg

0.0 0.2 0.4 0.6 0.8 1.0
Output Prob

0
2
4
6
8

De
ns

ity

Epoch 200
pos
neg

0.0 0.2 0.4 0.6 0.8 1.0
Output Prob

0
2
4
6
8

De
ns

ity

Epoch 400
pos
neg

0.0 0.2 0.4 0.6 0.8 1.0
Output Prob

0
2
4
6
8

De
ns

ity

Epoch 500
pos
neg

Figure C.2: Score assigned by the classifier to positive and negative points in the unlabeled
training set as PvU training proceeds. As training proceeds, classifier memorizes both
positive and negative in unlabeled as negatives.

In Fig. C.2, we show the distribution of unlabeled training points. We show that as positive
versus unlabeled training proceeds with a ResNet-18 model on binarized CIFAR dataset,
classifier memorizes all the unlabeled data as negative assigning them very small scores
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(i.e., the probability of them being negative).

C.7.4 Ablations to (TED)n

Varying the number of warm start epochs We now vary the number of warm start
epochs with (TED)n. We observe that increasing the number of warm start epochs doesn’t
hurt (TED)n even when the classifier at the end of the warm start training memorized PU
training data due PvU training. While in many cases (TED)n training without warm start
is able to recover the same performance, it fails to learn anything for CIFAR Dog vs Cat
with all convolutional neural network. This highlights the need for warm start training
with (TED)n.

Figure C.3: Classification and MPE results with varying warm start epochs W with (TED)n

Varying the true mixture proportion α Next, we vary α, the true mixture proportion
and present results for MPE and classification in Fig. C.4. Overall, across all α, our method
(TED)n is able to achieve superior performance as compared to alternate algorithms. We
omit high α for CIFAR and IMDb datasets as all the methods result in trivial accuracy
and mixture proportion estimate.

Figure C.4: MPE and Classification results with varying mixture proportion. For each
method we show results with the best performing architecture.

C.7.5 Classification and MPE results with error bars
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Dataset Model (TED)n BBE˚ DEDPUL˚ EN KM2 TiCE

Binarized
CIFAR

ResNet 0.026 ˘ 0.005 0.091 ˘ 0.027 0.091 ˘ 0.023 0.192 ˘ 0.007

All Conv 0.042 ˘ 0.003 0.037 ˘ 0.018 0.052 ˘ 0.017 0.221 ˘ 0.017 0.168 ˘ 0.207 0.194 ˘ 0.039

MLP 0.225 ˘ 0.013 0.177 ˘ 0.011 0.138 ˘ 0.009 0.372 ˘ 0.002

CIFAR
Dog vs

Cat

ResNet 0.078 ˘ 0.010 0.176 ˘ 0.015 0.170 ˘ 0.010 0.226 ˘ 0.003 0.331 ˘ 0.238 0.286 ˘ 0.013

All Conv 0.066 ˘ 0.015 0.128 ˘ 0.020 0.115 ˘ 0.014 0.250 ˘ 0.019

Binarized
MNIST

MLP 0.024 ˘ 0.001 0.032 ˘ 0.001 0.031 ˘ 0.003 0.080 ˘ 0.009 0.029 ˘ 0.008 0.056 ˘ 0.05

MNIST17 MLP 0.003 ˘ 0.000 0.023 ˘ 0.017 0.021 ˘ 0.011 0.028 ˘ 0.017 0.022 ˘ 0.003 0.043 ˘ 0.023

IMDb BERT 0.008 ˘ 0.001 0.011 ˘ 0.002 0.016 ˘ 0.005 0.07 ˘ 0.01 - -

Table C.3: Absolute estimation error when α is 0.5. "*" denote oracle early stopping as
defined in Sec. 2.6. Results reported by aggregating absolute error over 10 epochs and 3
seeds.

C.7.6 Experiments on UCI dataset

In this section, we will present results on 5 UCI datasets.

Dataset #Positives #Unlabeled
Train Val Train Val

concrete 162 162 81 81
mushroom 1304 1304 652 652

landsat 946 946 472 472
pageblock 185 185 92 92
spambase 604 604 302 302

We train a MLP with 2 hidden layers each with 512 units. The PyTorch code for 4-layer
MLP is as follows:

nn.Sequential(nn.Flatten(),
nn.Linear(input_dim, 512, bias=True),
nn.ReLU(),
nn.Linear(512, 512, bias=True),
nn.ReLU(),
nn.Linear(512, 2, bias=True),
)

Similar to vision datasets and architectures, we do cross entropy loss minimization with
SGD optimizer with momentum 0.9 and learning rate 0.1. For nnPU and uPU, we minimize

218



Dataset Model (TED)n
(unknown α)

CVIR
(known α)

PvU˚

(known α)
DEDPUL˚

(unknown α)
nnPU

(known α)
uPU˚

(known α)

Binarized
CIFAR

ResNet 82.7 ˘ 0.13 82.3 ˘ 0.18 76.9 ˘ 1.12 77.1 ˘ 1.52 77.2 ˘ 1.03 76.7 ˘ 0.74

All Conv 77.9 ˘ 0.29 78.1 ˘ 0.47 75.8 ˘ 0.75 77.1 ˘ 0.64 73.4 ˘ 1.31 72.5 ˘ 0.21

MLP 64.2 ˘ 0.37 66.9 ˘ 0.28 61.6 ˘ 0.38 62.6 ˘ 0.30 63.1 ˘ 0.79 64.0 ˘ 0.24

CIFAR
Dog vs

Cat

ResNet 75.2 ˘ 1.74 73.3 ˘ 0.94 67.3 ˘ 1.52 67.0 ˘ 1.46 71.8 ˘ 0.33 68.8 ˘ 0.53

All Conv 73.0 ˘ 0.81 71.7 ˘ 0.47 70.5 ˘ 0.60 69.2 ˘ 0.86 67.9 ˘ 0.52 67.5 ˘ 2.28

Binarized
MNIST

MLP 95.6 ˘ 0.42 96.3 ˘ 0.07 94.2 ˘ 0.58 94.8 ˘ 0.10 96.1 ˘ 0.14 95.2 ˘ 0.19

MNIST17 MLP 98.7 ˘ 0.25 98.7 ˘ 0.09 96.9 ˘ 1.51 97.7 ˘ 0.62 98.4 ˘ 0.20 98.4 ˘ 0.09

IMDb BERT 87.6 ˘ 0.20 87.4 ˘ 0.25 86.1 ˘ 0.53 87.3 ˘ 0.18 86.2 ˘ 0.25 85.9 ˘ 0.12

Table C.4: Accuracy for PvN classification with PU learning. "*" denote oracle early
stopping as defined in Sec. 2.6. Results reported by aggregating over 10 epochs and 3 seeds.

sigmoid loss with ADAM optimizer with learning rate 0.0001 as advised in its original
paper. For all methods, we fix the weight decay param at 0.0005.

Dataset (TED)n BBE˚ DEDPUL˚ EN˚ KM2 TiCE

concrete 0.071 0.152 0.176 0.239 0.099 0.268

mushroom 0.001 0.015 0.014 0.013 0.038 0.069

landsat 0.022 0.021 0.012 0.080 0.037 0.027

pageblock 0.007 0.066 0.041 0.135 0.008 0.298

spambase 0.006 0.047 0.077 0.127 0.062 0.276

Table C.5: Absolute estimation error when α is 0.5. "*" denote oracle early stopping as
defined in Sec. 2.6. Results reported by aggregating absolute error over 10 epochs.

On 4 out of 5 UCI datasets, our proposed methods are better than the best performing
alternatives (Table C.5 and Table C.6).

C.7.7 Experiments on MNIST Overlap

Similar to binarized MNIST, we create a new dataset called MNIST Overlap, where the
positive class contains digits from 0 to 7 and the negative class contains digits from 3 to
9. This creates a dataset with overlap between positive and negative support. Note that
while the supports overlap, we sample images from the overlap classes with replacement,
and hence, in absence of duplicates in the dataset, exact same images don’t appear both in
positive and negative subsets.
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Dataset (TED)n
(unknown α)

CVuO
(known α)

PvU˚

(known α)
DEDPUL˚

(unknown α)
nnPU

(known α)
uPU˚

(known α)

concrete 86.3 80.1 83.1 83.7 83.2 84.4

mushroom 96.4 96.3 98.7 98.7 97.5 93.9

landsat 93.8 93.1 93.4 92.4 92.9 92.3

pageblock 95.7 95.7 95.1 94.5 93.9 93.9

spambase 89.4 88.1 89.2 86.8 88.5 87.7

Table C.6: Accuracy for PvN classification with PU learning. "*" denote oracle early
stopping as defined in Sec. 2.6. Results reported by aggregating aggregating over 10 epochs.

We train MLP with the same hyperparameters as before. Our findings in Table C.7 and
Table C.8 highlight superior performance of the proposed approaches in the cases of support
overlap.

Dataset (TED)n BBE˚ DEDPUL˚ EN˚ KM2 TiCE

MNIST Overlap 0.035 0.100 0.104 0.196 0.099 0.074

Table C.7: Absolute estimation error when α is 0.5. "*" denote oracle early stopping as
defined in Sec. 2.6. Results reported by aggregating absolute error over 10 epochs.

Dataset (TED)n
(unknown α)

CVuO
(known α)

PvU˚

(known α)
DEDPUL˚

(unknown α)
nnPU

(known α)
uPU˚

(known α)

MNIST Overlap 79.0 78.4 77.4 77.5 78.6 78.8

Table C.8: Accuracy for PvN classification with PU learning. "*" denote oracle early
stopping as defined in Sec. 2.6. Results reported by aggregating aggregating over 10 epochs.
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Appendix D

Appendix: Domain Adaptation Under
Open Set Label Shift

D.1 Reduction of OSLS into k PU problems

Under the strong positivity condition, the OSLS problem can be broken down into k PU
problems as follows: By treating a given source class yj P Ys as positive and grouping
all other classes together as negative we observe that the unlabeled target data is then a
mixture of data from the positive and negative classes. This yields a PU learning problem
and the corresponding mixture proportion gives the fraction αj of class yj among the target
data. By iterating this process for all source classes, we can solve for the entire target label
marginal ptpyq. Thus, OSLS reduces to k instances of PU learning problem. Formally, note
that ptpxq can be written as:

ptpxq “ ptpy “ jq
l jh n

αj

pspx|y “ jq
l jh n

pp

` p1 ´ ptpy “ jqq

´

ÿ

iPYztju

ptpy “ iq

1 ´ ptpy “ jq
pspx|y “ iq

¯

l jh n

pn

, (D.1)

individually for all j P Ys. By repeating this reduction for all classes, we obtain k separate
PU learning problems. Hence, a natural choice is to leverage this structure and solve k PU
problems to solve the original OSLS problem.

In particular, for each class j P Ys, we can first estimate its prevalence pαj in the unlabeled
target. Then the target marginal for the novel class is given by pαk`1 “ 1 ´

řk
i“1 pαi. For

classification, we can train k PU learning classifiers fi, where fi is trained to classify a
source class i versus others in target. Assuming that each fj returns a score between r0, 1s,
during test time, an example x is classified as fpxq given by

fpxq “

#

argmaxjPYs
fjpxq if maxjPYs fjpxq ě 0.5

k ` 1 o.w .
(D.2)
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That is, if each classifier classifies the example as belonging to other in unlabeled, then we
classify the example as belonging to the class k ` 1. In our main experiments, to estimate
αj and to train fj classifiers for all j P Ys, we use BBE and CVIR as described before which
was shown to outperform alternative approaches in Garg et al. (2021b). We ablate with
other methods in App. D.6.8.

Note that mathematically any OSLS problems can be thought of as k-PU problems as per
(D.1). However, for identifiablity of each of these PU problems, we need the irreduciblity
assumption (Bekker and Davis, 2020). Put simply, for individual PU problems defined for
source classes j P Ys, we need existence of a sub-domain Xj such that we only observe
example for that class j in Xj. Collectively Xj gives us the Xsp defined in the strong
positivity condition.

Failure due to error-accumulation While trading off bias with variance, PU learning
algorithms tend to over-estimate the mixture proportion (Bekker and Davis, 2020; Garg
et al., 2021b). This error incurred due to bias can be mild for a single mixture proportion
estimation task but accumulates with increasing number of classes (i.e., k). This error
accumulation can significantly under-estimate the proportion of novel class when estimated
by subtracting the sum of prevalence of source classes in target from 1.

D.2 Proofs for identifiability of OSLS

For ease, we re-state Proposition 5.4 and Proposition 5.4.

[Necessary conditions] Assume ptpyq ą 0 for all y P Yt. Then ptpyq is identified only if
ptpx|y “ k ` 1q and pspx|yq for all y P Ys satisfy weak positivity, i.e., there must exists a
subdomain Xwp Ă X such that:

(i) ptpXwp|y “ k ` 1q “ 0; and
(ii) the matrix rpspx|yqsxPXwp,yPYs

is full column-rank.

Proof. We prove this by contradiction. Assume that there exists a unique solution ptpyq.
We will obtain contradiction when both (i) and (ii) don’t hold.

First, assume for no subset Xwp Ď X , we have rpspx|yqsxPXwp,yPYs
as full-rank. Then in that

case, we have vectors rpspx|y “ jqsxPX as linearly dependent for j P Ys, i.e., there exists
rαjsjPYs P Rk such that

ř

j αjpspx|y “ jq “ 0 for all x P X . Thus for small enough ϵ ą 0,
we have infinite solutions of the form rptpy “ jq ´ ϵ ¨ ajsjPYs .

Hence, there exists Xwp Ď X for which we have rpspx|yqsxPXwp,yPYs
as full-rank. Without

loss of generality, we assume that |Xwp| “ k. Assume that ptpXwp|y “ k ` 1q ą 0, i.e.,
rptpx|y “ k ` 1qsxPXwp has l ă k zero entries. We will now construct another solution for
the label marginal pt. For simplicity we denote A “ rpspx|yqsxPXwp,yPYs

. Consider the vector
vpγq “ rptpxq ´ pptpy “ k ` 1q ´ γqptpx|y “ k ` 1qsxPXwp for some γ ą 0. Intuitively, when
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γ “ 0, we have u “ A´1vp0q where u “ rptpyqsyPYs , i.e., we recover the true label marginal
corresponding to source classes.

However, since the solution is not at vertex, there exists a small enough γ ą 0 such that
u1 “ A´1vpγq with

ř

j u
1
j ď 1 and u1

j ě 0. Since A is full-rank and vpγq ‰ vp0q, we
have u1 ‰ u. Thus we construct a separate solution with u1 as rptpyqsyPYs and ptpxq ´
ř

jPYs
u1
jpspx|y “ jq as ptpx|y “ k ` 1q. Hence, when there exists Xwp Ď X for which

we have rpspx|yqsxPXwp,yPYs
as full-rank, for uniqueness we obtain a contradiction on the

assumption ptpXwp|y “ k ` 1q ą 0.

We now make some comments on the assumption ptpyq ą 0 for all y P Yt in Proposition 5.4.
Since, ptpyq needs to satisfy simplex constraints, if the solution is at a vertex of simplex,
then OSLS problem may not require weak positivity. For example, there exists contrived
scenarios where pspx|y “ jq “ pspx|y “ kq for all j, k P Ys and ptpx|y “ k`1q ‰ pspx|y “ jq

for all j P Ys. Then when ptpxq “ ptpx|y “ k ` 1q, we can uniquely identify the OSLS
solution even when weak positivity assumption is not satisfied.

[Sufficient conditions] The target marginal ptpyq is identified if for all y P Yztk ` 1u,
ptpx|y “ k ` 1q and pspx|yq satisfy either:

(i) Strong positivity, i.e., there exists Xsp Ă X such that ptpXsp|y “ k ` 1q “ 0 and the
matrix rpspx|yqsxPXsp,yPYs

is full-rank and diagonal; or
(ii) Separability, i.e., there exists Xsep Ă X , such that ptpXsep|y “ k ` 1q “ 0 , pspXsepq “

1 , and the matrix rpspx|yqsxPXsep,yPYs
is full column-rank.

Proof. For each condition, we will prove identifiability by constructing the unique solution.

Under strong positivity, for all j P Ys there exists x P Xsp such that ptpx|y “ kq “ 0

for all k P Ytztju. Set αj “ minxPX ,pspx|y“jqą0
ptpxq

pspx|y“jq
, for all j P Ys. For x P Xsp

such that ptpx|y “ kq “ 0 for all k P Ytztju, we get ptpxq

pspx|y“jq
“ ptpy “ jq and for all

x1 ‰ x, we have ptpxq

pspx|y“jq
ě ptpy “ jq. Thus, we get αj “ ptpy “ jq. Finally, we get

αk`1 “ 1´
ř

jPYs
αj . Plugging in values of the label marginal, we can obtain ptpx|y “ k`1q

as ptpxq ´
ř

yPYs
ptpy “ jqpspx|y “ jq.

Under separability, we can obtain the label marginal pt for source classes by simply
considering the set Xsep. Denote A “ rppx|yqsxPXsep,yPYs and v “ rptpxqsxPXsep . Then, since
A is full column-rank by assumption, we can define u “ pATAq´1ATv. For all x P Xsep,
we have ptpxq “

ř

yPYs
ptpyqpspx|yq and hence, u “ rptpyqsyPYs . Having obtained rptpyqsyPYs ,

we recover ptpy “ k ` 1q “ 1 ´
ř

jPYs
ptpy “ jq and ptpx|y “ k ` 1q “ ptpxq ´

ř

jPYs
ptpy “

jqpspx|y “ jq.
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D.2.1 Examples illustrating importance of weak positivity condi-
tion

In this section, we present two examples, one, to show that weak positivity isn’t sufficient
for identifiability. Second, we present another example where we show that conditions in
Proposition 5.4 are not necessary for identifiability.

Example 1 Assume X “ tx1, x2, x3, x4, x5u and Yt “ t1, 2, 3u. Suppose the ptpx|y “ 1q,
ptpx|y “ 2q, and ptpxq are given as:

ptpx|y “ 1q ptpx|y “ 2q ptpxq

x1 0.4 0.56 0.356
x2 0.3 0.3 0.207
x3 0.2 0.1 0.09
x4 0.1 0.04 0.042
x5 0.0 0.0 0.305

Here, there exists two separate ptpx|y “ 3q and ptpyq that are consistent with the given
ptpx|y “ 1q, ptpx|y “ 2q, and ptpxq and both the solutions satisfy weak positivity for two
different Xwp and X 1

wp.

In particular, notice that ptpx|y “ 3q “ r0.17, 0.0675, 0.0, 0.0, 0.7625sT and ptpyq “

r0.3, 0.3, 0.4s gives us the first solution. ptpx|y “ 3q “ r0.0, 0.0, 0.0645, 0.0096, 0.9839sT

and ptpyq “ r0.19, 0.5, 0.31s gives us another solution. For solution 1, Xwp “ tx3, x4u

and for solution 2, X 1
wp “ tx1, x2u. To check consistency of each solution notice that

ř

iPY ptpy “ iqptpx|y “ iq “ ptpxq for each x P X .

In the above example, the key is to show that absent knowledge of which x’s constitute the
set Xwp, we might be able to obtain multiple different solutions, each with different Xwp and
both ptpyq, ptpx|y “ k ` 1q satisfying the given information and simplex constraints.

Next, we will show that in certain scenarios weak positivity is enough for identifiability.

Example 2 Assume X “ tx1, x2, x3, x4u and Yt “ t1, 2, 3u. Suppose the ptpx|y “ 1q,
ptpx|y “ 2q, and ptpxq are given as,

ptpx|y “ 1q ptpx|y “ 2q ptpxq

x1 0.5 0.2 0.24
x2 0.3 0.4 0.2
x3 0.1 0.35 0.35
x4 0.1 0.05 0.21

Here, out of all 4C2 possibilities for Xwp, only one possibility yields a solution that satisfies
weak positivity and simplex constraints. In particular, the solution is given by ptpx|y “

3q “ r0.0, 0.0, 0.6, 0.4sT and ptpyq “ r0.4, 0.2, 0.4s with Xwp “ tx1, x2u.
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In this example, we show that conditions in Proposition 5.4 are not necessary to ensure
identifiability. For discrete domains, this example also highlights that we can check
identifiability in exponential time for any OSLS problem given ptpxq and pspx|yq for all
y P Ys.

D.2.2 Extending identifiability conditions to continuous distribu-
tions

To extend our identifiability conditions for continuous distributions, the linear independence
conditions on the matrix rpspx|yqsxPXsep,yPYs

has the undesirable property of being sensitive
to changes on sets of measure zero. In particular, by changing a collection of linearly
dependent distributions on a set of measure zero, we can make them linearly independent.
As a consequence, we may impose a stronger notion of independence, i.e., the set of
distributions tppx|yq : y “ 1, ..., ku are such that there does not exist v ‰ 0 for which
ş

X
|řy ppx|yqvy|dx “ 0 , where X “ Xwp for necessary condition and X “ Xsp for sufficiency.

We refer this condition as strict linear independence.

D.3 PULSE Framework

In our PULSE framework, we build on top of BBE and CVIR from Garg et al. (2021b).
Here, we elaborate on Step 3 and 5 in Algorithm 8.

Extending BBE algorithm to estimate target marginal among previously seen
classes We first explain the intuition behind BBE approach. In a PU learning problem,
given positive and unlabeled data, BBE estimates the fraction of positives in unlabeled in
the push-forward space of the classifier. In particular, instead of operating in the original
input space, BBE maps the inputs to one-dimensional outputs (i.e., a score between zero
and one) which is the predicted probability of an example being from the positive class.
BBE identifies a threshold on probability scores assigned by a domain discriminator classifier
such that the ratio between the fractions of positive and unlabeled points receiving scores
above the threshold is minimized. Intuitively, if their exists a threshold on probability
scores assigned by the classifier such that the examples mapped to a score greater than
the threshold are mostly positive, BBE aims to identify this threshold. Efficacy of BBE
procedure relies on existence of such a threshold. This is referred to as the top bin property.
We provide empirical evidence to the property in Fig. D.1 in App. D.4.1. We tailor BBE
to estimate the relative fraction of previously seen classes in the target distribution by
exploiting a k-way source classifier fs trained on labeled source data. We describe the
procedure in Algorithm 15.

We now introduce some notation needed to introduce the tailored BBE proceudre formally.
For given probability density function p and a scalar output function f , define a function
qpzq “

ş

Az
ppxqdx, where Az “ tx P X : fpxq ě zu for all z P r0, 1s. Intuitively, qpzq

captures the cumulative density of points in a top bin, the proportion of input domain that

225



is assigned a value larger than z by the function f in the transformed space. We define
an empirical estimator pwqpzq given a set X “ tx1, x2, . . . , xnu sampled iid from ppxq. Let
Z “ fpXq. Define pwqpzq “

řn
i“1 I rzi ě zs {n.

Our modified BBE procedure proceeds as follows. Given a held-out dataset of source
tXS

2 ,y
S
2 u and unlabeled target samples XT

2 , we push all examples through the source
classifier f to obtain k dimensional outputs. For all j P Ys, we repeat the following: Obtain
Zs “ fjpX

S
2 ridjsq and Zt “ fjpX

T
2 q. Intuitively, Zs and Zt are the push forward mapping of

the source classifier. Next, with Zp and Zu, we estimate pwqs and pwqt. Finally, we estimate
r pwptsj as the ratio pwqtp pwcq{ pwqsp pwcq at pwc that minimizes the upper confidence bound at
a pre-specified level δ and a fixed parameter γ P p0, 1q. Our method is summarized in
Algorithm 15. Throughout all the experiments, we fix δ at 0.1 and γ at 0.01.

Algorithm 15 Extending Best Bin Estimation (BBE) for Step 3 in Algorithm 8

input : Validation source tXS
2 ,y

S
2 u and unlabeled target samples XT

2 . Source classifier
f : X Ñ ∆k´1. Hyperparameter 0 ă δ, γ ă 1.

1: pwpt Ð zerospsize “ |Ys|q
2: for j P Ys do
3: idj Ð wherepyS

2 “ jq.
4: Zs, Zt Ð

“

fpXS
2 ridjsq

‰

j
,
“

fpXT
2 q
‰

j
.

5: pwqspzq, pwqtpzq Ð

ř

ziPZs
Irziězs

|idj | ,
ř

ziPZt
Irziězs

|XT
2 | for all z P r0, 1s.

6: pwcj Ð argmincPr0,1s

ˆ

pwqtpcq

pwqspcq
`

1`γ
pwqspcq

ˆ

c

logp4{δq

2|XT
2 | `

b

logp4{δq

2|idj |

˙˙

.

7: r pwptsj Ð
pwqtp pwcjq

pwqsp pwcjq
.

8: end for
output : Normalized target marginal among source classes pwp1

t Ð
pwpt

∥ pwpt∥1

Extending CVIR to train discriminator fd and estimate novel class prevalence
After estimating the fraction of source classes in target (i.e., p1

tpjq “ ptpy“jq{
ř

kPYs
ptpy“kq for all

j P Ys), we re-sample the source data according to p1
tpyq to mimic samples from distribution

p1
spxq. Thus, obtaining a PU learning problem instance, we resort to PU learning techniques

to (i) estimate the fraction of novel class ptpy “ k`1q; and (ii) learn a binary classifier fdpxq

to discriminate between label shift corrected source p1
spxq and novel class ptpx|y “ k ` 1q.

Assume that sigmoid output fdpxq indicates predicted probability of an example x belonging
to label shift corrected source p1

spxq. With pwL`pfθ;Xq, we denote the loss incurred by fθ
when classifying examples from X as positive, i.e., pwL`pfθ;Xq “

ř|X|
i“1

ℓpfθpxiq,`1q

|X| . Similarly,

pwL´pfθ;Xq “
ř|X|

i“1
ℓpfθpxiq,´1q

|X|

Given an estimate of the fraction of novel class pwptpy “ k ` 1q, CVIR objective creates a
provisional set of novel examples XN

1 by removing p1´ pwptpy “ k ` 1qq fraction of examples
from XT

1 that incur highest loss when predicted as novel class on each training epoch.
Next, we update our discriminator fd by minimizing loss on label shift corrected source
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rXS
1 and provisional novel examples XN

1 . This step is aimed to remove any incentive to
overfit to the examples from p1

spxq. Consequently, we employ the iterative procedure that
alternates between estimating the prevalence of novel class pwptpy “ k ` 1q (with BBE) and
minimizing the CVIR loss with estimated fraction of novel class. Algorithm 16 summarizes
our approach which is used in Step 3 of Algorithm 8.

Note that we need to warm start with simple domain discrimination training, since in the
initial stages mixture proportion estimate is often close to 1 rejecting all the unlabeled
examples. In Garg et al. (2021b), it was shown that the procedure is not sensitive to the
choice of number of warm start epochs and in a few cases with large datasets, we can even
get away without warm start (i.e., W “ 0) without hurting the performance. In our work,
we notice that given an estimate pα of prevalence of novel class, we can use unbiased PU
error (C.35) on validation data as a surrogate to identify warm start epochs for domain
discriminator training. In particular, we train the domain discriminator classifier for a large
number of epochs, say Epąą W q, and then choose the discriminator, i.e., warm start epoch
W at which fd achieves minimum unbiased validation loss.

Finally, to obtain a pk ` 1q-way classifier ftpxq on target we combine discriminator fd
and source classifier fs with importance-reweighted label shift correction. In particular,
for all j P Ys, rftpxqsj “ pfdpxqq

wpjq¨rfspxqsj
ř

kPYs
wpkq¨rfspxqsk

and rftpxqsk`1 “ 1 ´ fdpxq. Similarly, to
obtain target marginal pt, we re-scale the label shift estimate among previously seen classes
with estimate of prevalence of novel examples, i.e., for all j P Ys, assign pwptpy “ jq “

p1 ´ pwptpy “ k ` 1qq ¨ pwp1
tpy “ jq.

Overall, our approach proceeds as follows (Algorithm 8): First, we estimate the label
shift among previously seen classes. Then we employ importance re-weighting of source
data to formulate a single PU learning problem between source and target to estimate
fraction of novel class pwptpy “ k ` 1q and to learn a discriminator fd for the novel class.
Combining discriminator and label shift corrected source classifier we get pk ` 1q-way target
classifier.

D.3.1 PULSE under separability

Our ideas for PULSE framework can be extended to separability condition since (5.3)
continues to hold. In particular, when OSLS satisfies the separability assumption, we
may hope to jointly estimate the label shift among previously seen classes with label shift
estimation techniques (Alexandari et al., 2021; Lipton et al., 2018b) and learn a domain
discriminator classifier. This may be achieved by estimating label shift among examples
rejected by domain discriminator classifier as belonging to previously seen classes. However,
in our initial experiments, we observe that techniques proposed under strong positivity were
empirically stable and outperform methods developed under separability. This is intuitive
for many benchmark datasets where it may be more natural to expect that for each class
there exists a subdomain that only belongs to that class than assuming separability only
between novel class samples and examples from source classes.
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Algorithm 16 Alternating between CVIR and BBE for Step 5 in Algorithm 8

input : Re-sampled training source data rXS
1 , validation source data rXS

2 . Training target
data XT

1 and validation data XT
2 . Hyperparameter W,B, δ, γ.

1: Initialize a training model fθ and an stochastic optimization algorithm A.
2: XN

1 Ð XT
1 .

{// Warm start with domain discrimination training}
3: for i Ð 1 to W do
4: Shuffle prXS

1 ,X
N
1 q into B mini-batches. With prXS

1 ris,XN
1 risq we denote ith mini-batch.

5: for i Ð 1 to B do
6: Set the gradient ∇θ

”

pwL`pfθ; rX
S
1 risq ` pwL´pfθ;X

N
1 risq

ı

and update θ with algo-
rithm A.

7: end for
8: end for
9: pwα Ð BBE(rXS

2 ,X
T
2 , fθ) {Algorithm 17}

10: Rank samples x P XT
1 according to their loss values ℓpfθpxq,´1q.

11: XN
1 Ð tXT

1 u1´ pwα where tXT
1 u1´ pwα denote the lowest ranked 1´ pwα fraction of samples.

12: while training error pwE`pfθ; rX
S
2 q ` pwE´pfθ;X

N
1 q is not converged do

13: Train model fθ for one epoch on prXS
1 ,X

N
1 q as in Lines 4-7.

14: pwα Ð BBE(rXS
2 ,X

T
2 , fθ) {Algorithm 17}

15: Rank samples x P XT
1 according to their loss values ℓpfθpxq,´1q.

16: XN
1 Ð tXT

1 u1´ pwα where tXT
1 u1´ pwα denote the lowest ranked 1 ´ pwα fraction of

samples.
17: end while
output : Trained discriminator fd Ð fθ and novel class fraction pwptpy “ k ` 1q Ð 1´ pwα.

D.4 Proofs for analysis of OSLS framework

In this section, we provide missing formal statements and proofs for theorems in Sec. 5.8.
This mainly includes analysing key steps of our PULSE procedure for target label marginal
estimation (Step 3, 5 Algorithm 8) and learning the domain discriminator classifier (Step 5,
Algorithm 8).

D.4.1 Formal statement and proof of Theorem 1

Before introducing the formal statement, we introduce some additional notation. Given
probability density function p and a source classifier f : X Ñ ∆k´1, define a function
qpz, jq “

ş

Apz,jq
ppxqdx,

where Apz, jq “ tx P X : rfpxqsj ě zu for all z P r0, 1s. Intuitively, qpz, jq captures the
cumulative density of points in a top bin for class j, i.e., the proportion of input domain
that is assigned a value larger than z by the function f at the index j in the transformed
space. We define an empirical estimator pwqpz, jq given a set X “ tx1, x2, . . . , xnu sampled
iid from ppxq. Let Z “ rfpXqsj. Define pwqpz, jq “

řn
i“1 I rzi ě zs {n.
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Algorithm 17 Best Bin Estimation (BBE)

input : Re-sampled source data rXS and target samples XT . Discriminator classifier
pf : X Ñ r0, 1s. Hyperparameter 0 ă δ, γ ă 1.

1: Zs, Zt Ð fprXSq, fpXT q.
2: pwqtpzq, pwqspzq Ð

ř

ziPZs
Irziězs

| rXS| ,
ř

ziPZt
Irziězs

|X|T for all z P r0, 1s.

3: Estimate pwc Ð argmincPr0,1s

ˆ

pwqtpcq

pwqspcq
`

1`γ
pwqspcq

ˆ

c

logp4{δq

2| rXS| `

b

logp4{δq

2|XT |

˙˙

.

output : pwα Ð
pwqtp pwcq

pwqsp pwcq

For each pdf ps and pt, we define qs and qt respectively. Moreover, for each class j P Ys,
we define qt,j corresponding to pt,j :“ ptpx|y “ jq and qt,´j corresponding to pt,´j :“
ř

iPYtztju ptpy“iqptpx|y“iq
ř

iPYtztju ptpy“jq
. Assume that we have n source examples and m target examples. Now

building on BBE results from Garg et al. (2021b), we present finite sample results for target
label marginal estimation:
Theorem D.4.1 (Formal statement of Theorem 5.8.1). Define c˚

j “ argmincPr0,1s pqt,´jpc, jq{qt,jpc, jqq,

for all j P Ys. Assume minpn,mq ě maxjPYs

´

2 logp4k{δq

q2t,jpc˚
j ,jq

¯

. Then, for every δ ą 0, pwpt (in Al-
gorithm 15 with δ as δ{k) satisfies with probability at least 1 ´ δ, we have:

∥ pwpt ´ pt∥ 1 ď
ÿ

jPYs

p1 ´ ptpy “ jqq

ˆ

qt,´jpc
˚
j , jq

qt,jpc˚
j , jq

˙

` O
˜

c

k3 logp4k{δq

n
`

c

k2 logp4k{δq

m

¸

.

When the data satisfies strong positivity, we observe that source classifiers often exhibit a
threshold cy on softmax output of each class y P Ys above which the top bin (i.e., rcy, 1s)
contains mostly examples from that class y. Formally, as long as there exist a threshold
c˚
j P p0, 1q such that qt,jpc˚

j q ě ϵ and qt,´jpc
˚
j q “ 0 for some constant ϵ ą 0 for all j P Ys, we

show that our estimator pwα converges to the true α with convergence rate minpn,mq´1{2.
The proof technique simply builds on the proof of Theorem 1 in Garg et al. (2021b). First,
we state Lemma 1 from Garg et al. (2021b). Next, for completeness we provide the proof for
Theorem D.4.1 which extends proof of Theorem 1 (Garg et al., 2021b) for k classes.
Lemma D.4.2. Assume two distributions qp and qu with their empirical estimators denoted
by pwqp and pwqu respectively. Then for every δ ą 0, with probability at least 1 ´ δ, we have
for all c P r0, 1s∣∣∣∣ pwqupcq

pwqppcq
´

qupcq

qppcq

∣∣∣∣ ď
1

pwqppcq

˜

d

logp4{δq

2nu

`
qupcq

qppcq

d

logp4{δq

2np

¸

.

Proof of Theorem D.4.1. The main idea of the proof is to use the confidence bound derived
in Lemma D.4.2 at pwc and use the fact that pwc minimizes the upper confidence bound.
The proof is split into two parts. First, we derive a lower bound on pwqt,jp pwcjq for all j P Ys

and next, we use the obtained lower bound to derive confidence bound on pwptpy “ jq. With
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pwαj, we denote pwptpy “ jq for all j P Ys. All the statements in the proof simultaneously
hold with probability 1 ´ δ{k. We derive the bounds for a single j P Ys and then use union
bound to combine bound for all j P Ys. When it is clearly from context, we denote qt,jpc, jq

with qt,jpcq and qtpc, jq with qtpcq. Recall,

pwcj :“ argmin
cPr0,1s

pwqtpcq

pwqt,jpcq
`

1

pwqt,jpcq

˜

c

logp4k{δq

2m
` p1 ` γq

d

logp4k{δq

2npspy “ jq

¸

and (D.3)

pwptpy “ jq :“
pwqtp pwcjq

pwqt,jp pwcjq
. (D.4)

Moreover,

c˚
j :“ argmin

cPr0,1s

qtpcq

qt,jpcq
and α˚

j :“
qtpc

˚
j q

qt,jpc˚
j q

. (D.5)

Part 1: We establish lower bound on pwqt,jp pwcjq. Consider c1
j P r0, 1s such that pwqt,jpc

1
jq “

γ
2`γ

pwqt,jpc
˚
j q. We will now show that Algorithm 15 will select pwcj ă c1

j. For any c P r0, 1s,
we have with with probability 1 ´ δ{k,

pwqt,jpcq ´

d

logp4k{δq

2n ¨ pspy “ jq
ď qt,jpcq and qtpcq ´

c

logp4k{δq

2m
ď pwqtpcq . (D.6)

Since qtpc˚
j q

qt,jpc˚
j q

ď
qtpcq

qt,jpcq
, we have

pwqtpcq ě qt,jpcq
qtpc

˚
j q

qt,jpc˚
j q

´

c

logp4k{δq

2m
ě

˜

pwqt,jpcq ´

d

logp4k{δq

2n ¨ pspy “ jq

¸

qtpc
˚
j q

qt,jpc˚
j q

´

c

logp4k{δq

2m
.

(D.7)

Therefore, at c we have

pwqtpcq

pwqt,jpcq
ě α˚

j ´
1

pwqt,jpcq

˜

c

logp4k{δq

2m
`

qtpc
˚
j q

qppc˚
j q

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (D.8)

Using Lemma D.4.2 at c˚, we have

pwqtpcq

pwqt,jpcq
ě

pwqtpc
˚
j q

pwqt,jpc˚
j q

´

ˆ

1

pwqt,jpc˚
j q

`
1

pwqt,jpcq

˙

˜

c

logp4k{δq

2m
`

qtpc
˚
j q

qt,jpc˚
j q

d

logp4k{δq

2n ¨ pspy “ jq

¸

(D.9)

ě
pwqtpc

˚
j q

pwqt,jpc˚
j q

´

ˆ

1

pwqt,jpc˚
j q

`
1

pwqt,jpcq

˙

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

,

(D.10)
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where the last inequality follows from the fact that α˚
j “

qtpc˚
j q

qt,jpc˚
j q

ď 1. Furthermore, the
upper confidence bound at c is lower bound as follows:

pwqtpcq

pwqt,jpcq
`

1 ` γ

pwqt,jpcq

˜

c

logp4l{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

(D.11)

ě
pwqtpc

˚
j q

pwqt,jpc˚
j q

`

ˆ

1 ` γ

pwqt,jpcq
´

1

pwqt,jpc˚
j q

´
1

pwqt,jpcq

˙

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

(D.12)

“
pwqtpc

˚
j q

pwqt,jpc˚
j q

`

ˆ

γ

pwqt,jpcq
´

1

pwqt,jpc˚
j q

˙

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

(D.13)

Using (D.13) at c “ c1, we have the following lower bound on ucb at c1:

pwqtpc
1q

pwqt,jpc1q
`

1 ` γ

pwqt,jpc1q

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

(D.14)

ě
pwqtpc

˚
j q

pwqt,jpc˚
j q

`
1 ` γ

pwqt,jpc˚
j q

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

, (D.15)

Moreover from (D.13), we also have that the lower bound on ucb at c ě c1 is strictly greater
than the lower bound on ucb at c1. Using definition of pwc, we have

pwqtpc
˚
j q

pwqt,jpc˚
j q

`
1 ` γ

pwqt,jpc˚
j q

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

(D.16)

ě
pwqtp pwcq

pwqt,jp pwcq
`

1 ` γ

pwqt,jp pwcq

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

, (D.17)

and hence

pwc ď c1 . (D.18)

Part 2: We now establish an upper and lower bound on pwαj. We start with upper
confidence bound on pwαj. By definition of pwcj, we have

pwqtp pwcq

pwqt,jp pwcq
`

1 ` γ

pwqt,jp pwcq

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

(D.19)

ď min
cPr0,1s

«

pwqtpcq

pwqt,jpcq
`

1 ` γ

pwqt,jpcq

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸ff

(D.20)
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ď
pwqtpc

˚
j q

pwqt,jpc˚
j q

`
1 ` γ

pwqt,jpc˚
j q

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

.

(D.21)

Using Lemma D.4.2 at c˚
j , we get

pwqtpc
˚
j q

pwqt,jpc˚
j q

ď
qtpc

˚
j q

qt,jpc˚
j q

`
1

pwqt,jpc˚
j q

˜

c

logp4k{δq

2m
`

qtpc
˚
j q

qt,jpc˚
j q

d

logp4k{δq

2n ¨ pspy “ jq

¸

“ α˚
j `

1

pwqt,jpc˚
j q

˜

c

logp4k{δq

2m
` α˚

j

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (D.22)

Combining (D.21) and (D.22), we get

pwαj “
pwqtp pwcq

pwqt,jp pwcq
ď α˚

j `
2 ` γ

pwqt,jpc˚
j q

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (D.23)

Using DKW inequality on pwqt,jpc
˚
j q, we have pwqt,jpc

˚
j q ě qt,jpc

˚
j q ´

b

logp4k{δq

2n¨pspy“jq
. Assuming

n ¨ pspy “ jq ě
2 logp4k{δq

q2t,jpc˚
j q

, we get pwqt,jpc
˚
j q ď qt,jpc

˚
j q{2 and hence,

pwαj ď α˚
j `

4 ` 2γ

qt,jpc˚
j q

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (D.24)

Finally, we now derive a lower bound on pwαj. From Lemma D.4.2, we have the following
inequality at pwc

qtp pwcq

qt,jp pwcq
ď

pwqtp pwcq

pwqt,jp pwcq
`

1

pwqt,jp pwcq

˜

c

logp4k{δq

2m
`

qtp pwcq

qt,jp pwcq

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (D.25)

Since α˚
j ď

qtp pwcq

qt,jp pwcq
, we have

α˚
j ď

qtp pwcq

qt,jp pwcq
ď

pwqtp pwcq

pwqt,jp pwcq
`

1

pwqt,jp pwcq

˜

c

logp4k{δq

2m
`

qtp pwcq

qt,jp pwcq

d

logp4k{δq

2n ¨ pspy “ jq

¸

.

(D.26)

Using (D.24), we obtain a very loose upper bound on pwqtp pwcq

pwqt,jp pwcq
. Assuming minpn ¨ pspy “

jq,mq ě
2 logp4k{δq

q2t,jpc˚
j q

, we have pwqtp pwcq

pwqt,jp pwcq
ď α˚

j ` 4 ` 2γ ď 5 ` 2γ. Using this in (D.26), we have

α˚
j ď

pwqtp pwcq

pwqt,jp pwcq
`

1

pwqt,jp pwcq

˜

c

logp4k{δq

2m
` p5 ` 2γq

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (D.27)
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Moreover, as pwc ě c1, we have pwqt,jp pwcq ě
γ

2`γ
pwqt,jpc

˚
j q and hence,

α˚
j ´

γ ` 2

γ pwqt,jpc˚
j q

˜

c

logp4k{δq

2m
` p5 ` 2γq

d

logp4k{δq

2n ¨ pspy “ jq

¸

ď
pwqtp pwcq

pwqt,jp pwcq
“ pwαj . (D.28)

As we assume n ¨ pspy “ jq ě
2 logp4k{δq

q2t,jpc˚
j q

, we have pwqt,jpc
˚
j q ď qt,jpc

˚
j q{2, which implies the

following lower bound on α:

α˚
j ´

2γ ` 4

γqt,jpc˚
j q

˜

c

logp4k{δq

2m
` p5 ` 2γq

d

logp4k{δq

2n ¨ pspy “ jq

¸

ď pwαj . (D.29)

Combining lower bound (D.29) and upper bound (D.24), we get∣∣
pwαj ´ α˚

j

∣∣ ď lj

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

, (D.30)

for some constant lj . Additionally by our assumption of OSLS problem pspy “ jq ą c{k for
some constant c ą 0, we have∣∣

pwαj ´ α˚
j

∣∣ ď l1j

˜

c

logp4k{δq

2m
`

c

k logp4k{δq

2n

¸

, (D.31)

for some constant l1j.

Combining the above obtained bound for all j P Ys with union bound, we get with
probability at least 1 ´ δ,

ÿ

jPYs

∣∣
pwαj ´ α˚

j

∣∣ ď l1max

˜

c

k2 logp4k{δq

2m
`

c

k3 logp4k{δq

2n

¸

, (D.32)

where l1max “ max l1j. Now, note that for each j P Ys, we have qtpcq “ ptpy “ jq ¨ qt,jpcq `

p1´ ptpy “ jqq ¨ qt,´jpcq. Hence α˚
j “ ptpy “ jq ` p1´ ptpy “ jqq ¨ qt,´jpcq{ ¨ qt,jpcq. Plugging

this in, we get the desired bound.

Intuitively, the guarantees in the previous theorem capture the tradeoff due to the proportion
of negative examples in the top bin (bias) versus the proportion of positives in the top bin
(variance). As a corollary, we can show convergence to true mixture if there exits c˚

j for
all j P Ys such that qt,´jpc

˚
j , jq “ 0 and qt,jpc

˚
j , jq ě ϵ for some ϵ ą 0. Put simply, efficacy

of BBE relies on existence of a threshold on probability scores assigned by the classifier
such that the examples mapped to a score greater than the threshold are *mostly* positive.
Using the terminology from Garg et al. (2021b), we refer to this as the top bin property.
Next, we provide empirical evidence of this property while using the source classifier to
estimate the relative proportion of target label marginal among source classes.

Empirical evidence of the top bin property We now empirically validate the positive
pure top bin property (Fig. D.1). We include results with Resnet-18 trained on the CIFAR10
OSLS setup same as our main experiments. We observe that source classifier approximately
satisfies the positive pure top bin property for small enough top bin sizes.

233



Figure D.1: Purity and size (in terms of fraction of unlabeled samples) in the top bin for
all classes. Bin size refers to the fraction of examples in the top bin. With purity, we refer
to the fraction of examples from a specific class j in the top bin. Results with ResNet-18
on CIFAR10 OSLS setup. Details of the setup in App. D.6.2. As the bin size increases for
all classes the purity decreases.

D.4.2 Formal statement and proof of Theorem 2

In this section, we show that in population on a separable Gaussian dataset, CVIR will
recover the optimal classifier. Note that here we consider a binary classification problem
similar to the one in Step 5 in Algorithm 8. Since we are primarily interested in analysing
the iterative procedure for obtaining domain discriminator classifier, we assume that α is
known.

In population, we have access to positive distribution (i.e., pp), unlabeled distribution (i.e.,
pu :“ αpp ` p1 ´ αqpn), and mixture coefficient α. Our goal is to recover the classifier that
discriminates pp versus pn.

For ease, we re-introduce some notation. For a classifier f and loss function ℓ, define

VIRαpfq “ inftτ P R : Px„pupℓpx,´1; fq ď τq ě 1 ´ αu . (D.33)

Intuitively, VIRαpfq identifies a threshold τ to capture bottom 1 ´ α fraction of the loss
ℓpx,´1q for points x sampled from pu. Additionally, define CVIR loss as

Lpf, wq “ αEpp rℓpx, 1; fqs ` Epu rwpxqℓpx,´1; fqs , (D.34)

for classifier f and some weights wpxq P t0, 1u. Recall that given a classifier ft at an iterate
t, CVIR procedure proceeds as follows:

wtpxq “ I rℓpx,´1; ftq ď VIRαpftqs , (D.35)
ft`1 “ ft ´ η∇Lf pft, wtq . (D.36)

We assume a data generating setup with where the support of positive and negative data is
completely disjoint. We assume that x are drawn from two half multivariate Gaussian with
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mean zero and identity covariance, i.e.,

x „ pp ô x “ γ0θopt ` z| θToptz ě 0, where z „ N p0, Idq

x „ pn ô x “ ´γ0θopt ` z| θToptz ă 0, where z „ N p0, Idq

Here γ0 is the margin and θopt P Rd is the true separator. Here, we have access to distribution
pp and pu “ αpp ` p1 ´ αqpn. Assume ℓ as the logistic loss. For simplicity, we will denote
Lpfθt , wtq with Lpθt, wtq.
Theorem D.4.3 (Formal statement of Theorem 5.8.2). In the data setup described above,
a linear classifier fpx; θq “ σ

`

θTx
˘

initialized at some θ0 such that Lpθ0, w0q ă logp2q,
trained with CVIR procedure as in equations (D.35)-(D.36) will converge to an optimal
positive versus negative classifier.

Proof of Theorem D.4.3. The proof uses two key ideas. One, at convergence of the CVIR
procedure, the gradient of CVIR loss in (D.34) converges to zero. Second, for any classifier
θ that is not optimal for positive versus negative classification, we show that the CVIR
gradient in (D.34) is non-zero.

Part 1 We first show that the loss function Lpθ, wq in (D.34) is 2-smooth with respect
to θ for fixed w. Using gradient descent lemma with the decreasing property of loss in
(D.35)-(D.36), we show that gradient converges to zero eventually. Considering gradient of
L, we have

∇θLpθ, wq “ αEpp rpfpx; θq ´ 1qxs ` Epu rwpxqpfpx; θq ´ 0qxs . (D.37)

Moreover, ∇2L is given by

∇2
θLpθ, wq “ αEpp

“

∇fpx; θqxxT
‰

` Epu

“

wpxq∇fpx; θqxxT
‰

. (D.38)

Since ∇fpx; θq ď 1, we have vT∇2Lv ď 2 for all unit vector v P Rd. Now, by gradient
descent lemma if η ď 1{2, at any step t we have, Lpθt`1, wtq ď Lpθt, wtq. Moreover, by
definition of VIRαpθq in (D.33) and update (D.35), we have Lpθt`1, wt`1q ď Lpθt`1, wtq.
Hence, we have Lpθt`1, wt`1q ď Lpθt, wtq. Since, the loss is lower bounded from below at
0, for every ϵ ą 0, we have for large enough t (depending on ϵ), ∥∇θLpθt, wtq∥ 2 ď ϵ, i.e.,
∥∇θLpθt, wtq∥ 2 Ñ 0 as t Ñ 8.

Part 2 Consider a general scenario when γ ą 0. Denote the input domain of pp and
pn as P and N respectively. At any step t, for all points x P X such that pupxq ą 0 and
wtpxq “ 0, we say that x is rejected from pu. We denote the incorrectly rejected subdomain
of pn from pu as Nr and the incorrectly accepted subdomain of pp from pu as Pa. Formally,
Nr “ tx : pnpxq ą 0 and wtpxq “ 0u and Pa “ tx : pppxq ą 0 and wtpxq “ 1u. We will show
that pppPaq Ñ 0 as t Ñ 8, and hence, we will recover the optimal classifier where we reject
none of pu incorrectly.

Observe that at any time t, for fixed wt and θ “ θt, the gradient of CVIR loss in (D.34),
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can be expressed as:

∇θLpθ, wtq “α

ż

xPP zPa

pfpx; θq ´ 1qx ¨ pppxqdx

l jh n

I

`p1 ´ αq

ż

xPNzNr

pfpx; θq ´ 0qx ¨ pnpxqdx

l jh n

II

` α

ż

xPPa

p2fpx; θq ´ 1qx ¨ pppxqdx

l jh n

III

. (D.39)

Note that for any x, θ, 0 ď fpx; θq ď 1. Now consider inner product of individual terms
above with θopt, we get

xI, θopty “

ż

xPP zPa

pfpx; θq ´ 1qxT θopt ¨ pppxqdx ď ´γ0

ż

xPP zPa

p1 ´ fpx; θqq ¨ pppxqdx ,

(D.40)

xII, θopty “

ż

xPNzNr

pfpx; θq ´ 0qxT θopt ¨ pnpxqdx ď ´γ0

ż

xPNzNr

pfpx; θq ´ 0q ¨ pnpxqdx ,

(D.41)

xIII, θopty “

ż

xPPa

p2fpx; θq ´ 1qxT θopt ¨ pppxqdx ď ´γ0

ż

xPPa

p1 ´ 2fpx; θqq ¨ pppxqdx .

(D.42)

Now, we will argue that individually all the three LHS terms in (D.40), (D.41), (D.42) are
negative for all classifiers that do not separate positive versus negative data begining from
Lpθ0, w0q ă logp2q. And hence, we show that these terms approach zero individually only
when the linear classifier approaches an optimal positive versus negative classifier.

First, we consider the term in the LHS of equation (D.42). When α “ 0.5, we have
VIRαpθq “ 0.5 and hence, p1 ´ 2fpx; θqq ď 0 for x P Pa. When α ą 0.5, VIRαpθq ă 0.5
because, the proportion α ¨ pppPaq matches with proportion p1 ´ αq ¨ pnpNrq. Hence, we
again have p1 ´ 2fpx; θqq ď 0 for x P Pa.

To handle the case with α ă 0.5, we use a symmetry of he distribution to because
VIRαpθq ą 0.5 and p1 ´ 2fpx; θqq can take positive and negative values. However, note
that VIRαpθq will be selected such that the proportion α ¨ pppPaq matches with proportion
p1 ´ αq ¨ PnpNrq. In particular, we can split Pa into three disjoint sets P

p1q
a , P p2q

a , and
P

p3q
a such that for all x P P

p1q
a we have fpx; θq ą“ 0.5, for all x P P

p2q
a Y P

p3q
a we have

fpx; θq ă 0.5 and pppP
p3q
a q “ α

1´α
pppNrq. Additionally, by symmetry of distribution around

θ, we have
ş

xPP
p1q
a

p1 ´ 2fpx; θqq ¨ pppxqdx`
ş

xPP
p2q
a

p1 ´ 2fpx; θqq ¨ pppxqdx “ 0. Hence, we get

xIII, θopty ď ´γ0

ż

xPPa

p1 ´ 2fpx; θqq ¨ pppxqdx “ ´γ0

ż

xPP
p3q
a

p1 ´ 2fpx; θqq ¨ pppxqdx .

(D.43)
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Combining all three cases, we get xIII, θopty ă 0 when pppPaq ą 0.

Now we consider LHS terms in (D.40) and (D.41). Note that for all x P P Y N , we have
0 ď fpxq ď 1. Thus with pppP zPaq ą 0, xI, θopty Ñ 0 when fpx, θq Ñ 1 for all x P P zPa.
Similarly with pnpNzNrq ą 0, xII, θopty Ñ 0 when fpx, θq Ñ 0 for all x P NzNr.

From part 1, for gradient ∥∇θLpθt, wtq∥ 2 to converge to zero as t Ñ 8, we must have that
LHS in equations (D.40), (D.41), and (D.42) converges to zero individually. Since CVIR
loss decreases continuously and Lpθ0, w0q ă logp2q, we have that pppPaq Ñ 0 and hence,
fpx, θq Ñ 1 for all x P P and fpx, θq Ñ 0 for all x P N .

The above analysis can be extended to show convergence to max-margin classifier by using
arguments from Soudry et al. (2018). In particular, as pppPaq Ñ 0, we can show that
θt{ ∥θt∥ 2 will converge to the max-margin classifier for pp versus pn, i.e., θopt if pppPaq Ñ 0
in finite number of steps. Note that we need an assumption that the initialized model θ0
is strictly better than a model that randomly guesses or initialized at all zeros. This is
to avoid convergence to the local minima of θ “ 0 with CVIR training. This assumption
is satisfied when the classifier is initialized in a way such that xθ0, θopty ą 0. In general,
we need a weaker assumption that during training with any randomly initialized classifier,
there exists an iterate t during CVIR training such that xθt, θopty ą 0.

D.4.3 Extension of Theorem 1

We also extend the analysis in the proof of Theorem D.4.1 to Step 5 of Algorithm 8 to show
convergence of estimate pwptpy “ k ` 1q to true prevalence ptpy “ k ` 1q. In particular, we
show that the estimation error for prevalence of the novel class will primarily depend on
sum of two terms: (i) error in approximating the label shift corrected source distribution,
i.e., p1

spxq; and (ii) purity of the top bin of the domain discriminator classifier.

Before formally introducing the result, we introduce some notation. Similar to before,
given probability density function p and a domain discriminator classifier f : X Ñ ∆,
define a function q “

ş

Apzq
ppxqdx, where Apzq “ tx P X : fpxq ě zu for all z P r0, 1s.

Intuitively, qpzq captures the cumulative density of points in a top bin, i.e., the proportion
of input domain that is assigned a value larger than z by the function f in the transformed
space. We denote ptpx|y “ k ` 1q with pt,k`1. For each pdf pt, pt,k`1, and p1

s, we define
qt, qt,k`1, and q1

s respectively. Note that since We define an empirical estimator pwqpzq

given a set X “ tx1, x2, . . . , xnu sampled iid from ppxq. Let Z “ fpXq. Define pwqpzq “
řn

i“1 I rzi ě zs {n.

Recall that in Step 5 of Algorithm 8, to estimate the proportion of novel class, we have
access to re-sampled data from approximate label shift corrected source distribution pwq1

spxq.
Assume that we the size of re-sampled dataset is n.
Theorem D.4.4. Define c˚ “ argmincPr0,1s pqt,k`1pcq{ pwq1

spcqq. Assume minpn,mq ě
´

2 logp4{δq

p pwq1
spc˚qq2

¯

. Then, for every δ ą 0, r pwptsk`1 :“ pwptpy “ k ` 1q in Step 5 of Algorithm 8
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satisfies with probability at least 1 ´ δ, we have:

|r pwptsk`1 ´ rptsk`1| ď p1 ´ rptsk`1q
|q1

spc
˚q ´ pwq1

spc
˚q|

pwq1
spc

˚q
l jh n

Error in estimating
label shift corrected source

`rptsk`1

ˆ

qt,k`1pc
˚q

pwq1
spc

˚q

˙

l jh n

Impurity in
top bin

` O
˜

c

logp4{δq

n
`

c

logp4{δq

m

¸

.

Proof. We can simply prove this theorem as Corollary of Theorem 1 from Garg et al.
(2021b). Note that qtpc˚q “ p1 ´ ptpy “ k ` 1qq ¨ q1

spc
˚q ` ptpy “ k ` 1q ¨ qt,k`1pc

˚q. Adding
and subtracting p1´ptpy “ k`1qq¨ pwq1

spc
˚q and dividing by pwq1

s, we get qtpc˚q

pwq1
spc˚q

“ p1´ptpy “

k ` 1qq ¨
|q1

spc˚q´ pwq1
spc˚q|

pwq1
spc˚q

` p1 ´ ptpy “ k ` 1qq ` ptpy “ k ` 1q ¨
qt,k`1pc˚q

pwq1
spc˚q

. Plugging in bound
for LHS from Theorem 1 in Garg et al. (2021b), we get the desired result.

D.4.4 Extensions of Theorem 2 to general separable datasets

For general separable datasets, CVIR has undesirable property of getting stuck at local
optima where gradient in (D.42) can be zero by maximizing entropy on the subset Pa which
is (incorrectly) not-rejected from pu in CVIR iterations. Intuitively, if the classifier can
perfectly separate P zPa and NzNr and at the same time maximize the entropy of the region
Pa, then the classifier trained with CVIR can get stuck in this local minima.

However, we can extend the above analysis with some modifications to the CVIR procedure.
Note that when the CVIR classifier maximizes the entropy on Pa. it makes an error on points
in Pa. Since, we have access to the distribution pp, we can add an additional regularization
penalty to the CVIR loss that ensures that the converged classifier with CVIR correctly
classifies all the points in pp. With a large enough regularization constant for the supervised
loss on pp, we can dominate the gradient term in (D.42) which pushes CVIR classifier to
correct decision boundary even on Pa (instead of maximizing entropy). We leave formal
analysis of this conjecture for future work. Since we warm start CVIR training with a
positive versus unlabeled classifier, if we obtain an initialization close enough to the true
positive versus negative decision boundary, by monotonicity property of CVIR iterations,
we may never get stuck in such a local minima even without modifications to loss.

D.5 Empirical investigation of CVIR in toy setup
As noted in our ablation experiments and in Garg et al. (2021b), domain discrimina-
tor trained with CVIR outperforms classifiers trained with other consistent objectives
(nnPU (Kiryo et al., 2017) and uPU (Du Plessis et al., 2015)). While the analysis in
Sec. 5.8 highlights consistency of CVIR procedure in population, it doesn’t capture the
observed empirical efficacy of CVIR over alternative methods in overparameterized models.
In the Gaussian setup described in Sec. D.4.2, we train overparameterized linear models to
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(a) Accuracy on validation posi-
tive versus negative data

(b) Fraction of correctly rejected
examples with CVIR

Figure D.2: Comparison of different methods in overparameterized toy setup.
CVIR (random) denotes CVIR with random initialization and CVIR (PvU) denotes warm
start with a positive versus negative classifier. Vertical line denotes the epoch at which
we switch from PvU to CVIR in CVIR (PvU) training. (a) We observe that CVIR (PvU)
improves significantly even over the best early stopped PvU model. As training proceeds,
we observe that accuracy of nnPU, uPU and PvU training drops whereas CVIR (random)
and CVIR (PvU) maintains superior and stable performance. (b) We observe that warm
start training helps CVIR over randomly initialized model to correctly identity positives
among unlabeled for rejection.

compare CVIR with other methods (Fig. D.2). We fix d “ 1000 and use n “ 250 positive
and m “ 250 unlabeled points for training with α “ 0.5. We set the margin γ at 0.05. We
compare CVIR with unbiased losses uPU and nnPU. We also make comparison with a
naive positive versus unlabeled classifier (referred to as PvU). For CVIR, we experiment
with a randomly initialized classifier and initialized with a PvU classifier trained for 200
epochs.

First, we observe that when a classifier is trained to distinguish positive and unlabeled
data, early learning happens (Arora et al., 2019a; Garg et al., 2021a; Liu et al., 2020),
i.e., during the initial phase of learning classifier learns to classify positives in unlabeled
correctly as positives achieving high accuracy on validation positive versus negative data.
While the early learning happens with all methods, soon in the later phases of training
PvU starts overfitting to the unlabeled data as negative hurting its validation performance.
For uPU and nnPU, while they improve over PvU training during the initial epochs, the
loss soon becomes biased hurting the performance of classifiers trained with uPU and nnPU
on validation data.

For CVIR trained from a randomly initialized classifier, we observe that it improves slightly
over the best PvU or the best nnPU model. Moreover, it maintains a relatively stable
performance throughout the training. CVIR initialized with a PvU classifier significantly
improves the performance. In Fig. D.2 (b), we show that CVIR initialized with a PvU
correctly rejects significantly more fraction of positives from unlabeled than CVIR trained
from scratch. Thus, post early learning rejection of large fraction of positives from unlabeled
training in equation (5.4) crucially helps CVIR.
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D.6 Experimental Details

D.6.1 Baselines

We compare PULSE with several popular methods from OSDA literature. While these
methods are not specifically proposed for OSLS, they are introduced for the more general
OSDA problem. In particular, we make comparions with DANCE (Saito et al., 2020),
UAN (You et al., 2019), CMU (Fu et al., 2020), STA (Liu et al., 2019a), Backprop-ODA (or
BODA) (Saito et al., 2018b). We use the open source implementation available at https:
//github.com/thuml and https://github.com/VisionLearningGroup/DANCE/. Since
OSDA methods do not estimate the prevalence of novel class explicitly, we use the fraction
of examples predicted in class k ` 1 as a surrogate. We next briefly describe the main idea
for each method:

Backprob-ODA Saito et al. (2018b) proposed backprob ODA to train a pk ` 1q-way
classifier. In particular, the network is trained to correctly classify source samples and for
target samples, the classifier (specifically the last layer) is trained to output 0.5 for the
probability of the unknown class. The feature extractor is trained adversarially to move the
probability of unknown class away from 0.5 on target examples by utilizing the gradient
reversal layer.

Separate-To-Adapt (STA) Liu et al. (2019a) trained a network that learns jointly from
source and target by learning to separate negative (novel) examples from target. The
training is divided into two parts. The first part consists of training a multi-binary Gc|

|Ys|
c“1

classifier on labeled source data for each class and a binary classifier Gb which generates
the weights w for rejecting target samples in the novel class. The second part consists of
feature extractor Gf , a classifier Gy and domain discriminator Gd to perform adversarial
domain adaptation between source and target data in the source label space. Gy and Gd

are trained with incorporating weights w predicted by Gb in the first stage.

Calibrated Multiple Uncertainties (CMU) Fu et al. (2020) trained a source classifier and
a domain discriminator to discriminate the novel class from previously seen classes in
target. To train the discriminator network, CMU uses a weighted binary cross entropy loss
where wpxq for each example x in target which is the average of uncertainty estimates, e.g.
prediction confidence of source classifier. During test time, target data x with wpxq ě w0

(for some pre-defined threshold w0) is classified as an example from previously seen classes
and is given a class prediction with source classifier. Otherwise, the target example is
classified as belonging to the novel class.

DANCE Saito et al. (2020) proposed DANCE which combines a self-supervised clustering
loss to cluster neighboring target examples and an entropy separation loss to consider
alignment with source. Similar to CMU, during test time, DANCE uses thresholded
prediction entropy of the source classifier to classifier a target example as belonging to the
novel class.

Universal Adaptation Networks (UAN) You et al. (2019) proposed UAN which also trains a
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source classifier and a domain discriminator to discriminate the novel class from previously
seen classes in target. The objective is similar to CMU where instead of using uncertainty
estimates from multiple classifiers, UAN uses prediction confidence of domain discriminator
classifier. Similar to CMU, at test time, target data x with wpxq ď w0 (for some pre-defined
threshold w0) is classified as an example from previously seen classes and is given a class
prediction with source classifier. Otherwise, the target example is classified as belonging to
the novel class.

For alternative baselines, we experiment with source classifier directly deployed on the
target data which may contain novel class and label shift among source classes (referred
to as source-only). This naive comparison is included to quantify benefits of label shift
correction and identifying novel class over a typical k-way classifiers.

We also train a domain discriminator classifier for source versus target (referred to as
domain disc.). This is an adaptation of PU learning baseline(Elkan and Noto, 2008) which
assumes no label shift among source classes. We use simple domain discriminator training
to distinguish source versus target. To estimate the fraction of novel examples, we use
the EN estimator proposed in Elkan and Noto (2008). For any target input, we make a
prediction with the domain discriminator classifier (after re-scaling the sigmoid output with
the estimate proportion of novel examples). Any example that is classified as target, we
assign it the class k ` 1. For examples classified as source, we make a prediction for them
using the k-way source classifier.

Finally, per the reduction presented in Sec. 5.5, we train k PU classifiers (referred to as
k-PU ). To train each PU learning classifier, we can plugin any method discussed in Sec. C.5.
In the main paper, we included results obtained with plugin state-of-the-art PU learning
algorithms. In App. D.6.8, we present ablations with other PU learning methods.

D.6.2 Dataset and OSLS Setup Details

We conduct experiments with seven benchmark classification datasets across vision, natural
language, biology and medicine. Our datasets span language, image and table modalities.
For each dataset, we simulate an OSLS problem. We experiment with different fraction of
novel class prevalence, source label distribution, and target label distribution. We randomly
choose classes that constitute the novel target class. After randomly choosing source and
novel classes, we first split the training data from each source class randomly into two
partitions. This creates a random label distribution for shared classes among source and
target. We then club novel classes to assign them a new class (i.e. k ` 1). Finally, we throw
away labels for the target data to obtain an unsupervised DA problem. We repeat the
same process on iid hold out data to obtain validation data with no target labels. For main
experiments in the paper, we next describe important details for the OSLS setup simulated.
All the other details can be found in the code repository.

For vision, we use CIFAR10, CIFAR100 (Krizhevsky and Hinton, 2009) and Entity30 (San-
turkar et al., 2021). For language, we experiment with Newsgroups-20 dataset. Additionally,
inspired by applications of OSLS in biology and medicine, we experiment with Tabula
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Muris (Consortium et al., 2020) (Gene Ontology prediction), Dermnet (skin disease predic-
tion), and BreakHis (Spanhol et al., 2015) (tumor cell classification).

CIFAR10 For CIFAR10, we randomly select 9 classes as the source classes and a novel
class formed by the remaining class. After randomly sampling the label marginal for source
and target randomly, we get the prevalence for novel class as 0.2152.

CIFAR100 For CIFAR100, we randomly select 85 classes as the source classes and a
novel class formed by aggregating the data from 15 remaining classes. After randomly
sampling the label marginal for source and target randomly, we get the prevalence for novel
class as 0.2976.

Entity30 Entity30 is a subset of ImageNet (Russakovsky et al., 2015) with 30 super
classes. For Entity30, we randomly select 24 classes as the source classes and a novel class
formed by aggregating the data from 6 remaining classes. After randomly sampling the
label marginal for source and target randomly, we get the prevalence for novel class as
0.3942.

Newgroups-20 For Newsgroups201, we randomly select 16 classes as the source classes
and a novel class formed by aggregating the data from 4 remaining classes. After randomly
sampling the label marginal for source and target randomly, we get the prevalence for novel
class as 0.3733. This dataset is motivated by scenarios where novel news categories can
appear over time but the distribution of articles given a news category might stay relatively
unchanged.

BreakHis BreakHis2 contains 8 categories of cell types, 4 types of benign breast tumor
and 4 types malignant tumors (breast cancer). Here, we simulate OSLS problem specifically
where 6 cell types are observed in the source (3 from each) and a novel class appears in the
target with 1 cell type from each category. After randomly sampling the label marginal for
source and target randomly, we get the prevalence for novel class as 0.2708.

Dermnet Dermnet data contains images of 23 types of skin diseases taken from Dermnet
NZ3. We simulate OSLS problem specifically where 18 diseases are observed in the source
and a novel class appears in the target with the rest of the 5 diseases. After randomly
sampling the label marginal for source and target randomly, we get the prevalence for novel
class as 0.3133.

Tabula Muris Tabula Muris dataset (Consortium et al., 2020) comprises of different
cell types collected across 23 organs of the mouse model organism. We use the data pre-
processing scripts provided in (Cao et al., 2021)4. We just use the training set comprising
of 57 classes for our experiments. We simulate OSLS problem specifically where 28 cell
types are observed in the source and a novel class appears in the target with the rest of the
29 cell types. After randomly sampling the label marginal for source and target randomly,

1http://qwone.com/~jason/20Newsgroups/
2https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
3http://www.dermnet.com/dermatology-pictures-skin-disease-pictures
4https://github.com/snap-stanford/comet
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we get the prevalence for novel class as 0.6366.

D.6.3 Details on the Experimental Setup

We use Resnet18 (He et al., 2016) for CIFAR10, CIFAR100, and Entity30. For all three
datasets, in our main experiments, we train Resnet-18 from scratch. We use SGD training
with momentum of 0.9 for 200 epochs. We start with learning rate 0.1 and decay it
by multiplying it with 0.1 every 70 epochs. We use a weight decay of 5 ˆ 10´4. For
CIFAR100 and CIFAR10, we use batch size of 200. For Entity30, we use a batch size
of 32. In App. D.6.7, we experiment with contrastive pre-training instead of random
initialization.

For newsgroups, we use a convolutional architecture5. We use glove embeddings to initialize
the embedding layer. We use Adam optimizer with a learning rate of 0.0001 and no weight
decay. We use a batch size of 200. We train with constant learning rate for 120 epochs.

For Tabular Muris, we use the fully connected MLP used in Cao et al. (2021). We use the
hyperparameters used in Cao et al. (2021). We use Adam optimizer with a learning rate of
0.0001 and no weight decay. We train with constant learning rate for 40 epochs. We use a
batch size of 200.

For Dermnet and BreakHis, we use Resnet-50 pre-trained on Imagenet. We use an initial
learning rate of 0.0001 and decay it by 0.96 every epoch. We use SGD training with
momentum of 0.9 and weight decay of 5 ˆ 10´4. We use a batch size of 32. These are the
default hyperparameters used in Alom et al. (2019) and Liao (2016).

For all methods, we use the same backbone for discriminator and source classifier. Addi-
tionally, for PULSE and domain disc., we use the exact same set of hyperparameters to
train the domain discriminator and source classifier. For kPU, we use a separate final layer
for each class with the same backbone. We use the same hyperparameters described above
for all three methods. For OSDA methods, we use default method specific hyperparameters
introduced in their works. Since we do not have access to labels from the target data, we
do not perform hyperparameter tuning but instead use the standard hyperparameters used
for training on labeled source data. In future, we may hope to leverage heuristics proposed
for accuracy estimation without access to labeled target data (Garg et al., 2022b).

We train models till the performance on validation source data (labeled) ceases to increase.
Unlike OSDA methods, note that we do not use early stopping based on performance
on held-out labeled target data. To evaluate classification performance, we report target
accuracy on all classes, seen classes and the novel class. For target marginal, we separately
report estimation error for previously seen classes and for the novel class. For the novel
class, we report absolute difference between true and estimated marginal. For seen classes,
we report average absolute estimation error. We open-source our code at https://github.
com/Neurips2022Anon. By simply changing a single config file, new OSLS setups can be
generated and experimented with.

5https://github.com/mireshghallah/20Newsgroups-Pytorch
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Note that for our main experiments, for vision datasets (i.e., CIFAR10, CIFAR100, and
Entity30) and for language dataset, we do not initialize with a (supervised) pre-trained
model to avoid overlap of novel classes with the classes in the dataset used for pre-training.
For example, labeled Imagenet-1k is typically used for pre-training. However, Imagenet
classes overlaps with all three vision datasets employed and hence, we avoid pre-trained
initialization. In App. D.6.7, we experiment with contrastive pre-training on Entity30 and
CIFAR100. In contrast, for medical datasets, we leverage Imagenet pre-trained models as
there is no overlap between classes in BreakHis and Dermnet with Imagenet.

D.6.4 Detailed results from main paper

For completeness, we next include results for all datasets. In particular, for each dataset we
tabulate (i) overall accuracy on target; (ii) accuracy on seen classes in target; (iii) accuracy
on the novel class; (iv) sum of absolute error in estimating target marginal among previously
seen classes, i.e.,

ř

yPYs
| pwptpyq ´ ptpyq|; and (v) absolute error for novel fraction estimation,

i.e., | pwptpy “ k ` 1| ´ ptpy “ k ` 1q. Table ?? presents results on all the datasets. Fig. ??
and Fig. ?? presents epoch-wise results.

D.6.5 Investigation into OSDA approaches

We observe that with default hyperparameters, popular OSDA methods significantly under
perform as compared to PULSE. We hypothesize that the primary reasons underlying
the poor performance of OSDA methods are (i) the heuristics employed to detect novel
classes; and (ii) loss functions incorporated to improve alignment between examples from
common classes in source and target. To detect novel classes, a standard heuristic employed
popular OSDA methods involves thresholding uncertainty estimates (e.g., prediction entropy,
softmax confidence (Fu et al., 2020; Saito et al., 2020; You et al., 2019)) at a predefined
threshold κ. However, a fixed κ, may not for different datasets and different fractions of
the novel class. Here, we ablate by (i) removing loss function terms incorporated with an
aim to improve source target alignment; and (ii) vary threshold κ and show improvements
in performance of these methods.

For our investigations, we experiment with CIFAR10, with UAN and DANCE methods.
For DANCE, we remove the entropy separation loss employed to encourage align target
examples with source examples. For UAN, we remove the adversarial domain discriminator
training employed to align target examples with source examples. For both the methods,
we observe that by removing the corresponding loss function terms we obtain a marginal
improvement. For DANCE on CIFAR10, the performance goes up from 70.4 to 72.5 (with
the same hyperparameters as the default run). FOR UAN, we observe similar minor
improvements, where the performance goes up from 15.4 to 19.6.

Next, we vary the threshold used for detecting the novel examples. By optimally tuning
the threshold for CIFAR10 with UAN, we obtain a substantial increase. In particular, the
overall target accuracy increases from 19.6 to 33.1. With DANCE on CIFAR10, optimal
threshold achieves 75.6 as compared to the default accuracy 70.4. In contrast, our two-stage
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method PULSE avoids the need to guess κ, by first estimating the fraction of novel class
which then guides the classification of novel class versus previously seen classes.

D.6.6 Ablation with novel class fraction

In this section, we ablate on novel class proportion on CIFAR10, CIFAR100 and News-
groups20. For each dataset we experiment with three settings, each obtained by varying
the number of classes from the original data that constitutes the novel classes. We tabulate
our results in Table ??.

D.6.7 Contrastive pre-training on unlabeled data

Here, we experiment with contrastive pre-training to pre-train the backbone networks used
for feature extraction. In particular, we initialize the backbone architectures with SimCLR
pre-trained weights. We experiment with CIFAR100 and Entity30 datasets. Instead of
pre-training on mixture of source and target unlabeled data, we leverage the publicly
available pre-trained weights6. Table D.1 summarizes our results. We observe that pre-
training improves over random initialization for all the methods with PULSE continuing to
outperform other approaches.

Table D.1: Comparison with different OSLS approaches with pre-trained feature extractor.
We use SimCLR pre-training to initialize the feature extractor for all the methods. All
methods improve over random initialization (in Table 5.1). Note that PULSE continues to
outperform other approaches.

CIFAR100 Entity30

Method
Acc
(All)

MPE
(Novel)

Acc
(All)

MPE
(Novel)

BODA (Saito et al., 2018b) 37.1 0.34 52.1 0.376

Domain Disc. 49.4 0.041 57.4 0.024

kPU 37.5 0.297 70.1 0.32

PULSE (Ours) 67.3 0.052 72.4 0.002

D.6.8 Ablation with different PU learning methods

In this section, we experiment with alternative PU learning approaches for PULSE and
kPU. In particular, we experiment with the next best alternatives, i.e., nnPU instead of
CVIR for classification and DEDPUL instead of BBE for target marginal estimation. We
refer to these as kPU (alternative) and PULSE (alternative) in Table ??. We present results

6For CIFAR100: https://drive.google.com/file/d/1huW-ChBVvKcx7t8HyDaWTQB5Li1Fht9x/view
and for Entity30, we use Imagenet pre-trained weights from here: https://github.com/AndrewAtanov/
simclr-pytorch.
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on three datasets: CIFAR10, CIFAR100 and Newsgroups20 in the same setting as described
in Sec. D.6.2. We make two key observations: (i) PULSE continues to dominate kPU with
alternative choices; (ii) CVIR and BBE significantly outperform alternative choices.

D.6.9 Age Prediction Task

We consider an experiment on UTK Face dataset7. We create an 8-way class classification
problem where we split the age in the following 8 groups: 0–10, 11–20, ¨ ¨ ¨ , 60–70 and ą 70.
We consider the first 7 age groups in source and introduce age group ą 70 into the target
data. OSLS continues to outperform the kPU baseline for novel prevalence estimation.
Additionally, for target classification performance of OSLS is similar to kPU baseline (ref.
Table D.2).

Table D.2: Results on age prediction dataset. We observe that the prevalence of the novel
class as estimated with our PULSE framework is significantly closer to the true estimate.
Additionally target classification performance of OSLS is similar to that of kPU both of
which significantly improve over domain discriminator and source only baselines.

UTK Face

Method
Acc
(All)

MPE
(Novel)

Source Only 50.1 0.11

Domain Disc. 52.4 0.08

kPU 56.7 0.11

PULSE (Ours) 56.8 0.01

7https://susanqq.github.io/UTKFace/
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Appendix E

Appendix: Complementary Benefits of
Contrastive Learning and Self-Training
Under Distribution Shift

E.1 Other Related Works

Unsupervised domain adaption. One line of research focuses on constructing bench-
marks to develop heuristics for incorporating the unlabeled target data, relying on benchmark
datasets ostensibly representative of “real-world shifts” to adjudicate progress (Peng et al.,
2017; 2019; Sagawa et al., 2021; Santurkar et al., 2021; Venkateswara et al., 2017). As
a result, various benchmark-driven heuristics have been proposed (Ganin et al., 2016;
Long et al., 2015; 2017; Sohn et al., 2020; Sun and Saenko, 2016; Sun et al., 2017; Zhang
et al., 2018c; 2019). Our work engages with the latter, focusing on two popular methods:
self-training and contrastive pretraining.

Domain generalization. In domain generalization, the model is given access to data
from multiple different domains and the goal is to generalize to a previously unseen domain
at test time (Blanchard et al., 2011; Muandet et al., 2013). For a survey of different
algorithms for domain generalization, we refer the reader to Gulrajani and Lopez-Paz
(2020). A crucial distinction here is that unlike the domain generalization setting, in DA
problems, we have access to unlabeled examples from the test domain.

Semi-supervised learning. To learn from a small amount of labeled supervision,
semi-supervised learning methods leverage unlabeled data alongside to improve learning
models. One of the seminal works in SSL is the pseudolabeling method (Scudder, 1965),
where a classifier is trained on the labeled data and then used to classify the unlabeled
data, which are then added to the training set. The work of Zhu and Ghahramani (2003)
built on this by introducing graph-based methods, and the transductive SVMs (Joachims
et al., 1999) presented an SVM-based approach. More recent works have focused on deep
learning techniques, and similar to UDA, self-training and contrastive pretraining have
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emerged as two prominent choices. We delve into these methods in greater detail in the
following paragraphs. For a discussion on other SSL methods, we refer interested readers
to (Chapelle et al., 2006; Van Engelen and Hoos, 2020; Yang et al., 2022).

Self-training. Two popular forms of self-training are pseudolabeling (Lee et al., 2013)
and conditional entropy minimization (Grandvalet and Bengio, 2006), which have been
observed to be closely connected (Berthelot et al., 2019; Lee et al., 2013; Shu et al., 2018;
Sohn et al., 2020). Motivated by its strong performance in SSL and UDA settings (Garg
et al., 2023a; Shu et al., 2018; Sohn et al., 2020; Xie et al., 2020a), several theoretical works
have made attempts to understand its behavior (Chen et al., 2020b; Kumar et al., 2020;
Wei et al., 2020). (Cai et al., 2021a; Wei et al., 2020) aims to understand the behavior of
the global minimizer of self-training objective by studying input consistency regularization,
which enforces stability of the prediction for different augmentations of the unlabeled data.
Our analysis of self-training is motivated by the work of Chen et al. (2020b) which explores
the iterative behavior of self-training to unlearn spurious features. The setting of spurious
features is of particular interest, since prior works have specifically analyzed the failures
of out-of-distribution generalization in the presence of spurious features (Nagarajan et al.,
2020; Sagawa et al., 2020).

Contrastive learning. An alternate line of work that uses unlabeled data for learning
representations in the pretraining stage is contrastive learning (Caron et al., 2020; Chen
et al., 2020a; Grill et al., 2020; Oord et al., 2018; Wu et al., 2018). Given an augmentation
distribution, the main goal of contrastive objectives is to map augmentations drawn from
the same input (positive pairs) to similar features, and force apart features corresponding to
augmentations of different inputs (negative pairs) (Caron et al., 2020; 2021; He et al., 2020).
Prior works (Cabannes et al., 2023; HaoChen and Ma, 2022; Johnson et al., 2022) have also
shown a close relationship between contrastive (Chen et al., 2020a; HaoChen et al., 2021)
and non-contrastive objectives (Bardes et al., 2021; Zbontar et al., 2021). Consequently, in
our analysis pertaining to the toy setup we focus on the mathematically non-contrastive
objective Barlow Twins (Zbontar et al., 2021). Using this pretrained backbone (either as an
initialization or as a fixed feature extractor) a downstream predictor is learned using labeled
examples. Several works (Arora et al., 2019b; HaoChen and Ma, 2022; HaoChen et al., 2021;
Johnson et al., 2022; Saunshi et al., 2022) have analyzed the in-distribution generalization
of the downstream predictor via label consistency arguments on the graph of positive pairs
(augmentation graph). In contrast, we study the impact of contrastive learning under
distribution shifts in the UDA setup. Other works (HaoChen et al., 2022; Shen et al., 2022)
that examine contrastive learning for UDA also conform to the augmentation graph view
point, making additional assumptions that guarantee linear transferability. In our simplified
setup involving spurious correlations, these abstract assumptions break easily when the
augmentations are of a generic nature, akin to practice. Finally, some empirical works (Ma
et al., 2021; Mishra et al., 2021) have found self-supervised objectives like contrastive
pretraining to reduce dependence on spurious correlations. Corroborating their findings, we
extensively evaluate the complementary benefits of contrastive learning and self-training on
real-world datasets. Finding differing results in SSL and UDA settings, we further examine
their behavior theoretically in our toy setup.
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E.2 More Details on Problem Setup

In this section, we elaborate on our setup and methods studied in our work.

Unsupervised Domain Adaptation (UDA). We assume that we are given labeled
data from the source distribution and unlabeled data from a shifted, target distribution,
with the goal of performing well on target data. We assume that the source and target
distributions have the same label marginals Pspyq “ Ptpyq (i.e., no label proportion shift)
and the same Bayes optimal predictor, i.e., argmaxy pspy | xq “ argmaxy ptpy | xq. Here,
even with infinite labeled source data, the challenge lies in generalizing out-of-distribution.
In experiments, we assume access to finite data but in theory, we assume population access
to labeled source and unlabeled target.

Semi-Supervised Learning (SSL). Here, there is no distribution shift, i.e., Ps “ Pt “

PU. We are given a small number of labeled examples and a comparatively large amount of
unlabeled examples, both drawn from the same distribution. Without loss of generality,
we denote this distribution with Pt. The goal in SSL is to generalize in-distribution. The
challenge is primarily due to limited access to labeled data. Here, in experiments, we
assume limited access to labeled data but a comparatively larger amount of unlabeled
in-distribution data. In theory, we assume population access to unlabeled data but limited
labeled examples.

Methods. As discussed in the main paper, we compare four methods for learning with
labeled and unlabeled data. Table E.6 summarizes the main methods and key differences
between those methods in UDA and SSL setup. For exact implementation in our experiments,
we refer reader to App. E.3.3.

E.3 Additional Experiments and Details

E.3.1 Additional setup and notation

Recall, our goal is to learn a predictor that maps inputs x P X Ď Rd to outputs y P Y.
We parameterize predictors f “ h ˝ Φ : Rd ÞÑ Y, where Φ : Rd ÞÑ Rk is a feature map
and h P Rk is a classifier that maps the representation to the final scores or logits. With
A : X Ñ A, we denote the augmentation function that takes in an input x and outputs an
augmented view of the input Apxq. Unless specified otherwise, we perform full-finetuning in
all of our experiments on real-world data. That is, we backpropagate gradients in both the
linear head h and the backbone ϕ. For UDA, we denote source labeled points as tpxi, yiquni“1

and target unlabeled points as tpx1
iqumi“1. For SSL, we use the same notation for labeled

and unlabeled in-distribution data.
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E.3.2 Dataset details

For both UDA and SSL, we conduct experiments across eight benchmark datasets. Each of
these datasets consists of domains, enabling us to construct source-target pairs for UDA.
The adopted source and target domains are standard to previous studies (Garg et al., 2023a;
Sagawa et al., 2021; Shen et al., 2022). Because the SSL setting lacks distribution shift,
we do not need to worry about domain designations and default to using source alone. To
simulate limited supervision in SSL, we sub-sample the original labeled training set to 10%.
Below provide exact details about the datasets used in our benchmark study.

• CIFAR10 We use the original CIFAR10 dataset (Krizhevsky and Hinton, 2009) as the
source dataset. For target domains, we consider CINIC10 (Darlow et al., 2018) which is
a subset of Imagenet restricted to CIFAR10 classes and downsampled to 32ˆ32.

• FMoW In order to consider distribution shifts faced in the wild, we consider FMoW-
WILDs (Christie et al., 2018; Koh et al., 2021) from Wilds benchmark, which contains
satellite images taken in different geographical regions and at different times. We use the
original train as source and OOD val and OOD test splits as target domains as they are
collected over different time-period. Overall, we obtain 3 different domains (1 source and
2 targets).

• BREEDs We also consider BREEDs benchmark (Santurkar et al., 2021) in our
setup to assess robustness to subpopulation shifts. BREEDs leverage class hierarchy in
ImageNet (Russakovsky et al., 2015) to re-purpose original classes to be the subpopulations
and defines a classification task on superclasses. We consider distribution shift due to
subpopulation shift which is induced by directly making the subpopulations present in
the training and test distributions disjoint. BREEDs benchmark contains 4 datasets
Entity-13, Entity-30, Living-17, and Non-living-26, each focusing on different
subtrees and levels in the hierarchy. Overall, for each of the 4 BREEDs datasets (i.e.,
Entity-13, Entity-30, Living-17, and Non-living-26), we obtain one different domain which
we consider as target. We refer to source and target as follows: BREEDs sub-population
1, BREEDs sub-population 2.

• OfficeHome We use four domains (art, clipart, product and real) from OfficeHome
dataset (Venkateswara et al., 2017). We use the product domain as source and the other
domains as target.

• Visda We use three domains (train, val and test) from the Visda dataset (Peng et al.,
2017; 2018). While ‘train’ domain contains synthetic renditions of the objects, ‘val’ and
‘test’ domains contain real world images. To avoid confusing, the domain names with
their roles as splits, we rename them as ‘synthetic’, ‘Real-1’ and ‘Real-2’. We use the
synthetic (original train set) as the source domain and use the other domains as target.

We summarize the information about source and target domains in Table E.1.

Train-test splits We partition each source and target dataset into 80% and 20% i.i.d.
splits. We use 80% splits for training and 20% splits for evaluation (or validation). We
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Dataset Domains

CIFAR10

FMoW

Visda

Entity13

Entity30

Living17

Nonliving26

Officehome

CIFAR10v1 CINIC10

Year 2002-’13 Year ’13-’16 Year ’16-’18

Synthetic Real-1 Real-2

Sub-pop. 1 Sub-pop. 2

Sub-pop. 1 Sub-pop. 2

Sub-pop. 1 Sub-pop. 2

ClipArt

Sub-pop. 2

Product Real

Sub-pop. 1

Art

Figure E.1: Examples from all the domains in each dataset.

throw away labels for the 80% target split and only use labels in the 20% target split for
final evaluation. The rationale behind splitting the target data is to use a completely unseen
batch of data for evaluation. This avoids evaluating on examples where a model potentially
could have overfit. over-fitting to unlabeled examples for evaluation. In practice, if the aim
is to make predictions on all the target data (i.e., transduction), we can simply use the
(full) target set for training and evaluation.

Simulating SSL settings and limited supervision. For SSL settings, we choose the
in-distribution domain as the source domain. To simulate limited supervision in SSL, we
sub-sample the original labeled training set to 10% and use all the original dataset as
unlabeled data. For evaluation, we further split the original holdout set into two partitions
(one for validation and the other to report final accuracy numbers).

E.3.3 Method details

For implementation, we build on top of WILDs (Sagawa et al., 2021) and RLSbench (Garg
et al., 2023a) open source libraries.
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Dataset Source Target

CIFAR10 CIFAR10v1 CINIC10

FMoW FMoW (2002–’13) FMoW (2013–’16), FMoW (2016–’18)

Entity13 Entity13 (sub-population 1) Entity13 (sub-population 2)

Entity30 Entity30 (sub-population 1) Entity30 (sub-population 2),

Living17 Living17 (sub-population 1) Living17 (sub-population 2),

Nonliving26 Nonliving26 (sub-population 1) Nonliving26 (sub-population 2),

Officehome Product Product, Art, ClipArt, Real

Visda
Synthetic

(originally referred
to as train)

Synthetic, Real-1 (originally referred to as val),
Real-2 (originally referred to as test)

Table E.1: Details of source and target sets in each dataset considered in our testbed.

ERM (Source only) training. We consider Empirical Risk Minimization (ERM) on the
labeled source data as a baseline. Since this simply ignores the unlabeled target data, we
call this as source only training. As mentioned in the main paper, we perform source only
training with data augmentations. Formally, we minimize the following ERM loss:

Lsource onlypfq “
1

n

n
ÿ

i“1

ℓpfpApxiq, yiqq , (E.1)

where A is the stochastic data augmentation operation and ℓ is a loss function. For SSL,
the ERM baseline only uses the small of labeled data available.

Contrastive Learning (CL). We perform contrastive pretraining on the unlabeled
dataset to obtain the backbone ϕcl. And then we perform full fine-tuning with source
labeled data by initializing the backbone with ϕcl. We use SwAV (Caron et al., 2020) for
contrastive pretraining. The main idea behind SwAV is to train a model to identify different
views of the same image as similar, while also ensuring that it finds different images to be
distinct. This is accomplished through a swapped prediction mechanism, where the goal
is to compute a code from an augmented version of the image and predict this code from
other augmented versions of the same image. In particular, given two image features ϕpx1

a1q

and ϕpx1
a2q from two different augmentations of the same image x1, i.e., x1

a1, x
1
a2 „ Apx1q,

SwAV computes their codes za1 and za2 by matching the features to a set of K prototypes
tc1, ¨ ¨ ¨ , cKu. Then SwAV minimizes the following loss such that ϕpx1

a1q can compute codes
za2 and ϕpx1

a2q can compute codes za1:

LSwAVpϕq “

m
ÿ

i“1

ÿ

x1
i,a1,x

1
i,a2„Apx1

iq

ℓ1
pϕpx1

i,a1q, zi,a2q ` ℓ1
pϕpx1

i,a2q, zi,a1q , (E.2)
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where ℓ1 computes KL-divergence between codes computed with features (e.g. ϕpxa1q) and
the code computed by another view (e.g. za2). For more details about the algorithm, we
refer the reader to Caron et al. (2020). In all UDA settings, unless otherwise specified, we
pool all the (unlabeled) data from the source and target to perform SwAV. For SSL, we
leverage in-distribution unlabeled data.

We employ SimCLR (Chen et al., 2020a) for the CIFAR10 dataset, aligning with previous
studies that have utilized contrastive pretraining on the same dataset (Kumar et al., 2022b;
Shen et al., 2022). The reason for this choice is that SwAV relies on augmentations that
involve cropping images to a smaller resolution, making it more suitable for datasets with
larger resolutions beyond 32 ˆ 32.

Self-Training (ST). For self-training, we apply FixMatch (Sohn et al., 2020), where the
loss on labeled data and on pseudolabeled unlabeled data are minimized simultaneously.
Sohn et al. (2020) proposed FixMatch as a variant of the simpler Pseudo-label method (Lee
et al., 2013). This algorithm dynamically generates psuedolabels and overfits on them
in each batch. FixMatch employs consistency regularization on the unlabeled data. In
particular, while pseudolabels are generated on a weakly augmented view of the unlabeled
examples, the loss is computed with respect to predictions on a strongly augmented view.
The intuition behind such an update is to encourage a model to make predictions on weakly
augmented data consistent with the strongly augmented example. Moreover, FixMatch
only overfits to the assigned labeled with weak augmentation if the confidence of the
prediction with strong augmentation is greater than some threshold τ . Refer to Aweak as
the weak-augmentation and Astrong as the strong-augmentation function. Then, FixMatch
uses the following loss function:

LFixMatchpfq “
1

n

n
ÿ

i“1

ℓpfpAstrongpxiq, yiqq

`
λ

m

m
ÿ

i“1

ℓpfpAstrongpx1
iq, ryiqq ¨ I

„

max
y

fypAstrongpx1
iqq ě τ

ȷ

,

where ryi “ argmaxy fypTweakpxiqq. For UDA, our unlabeled data is the union of source and
target unlabeled data. For SSL, we only leverage in-distribution unlabeled data.

We adapted our implementation from Sagawa et al. (2021) which matches the implementation
of Sohn et al. (2020) except for one detail. While Sohn et al. (2020) augments labeled
examples with weak augmentation, Sagawa et al. (2021) proposed to strongly augment the
labeled source examples.

Self-Training Over Contrastive learning (STOC). Finally, rather than performing
FixMatch from a randomly initialized backbone, we initialize FixMatch with a contrastive
pretrained backbone.
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E.3.4 Additional UDA experimemts

Table E.2: Results in the UDA setup. We report accuracy on target (OOD) data from
which we only observe unlabeled examples during training. For benchmarks with multiple
target distributions (e.g ., OH, Visda), we report average accuracy on those targets.

Method Living17 Nonliv26 Entity13 Entity30
FMoW
(2
tgts)

Visda
(2
tgts)

OH
(3
tgts)

CIFARÑ

CINIC

ERM 60.2˘0.1 45.4˘0.2 68.6˘0.1 55.7˘0.0 56.5˘0.1 20.8˘0.2 9.5˘0.2 74.3˘0.1

ST 71.1˘0.2 56.8˘0.1 78.0˘0.3 66.7˘0.1 56.9˘0.4 39.1˘0.1 11.1˘0.1 78.3˘0.3

CL 74.1˘0.2 57.4˘0.3 76.9˘0.2 66.6˘0.3 61.5˘0.5 63.2˘0.2 22.8˘0.1 77.5˘0.1

STOC (ours) 82.6˘0.1 62.1˘0.2 81.9˘0.2 72.0˘0.2 65.3˘0.1 70.1˘0.2 27.1˘0.3 79.9˘0.3

Table E.3: Results in the UDA setup with source only contrastive pretraining. We report
accuracy on target (OOD) data from which we only observe unlabeled examples during
training. For benchmarks with multiple target distributions (e.g ., OH, Visda), we report
average accuracy on those targets.

Method Living17 Nonliv26 Entity13 Entity30
FMoW
(2
tgts)

Visda
(2
tgts)

OH
(3
tgts)

CIFARÑ

CINIC

CL (source only) 67.3˘0.1 49.1˘0.2 71.5˘0.1 58.5˘0.3 53.9˘0.1 33.3˘0.2 21.7˘0.1 77.7˘0.1

STOC (source only) 75.0˘0.2 58.4˘0.1 79.8˘0.3 67.5˘0.1 56.3˘0.4 42.7˘0.1 25.7˘0.1 77.8˘0.1

CL 74.1˘0.2 57.4˘0.3 76.9˘0.2 66.6˘0.3 61.5˘0.5 63.2˘0.2 22.8˘0.1 77.5˘0.1

STOC 82.6˘0.1 62.1˘0.2 81.9˘0.2 72.0˘0.2 65.3˘0.1 70.1˘0.2 27.1˘0.3 79.9˘0.3

E.3.5 Additional SSL experimemts

Table E.4: Results in the SSL setup. We report accuracy on hold-out ID data. Recall that
SSL uses labeled and unlabeled data from the same distribution during training.

Method Living17 Nonliv26 Entity13 Entity30 FMoW Visda OH CIFAR

ERM 76.8˘0.1 64.9˘0.2 80.1˘0.0 70.4˘0.3 33.6˘0.4 99.2˘0.0 32.0˘0.2 85.5˘0.1

ST 85.4˘0.1 75.7˘0.2 85.4˘0.2 77.3˘0.1 33.6˘0.3 99.2˘0.1 32.0˘0.1 93.1˘0.1

CL 91.1˘0.5 84.6˘0.6 90.7˘0.4 85.5˘0.3 43.1˘0.2 97.6˘0.3 49.7˘0.2 91.7˘0.2

STOC (ours) 92.0˘0.1 85.8˘0.2 91.3˘0.3 86.1˘0.2 44.4˘0.1 97.7˘0.2 49.9˘0.2 93.06˘0.3
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E.3.6 Other experimental details

Augmentations. For weak augmentation, we leverage random horizontal flips and
random crops of pre-defined size. For SwAV, we also perform multicrop augmentation
as proposed in Caron et al. (2020). For strong augmentation, we apply the following
transformations sequentially: random horizontal flips, random crops of pre-defined size,
augmentation with Cutout (DeVries and Taylor, 2017), and RandAugment (Cubuk et al.,
2020). For the exact implementation of RandAugment, we directly use the implementation
of Sohn et al. (2020). Unless specified otherwise, for all methods, we default to using strong
augmentation techniques.

Architectures. In our work, we experiment with Resnet18, Resnet50 (He et al., 2016)
trained from scratch (i.e. random initialization). We do not consider off-the-shelf pretrained
models (e.g ., on Imagenet (Russakovsky et al., 2015)) to avoid confounding our conclusions
about contrastive pretraining. However, we note that our results on most datasets tend to
be comparable to and sometimes exceed those obtained with ImageNet pretrained models.
For BREEDs datasets, we employ Resnet18 architecture. For other datasets, we train a
Resnet50 architecture.

Except for Resnets on CIFAR dataset, we used the standard pytorch implementation (Gard-
ner et al., 2018). For Resnet on Cifar, we refer to the implementation here: https:
//github.com/kuangliu/pytorch-cifar. For all the architectures, whenever applicable,
we add antialiasing (Zhang, 2019). We use the official library released with the paper.

Hyperparameters. For all the methods, we fix the algorithm-specific hyperparameters
to the original recommendations. For UDA, given that the setup precludes access to labeled
data from the target distribution, we use source hold-out performance to pick the best
hyperparameters. During pretraining, early stopping is done according to lower values of
pretraining loss.

We tune the learning rate and ℓ2 regularization parameter by fixing the batch size for each
dataset that corresponds to the maximum we can fit to 15GB GPU memory. We default to
using cosine learning rate schedule (Loshchilov and Hutter, 2016). We set the number of
epochs for training as per the suggestions of the authors of respective benchmarks. For
SSL, we run both ERM and FixMatch for approximately 2000 epochs. Note that we define
the number of epochs as a full pass over the labeled training source data. We summarize
the learning rate, batch size, number of epochs, and ℓ2 regularization parameter used in
our study in Table F.6.

Compute infrastructure. Our experiments were performed across a combination of
Nvidia T4, A6000, and V100 GPUs.

E.4 Additional Results in Toy Setup

In this section we will first give more details on our simplified setup that captures both
contrastive pretraining and self-training in the same framework. Then, we provide some
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Dataset Batch size ℓ2 regularization set Learning rate set

CIFAR10 200 t0.001, 0.0001, 10´5, 0.0u t0.2, 0.1, 0.05, 0.01, 0.003, 0.001u

FMoW 64 t0.001, 0.0001, 10´5, 0.0u t0.01, 0.003, 0.001, 0.0003, 0.0001u

Entity13 256 t0.001, 0.0001, 10´5, 0.0u t0.4, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005u

Entity30 256 t0.001, 0.0001, 10´5, 0.0u t0.4, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005u

Entity30 256 t0.001, 0.0001, 10´5, 0.0u t0.4, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005u

Nonliving26 256 t0.001, 0.0001, 10´5, 0.0u t0.4, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005u

Officehome 96 t0.001, 0.0001, 10´5, 0.0u t0.01, 0.003, 0.001, 0.0003, 0.0001u

Visda 96 t0.001, 0.0001, 10´5, 0.0u t0.03, 0.01, 0.003, 0.001, 0.0003u

Table E.5: Details of the batch size, learning rate set and ℓ2 regularization set considered
in our testbed.

additional empirical results that are not captured theoretically but mimic behaviors observed
in real world settings, highlighting the richness of our setup.

E.4.1 Detailed description of our simplified setup

In this subsection, we will first re-iterate the problem setup in Sec. 12.4 and provide some
comparisons between our setup and those in closely related works. We will then describe
the four methods: ERM, ST, CL, and STOC, providing details on the exact estimates
returned by these algorithms in the SSL and UDA settings.

Data distribution. We consider binary classification and model the inputs as consisting
of two kinds of features: x “ rxin, xsps where xin P Rdin is the invariant feature that is
predictive of the label across both source Ps and target Pt and xsp P Rdsp is the spurious
feature that is correlated with the label y only on the source domain Ps but uncorrelated
with label y in Pt. Here, xin P Rdin determines the label using the ground truth classifier
w‹ „ UnifpSdin´1q, and xsp P Rdsp is strongly correlated with the label on source but random
noise on target. Formally, we sample y „ Unift´1, 1u and generate inputs x conditioned
on y as follows

Ps : xin „ N pγ ¨ yw‹,Σinq xsp “ y1dsp

Pt : xin „ N pγ ¨ yw‹,Σinq xsp „ N p0,Σspq, (E.3)

where γ is the margin afforded by the invariant feature. We set covariance of the invariant
features Σin “ σ2

in ¨ pIdin ´ w‹w‹Jq to capture structure in the invariant feature that the
variance is less along the latent predictive direction w‹. Note that the spurious feature
is completely predictive of the label in the source data, and is distributed as spherical
Gaussian in the target data with Σsp “ σ2

spIdsp .

Why is our simplified setup interesting? In our setup, xin is the hard to learn feature
that generalizes from source to target. The hardness of learning this feature is determined
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by the value of the margin γ and how it compares with size of the spurious feature (
a

dsp).
Since, γ{

a

dsp is small in our setup, xin is much harder to learn on source data (even with
population access) compared to the spurious feature xsp which generalizes poorly from
source to target. These two types of features have been captured in similar analysis on
spurious correlations (Nagarajan et al., 2020; Sagawa et al., 2020) since it imitates pitfalls
emanating from the presence of spurious features in real world datasets (e.g ., the easy to
learn background feature in image classification problems). While this setup is simple, it is
also expressive enough to elucidate both self-training and contrastive learning behaviors we
observe in real world settings. Specifically, it captures the separation results we observe in
Sec. 2.6.

Differences of our setup with prior works. While our distribution shift settings bears
the above similarities it also has important differences with works analyzing self-training
and contrastive pretraining individually. Chen et al. (2020b) analyze the iterative nature of
self-training algorithm, where the premise is that we are given a classifier that not only has
good performance on source data but in addition does not rely too much on the spurious
feature. Under the strong condition of small norms along the spurious feature, they show
that self-training can provably unlearn this small dependence when the target data along
the spurious feature is random noise. This assumption is clearly violated in setups where
the spurious correlation is strong (as in our toy setup), i.e., the dependence on the spurious
feature is rather large (much larger than that on the invariant feature) for any classifier that
is trained directly on source data. Consequently, we show the need for “good” pretrained
representations from contrastive pretraining over which if we train a linear predictor (using
source labeled data), it will provably have a reduced “effective” dependence on the spurious
feature.

Using an augmentation distribution similar to ours, Saunshi et al. (2022) carried out
contrastive pretraining analysis with the backbone belonging to a capacity constrained
function class (similar analysis also in (HaoChen et al., 2022)). Our setup differs from
this in two key ways: (i) we specifically consider a distribution shift from source to target.
Unlike their setting, it is not sufficient to make augmentations consistent with ground truth
labels, since the predictor that uses just the spurious feature also assigns labels consistent
with both ground truth predictions and augmentations on the source data; and (ii) our
augmentation distribution assumes no knowledge of the invariant feature, which is why we
augment all dimensions uniformly, as opposed to selectively augmenting a set of dimensions.
In other words, we assume no knowledge of the structure of the optimal target predictor.
For e.g ., if we had knowledge of the spurious dimensions we could have just selectively
augmented those. Assuming knowledge of these perfect augmentations is not ideal for two
reasons: (a) it makes the problem so easy that just training an ERM model on source data
with these augmentations would already yield a good target predictor (which rarely happens
in practice); and (b) in real-world datasets perfect augmentations for the downstream task
are not known. Hence, we stick to generic augmentations in our setup.
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E.4.2 Discussion on self-training and contrastive learning objec-
tives

Method UDA Setup SSL Setup

ERM: herm “ argminh EPsℓphpxq, yq
herm “ argminh

1
n

řn
i“1 ℓphpxiq, yiq

tpxi, yiquni“1 „ Pn
t

ST:
Starting from herm optimize over h (to get hst): Starting from herm optimize over h (to get hst):

EPtpxqℓphpxq, sgnphpxqqq EPtpxqℓphpxq, sgnphpxqqq

CL:

Φcl “ argminϕ LclpΦq Φcl “ argminϕ LclpΦq

Use pPspxq ` Ptpxqq{2 for LclpΦq Use Ptpxq for LclpΦq

hcl “ argminh EPs
ℓph ˝ Φclpxq, yq hcl “ argminh

1
n

řn
i“1 ℓph ˝ Φclpxiq, yiq

STOC:

Starting from hcl optimize over h (to get hstoc): Starting from hcl optimize over h (to get hstoc):

EPtpxqℓph ˝ Φclpxq, sgnph ˝ Φclpxqqq EPtpxqℓph ˝ Φclpxq, sgnph ˝ Φclpxqqq

Table E.6: Description of methods for SSL vs. UDA: For each method we provide
exact objectives used for experiments and analysis in the SSL and UDA setups (pertaining
to Sec. 12.4).

In text we will describe our objectives and methods for the UDA setup. In Table E.6 we
constrast the differences in the methods and objectives for SSL and UDA setups. Recall
from Section 6.2 that we learn linear classifiers h over features extractors Φ. We consider
linear feature extractor i.e. Φ is a matrix in Rkˆd. For mathematical convenience, we
assume access to infinite unlabeled data and hence replace the empirical quantities over
unlabeled data with their population counterpart. In the UDA setting, we further assume
access to infinite labeled data from the source. Note that due to distribution shift between
source and target, “ERM” on infinite labeled data from the source does not necessarily
achieve optimal performance on the target. For binary classification, we assume that the
linear layer h maps features to a scalar in R such that the prediction is sgnphJΦxq. We use
the exponential loss ℓpfpxq, yq “ exp p´yfpxqq as the classification loss.

Contrastive pretraining. We obtain Φcl :“ argminΦ LclpΦq by minimizing the Barlow
Twins objective (Zbontar et al., 2021), which prior works have shown is also equivalent
to spectral contrastive and non-contrastive objectives (Cabannes et al., 2023; Garrido
et al., 2022). In Sec. 12.4, we consider a constrained form of Barlow Twins in (6.3) which
enforces representations of different augmentations a1, a2 of the same input x to be close
in representation space, while ensuring feature diversity by staying in the constraint set.
We assume a strict constraint on regularization pρ “ 0q for the theoretical arguments in
the rest of the main paper. In App. E.5.1 we prove that all our claims hold for small ρ as
well. In (E.4), we redefine the pretraining objective with a regularization term (instead
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of a constraint set) where κ controls the strength of the regularization term, with higher
values of κ corresponding to stronger constraints on feature diversity. We then learn a
linear classifier hcl over Φcl to minimize the exponential loss on labeled source data.

LclpΦq :“ Ex„PU
Ea1,a2„PAp¨|xq }Φpa1q ´ Φpa2q}

2
2 ` κ ¨

∥∥Ea„PA

“

ΦpaqΦpaq
J
‰

´ Ik
∥∥F 2

(E.4)

Augmentations. Data augmentations play a key role in contrastive pre-training (and also
as we see later, state-of-the-art self-training variants like FixMatch). Given input x P X ,
let PApa | xq denote the distribution over its augmentations, and PA denote the marginal
distribution over all possible augmentations. We use the following simple augmentations
where we scale the magnitude of each co-ordinate by a uniformly independent amount,
i.e.,

a „ PAp¨ | xq ” c d x where, c „ Unifr0, 1s
d. (E.5)

The performance of different methods heavily depends on the assumptions we make on
augmentations. We try to mirror practical settings where the augmentations are fairly
“generic”, not encoding any information about which features are invariant or spurious, and
hence perturb all features symmetrically.

Self-training. ST performs ERM in the first stage using labeled data from the source,
and then subsequently updates the head h by iteratively generating pseudolabels on the
unlabeled target:

Lstph; Φq :“ EPtpxqℓph
JΦx, sgnphJΦpxqqq Update: ht`1

“
ht ´ η∇hLstph

t; Φq

∥ht ´ η∇hLstpht; Φq∥ 2
(E.6)

For convenience, we keep the feature backbone Φ fixed across the self-training iterations
and only update the linear head on the pseudolabels.

STOC(Self-training after contrastive learning). Finally, we can combine the two unsuper-
vised objectives where we do the self-training updates( 6.2) with h0 “ hcl and Φ0 “ Φcl

starting with the contrastive learning model rather than just source-only ERM. Here, we
only update h and fix Φcl.

E.4.3 Additional empirical results in our simplified setup

We conduct two ablations on the hyperparameters for contrastive pretraining. First, we
vary the dimensionality k of the linear feature extractor Φ P Rkˆd. Second, we vary the
regularization strength κ that enforces feature diversity in the Barlow Twins objective (E.4).
In Figure E.2 we plot these ablations in the UDA setup.

Varying feature dimension. We find that CL recovers the full set of predictive features
(i.e. both spurious and invariant) only when k is large enough (Figure E.2(left)). Since the
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Figure E.2: Ablations on pretraining hyperparameters: In the UDA setup we plot
the performance of CL and STOC as we vary two pretraining hyper-parameters: (left)
the output dimension pkq of the feature extractor Φ; and (right) the strength pκq of the
regularizer in the Barlow Twins objective in (E.4). While ablating on k we fix κ “ 0.5, and
while ablating on κ we fix k “ 10. Other problem parameters are taken from Example 1.

dimensionality of the true feature is 5 in our Example 1, reducing k below the true feature
dimension hurts CL. Once k crosses a certain threshold, CL features completely capture
the projection of the invariant feature win. After this point, it amplifies the component
along win. It retains the amplification over the spurious feature wsp even as we increase k.
This is confirmed by our finding that further increasing k does not hurt CL performance.
This is also inline with our theoretical observations, where we find that for suitable w‹, the
subspace spanned by win and wsp are contained in a low rank space (as low as rank 2) of
the contrastive representations (Theorem 6.4.4). Once CL has amplified the dependence
along win STOC improves over CL by unlearning any remaining dependence on the spurious
wsp. The above arguments for the CL trend also explain why the performance of STOC
continues to remain « 100% as we vary k.

Varying regularization strength. In our main theoretical arguments we consider the
constrained form of the Barlow Twins objective (6.3) with a strict constraint of ρ “ 0 (we
relax this theoretically as well, see E.5.1). For our experiments, we optimize the regularized
version of this objective (E.4), where the constraint term now appears as a regularizer which
enforces feature diversity, i.e. the features learned through contrastive pretraining span
orthogonal parts of the input space (as governed under the metric defined by augmentation
covariance matrix ΣA). If κ is very low, then trivial solutions exist for the Barlow Twins
objective. For e.g ., ϕ « 0 (zero vector) achieves very low invariance loss. When κ ă 0.05,
we find that CL recovers these trivial solutions (Figure E.2(right)). Hence, both CL and
STOC perform poorly. As we increase κ the performance of both CL and STOC improve,
mainly because the features returned by Φcl now comprise of the predictive directions win

and wsp, as predictive by our theoretical arguments for ρ “ 0 (which corresponds to large
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Figure E.3: Results with linear backbone: We plot the OOD accuracy for ERM, CL, ST
and STOC in the UDA setup and ID accuracy in the SSL setup when the feature extractor
Φ is a linear network. Note, that the feature extractor is still fixed during CL and STOC.

κ). On the other hand, when κ is too high optimization becomes hard since κ directly
effects the Lipschitz constant of the loss function. Hence, the performance of CL drops by
some value. Note that this does not effect the performance of STOC since CL continues
to amplify win over wsp even if it is returning suboptimal solutions with respect to the
optimization loss of the pretraining objective.

E.4.4 Reconciling Practice: Experiments with deep networks in
toy setup

In this section we delve into the details of Sec. 6.4.5, i.e., we analyze performance of
different methods when we make some design choices that imitate practice. First, we look
at experiments involving a deep non-linear backbone Φ. Here, the non-linear Φ is learned
during contrastive pretraining and fixed for CL and STOC. Then, we investigate trends
when we continue to propagate gradients onto Φ during STOC (we call this full-finetuning).
Unlike previous cases, this allows features to be updated.
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Figure E.4: Results with non-linear backbone: We plot the OOD accuracy for ERM,
CL, ST and STOC in the UDA setup and ID accuracy in the SSL setup when the feature
extractor Φ is a non-linear one-hidden layer network with ReLU activations. Note, that the
feature extractor is still fixed during CL and STOC.
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Figure E.5: Finetuning the contrastive representations during STOC: We propagate
gradients to the feature backbone Φ when running STOC algorithm. Note that CL still
fixes the contrastive representations when learning a fixed linear head over it. On the
(left) we show results in UDA setup where we compare the performance of STOC with and
without augmentations (along with other practical design choices like confidence thresholds
and continuing to optimize source loss as done in FixMatch) when the feature backbone is
non-linear. On the (right) we show results for STOC and CL in the SSL setup when the
feature backbone is linear.

Results with non-linear feature extractor Φ. In Fig. E.4 we plot the performance of
the four methods when we use a non-linear feature extractor during contrastive pretraining.
This feature extractor is a one-hidden layer neural network (hidden dimension is 500) with
ReLU activations. We find that the trends observed with linear backbones in Fig. E.3
are also replicated with the non-linear one. Specifically, we note that STOC improves over
CL under distribution shifts, whereas CL is already close to optimal when there are no
distribution shifts. We also see that CL and ST individually are subpar. In SSL, we see a
huge drop in the performance of ST (over ERM) mainly because we only fit on pseudolabels
during ST. This is different from practice where we continue to optimize loss on labeled
data points while fitting the pseudolabels. Consequently, when we continue to optimize
performance on source labeled data the performance of ST in SSL setup is improves from
51.1% Ñ 72.6%.

Results with full fine-tuning. Up till this point, we have only considered the case (for
both SSL and UDA) where we fix the contrastive learned features when running CL and
STOC, i.e., we only optimized the linear head h. Now, we shall consider the setting where
gradients are propagated to Φ during STOC. Note that we still fix the representations for
training the linear head during CL. Results for this setting are in Figure E.5. We show two
interesting trends that imitate real world behaviors.

STOC benefits from augmentations during full-finetuning: In the UDA setup we find that
ST while updating Φcl can hurt due to overfitting issues when training with the finite

262



sample of labeled and unlabeled data (drop by ą 7% over CL). This is due to overfitting on
confident but incorrect pseudolabels on target data. This can exacerbate components along
spurious feature wsp from source. One reasoning behind this is that deep neural networks
can perfectly memorize them on finite unlabeled target data (Zhang et al., 2017). Heuristics
typically used in practice (e.g . in FixMatch (Sohn et al., 2020)) help avoid overfitting on
incorrect pseudolabels: (i) confidence thresholding; to pick confident pseudolabel examples;
(ii) pseudolabel a different augmented input than the one on which the self-training loss
is optimized; and (iii) optimize source loss with labeled data simultaneously when fitting
pseudolabels. Intuitively, thresholding introduces a curriculum where we only learn confident
examples in the beginning whose pseudolabels are mainly determined by component along
the invariant feature win. Augmentations prevent the neural network from memorizing
incorrect pseudolabels and optimizing source loss prevents forgetting of features learned
during CL. When we implement these during full-finetuning in STOC we see that STOC
now improves over CL (by ą 20%).

Can we improve contrastive pretraining features during STOC? We find that self-training
can also improve features learned during contrastive pretraining when we update the full
backbone during STOC (see Figure E.5(right)). Specifically, in the SSL setup we find that
STOC can now improve substantially over CL. Recall, that when we fixed Φcl this was
not possible (see E.5.3 and Fig. 6.2(b)). This is mainly because STOC can now improve
performance beyond just recovering the generalization gap for the linear head (which is
typically small). This feature improvement is observed even when we fully finetune a linear
feature extractor. Similar trends are also observed with the non-linear backbone. But, it
becomes harder to identify a good stopping criterion for CL training. Thus, it remains
unclear if STOC and CL have complementary benefits for feature learning in UDA or SSL
settings. Investigating this is an interesting avenue for future work.

E.5 Formal Statements from Sec. 12.4
Recall from Section 6.2 that we learn linear classifiers h over features extractors Φ. We
consider linear feature extractor i.e. Φ is a matrix in Rdˆk and the linear layer h :
Rk Ñ R with a prediction as sgnphJΦxq. We use the exponential loss ℓpfpxq, yq “

exp p´yfpxqq.

E.5.1 Analysis of ERM and ST: Formal Statement of Theorem 6.4.2

For ERM and ST, we train both h and Φ. This is equivalent to Φ “ Idˆd being identity
and training a linear head h. Recall that the ERM classifier is obtained by minimizing the
population loss on labeled source data:

hERM “ argmin
h

Epx,yq„Ps rℓpx, yqs . (E.7)

We split Theorem 6.4.2 into Theorem E.5.1 and Theorem E.5.2. Before we characterize
the ERM solution, we recall some additional notation. Define win“rw‹, 0, ..., 0sJ, and
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wsp “ r0, ..., 0, 1dsp{
?

dspsJ. The following proposition characterizes hERM and 0-1 error of
the classifier on target:
Theorem E.5.1 (ERM classifier and its error on target). ERM classifier obtained as in
(E.7) is given by

hERM

∥hERM∥ 2
“

γ ¨ win `
a

dsp ¨ wsp
a

γ2 ` dsp
.

The target accuracy of hERM is given by 0.5 ¨ erfc
`

´γ2
{p

?
2dsp¨σspq

˘

.

Proof. To prove this theorem, we first derive a closed-form expression for the ERM classifier
and then use Lemma E.7.10 to derive its 0-1 error on target. For Gaussian data with the
same covariance matrices for class conditional Pspx|y “ 1q and Pspx|y “ 0q, Bayes decision
rule is given by the Fisher’s linear discriminant direction (Chapter 4; Bishop (2006)):

hpxq “

#

1, if hJx ą 0

0, otherwise

where h “ 2 ¨ γpwinq ` 2 ¨
a

dsppwspq. Plugging h in Lemma E.7.10 we get the desired
result.

ST performs ERM in the first stage using labeled data from the source, and then subsequently
updates the head h by iteratively generating pseudolabels on the unlabeled target:

Lstphq :“ EPtpxqℓph
Jx, sgnphJxqq . (E.8)

Starting with h0
ST “ hERM{∥hERM∥2 (the classifier obtained with ERM) we perform the

following iterative procedure for self-training:

ht`1
ST “

ht
ST ´ η∇hLstph

t
STq

∥ht
ST ´ η∇hLstpht

STq∥ 2 (E.9)

Next, we characterize ST solution:
Theorem E.5.2 (ST classifier and its error on target). Starting with ERM solution, ST
will lead to:

(i) (Necessary condition) ht
ST “ wsp as t Ñ 8, such that the target accuracy is 50% for

all σsp ě 1 and γ ď 1
2

?
σsp

.

(ii) (Sufficient condition) ht
ST “ win as t Ñ 8, such that the target accuracy is 100%

when the problem parameters γ, σsp satisfy: γ ě σsp.

Proof. The proof can be divided into two parts: (i) deriving closed-form expressions for
updates on ht

ST in terms of ht´1
ST and (ii) obtaining conditions under which the component

along win monotonically increases or decreases with t after re-normalizing the norm of
updated h. For notation convenience, we denote hST with h in the rest of the proof.
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Part-1. First, the loss of self-training with classifier h :“ rhin, hsps where hin P Rdin and
hsp P Rdsp is given by:

Lstphq “ EPtpxq

“

ℓphJx, sgnphJxqq
‰

(E.10)
“ EPtpxq

“

exp
`

´signphJxq ¨ phJxq
˘‰

(E.11)
“ EPtpxq

“

exp
`

´
∣∣hJx

∣∣˘‰ (E.12)
“ EPtpxq

“

exp
`

´
∣∣hJ

inxin ` hJ
spxsp

∣∣˘‰ (E.13)

“ Ey„U t´1,1u,z„N p0,1q

“

exp
`

´
ˇ

ˇγ ¨ y ¨ hJ
inw

‹

`
“

σinp∥hin∥ 22 ´ phT
inw

‹
q
2
q ` σsp ¨ ∥hsp∥ 2

‰

¨ z
ˇ

ˇ

˘‰

. (E.14)
“ Ez„N p0,1q

“

exp
`

´
∣∣γ ¨ hJ

inw
‹

`
“

σinp∥hin∥ 22 ´ phT
inw

‹
q
2
q ` σsp ¨ ∥hsp∥ 2

‰

¨ z
∣∣˘‰ ,
(E.15)

where (E.13) to (E.14) is implied by simply replacing the definition of target distribution
and (E.14) to (E.15) is implied by the symmetry of the function with respect to y and ´y
due to the symmetry of the absolute function and Gaussian distribution. For a classifier ht,
we denote µt “ γ ¨ ht

in
J
w‹ and σt “

”

σinp∥ht
in∥ 22 ´ pht

in
T
w‹q2q ` σsp ¨

∥∥ht
sp

∥∥ 2ı. With this
notation, we can re-write the loss in (E.15) as Lstph

tq “ Ez„N p0,σ2
t q rexp p´ |µt ` z|qs.

Now we derive a closed-form expression of Lstph
tq in Lemma E.7.11:

Lstph
t
q “

1

2

ˆ

exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

` exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙˙

.

(E.16)

Define the Mill’s ratio as r pxq “ exp px2{2q ¨ erfc
`

x{
?
2
˘

¨
a

π{2 as in Baricz (2008). We
will frequently use standard properties of the Mill’s ratio. We list them in Lemma E.7.2 for
completeness. Define:

α1pµt, σtq “ ´exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

` exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

,

“

c

2

π
exp

ˆ

´
µ2
t

2σ2
t

˙„

r

ˆ

σt `
µt

σt

˙

´ r

ˆ

σt ´
µt

σt

˙ȷ

(E.17)

α2pµt, σtq “ exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

` exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

´
2
?
2

σt

?
π
exp

ˆ

´
µ2
t

2σ2
t

˙

“

c

2

π
exp

ˆ

´
µ2
t

2σ2
t

˙„

r

ˆ

σt `
µt

σt

˙

` r

ˆ

σt ´
µt

σt

˙

´
2

σt

ȷ

. (E.18)

Let rht`1 denote the un-normalized gradient descent update at iterate t ` 1. We have:

rht`1
“ ht

´ η ¨
BLstph

tq

Bh
. (E.19)
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Now we will individually argue about the update of rht`1 along the first din dimensions and
the last dsp dimensions. First, we have:

rht`1
in “ ht

in ´ η ¨
BLstph

tq

Bhin

“ ht
in ´

η

2

ˆ

´exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

`exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙˙

¨ γ ¨ w‹

´
η

2

ˆ

exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

`exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

´
2
?
2

σt

?
π
exp

ˆ

´
µ2
t

2σ2
t

˙˙

¨ p2ht
in ´ 2pht

in
J
w‹

qw‹
q ¨ σ2

in

“ ht
in ´

η

2
¨ α1pµt, σtq ¨ γ ¨ w‹

´
η

2
¨ α2pµt, σtq ¨ p2ht

in ´ 2pht
in

J
w‹

qw‹
q ¨ σ2

in . (E.20)

Notice that the update of ht`1
in is split into two components, one along w‹ and the other along

the orthogonal component 2ht
in´2pht

in
J
w‹qw‹. We will now argue that since at initialization,

the component along pI ´ w‹w‹Jq is zero then it will remain zero. In particular, we have:

h0
in

J
pI ´ w‹w‹J

q 9w‹J
pI ´ w‹w‹J

q “ 0 . (E.21)

With (E.20), we can argue that if pI ´ w‹w‹Jqht
in “ 0, then pI ´ w‹w‹Jqrht`1

inv “ 0 implying
that pI ´ w‹w‹Jqrht

in “ 0 for all t ą 0. Hence, we have:

rht`1
inv “ ht

in ´ η ¨
BLstph

tq

Bhin

“ ht
in ´

η

2
¨ α1pµt, σtq ¨ γ ¨ w‹ . (E.22)

Second, we have the update rht`1
sp given by:

rht`1
sp “ ht

sp ´ η ¨
BLstph

tq

Bhsp

“ ht
sp ´

η

2

ˆ

exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

`exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

´
2
?
2

σt

?
π
exp

ˆ

´
µ2
t

2σ2
t

˙˙

¨ ht
sp ¨ σ2

sp

“ ht
sp ´

η

2
¨ α2pµt, σtq ¨ ht

sp ¨ σ2
sp . (E.23)
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Re-writing the expressions (E.22) and (E.23) for the update of rht`1, we have:

rht`1
in “ ht

inp1 ´
η

2
¨ α1pµt, σtq ¨ γ2

{µtq . (E.24)

rht`1
sp “ ht

spp1 ´
η

2
¨ α2pµt, σtq ¨ σ2

spq . (E.25)

Here, we replace ht
sp “ µt ¨w‹{γ in (E.22) to get (E.24). Updates in (E.24) and (E.25) show

that rht`1
inv remains in the direction of ht

in and rht`1
sp remains in the direction of ht

sp.

Part-2. Now we will derive conditions under which ht
in and ht

sp will show monotonic
behavior for necessary and sufficient conditions. We will first argue the condition under
which ST will provably fail and converge to a classifier with a random target performance.
For this, at every t, if we have: ∥∥∥rht`1

sp

∥∥∥ 2∥∥∥rht`1

∥∥∥ 2 ą
∥∥ht

sp

∥∥ 2 , (E.26)

then we can argue that as t Ñ 8, we have
∥∥ht

sp

∥∥ 2 “ 1 and hence, the ST classifier will
have random target performance. Thus, we will focus on conditions, under which the norm
on

∥∥ht
sp

∥∥ 2 increases with t. Re-writing (E.26), we have:∥∥∥rht`1
sp

∥∥∥ 2 ą

∥∥∥rht`1
∥∥∥ 2 ¨

∥∥ht
sp

∥∥ 2 (E.27)∥∥∥rht`1
sp

∥∥∥ 2 ą

´
∥∥∥rht`1

sp

∥∥∥ 2 `

∥∥∥rht`1
in

∥∥∥ 2¯ ¨
∥∥ht

sp

∥∥ 2 (E.28)∥∥∥rht`1
sp

∥∥∥ 2 ¨
`

1 ´
∥∥ht

sp

∥∥ 2˘ ą

∥∥∥rht`1
in

∥∥∥ 2 ¨
∥∥ht

sp

∥∥ 2 (E.29)∥∥∥rht`1
sp

∥∥∥ 2∥∥ht
sp

∥∥ 2 ą

∥∥∥rht`1
in

∥∥∥ 2
∥ht

in∥ 2
. (E.30)

Plugging in (E.24) and (E.25) into (E.30), we get:∣∣∣1 ´
η

2
¨ α2pµt, σtq ¨ σ2

sp

∣∣∣ ą

∣∣∣1 ´
η

2
¨ α1pµt, σtq ¨ γ2

{µt

∣∣∣ . (E.31)

For small enough η, we have the necessary condition for the failure of ST as:

α2pµt, σtq ¨ σ2
sp ă α1pµt, σtq ¨ γ2

{µt . (E.32)

Now we show in Lemma E.5.4 and Lemma E.5.3 that if the conditions assumed in the
theorem continue to hold, then we can success and failure respectively.
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Lemma E.5.3 (Necessary conditions for ST). Define α1 and α2 as in (E.17) and (E.18)
respectively. If σsp ě 1 and γ ď 1

2
?
σsp

, then we have for all t:

α2pµt, σtq ¨
σ2
sp ¨ µt

γ2
ď α1pµt, σtq . (E.33)

Proof. We upper bound and lower bound α1 and α2 by using the properties of r p¨q. Recall:

α1pµt, σtq “

c

2

π
exp

ˆ

´
µ2
t

2σ2
t

˙„

r

ˆ

σt `
µt

σt

˙

´ r

ˆ

σt ´
µt

σt

˙ȷ

. (E.34)

and

α2pµt, σtq “

c

2

π
exp

ˆ

´
µ2
t

2σ2
t

˙„

r

ˆ

σt `
µt

σt

˙

` r

ˆ

σt ´
µt

σt

˙

´
2

σt

ȷ

. (E.35)

We now use Taylor’s expansion on r p¨q and we get:

r pσtq ` r1
pσtq ¨

ˆ

µt

σt

˙

ď r

ˆ

σt `
µt

σt

˙

ď r pσtq ` r1
pσtq ¨

ˆ

µt

σt

˙

` R2

ˆ

µt

σt

˙2

(E.36)

and similarly, we get:

r pσtq ´ r1
pσtq ¨

ˆ

µt

σt

˙

ď r

ˆ

σt ´
µt

σt

˙

ď r pσtq ´ r1
pσtq ¨

ˆ

µt

σt

˙

` R2

ˆ

µt

σt

˙2

(E.37)

where R2 “ r2 pσ0q. This is because r2 p¨q takes positive values and is a decreasing function
in σt (refer to Lemma E.7.2). We now lower bound α1pµt, σtq and upper bound α2pµt, σtq:

α1pµt, σtq
b

2
π
exp

´

´
µ2
t

2σ2
t

¯ ě 2r1
pσtq ¨

ˆ

µt

σt

˙

´ R2

ˆ

µt

σt

˙2

(E.38)

α2pµt, σtq
b

2
π
exp

´

´
µ2
t

2σ2
t

¯ ď 2r pσtq ` 2 ¨ R2

ˆ

µt

σt

˙2

(E.39)

Substituting the lower bound and upper bound in (E.33) gives us the following as stricter a
necessary condition (i.e., (E.40) implies (E.33)):

«

2r pσtq ` 2 ¨ R2

ˆ

µt

σt

˙2

´
2

σt

ff

¨
σ2
sp ¨ µt

γ2
ď 2r1

pσtq ¨

ˆ

µt

σt

˙

´ R2

ˆ

µt

σt

˙2

(E.40)
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ðñ

«

2r pσtq ` 2 ¨ R2

ˆ

µt

σt

˙2

´
2

σt

ff

¨
σ2
sp

γ2
ď 2r1

pσtq ¨

ˆ

1

σt

˙

´ R2

ˆ

µt

σ2
t

˙

(E.41)

ðñ

«

r pσtq ` R2

ˆ

µt

σt

˙2

´
1

σt

ff

¨
σ2
sp

γ2
ď r pσtq ´

1

σt

´
R2

2

ˆ

µt

σ2
t

˙

(E.42)

ðñ

«

R2

ˆ

µt

σt

˙2
ff

¨
σ2
sp

γ2
`

R2

2

ˆ

µt

σ2
t

˙

ď

ˆ

r pσtq ´
1

σt

˙

¨

ˆ

1 ´
σ2
sp

γ2

˙

(E.43)

ðñ

„

R2

ˆ

µ2
t

σt

˙ȷ

¨
σ2
sp

γ2
`

R2

2

ˆ

µt

σt

˙

ď pσtr pσtq ´ 1q ¨

ˆ

1 ´
σ2
sp

γ2

˙

(E.44)

Now, we will argue the monotonicity of LHS and RHS in (E.44). Observe that LHS
is increasing in µt and decreasing in σt and RHS is decreasing in σt as pσtr pσtq ´ 1q is
increasing (and the multiplier is negative). Moreover, if (E.44) holds true for maximum
value of RHS and minimum of LHS, then we would have (E.33). Thus substituting µt “ γ
and σt “ σ0 in LHS and σt “ σsp in RHS, we get:

„

R2

ˆ

γ2

σ0

˙ȷ

¨
σ2
sp

γ2
`

R2

2

ˆ

γ

σ0

˙

ď pσspr pσspq ´ 1q ¨

ˆ

1 ´
σ2
sp

γ2

˙

(E.45)

ðñ R2
¨
σ2
sp

σ0

`
R2

2

ˆ

γ

σ0

˙

ď pσspr pσspq ´ 1q ¨

ˆ

1 ´
σ2
sp

γ2

˙

(E.46)

(E.47)

Taking γ ď 1
2

?
σsp

and substituting R2 “ r2 pσ0q:

p5{4q ¨ r2
pσ0q ¨ σsp ď pσspr pσspq ´ 1q ¨

`

1 ´ 4 ¨ σ3
sp

˘

(E.48)

Analytically solving the above expression, we get that (E.48) is satisfied for all values of
σsp ě 1 when dsp ě 1. For example, the expression in (E.48) is also satisfied for the problem
parameter used in the running example of the main paper.

As a remark, we note that in the proof of Lemma E.5.3, the conditions derived are loose
because of the relaxations made to simply the proof. In principle, the proof (and hence the
conditions) can be tightened by carefully propagating second-order terms (which depend
on σt) in (E.37).
Lemma E.5.4 (Sufficiency conditions for ST). Define α1 and α2 as in (E.17) and (E.18)
respectively. If σsp ď γ, then we have for all t:

α2pµt, σtq ¨
σ2
sp ¨ µt

γ2
ě α1pµt, σtq . (E.49)
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Proof. We upper bound and lower bound α1 and α2 by using the properties of r p¨q. Recall:

α1pµt, σtq “

c

2

π
exp

ˆ

´
µ2
t

2σ2
t

˙„

r

ˆ

σt `
µt

σt

˙

´ r

ˆ

σt ´
µt

σt

˙ȷ

. (E.50)

and

α2pµt, σtq “

c

2

π
exp

ˆ

´
µ2
t

2σ2
t

˙„

r

ˆ

σt `
µt

σt

˙

` r

ˆ

σt ´
µt

σt

˙

´
2

σt

ȷ

. (E.51)

We now use Taylor’s expansion on r p¨q and we get:

r pσtq ` r1
pσtq ¨

ˆ

µt

σt

˙

ď r

ˆ

σt `
µt

σt

˙

ď r pσtq ` r1
pσtq ¨

ˆ

µt

σt

˙

` r2
pσtq ¨

ˆ

µt

σt

˙2

(E.52)

and similarly, we get:

r pσtq ´ r1
pσtq ¨

ˆ

µt

σt

˙

` r2
pσtq ¨

ˆ

µt

σt

˙2

ď r

ˆ

σt ´
µt

σt

˙

ď r pσtq ´ r1
pσtq ¨

ˆ

µt

σt

˙

` R2

ˆ

µt

σt

˙2

(E.53)

where R2 “ r2 pσ0q. This is because r2 p¨q takes positive values and is a decreasing function
in σt (refer to Lemma E.7.2). We now lower bound α1pµt, σtq and upper bound α2pµt, σtq:

α1pµt, σtq
b

2
π
exp

´

´
µ2
t

2σ2
t

¯ ď 2r1
pσtq ¨

ˆ

µt

σt

˙

(E.54)

α2pµt, σtq
b

2
π
exp

´

´
µ2
t

2σ2
t

¯ ě 2r pσtq ` r2
pσtq ¨

ˆ

µt

σt

˙2

´
2

σt

(E.55)

Substituting the lower bound and upper bound in (E.49) gives us the following as stricter a
sufficient condition (i.e., (E.56) implies (E.49)):

«

2r pσtq ` r2
pσtq ¨

ˆ

µt

σt

˙2

´
2

σt

ff

¨
σ2
sp ¨ µt

γ2
ě 2r1

pσtq ¨

ˆ

µt

σt

˙

(E.56)

ðñ

«

2r pσtq ` r2
pσtq ¨

ˆ

µt

σt

˙2

´
2

σt

ff

ě 2r1
pσtq ¨

ˆ

µt

σt

˙

¨
γ2

σ2
sp ¨ µt

(E.57)

ðñ 2r pσtq ` r2
pσtq ¨

ˆ

µt

σt

˙2

´
2

σt

´ 2r1
pσtq ¨

ˆ

µt

σt

˙

¨
γ2

σ2
sp ¨ µt

ě 0 (E.58)

ðñ 2r pσtq ¨ σt ` r2
pσtq ¨

µ2
t

σt

´ 2 ´ 2r1
pσtq ¨

γ2

σ2
sp

ě 0 (E.59)
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ðñ 2r1
pσtq ` r2

pσtq ¨
µ2
t

σt

´ 2r1
pσtq ¨

γ2

σ2
sp

ě 0 (E.60)

ðñ r2
pσtq ¨

µ2
t

σt

` 2r1
pσtq ¨

„

1 ´
γ2

σ2
sp

ȷ

ě 0 (E.61)

Hence, when
”

1 ´
γ2

σ2
sp

ı

ď 0, we have condition in (E.61) hold true as r1 pσtq is always
negative. Hence, the condition γ ě σsp gives us the necessary condition.

Proof of Proposition 6.4.3

For convenience, we first restate the Proposition 6.4.3 which gives us a closed form solution
for (6.3) when ρ “ 0. Then, we provide the proof, focusing first on the case of k “ 1, and
then showing that extension to k ą 1 is straightforward and renders the final form in the
proposition that follows.
Proposition E.5.5 (Barlow Twins solution). The solution for (6.3) is UJ

k Σ
´1{2
A where Uk

are the top k eigenvectors of Σ´1{2
A

rΣΣ
´1{2
A . Here, ΣA :“ Ea„PA

raaJs is the covariance over
augmentations, and rΣ :“ Ex„PU

rrapxqrapxqJs is the covariance matrix of mean augmentations
rapxq :“ EPApa|xqras.

Proof. We will use ϕpxq to denote ϕJx where ϕ P Rd. Throughout the proof, we use
a to denote augmentation and x to denote the input. We will use PApa | xq as the
probability measure over the space of augmentations A, given some input x P X (with
corresponding density) pAp¨ | xq. Next, we use pAp¨q to denote the density associate with
the marginal probability measure over augmentations: PA “

ş

X PApa | xqdPU. Finally, the
joint distribution over positive pairs A`pa1, a2q “

ş

X PApa1 | xqPApa2 | xqdPU, gives us the
positive pair graph over augmentations.

Before we solve the optimization problem in (6.3) for Φ P Rkˆd for any general k, let us
first consider the case where k “ 1, i.e. we only want to find a single linear projection ϕ.
The constraint ρ “ 0, transfers onto ϕ in the following way:

Ea„PA
rϕpaq

2
s “ 1 ” ϕJΣAϕ “ 1 (E.62)

Under the above constraint we want to minimize the invariance loss, which according
to Lemma E.7.3 is given by 2 ¨

ş

A ϕpaqLpϕqpaq dPA, where Lpϕqp¨q is the following linear
operator.

Lpϕqpaq “ ϕpaq ´

ż

A

A`pa, a1q

pApaq
¨ ϕpa1

q da1. (E.63)

Based on the definition of the operator, we can reformulate the constrained optimization
for contrastive pretraining as:
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argmin
ϕ:ϕJΣAϕ“1

ż

A
ϕpaq ¨ Lpϕqpaq dPA (E.64)

ùñ argmin
ϕ:ϕJΣAϕ“1

Ea„PA
rϕpaq

2
s ´

ż

A

ż

A
ϕpaq ¨ ϕpa1

q ¨ A`pa, a1
q dada1 (E.65)

ùñ argmin
ϕ:ϕJΣAϕ“1

Ea„PA
rϕpaq

2
s ´

ż

X

ż

A

ż

A
pApa | xqpApa1

| xq ¨ ϕpaqϕpa1
q dPU (E.66)

ùñ argmin
ϕ:ϕJΣAϕ“1

Ea„PA
rϕpaq

2
s ´

ż

X
rrϕpxqs

2 dPU, (E.67)

where rϕpxq “ Ea„PAp¨|xqϕpxq “ Ec„Unifr0,1sdrϕJpc d xqs. Note that,

rϕpxq
2

“
`

Ec„Unifr0,1sdrϕJ
pc d xqs

˘2 (E.68)
“ ϕJ

pEc„Unifr0,1sdrc d xsqpEc„Unifr0,1sdrc d xsq
Jϕ (E.69)

ùñ

ż

X
rrϕpxqs

2 dPU “ ϕJ
rΣϕ (E.70)

Further, since Ea„PA
rϕpaq2s “ ϕJΣϕ we can now rewrite our main optimization problem

for k “ 1 as:

argmin
ϕ:ϕJΣAϕ“1

ϕJΣAϕ ´ ϕJ
rΣϕ (E.71)

“ argmax
ϕ:ϕJΣAϕ“1

ϕJ
rΣϕ (E.72)

Recall that in our setup both rΣ and ΣA are positive definite and invertible matrices. To
solve the above problem, let’s consider a re-parameterization: ϕ1 “ Σ

1{2
A ϕ, thus ϕJΣAϕ “ 1,

is equivalent to the constraint }ϕ1}22 “ 1. Based on this re-parameterization we are now
solving:

argmax
}ϕ1}22“1

ϕ1JΣ
´1{2
A ¨ rΣ ¨ Σ

´1{2
A ϕ1, (E.73)

which is nothing but the top eigenvector for Σ
´1{2
A ¨ rΣ ¨ Σ

´1{2
A .

Now, to extend the above argument from k “ 1 to k ą 1, we need to care of one additional
form of constraint in the form of feature diversity: ϕJ

i ΣAϕj “ 0 when i ‰ j. But, we can
easily redo the reformulations above and arrive at the following optimization problem:

argmax
}ϕ1

i}
2
2 “ 1, @i

ϕ1J
i ϕ1

j “ 0, @i ‰ j

rϕ1
1, ϕ

1
2, . . . , ϕ

1
ks

J
Σ

´1{2
A ¨ rΣ ¨ Σ

´1{2
A rϕ1

1, ϕ
1
2, . . . , ϕ

1
ks , (E.74)
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where ϕ1
i “ Σ

1{2
A ϕi. The above is nothing but the top k eigenvectors for the matrix

Σ
´1{2
A ¨ rΣ ¨ Σ

´1{2
A . This completes the proof of Proposition E.5.5.

Analysis with ρ ą 0 in Contrastive Pretraining Objective (6.3)

In (6.3) we considered the strict version of the optimization problem where ρ “ 0. Here, we
will consider the following optimization problem that we optimize for our experiments in
the simplified setup:

LclpΦ, κq :“ Ex„PU
Ea1,a2„PAp¨|xq }Φpa1q ´ Φpa2q}

2
2 ` κ ¨

∥∥Ea„PA

“

ΦpaqΦpaq
J
‰

´ Ik
∥∥F 2,

(E.75)

where κ ą 0 is some finite constant (note that every ρ corresponds to some κ and particularly
ρ “ 0, corresponds to κ “ 8). Let Φ‹ be the solution for (6.3) with ρ “ 0, i.e. the solution
described in Proposition 6.4.3. Now, we will show that in practice we can provably recover
something close to Φ‹ when κ is large enough.
Theorem E.5.6 (Solution for (E.75) is approximately equal to Φ‹). If pΦ is some solution
that achieves low values of the objective LclpΦ, κq in (E.75), i.e., LclppΦ, κq ď ϵ, then there
exists matrix W P Rkˆk such that:

Ea„PA
}W ¨ Φ‹

paq ´ pΦpaq}
2
2 ď

kϵ

2γk`1

,

where, γk`1 ě
2γ2

1

kϵ
¨

ˆ

1 ´

c

ϵ

κ

˙

´
γ1
k
,

where γk`1 is the the k ` 1th eigenvalue for Id ´ Σ
´1{2
A

rΣ Σ
´1{2
A . Here, λ1 ď λ2 ď . . . ď λd.

Proof. Since we know that LclppΦ, κq ď ϵ, we can individually bound the invariance loss and
the regularization term:

Ex„PU
Ea1,a2„PAp¨|xq }pΦpa1q ´ pΦpa2q}

2
2 ď ϵ (E.76)∥∥∥Ea„PA

”

pΦpaqpΦpaq
J
ı

´ Ik

∥∥∥F 2
ď

ϵ

κ
(E.77)

Thus,

@i P rks : 1 ´

c

ϵ

κ
ď pϕJ

i ΣA
pϕi ď 1 `

c

ϵ

κ
(E.78)

@i P rks : Ex„PU
Ea1,a2„PAp¨|xqp

pϕJ
i a1 ´ pϕJ

i a2q
2

ď ϵ (E.79)
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Let ϕ‹
1, ϕ

‹
2, ϕ

‹
3, . . . , ϕ

‹
d be the solution returned by the analytical solution for ρ “ 0, i.e. the

solution in Proposition 6.4.3. Now, since Φ‹ would span Rd when ΣA is full rank, we can
denote:

pϕi “

d
ÿ

j“1

η
pjq

i ϕ‹
j (E.80)

Now from Lemma E.7.3, the invariance loss for pϕi can be written using the operator
Lpϕqpaq “ ϕpaq ´

ş

A
A`pa,a1q

pApaq
ϕpa1q da1:

Invariance Lossppϕiq :“ Ex„PU
Ea1,a2„PAp¨|xqp

pϕJ
i a1 ´ pϕJ

i a2q
2 (E.81)

“ 2 ¨ Ea„PA
rpϕipaqLppϕiqpaqs (E.82)

“ 2 ¨ Ea„PA

«˜

d
ÿ

j“1

η
pjq

i ϕ‹
i

¸

L

˜

d
ÿ

j“1

η
pjq

i ϕ‹
j

¸

paq

ff

(E.83)

“ 2 ¨ Ea„PA

«˜

d
ÿ

j“1

η
pjq

i ϕ‹
j

¸˜

d
ÿ

j“1

η
pjq

i Lpϕ‹
jqpaq

¸ff

(E.84)

“ 2 ¨

d
ÿ

j“1

´

η
pjq

i

¯2

Ea„PA

“

ϕ‹
jpaqLpϕ‹

jqpaq
‰

(E.85)

` 2 ¨

d
ÿ

m“1,n“1,m‰n

η
pmq

i η
pnq

i Ea„PA
rϕ‹

mpaqLpϕ‹
nqpaqs (E.86)

Since, ϕ‹
i p¨q are eigenfunctions of the operator L (HaoChen and Ma, 2022), we can conclude

that:
d
ÿ

m“1,n“1,m‰n

η
pmq

i η
pnq

i Ea„PA
rϕ‹

mpaqLpϕ‹
nqpaqs “ 0,

and if γ1 ď γ2 ď γ3 . . . ď γd are the eigenvalues for ϕ‹
1, ϕ

‹
2, ϕ

‹
3, . . . , ϕ

‹
d under the decomposition

of Lpϕqp¨q then:

Ex„PU
Ea1,a2„PAp¨|xqp

pϕJ
i a1 ´ pϕJ

i a2q
2

“ 2 ¨

d
ÿ

j“1

γj

´

η
pjq

i

¯2

(E.87)

Recall, we are also aware of a condition on the regularization term: 1 ´
a

ϵ
κ

ď pϕJ
i ΣA

pϕi ď

1 `
a

ϵ
κ
.

pϕJ
i ΣA

pϕi “

˜

d
ÿ

j“1

η
pjq

i ϕ‹
j

¸J

ΣA

˜

d
ÿ

j“1

η
pjq

i ϕ‹
j

¸

“

d
ÿ

j“1

´

η
pjq

i

¯2

(E.88)
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ùñ 1 ´

c

ϵ

κ
ď

d
ÿ

j“1

´

η
pjq

i

¯2

ď 1 `

c

ϵ

κ
@i. (E.89)

In order to show that the projection of pϕi on Φ˚ is significant, we need to argue that the

term
řd

j“k`1

´

η
pjq

i

¯2

is small. The argument for this begins with the condition on invariance
loss, and the fact that γ1 ď γ2 ď . . . ď γk ď γk`1 ď . . . ď γd:

ϵ

2
ě

d
ÿ

j“k`1

´

η
pjq

i

¯2

γj ě γk`1 ¨

˜

d
ÿ

j“k`1

´

η
pjq

i

¯2

¸

(E.90)

ùñ

d
ÿ

j“k`1

´

η
pjq

i

¯2

ď
ϵ

2γk`1

(E.91)

Extending the above result @i by simply adding the bounds completes the claim of our
first result in Theorem E.5.6. Next, we will lower bound the eigenvalue γk`1. Recall that,
řk

j“1

´

η
pjq

i

¯2

ě 1 ´
a

ϵ
κ

´ ϵ
2γk`1

. Thus,

γ1 ¨

ˆ

1 ´

c

ϵ

κ
´

ϵ

2γk`1

˙

ď

k
ÿ

j“1

γj

´

η
pjq

i

¯2

ď kγk`1 ¨
ϵ

2γ1
(E.92)

We assume that all eigenvalues are strictly positive, which is true under our augmentation
distribution. Given, γk`1 ě γ1, we can rearrange the above to get:

γk`1 ě
2γ2

1

kϵ
¨

ˆ

1 ´

c

ϵ

κ

˙

´
γ1
k

(E.93)

This completes the claim of our second result in Theorem E.5.6.

Proof of Theorem 6.4.4

In this section, we prove our main theorem about the recovery of both spurious wsp, invariant
win features by the contrastive learning feature backbone, and also the amplification of the
invariant over the spurious feature (where amplification is defined relatively with respect
to what is observed in the data distribution alone). We begin by defining some quantities
needed for analysis, that are fully determined by the choice of problem parameters for the
model in (E.3).
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From Section 12.4, we recall the definitions of win :“ rw‹, 0, . . . , 0s and wsp :“ r0, . . . 0, w1s

where w1 “ 1dsp{
a

dsp. Let us now define u1, u2 as the top two eigenvectors of ΣA with
eigenvalues λ1, λ2 ą 0, (note that in our problem setup both ΣA and rΣ are full rank positive
definite matrices), and τ :“

a

λ1{λ2. Next we define α as the angle between u1 and win, i.e.,
cospαq “ uJ

1win. Based on the definitions of α and τ , both of which are fully determined by
the eigen decomposition of the post-augmentation feature covariance matrix ΣA, we now
restate Theorem 6.4.4:
Theorem E.5.7 (Formal; CL recovers both invariant win and spurious wsp but amplifies
win). Under Assumption 1 pw‹ “ 1din{

?
dinq, the CL solution Φcl“rϕ1, ϕ2, ..., ϕks satisfies

ϕJ
j win “ ϕJ

j wsp “ 0 @j ě 3. For τ, α as defined above, the solution for ϕ1, ϕ2 is:
„

w‹ ¨ cotpαq{τ, w‹

w1 ¨ 1{τ, w1 ¨ cotpαq

ȷ

¨

„

cos θ, sin θ
sin θ, ´ cos θ

ȷ

,

where 0 ď α, θ ď π{2. Let us redefine ϕ1 “ c1win ` c3wsp and ϕ2 “ c2win ` c4wsp.

For constants K1, K2 ą 0, γ “ K1K2{σsp, dsp “ σ2
sp{K2

2 , @ϵ ą 0, Dσsp0, such that for σsp ě σsp0:

K1K
2
2din

2Lσ2
inpdin ´ 1q

` ϵ ě
c1
c3

ě
K1K

2
2din

2Lσ2
inpdin ´ 1q

´ ϵ

L
a

dsp

γ
` ϵ ě

∣∣∣∣c2c4
∣∣∣∣ ě

L
a

dsp

γ
´ ϵ,

where L “ 1 ` K2
2 .

Proof. We will first show that the only components of interest are ϕ1, ϕ2. Then, we will
prove conditions on the amplification of win over wsp in ϕ1, ϕ2. Following is the proof
overview:

I. When w‹ “ 1din{
?
din, from the closed form expressions for ΣA and rΣ, show that the

solution returned by solving the Barlow Twins objective depends on win and wsp only
through the first two components ϕ1, ϕ2.

II. For the components ϕ1, ϕ2, we will show that the dependence along win is amplified
compared to wsp when the target data sufficiently denoises the spurious feature (i.e.,
σsp is sufficiently large).

Part-I:

We can divide the space Rd into two subspaces that are perpendicular to each other. The
first subspace is W “ tb1 ¨ win ` b2 ¨ wsp : b1, b2 P Ru, i.e. the rank 2 subspace spanned by
win and wsp. The second subspace is WK where WK “ tu P Rd : uJwin “ 0, uJwsp “ 0u.
Then, from Lemma E.7.4 we can conclude that the matrix ΣA can be written as:

ΣA “ ΣAW ` ΣAWK

ΣAW “
1

4

„

pγ2p1 ` 1{3dinq ` σ2
in{3p1 ´ 1{dinqq ¨ w‹w‹J, γ

?
dsp{2 ¨ w‹w1J

γ
?

dsp{2 ¨ w1w‹J,
`

dsp{2 ` 4{3 ¨ σ2
sp ` 1{6

˘

¨ w1w1J

ȷ

, (E.94)
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where ΣAWK
:“ Ea„PA

“

ΠWK
paqpΠWK

paqqJ
‰

is the covariance matrix in the null space of W ,
and ΠWK

paq is the projection of augmentation a into the null space of W , i.e. the covariance
matrix in the space of non-predictive (noise) features. Similarly we can define:

rΣ “ rΣW ` rΣWK

rΣW “
1

4

„

γ2 ¨ w‹w‹J, γ
?

dsp{2 ¨ w‹w1J

γ
?

dsp{2 ¨ w1w‹J, pdsp{2 ` σ2
sp{2q ¨ w1w1J

ȷ

(E.95)

Here again rΣWK
:“ Ex„PU

“

ΠWK
pEc„Unifr0,1sdpc d xqqpΠWK

pEc„Unifr0,1sdpc d xqqqJ
‰

is the co-
variance matrix of mean augmentations after they are projected onto the null space of
predictive features. The above decomposition also follows from result in Lemma E.7.4.

From Proposition 6.4.3, the closed form expression for the solution returned by optimizing
the Barlow Twins objective in (6.3) is UJΣ

´1{2
A where U are the top-k eigenvectors of:

Σ
´1{2
A ¨ rΣ ¨ Σ

´1{2
A (E.96)

When w‹ “ 1din{
?
din, then ΣAWK

“ rΣWK
` B where B is a diagonal matrix with diagonal

given by 1
3

¨ diagprΣWK
q. Further, since diagprΣWK

q “ p ¨ 1d for some constant p ą 0, the
eigenvectors of rΣWK

and ΣAWK
are exactly the same. Hence, when we consider the SVD

of the expression Σ
´1{2
A

rΣΣ
´1{2
A , the matrices ΣAWK

and rΣWK
have no effect on the SVD

components that lie along the span of the predictive features. In fact, we only need
to consider two rank 2 matrices (first terms in (E.95), (E.94)) and only do the SVD of
Σ

´1{2
AW

¨ rΣW ¨ Σ
´1{2
AW

.

There are only two eigenvectors of Σ´1{2
AW

¨ rΣW ¨Σ
´1{2
AW

. We use λ1, λ2 to denote the eigenvalues
of ΣAW , and rcospαqw‹, sinpαqw1s

J, rsinpαqw‹,´ cospαqw1s
J for the corresponding eigenvec-

tors. Similarly, we use rλ1, rλ2 to denote the eigenvalues of rΣW , and rcospβqw‹, sinpβqw1s
J,

rsinpβqw‹,´ cospβqw1s
J for the corresponding eigenvectors. Let SVDUp¨q denote the opera-

tion of obtaining the singular vectors of a matrix. Then, to compute the components of the
final expression: SVDUpΣ

´1{2
A

rΣΣ
´1{2
A qJΣ

´1{2
A that lies along the span of predictive features

(in W), we need only look at the decomposition of the following matrix:

„

cos θ , sinpθq

sin θ ,´ cospθq

ȷ

“ SVDU

¨

˝

„

1{
?
λ1, 0

0, 1{
?
λ2

ȷ

¨

„

cospα ´ βq, sinpα ´ βq

sinpα ´ βq, ´ cospα ´ βq

ȷ

¨

»

–

b

rλ1, 0

0,

b

rλ2

fi

fl

˛

‚

(E.97)

Based on the above definitions of θ, α, λ1, λ2, we can then formulate ϕ1 and ϕ2 in the
following way:
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rϕ1, ϕ2s “

«

w‹ ¨
cospαq
?
λ1

, w‹ ¨
sinpαq
?
λ2

w1 ¨
sinpαq
?
λ1

, w1 ´ cospαq
?
λ2

ff

¨

„

cos θ , sinpθq

sin θ ,´ cospθq

ȷ

(E.98)

To summarize, using arguments in Lemma E.7.4 and the fact that w‹ “ 1din{
?
din, we can

afford to focus on just two rank two matrices ΣAW , rΣW in the operation: SVDUpΣ
´1{2
A qrΣΣ

´1{2
A .

The other singular vectors from the SVD only impact directions that span WK, and the
singular vectors obtained by considering only the rank 2 matrices lie only in the space of
W .

Part-II:

From the previous part we obtained forms of ϕ1, ϕ2 in terms of: λ1, λ2, α, θ, all of which
are fully specified by the SVD of ΣAW and rΣW . If we define τ :“

?
λ1?
λ2

, we can evaluate
c1, c2, c3, c4 as:

c1 “
cotpαq

τ
` tanpθq (E.99)

c2 “ ´1 `
cotpαq tanpθq

τ
(E.100)

c3 “
1

τ
´ cotpαq tanpθq (E.101)

c4 “
tanpθq

τ
` cotpαq (E.102)

Now, we are ready to begin proofs for our claims on the amplification factors, i.e. on the
ratios c1{c3, |c2{c4|.

We will first prove some limiting conditions for c1{c3, followed by those on |c2{c4|. For each
of these conditions we will rely on the forms for c1, c2, c3, c4 derived in the previous part, in
terms of α, θ, τ (where 0 ď α, θ ď π{2). We will also rely on some lemmas that characterize
the asymptotic behavior of α, θ and τ as we increase σsp. We defer the full proof of these
helper lemmas to later sections.

Asymptotic behavior of c1{c3.

From Lemma E.7.6 and Lemma E.7.7, when γ “ K1{
?
z and σsp “ K2

?
z, then:

lim
zÑ8

c1
c3

“
cotα ` τ tan θ

1 ´ τ cotα tan θ
“ lim

zÑ8
τ tan θ “

K1K
2
2

p1 ` K2
2q2σ2

inp1 ´ 1{dinq
, (E.103)

where we apply Moore-Osgood when applying limits on intermediate forms. We can do
this since τ tan θ approaches a constant, and each of cotα, τ and tan θ are continuous and
smooth functions of z (see Lemma E.7.5).

Asymptotic behavior of |c2{c4|.
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When we consider the limiting behavior of c2{c4z, as we increase z or equivalently σsp when
γ “ K1{

?
z and σsp “ K2

?
z, then we get:

lim
zÑ8

∣∣∣∣ c2c4z
∣∣∣∣ “

∣∣∣∣∣´1 ` cotpαq tanpθq

tanpθqz
τ

` cotpαqz

∣∣∣∣∣ . (E.104)

From Lemma E.7.7, cotα tan θ Ñ 0. Next, if we consider limzÑ8
z tan θ{τ “ limzÑ8 τ tan θ ¨

z{τ2. For z{τ2, we invoke Lemma E.7.9, which states that when γ “ K1{
?
z and σsp “ K2

?
z,

then:

lim
zÑ8

z

τ 2
“

2σ2
in{3p1 ´ 1{dinq

1 ` 4{3K2
2

. (E.105)

Further, in our bound on c1{c3, we derived that τ tan θ Ñ K1K2
2{p1`K2

2 q2σ2
inp1´1{dinq. Once again

using Moore-Osgood we can plug this along with (E.105) to get:

lim
zÑ8

tanpθqz

τ
“

K1K
2
2

p1 ` K2
2qp3 ` 4K2

2q
. (E.106)

Finally, from Lemma E.7.8, when γ “ K1{
?
z and σsp “ K2

?
z, then:

lim
zÑ8

z

tanα
“

K1

p1 ` 4{3K2
2q
. (E.107)

Plugging, E.106 and E.107 into E.104 we get the following limit:

lim
zÑ8

∣∣∣∣ c2c4z
∣∣∣∣ “

1 ` K2
2

K1

. (E.108)

Since z “ K1

?
dsp{γ,

lim
zÑ8

∣∣∣∣∣ c2γ

c4K1

a

dsp

∣∣∣∣∣ “
1 ` K2

2

K1

ùñ lim
zÑ8

∣∣∣∣∣ c2γ

c4
a

dsp

∣∣∣∣∣ “ 1 ` K2
2 (E.109)

Since both c1{c3 and |c2{c4| are continuous functions of z, with lim infzÑ8 and lim supzÑ8

converging to the limits in E.103 and E.104 for both quantities respectively, we conclude
that @ϵ ą 0 there exists σsp0 such that for all σsp ě σsp0, the following is true:

K1K
2
2din

2Lσ2
inpdin ´ 1q

` ϵ ě
c1
c3

ě
K1K

2
2din

2Lσ2
inpdin ´ 1q

´ ϵ (E.110)

p1 ` K2
2q
a

dsp

γ
` ϵ ě

∣∣∣∣c2c4
∣∣∣∣ ě

p1 ` K2
2q
a

dsp

γ
´ ϵ, (E.111)

This completes both Part-I and Part-II of the proof for Theorem 6.4.4.

279



Proof of Corollary 6.4.5

Corollary E.5.8 (CL improves OOD error over ERM but is still imperfect). For γ, σsp, dsp
defined as in Theorem 6.4.4, Dσsp1 such that @σsp ě σsp1, the target accuracy of CL
(linear predictor on Φcl) is ě 0.5 erfc p´L1 ¨ γ{

?
2σspq and ď 0.5 erfc p´4L1 ¨ γ{

?
2σspq, where

L1 “ K2
2K1{σ2

inp1´1{dinq. When σsp1 ą σin

a

1 ´ 1{din, the lower bound on accuracy is strictly
better than ERM from scratch.

Proof. Recall from Theorem E.5.7, all ϕj, for j ě 3, lie in the null space of win and wsp.
Since, the predictive features are strictly contained in the rank two space spanned by win

and wsp, without loss of generality we can restrict ourselves to the case where k “ 2, and
when doing training a head h “ rh1, h2s

J P R2 over contrastive pretrained representations
using source labeled data, we get the following max margin solution:

h1 “ c1 ¨ γ ` c3 ¨
a

dsp

h2 “ c2 ¨ γ ` c4 ¨
a

dsp (E.112)

Without loss of generality we can divide both h1 and h2 by h1 and get the final classifier to
be ϕ1 ` h2

h1
¨ ϕ2:

pc1win ` c3wspq `
h2

h1

¨ pc2win ` c4wspq

“ pc1win ` c3wspq `
pc2γ ` c4

a

dspq

pc1γ ` c3
a

dspq
¨ pc2win ` c4wspq (E.113)

From Lemma E.7.10, we can derive the target accuracy of the classifier h on top of CL
representations to be the following:

0.5 erfc

ˆ

´
c1 ` βc2
c3 ` βc4

¨
γ

?
2σsp

˙

(E.114)

where β “ pc2γ`c4
?

dspq{pc1γ`c3
?

dspq.

Substituting β into the expression c1`βc2
c3`βc4

we get:

c21γ ` c1c3
a

dsp ` c22γ ` c2c4
a

dsp

c1c3γ ` c23
a

dsp ` c2c4γ ` c24
a

dsp
(E.115)

We first substitute expressions for c1, c2, c3, c4 from (E.99), (E.100), (E.101) and (E.102) in
the above expression. Then for γ “ K1{

?
z, σsp “ K2

?
z, we substitute the expressions for

cotα, tan θ, and τ “ λ1{λ2 with their corresponding closed form expressions (as functions of
z) from Lemma E.7.5. On the resulting expression we apply do repeated applications of
L’Hôpital’s rule to get the following result:
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lim
zÑ8

c21γ ` c1c3
a

dsp ` c22γ ` c2c4
a

dsp

c1c3γ ` c23
a

dsp ` c2c4γ ` c24
a

dsp
“

2K2
2K1

σ2
inp1 ´ 1{dinq

(E.116)

Based on γ, dsp, σsp defined in Theorem 6.4.4, and (E.116) we can conclude that Dσsp1 such
that for all σsp ě σsp1:

4K2
2K1

σ2
inp1 ´ 1{dinq

ě
c21γ ` c1c3

a

dsp ` c22γ ` c2c4
a

dsp

c1c3γ ` c23
a

dsp ` c2c4γ ` c24
a

dsp
ě

K2
2K1

σ2
inp1 ´ 1{dinq

(E.117)

Finally, applying (E.117) to Lemma E.7.10, we conclude the following: When γ “
K1K2{σsp, dsp “ σ2

sp{K2
2 , there exists σsp1, such that for any σsp ě σsp1, target accuracy of CL

is at least 0.5 erfc
´

´L1 ¨
γ

?
2σsp

¯

and at most 0.5 erfc
´

´4L1 ¨
γ

?
2σsp

¯

, where L1 “
K2

2K1

σ2
inp1´1{dinq

.

Comparison with ERM. Recall from Theorem E.5.1 the performance of ERM classifier
(trained from scratch) is 0.5 erfc

`

´γ2
{
?

2dspσsp

˘

. The lower bound on the performance of
classifier over CL representations is strictly better than ERM when:

γ
a

dsp
ă L1

ðù
K2

2K1

σ2
inp1 ´ 1{dinq

ą
γ

a

dsp
ðù

K2
2K1

σ2
inp1 ´ 1{dinq

ą
K1K

2
2

σ2
sp

ðù σsp ą σin

a

1 ´ 1{din ðù σsp1 ą σin

a

1 ´ 1{din.

This completes our proof of Corollary 6.4.5.

E.5.2 Analysis of STOC: Formal Statement of Theorem 6.4.6

Recall ERM solution over contrastive pretraining. We showed that without loss of generality
when k (the output dimensionality of Φ) is greater than 2, we can restrict k to 2 and the
Φ can be denoted as rϕ1, ϕ2sJ where ϕ1 “ c1w

‹ ` c3wsp and ϕ2 “ c2w
‹ ` c4wsp. The ERM

solution of the linear head is then given by h1, h2 P R:

h1 “ c1 ¨ γ ` c3 ¨
a

dsp , and h2 “ c2 ¨ γ ` c4 ¨
a

dsp . (E.118)

STOC performs self-training of the linear head over the CL solution. Before introducing
the result, we need some additional notation. Let ht denote the solution of the linear head
at iterate t. Without loss of generality, assume that the coefficients in ϕ1 “ c1win ` c3wsp

and ϕ2 “ c2win ` c4wsp are such that c2 is positive and c1, c3, and c4 are negative. Moreover,
for simplicity of exposition, assume that |c4| ą |c3|.
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Theorem E.5.9. Under the conditions of Corollary E.5.8 and when γ2

σsp
ě

”

´c3´c4
pc2`c1q¨|c1|

ı

_
”

c4
c1¨c2

ı

, the target accuracy of ST over CL is lower bounded by 0.5 ¨ erfc p´ |c2{c4| ¨ γ{p
?
2σspqq ě

0.5 ¨ erfc
´

´L ¨
?

dsp{p
?
2σspq

¯

with L ě 1.

Before proving Theorem E.5.9, we first connect the condition γ2

σsp
ě

”

´c3´c4
pc2`c1q¨|c1|

ı

_

”

c4
c1¨c2

ı

with the result obtained with contrastive learning.

Remark 1. We first argue that
”

´c3´c4
pc2`c1q¨|c1|

ı

term dominates and hence, if we have
γ2

σsp
ě

”

´c3´c4
pc2`c1q¨|c1|

ı

, then we get the result in Theorem E.5.9. First, recall that as σsp increases,

we have
∣∣∣ c3c1 ∣∣∣ converge to 2Lσ2

inpdin´1q

K1K2
2din

, c2 Ñ 1 and c1
c2

Ñ 0. Using these limits, we get:

γ2

σsp

“
K2

1

K2 ¨ z3{2
ě

2Lσ2
inpdin ´ 1q

K1K2
2din

. (E.119)

which reduces the following condition: dsp ď K2
1K

2{3
2 ¨

´

din
2Lσ2

inpdin´1q

¯2{3

.

Proof. First, we create an outline of the proof. We argue about the updates of ht showing
that both ht

1 and ht
2 increase with |ht

2| becoming greater than |ht
1| for some large t. Then

we show that |ht
2| ě |ht

1| is sufficient to obtain near-perfect target generalization.

Part 1. Recall the loss of used for self-training of h:

Lstphq “ EPtpxq

“

ℓphJΦx, sgnphJΦxqq
‰

(E.120)
“ EPtpxq

“

exp
`

´
∣∣hJΦx

∣∣˘‰ (E.121)
“ Ez„N p0,1q rexp p´ |c1γh1 ` c2γh2 ` pc3σsph1 ` c4σsph2q ¨ z|qs . (E.122)

Define µt “ c1γh
t
1 ` c2γh

t
2 and σt “ c3σsph

t
1 ` c4σsph

t
2. With this notation, we can re-write

the loss in (E.122) as Lstph
tq “ Ez„N p0,σ2

t q rexp p´ |µt ` z|qs.

Similar to the the treatment in Theorem E.5.2, we now derive a closed-form expression of
Lstph

tq in Lemma E.7.11:

Lstph
t
q “

1

2

ˆ

exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

` exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙˙

.

(E.123)

Define:

A1pµt, σtq “ exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙
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“

c

2

π
exp

ˆ

´
µ2
t

2σ2
t

˙

r

ˆ

σt ´
µt

σt

˙

, (E.124)

A2pµt, σtq “ exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

“

c

2

π
exp

ˆ

´
µ2
t

2σ2
t

˙

r

ˆ

σt `
µt

σt

˙

, (E.125)

A3pµt, σtq “
2
?
2

?
π
exp

ˆ

´
µ2
t

2σ2
t

˙

. (E.126)

Let rht`1 denote the un-normalized gradient descent update at iterate t ` 1. We have:

rht`1
“ ht

´ η ¨
BLstph

tq

Bh
. (E.127)

Now we will individually argue about the update of rht`1. First, we have:

rht`1
1 “ ht

1 ´ η ¨
BLstph

tq

Bh1

rht`1
1 “ ht

1 ´ η ¨ rA1 ¨ pσtc3σsp ´ c1γq ` A2 ¨ pσtc3σsp ` c1γq ´ A3c3σsps
l jh n

δ1

. (E.128)

and second, we have:

rht`1
2 “ ht

2 ´ η ¨
BLstph

tq

Bh2

rht`1
2 “ ht

2 ´ η ¨ rA1 ¨ pσtc4σsp ´ c2γq ` A2 ¨ pσtc4σsp ` c2γq ´ A3c4σsps
l jh n

δ2

. (E.129)

We will now argue the conditions under which ht`1
2 increases till its value reaches 1{

?
2. In

particular, we will argue that when ht
2 is negative, the norm |ht

2| decreases and when ht
2

becomes positive, then its norm increases. We show that the following three conditions are
sufficient to argue the increasing value of ht

2: for all t, we have (i) µt ě µc and |σt| ă σc for
constant µc “ |c1 ¨ γ| {2 and σc “ |c4σsp|; (ii) δ2 ă 0; (iii) |δ2| ě δ1. In Lemma E.5.11, we
argue that our assumption on the initialization of the backbone learned with BT implies
the previous three conditions.

Case-1. When ht
2 is negative (and after the update, it remains negative). Then we want

to argue the following:

pht
2 ´ ηδ2q

2

pht
2 ´ ηδ2q2 ` pht

1 ´ ηδ1q2
ď pht

2q
2 (E.130)
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ñ
pht

2 ´ ηδ2q
2

pht
2q

2
ď pht

2 ´ ηδ2q
2

` pht
1 ´ ηδ1q

2 (E.131)

ñ
ht
2
2

` η2δ22 ´ 2ηδ2h
t
2

pht
2q

2
ď ht

2
2

` η2δ22 ´ 2ηht
2δ2 ` ht

1
2

` η2δ21 ´ 2ηht
1δ1

(E.132)

ñ 1 `
η2δ22 ´ 2ηδ2h

t
2

pht
2q2

ď 1 ` η2δ22 ´ 2ηht
2δ2 ` η2δ21 ´ 2ηht

1δ1

(E.133)
ñ η2δ22 ´ 2ηδ2h

t
2 ď

“

η2δ22 ´ 2ηht
2δ2 ` η2δ21 ´ 2ηht

1δ1
‰

pht
2q

2

(E.134)
ñ η2δ22pht

1q
2

´ 2ηδ2h
t
2pht

1q
2

ď η2δ21pht
2q

2
´ 2ηht

1δ1ph
t
2q

2 (E.135)
ñ η2δ22pht

1q
2

´ η2δ21pht
2q

2
ď 2ηδ2h

t
2ph

t
1q

2
´ 2ηht

1δ1pht
2q

2 (E.136)
ñ

“

ηδ2ph
t
1q ´ ηδ1ph

t
2q
‰ “

ηδ2pht
1q ` ηδ1ph

t
2q
‰

ď 2ht
2h

t
1

“

ηδ2ph
t
1q ´ ηδ1pht

2q
‰

(E.137)
ñ

“

ηδ2pht
1q ` ηδ1ph

t
2q
‰

ď 2ht
2h

t
1 (E.138)

Since δ2 ă 0, |δ2| ě |δ1| and ht
2 ă ht

1 ă 0, we have rηδ2pht
1q ´ ηδ1ph

t
2qs as positive. This

implies inequality (E.137) to (E.138) and for small enough η, (E.138) will continue to hold
true.

Case-2. When ht
2 is positive but less than 1{

?
2. Then we want to argue the following:

pht
2 ´ ηδ2q

2

pht
2 ´ ηδ2q2 ` pht

1 ´ ηδ1q2
ě pht

2q
2 (E.139)

ñ
pht

2 ´ ηδ2q
2

pht
2q

2
ě pht

2 ´ ηδ2q
2

` pht
1 ´ ηδ1q

2 (E.140)

ñ
ht
2
2

` η2δ22 ´ 2ηδ2h
t
2

pht
2q

2
ě ht

2
2

` η2δ22 ´ 2ηht
2δ2 ` ht

1
2

` η2δ21 ´ 2ηht
1δ1

(E.141)

ñ 1 `
η2δ22 ´ 2ηδ2h

t
2

pht
2q2

ě 1 ` η2δ22 ´ 2ηht
2δ2 ` η2δ21 ´ 2ηht

1δ1

(E.142)
ñ η2δ22 ´ 2ηδ2h

t
2 ě

“

η2δ22 ´ 2ηht
2δ2 ` η2δ21 ´ 2ηht

1δ1
‰

pht
2q

2

(E.143)
ñ η2δ22pht

1q
2

´ 2ηδ2h
t
2pht

1q
2

ě η2δ21pht
2q

2
´ 2ηht

1δ1ph
t
2q

2 (E.144)
ñ η2δ22pht

1q
2

´ η2δ21pht
2q

2
ě 2ηδ2h

t
2ph

t
1q

2
´ 2ηht

1δ1pht
2q

2 (E.145)
ñ

“

ηδ2ph
t
1q ´ ηδ1ph

t
2q
‰ “

ηδ2pht
1q ` ηδ1ph

t
2q
‰

ě 2ht
2h

t
1

“

ηδ2ph
t
1q ´ ηδ1pht

2q
‰

(E.146)
ñ

“

ηδ2pht
1q ` ηδ1ph

t
2q
‰

ě 2ht
2h

t
1 (E.147)

Since δ2 ă 0, |δ2| ě |δ1|, ht
1 ď ´1{

?
2 and 0 ă ht

2 ă 1{
?
2, we have rηδ2ph

t
1q ´ ηδ1ph

t
2qs as

positive. This implies inequality (E.146) to (E.147). Focusing on (E.147), we note that
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ht
1 ¨ δ2 is positive and greater in magnitude than ht

2 ¨ δ1. Moreover, since ht
2h

t
1 is negative,

(E.147) will continue to hold true.

Now, when ht
2 is positive and greater than 1{

?
2, then ht

2 will stay in that region. Convergence
of STOC together with conditions of convergence as in Lemma E.5.10 will imply that the
at convergence ht

2 will remain greater than 1{
?
2, such that htc

1

htc
2

“ δ1
δ2

. Now we bound the
target error of STOC.

Part 2. To bound the accuracy at any iterate t when ht
2 ě 1{

?
2, we have from

Lemma E.7.10:

EPt

”

y ¨

´

htJ
ϕclx

¯

ą 0
ı

“ Ez„N p0,1q

„

z ą ´
c1γh

t
1 ` c2γh

t
2

|c3σspht
1 ` c4σspht

2|

ȷ

. (E.148)

We now upper bound and lower bound the fraction c1γht
1`c2γht

2

|c3σspht
1`c4σspht

2| in RHS in (E.148): (i)

c1γh
t
1 `c2γh

t
2 ě c2γh

t
2 since both c1γh

t
1 and c2γh

t
2 have same sign; (ii) |c3σsph

t
1 ` c4σsph

t
2| ď

|c4σsph
t
2| because |c4σsph

t
2| ě |c3σsph

t
1| and they have opposite signs. Hence, from (E.148),

we have:

EPt

”

y ¨

´

htJ
ϕclx

¯

ą 0
ı

“ Ez„N p0,1q

„

z ą ´
c2γh

t
2

|c4σspht
2|

ȷ

“ Ez„N p0,1q

„

z ą ´
c2γ

|c4σsp|

ȷ

.

(E.149)

Substituting the definition of erfc, the expression (E.149) gives us the required lower bound
on the target accuracy.

Lemma E.5.10 (Convergence of STOC). Assume the gradient updates as in (E.128) and
(E.129). Then STOC converges at t “ tc when htc

1

htc
2

“ δ1
δ2

. For t ą tc, (E.128) and (E.129)
make no updates to the linear h.

Proof. When the gradient updates δ1 and δ2 are such that ht`1
1 matches ht

1, we have
convergence of STOC.

pht
2 ´ ηδ2q

2

pht
2 ´ ηδ2q2 ` pht

1 ´ ηδ1q2
“ pht

2q
2 (E.150)

ñ
pht

2 ´ ηδ2q
2

pht
2q

2
“ pht

2 ´ ηδ2q
2

` pht
1 ´ ηδ1q

2 (E.151)

ñ
ht
2
2

` η2δ22 ´ 2ηδ2h
t
2

pht
2q

2
“ ht

2
2

` η2δ22 ´ 2ηht
2δ2 ` ht

1
2

` η2δ21 ´ 2ηht
1δ1

(E.152)
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ñ 1 `
η2δ22 ´ 2ηδ2h

t
2

pht
2q2

“ 1 ` η2δ22 ´ 2ηht
2δ2 ` η2δ21 ´ 2ηht

1δ1

(E.153)
ñ η2δ22 ´ 2ηδ2h

t
2 “

“

η2δ22 ´ 2ηht
2δ2 ` η2δ21 ´ 2ηht

1δ1
‰

pht
2q

2

(E.154)
ñ η2δ22pht

1q
2

´ 2ηδ2h
t
2pht

1q
2

“ η2δ21pht
2q

2
´ 2ηht

1δ1ph
t
2q

2 (E.155)
ñ η2δ22pht

1q
2

´ η2δ21pht
2q

2
“ 2ηδ2h

t
2ph

t
1q

2
´ 2ηht

1δ1pht
2q

2 (E.156)
ñ

“

ηδ2ph
t
1q ´ ηδ1ph

t
2q
‰ “

ηδ2pht
1q ` ηδ1ph

t
2q
‰

“ 2ht
2h

t
1

“

ηδ2ph
t
1q ´ ηδ1pht

2q
‰

(E.157)

Thus either rηδ2pht
1q ´ ηδ1ph

t
2qs “ 0 or rηδ2ph

t
1q ` ηδ1ph

t
2qs “ 2ht

2h
t
1. Since η is such that

h1 ´ ηδ1 ă 0, rηδ2ph
t
1q ` ηδ1ph

t
2qs ‰ 2ht

2h
t
1 implying that rηδ2ph

t
1q ´ ηδ1ph

t
2qs “ 0 giving us

the required condition.

Lemma E.5.11. Under the initialization conditions assumed in Theorem E.5.9, for all
t, we have: (i) µt ě µc and |σt| ď σc for constant µc “ |c1 ¨ γ| {2 and σc “ |c4σsp|; (ii)
δ2 ă 0; (iii) |δ2| ě δ1, where δ1 “ A1 ¨ pσtc3σsp ´ c1γq ` A2 ¨ pσtc3σsp ` c1γq ´ A3c3σsp and
δ2 “ A1 ¨ pσtc4σsp ´c2γq`A2 ¨ pσtc4σsp `c2γq´A3c4σsp for A1, A2 and A3 defined in (E.124),
(E.125), and (E.126).

Proof. Recall, µt “ c1γh
t
1 ` c2γh

t
2 and σt “ c3σsph

t
1 ` c4σsph

t
2. First, we argue that

µt increases from the initialization value. Notice that µ0 “ c1γh
0
1 ` c2γh

0
2. Due to

Corollary E.5.8, we have h0
2 ě 0. And since |c2| ą |c1|, we get µ0 ě |c1γ| as both c1 and

h0
1 are of same sign. Moreover, as training progresses with ht

1 remaining negative and ht
2

remaining positive, we have µt stays greater than µ0.

Recall the definition of A1, A2, and A3 in (E.124), (E.125), and (E.126). Moreover, recall
the definition of α1pµt, σtq and α2pµt, σtq:

α1pµt, σtq “

c

2

π
exp

ˆ

´
µ2
t

2σ2
t

˙„

r

ˆ

σt `
µt

σt

˙

´ r

ˆ

σt ´
µt

σt

˙ȷ

. (E.158)

and

α2pµt, σtq “

c

2

π
exp

ˆ

´
µ2
t

2σ2
t

˙„

r

ˆ

σt `
µt

σt

˙

` r

ˆ

σt ´
µt

σt

˙

´
2

σt

ȷ

. (E.159)

Thus, we have α1pµt, σtq ¨ A3 “ A1 ¨ σt and α2pµt, σtq ¨ A3 “ σt ¨

´

A2 ¨ ´ 2
σt
A3

¯

. Replacing
the definition of A1, A2, and A3 in δ1 and δ2, we get:

δ1 “ σtc3σsp ¨ α2pµt, σtq ` c1γα1pµt, σtq and δ2 “ σtc4σsp ¨ α2pµt, σtq ` c2γα1pµt, σtq

(E.160)
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We now upper bound and lower bound α1 and α2 by using the properties of r p¨q. We use
Taylor’s expansion on r p¨q and we get:

r pσtq ` r1
pσtq ¨

ˆ

µt

σt

˙

ď r

ˆ

σt `
µt

σt

˙

ď r pσtq ` r1
pσtq ¨

ˆ

µt

σt

˙

` r2
pσtq ¨

ˆ

µt

σt

˙2

(E.161)

and similarly, we get:

r pσtq ´ r1
pσtq ¨

ˆ

µt

σt

˙

` r2
pσtq ¨

ˆ

µt

σt

˙2

ď r

ˆ

σt ´
µt

σt

˙

ď r pσtq ´ r1
pσtq ¨

ˆ

µt

σt

˙

` R2

ˆ

µt

σt

˙2

(E.162)

where R2 “ r2 pσ0q. This is because r2 p¨q takes positive values and is a decreasing function
in σt (refer to Lemma E.7.2). We now lower bound α1pµt, σtq and upper bound α2pµt, σtq:

α1pµt, σtq
b

2
π
exp

´

´
µ2
t

2σ2
t

¯ ď 2r1
pσtq ¨

ˆ

µt

σt

˙

(E.163)

α2pµt, σtq
b

2
π
exp

´

´
µ2
t

2σ2
t

¯ ě 2r pσtq ` r2
pσtq ¨

ˆ

µt

σt

˙2

´
2

σt

(E.164)

Part-1. We first prove that δ2 ď 0. Substituting the lower bound and upper bound in
(E.160) gives us the following as stricter a sufficient condition (i.e., (E.165) implies δ2 ď 0):

«

2r pσtq ` r2
pσtq ¨

ˆ

µt

σt

˙2

´
2

σt

ff

¨
σsp ¨ p´c4q

γ ¨ c2
ě 2r1

pσtq ¨

ˆ

µt

σt

˙

(E.165)

ðñ

«

2r pσtq ` r2
pσtq ¨

ˆ

µt

σt

˙2

´
2

σt

ff

ě 2r1
pσtq ¨

ˆ

µt

σt

˙

¨
γ ¨ c2

σsp ¨ p´c4q
(E.166)

ðñ 2r pσtq ` r2
pσtq ¨

ˆ

µt

σt

˙2

´
2

σt

´ 2r1
pσtq ¨

ˆ

µt

σt

˙

¨
γ ¨ c2

σsp ¨ p´c4q
ě 0 (E.167)

ðñ 2r pσtq ¨ σt ` r2
pσtq ¨

µ2
t

σt

´ 2 ´ 2r1
pσtq ¨ µt ¨

γ ¨ c2
σsp ¨ p´c4q

ě 0 (E.168)

ðñ 2r1
pσtq ` r2

pσtq ¨
µ2
t

σt

´ 2r1
pσtq ¨ µt ¨

γ ¨ c2
σsp ¨ p´c4q

ě 0 (E.169)

ðñ r2
pσtq ¨

µ2
t

σt

` 2r1
pσtq ¨

„

1 ´ µt ¨
γ ¨ c2

σsp ¨ p´c4q

ȷ

ě 0 (E.170)

Thus, if we have µt ě
σsp¨p´c4q

γ¨c2
, then (E.165) holds true.
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Part-2. Next, we prove that |δ2| ě δ1. Substituting the lower bound and upper bound
in (E.160) gives us the following as stricter a sufficient condition (i.e., (E.171) implies
|δ2| ě δ1):

«

2r pσtq ` r2
pσtq ¨

ˆ

µt

σt

˙2

´
2

σt

ff

¨
σsp ¨ p´c4 ´ c3q

γ ¨ pc2 ` c1q
ě 2r1

pσtq ¨

ˆ

µt

σt

˙

(E.171)

ðñ

«

2r pσtq ` r2
pσtq ¨

ˆ

µt

σt

˙2

´
2

σt

ff

ě 2r1
pσtq ¨

ˆ

µt

σt

˙

¨
γ ¨ pc2 ` c1q

σsp ¨ p´c4 ´ c3q
(E.172)

ðñ 2r pσtq ` r2
pσtq ¨

ˆ

µt

σt

˙2

´
2

σt

´ 2r1
pσtq ¨

ˆ

µt

σt

˙

¨
γ ¨ pc2 ` c1q

σsp ¨ p´c4 ´ c3q
ě 0 (E.173)

ðñ 2r pσtq ¨ σt ` r2
pσtq ¨

µ2
t

σt

´ 2 ´ 2r1
pσtq ¨ µt ¨

γ ¨ pc2 ` c1q

σsp ¨ p´c4 ´ c3q
ě 0 (E.174)

ðñ 2r1
pσtq ` r2

pσtq ¨
µ2
t

σt

´ 2r1
pσtq ¨ µt ¨

γ ¨ pc2 ` c1q

σsp ¨ p´c4 ´ c3q
ě 0 (E.175)

ðñ r2
pσtq ¨

µ2
t

σt

` 2r1
pσtq ¨

„

1 ´ µt ¨
γ ¨ pc2 ` c1q

σsp ¨ p´c4 ´ c3q

ȷ

ě 0 (E.176)

Thus, if we have µt ě
σsp¨p´c4´c3q

γ¨pc2`c1q
, then (E.171) holds true which in-turn implies |δ2| ě δ1.

Plugging in µt ě µ0, we get the required condition.

E.5.3 Analysis for SSL

For SSL analysis, we argue that the projection learned by contrastive pretraining can
significantly improve the generalization of the linear head learned on top, leaving little to
no room for improvement for self-training. Our analysis leverages the margin-based bound
for linear models from Kakade et al. (2008). Before introducing the result, we present some
additional notation. Let ErrDpwq denote 0-1 error of a classifier on a distribution D. Define

0-1 error with margin ξ as pwErrξpwq “
řn

i“1

IryiwJxiďξs
n

.
Theorem E.5.12 (generalization bound for margin loss). For all classifiers w and margin
γ, we have with probability at least 1 ´ δ:

ErrT pwq ď pwErrξpwq ` 4
B

ξ

c

1

n
`

c

logp2{δq

n
`

c

logplog2p4B{ξqq

n
, (E.177)

where B “ 4maxpmaxpσin, σspq, 1q ¨

´

a

din ` dsp `
a

log p2n{δq

¯

` γ is a high probability
upper bound on the ℓ2 norm of the input points x.

Proof. The result is a trivial application of union bound over: (1) Corollary 6 in Kakade
et al. (2008); and (2) high probability bound over norms of sub-gaussian random variables
(Sec. 5.2 in (Wainwright, 2019)).
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When pwErrξpwq is close to zero, the denominating term in RHS of (E.177) is 4B{ξ
a

1{n.
From Proposition 6.4.3, CL solution ϕcl obtained on the target domain alone (for SSL
setup) is win when k “ 1. Intuitively, since the target data has only one predictive feature
(along win), CL directly recovers this predictive feature as it is the predominant direction
that minimizes invariance loss. Consequently, projecting the inputs on the CL solution
mainly reduces the value of B on the projected data. This happens because the effective
dimension is reduced from

?
d “

a

din ` dsp to
?
k (which is “ 1 for k “ 1), which is the

output dimension of the feature extractor ϕcl. Additionally, since win is recovered by ϕcl,
the maximum margin between the two classes remains γ, thus for any ξ ď γ, Dw such that
pwErrξpwq “ 0.

Assuming we can recover the linear predictor that minimizes the empirical loss, the only
dominating term left in the upper bound in (E.177) is 4B{ξ

a

1{n. When we reduce this term,
we get a tighter upper bound for linear probing. As a result, in the SSL setup, linear probing
performed on top of CL features results in a predictor with a much smaller value of the
upper bound, when compared with linear probing done on inputs directly. Even for larger
k, as long as k “ opdq the generalization error bound for the CL predictor under the SSL
setup reduces drastically compared to ERM. This explains why doing further self-training
over the CL predictor in the SSL setup does not result in big gains on the target accuracy
as compared to the UDA setting.

E.6 Limitations of Prior Work

E.6.1 Contrastive learning analysis

Prior works that analyze contrastive learning show that minimizers of the CL objective
recover clusters in the augmentation graph, which weights pairs of augmentations with
their probability of being sampled as a positive pair (Cabannes et al., 2023; HaoChen
et al., 2021; Johnson et al., 2022; Saunshi et al., 2022). When there is no distribution shift
in the downstream task, assumptions made on the graph in the form of consistency of
augmentations with downstream labels, is sufficient to ensure that a linear probed head
has good ID generalization. Under distribution shift, these assumptions are not sufficient
and stronger ones are needed. E.g., some works assume that same-domain/class examples
are weighted higher that cross-class cross-domain pairs (HaoChen et al., 2022; Shen et al.,
2022).

Using notation defined in (Shen et al., 2022), the assumption on the augmentation graph
requires cross-class and same-domain weights (β) to be higher than cross-class and cross-
domain weights (γ). It is unclear if examples from different classes in the same domain will
be “connected” if strong spurious features exist in the source domain and augmentations
fail to mask them completely (e.g ., image background may not be completely masked by
augmentations but it maybe perfectly predictive of the label on source domain). In such
cases, the linear predictor learnt over CL would fail to generalize OOD. In our toy setup as
well, the connectivity assumption fails since on source xsp is perfectly predictive of the label
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and the augmentations are imperfect, i.e., augmentations do not mask xsp and examples
of different classes do not overlap in source (i.e., β “ 0). On the other hand, since xsp is
now random on target, augmentations of different classes may overlap, i.e., γ ą 0, thus
breaking the connectivity assumption. This is also highlighted in our empirical findings of
CL furnishing representations that do not fully enable linear transferability from source to
target (see Sec. 7.5). These empirical findings also call into question existing assumptions on
data augmentations, highlighting that perfect linear transferability may not typically hold
in practice. It is in this setting that we believe self-training can improve over contrastive
learning by unlearning source-only features and improving linear transferability.

E.6.2 Self-training analysis

Some prior works on self-training view it as consistency regularization that constrain
pseudolabels of original samples to be consistent with all their augmentations (Cai et al.,
2021a; Sohn et al., 2020; Wei et al., 2020). This framework abstracts the role played by the
optimization algorithm and instead evaluates the global minimizer of a population objective
that enforces consistency of pseudolabels. In addition, certain expansion assumptions on
class-conditional distributions are needed to ensure that pseudolabels have good accuracy
on source and target domains. This framework does not account for challenges involved in
propagating labels iteratively. For e.g ., when augmentation distribution has long tails, the
consistency of pseudolabels depends on the sampling frequency of “favorable” augmentations.
As an illustration, consider our augmentation distribution in the toy setup in Sec. 12.4. If
it were not uniform over dimensions, but instead something that was highly skewed, then
a large number of augmentations need to be sampled for every data point to propagate
pseudolabels successfully from source labeled samples to target unlabeled samples during
self-training. This might hurt the performance of ST when we are optimizing for only
finitely many iterations and over finitely many datapoints. This is why in our analysis we
instead adopt the iterative analysis of self-training (Chen et al., 2020b).

E.7 Additional Lemmas
In this section we define some additional lemmas that we use in our theoretical analysis in
E.5.
Lemma E.7.1 (Upper bound and lower bounds on erfc; Kschischang (2017)). Define
erfcpxq “ 2?

π
¨
ş8

x
expp´z2q ¨ dz. Then we have:

2
?
π

¨
expp´x2q

x `
?
x2 ` 2

ă erfcpxq ď
2

?
π

¨
expp´x2q

x `
a

x2 ` 4{π

Lemma E.7.2 (Properties of Mill’s ratio (Baricz, 2008)). Define the Mill’s ratio as
r pxq “ exp px2{2q ¨ erfc

`

x{
?
2
˘

¨
a

π{2. Then following assertions are true: (i) r pxq is a
strictly decreasing log-convex function; (ii) r1pxq “ x ¨ r pxq ´ 1 is an increasing function with
r1pxq ă 0 for all x; (iii) r2pxq “ r pxq ` x2 ¨ r pxq ´ x is a decreasing function with r2pxq ą 0
for all x; (iv) x2 ¨ r1pxq is a decreasing function of x.

290



Lemma E.7.3 (invariance loss as product with operator L). The invariance loss for some
ϕ P Rd is given as: 2 ¨

ş

A ϕpaq ¨ Lpϕqpaq dPA where the operator L is defined as:

Lpϕqpaq “ ϕpaq ´

ż

A

A`pa, a1q

pApaq
¨ ϕpa1

q da1

Proof. The invariance loss for ϕ is given by:

Ex„PU
Ea1,a2„PAp¨|xqpa

J
1 ϕ ´ aJ

2 ϕq
2

“ 2Ex„PU
Ea„PAp¨|xq

“

ϕpaq
2
‰

´ 2Ea1,a2„A`p¨,¨q rϕpa1qϕpa2qs (E.178)

“ 2 ¨

ż

A
ϕpaq

2 dPA ´ 2 ¨

ż

A
ϕpaq

ˆ
ż

A

A`pa, a2q

pApaq
¨ ϕpa2q da2

˙

dPA (E.179)

“ 2 ¨

ż

A
ϕpaq ¨ Lpϕqpaq dPA (E.180)

Lemma E.7.4. If W is the space spanned by win and wsp, and WK is the null space
for W, then for any u P W and any v P WK, the covariance along these directions
Ea„PA

raJuvJas “ 0.

Proof: We can write the covariance over augmentations after we break down the augmenta-
tion a into two projections: a “ ΠWpaq ` ΠWK

paq

Ea„PA
raJuvJas “ Ea„PA

“`

uJ
pΠWpaq ` ΠWK

paqq
˘ `

vJ
pΠWpaq ` ΠWK

paqq
˘‰

(E.181)
“ Ea„PA

“`

uJΠWpaq
˘ `

vJΠWK
paq

˘‰

(E.182)
“ uJ

`

Ea„PA

“

ΠWpaqΠWK
paq

J
‰˘

v “ 0 (E.183)

where the last inequality follows from the fact that Ea„PA

“

ΠWpaqΠWK
paqJ

‰

“

Ea„PA
rΠWpaqsEa„PA

rΠWK
paqs

J, since the noise in the null space of W is drawn independent
of the component along W, and furthermore the individual expectations evaluate to
zero.
Lemma E.7.5 (closed-form expressions for eigenvalues and eigenvectors of ΣA, rΣ). For

a 2 ˆ 2 real symmetric matrix
„

a, b
c, d

ȷ

the eigenvalues λ1, λ2 are given by the following

expressions:

λ1 “
pa ` b ` δq

2
, λ2 “

pa ` b ´ δq

2
,

where δ “
a

4c2 ` pa ´ bq2. Further, the eigenvectors are given by U “

„

cospθq, sinpθq

sinpθq,´cospθq

ȷ

,

where:
tanpθq “

b ´ a ` δ

2c
.

For full proof of these statements see (Deledalle et al., 2017). Here, we will use these
statements to arrive at closed form expressions for the eigenvalues and eigenvectors of ΣA,
rΣ.
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Proof. We can now substitute the above formulae with a, b, c, d taken from the expressions of
ΣA and rΣ, to get the following values: λ1, λ2 are the eigenvalues of ΣA, with α determining
the corresponding eigenvectors rcospαq, sinpαqs, rsinpαq,´ cospαqs; and rλ1, rλ2 are the eigen-
values of rΣ, with β determining the corresponding eigenvectors: rcospβq, sinpβqs, rsinpβq,´ cospβqs.

λ1 “
1

8

˜

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙

`
dsp
2

`
2σ2

sp

3
`

1

6

`

d

γ2dsp `

ˆˆ

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙˙

´

ˆ

dsp
2

`
2σ2

sp

3
`

1

6

˙˙2
¸

(E.184)

λ2 “
1

8

˜

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙

`
dsp
2

`
2σ2

sp

3
`

1

6

´

d

γ2dsp `

ˆˆ

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙˙

´

ˆ

dsp
2

`
2σ2

sp

3
`

1

6

˙˙2
¸

(E.185)

rλ1 “
1

8

˜

γ2
`

dsp
2

`
σ2
sp

2
`

d

γ2dsp `

ˆ

γ2 ´

ˆ

dsp
2

`
σ2
sp

2

˙˙2
¸

(E.186)

rλ2 “
1

8

˜

γ2
`

dsp
2

`
σ2
sp

2
´

d

γ2dsp `

ˆ

γ2 ´

ˆ

dsp
2

`
σ2
sp

2

˙˙2
¸

(E.187)

tanpαq “
1

γ
a

dsp

˜

dsp
2

`
2σ2

sp

3
`

1

6
´

ˆ

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙˙

`

d

γ2dsp `

ˆˆ

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙˙

´

ˆ

dsp
2

`
2σ2

sp

3
`

1

6

˙˙2
¸

(E.188)

tanpβq “
1

γ
a

dsp

˜

dsp
2

`
σ2
sp

2
´ γ2

`

d

γ2dsp `

ˆ

γ2 ´

ˆ

dsp
2

`
σ2
sp

2

˙˙2
¸

(E.189)

Consider the subclass of problem parameters, dsp “ z, γ “ K1{
?
z and σsp “ K2

?
z for fixed

constants K1, K2 ą 0 and some variable z ą 0, which we can vary to give us different
problem instances for our toy model in (E.3).

λ1 “
1

8

˜

K2
1

z

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙

`
z

2
`

2K2
2z

3
`

1

6
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`

d

K2
1 `

ˆˆ

K2
1

z

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙˙

´

ˆ

z

2
`

2K2
2z

3
`

1

6

˙˙2
¸

(E.190)

λ2 “
1

8

˜

K2
1

z

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙

`
z

2
`

2K2
2z

3
`

1

6

´

d

K2
1 `

ˆˆ

K2
1

z

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙˙

´

ˆ

z

2
`

2K2
2z

3
`

1

6

˙˙2
¸

(E.191)

rλ1 “
1

8

˜

K2
1

z
`

z

2
`

K2
2z

2
`

d

K2
1 `

ˆ

K2
1

z
´

ˆ

z

2
`

K2
2z

2

˙˙2
¸

(E.192)

rλ2 “
1

8

¨

˝

K2
1

z
`

z

2
`

K2
2z

2
´

d

K2
1 `

ˆ

K2
1

z
´

ˆ

z

2
`

K2
2z

2

˙˙2

˛

‚ (E.193)

tanpαq “
1

K1

˜

z

2
`

2K2
2z

3
`

1

6
´

˜

K2
1

z

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙

¸

`

d

K2
1 `

ˆ

K2
1

z

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙

´

ˆ

z

2
`

2K2
2z

3
`

1

6

˙˙2
¸

(E.194)

tanpβq “
1

K1

¨

˝

z

2
`

K2
2z

2
´

K2
1

z
`

d

K2
1 `

ˆ

K2
1

z
´

ˆ

z

2
`

K2
2z

2

˙˙2

˛

‚ (E.195)

From Stewart (1993), we can use the closed form expression for the singular vectors of a

2 ˆ 2 full rank asymmetric matrix
„

a, b
c, d

ȷ

. The singular vectors are given by

„

cos θ, sin θ
sin θ, ´ cos θ

ȷ

,

where, tanp2θq is given by:

tanp2θq “
2ac ` 2bd

a2 ` b2 ´ c2 ´ d2
.

Now, substituting the values in the expression from (E.97), we get singular vectors of the
above form where θ P r0, π{2s satisfies:
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θ “
1

2
tan´1

˜

2 tanpβ ´ αq; ¨prλ1 ´ rλ2q ¨
?
λ1λ2

pλ2
rλ1 ´ λ1

rλ2q ´ pλ1
rλ1 ´ λ2

rλ2q ¨ tan2pα ´ βq

¸

(E.196)

Lemma E.7.6 (asymptotic behavior of τ tan θ). For γ “ K1{
?
z, σsp “ K2

?
z,

lim
zÑ8

τ tan θ “
K1K

2
2

p1 ` K2
2q2σ2

inp1 ´ 1{dinq

Proof. In order to determine the asymptotic nature of tanpθq as z Ñ 8, we take the limit
of a slightly different term first, since we have the closed form expression of tanp2θq.

lim
zÑ8

τ tanp2θq “

c

λ1

λ2

¨
2 tanpα ´ βq ¨ prλ1{Ăλ2 ´ 1q

prλ1{rλ2 ´ λ1{λ2q ´ pλ1
rλ1{λ2

rλ2 ´ 1q ¨ tan2pα ´ βq

“ 2 tanpα ´ βq ¨

Ăλ1{Ăλ2 ´ 1
Ăλ1{Ăλ2 ¨ λ2{λ1 ´ 1

,

since it is easy to see that limzÑ8 tan2pα ´ βq ¨

´

λ1
Ăλ1

λ2
Ăλ2

´ 1
¯

“ 0.

If we use tanpα´βq “
tanα´tanβ
1`tanα tanβ

, and substitute the functions of z, for all the quantities in
the above expression using Lemma E.7.5, we derive: limzÑ8 τ tan 2θ “ 2K1K2

2{p1`K2
2 q2σ2

inp1´1{dinq.

Since τ Ñ 8, tanp2θq Ñ 0, and further from Taylor approximation of tanp2θq, tanp2θq Ñ 2θ.
We can use this to derive the limit for τ tan θ, which would just be 1{2¨2K1K2

2{p1`K2
2 q2σ2

inp1´1{dinq “
K1K2

2{p1`K2
2 q2σ2

inp1´1{dinq.

Lemma E.7.7 (asymptotic behaviors of cotα, tan θ). For γ “ K1{
?
z, σsp “ K2

?
z following

the expressions in Lemma E.7.5,

lim
zÑ8

cotα “ 0, lim
zÑ8

tan θ “ 0.

Proof. For tan θ, since τ Ñ 8, and τ tan θ approaches a constant (from Lemma E.7.6), we
conclude limzÑ8 tan θ “ 0. For cotα,

lim
zÑ8

z

2
`

2K2
2z

3
`

1

6
´

˜

K2
1

z

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙

¸

“ 8,

and,

lim
zÑ8

d

K2
1 `

ˆ

K2
1

z

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙

´

ˆ

z

2
`

2K2
2z

3
`

1

6

˙˙2

“ 8.

Thus, cotα Ñ 0.
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Lemma E.7.8 (asymptotic behavior of z cotα). For γ “ K1{
?
z, σsp “ K2

?
z following the

expressions in Lemma E.7.5,

lim
zÑ8

z cotα “
K1

1 ` 4{3K2
2

.

Proof. The expression for z cotα or z{tanα follows from Lemma E.7.5:

lim
zÑ8

z cotα “
zK1

p `
a

p2 ` K2
1

,

where p “
K2

1

z

´

1 ` 1
3din

¯

`
σ2
in

3

´

1 ´ 1
din

¯

´

´

z
2

`
2K2

2z

3
` 1

6

¯

. Applying L’Hôpital’s (relevant

expressions are continuous in z) rule we get: limzÑ8 z cotα “ K1

1`4{3K2
2
.

Lemma E.7.9 (asymptotic behavior of z{τ2). For γ “ K1{
?
z, σsp “ K2

?
z following the

expressions in Lemma E.7.5,

lim
zÑ8

z{τ2 “
2σ2

in{3p1 ´ 1{dinq

1 ` 4{3K2
2

.

Proof. For τ “ λ1{λ2, substituting the relevant expressions from Lemma E.7.5, we get:

z{τ2 “
zλ2

λ1

“ z ¨
2K2

1{z p1 ` 1{3dinq ` 2σ2
in p1 ´ 1{dinq ` p ´

a

K2
1 ` p2

2K2
1{z p1 ` 1{3dinq ` 2σ2

in p1 ´ 1{dinq ` p `
a

K2
1 ` p2

,

where p “ z{2 ` 2K2
2z{3 ` 1{6. Applying L’Hôpital’s (relevant expressions are continuous in z)

rule we get: limzÑ8
z{τ2 “

2σ2
in{3p1´1{dinq

1`4{3K2
2

.

Lemma E.7.10 (0-1 error of a classifier on target). Assume a classifier of the form
w “ l1 ¨ win ` l2 ¨ wsp where l1, l2 P R and win“rw‹, 0, ..., 0sJ, and wsp “ r0, ..., 0, 1dsp{

?
dspsJ.

Then the target accuracy of this classifier is given by 0.5 ¨ erfc
´

´
l1¨γ

?
2¨l2¨σsp

¯

.

Proof. Assume px, yq „ Pt. Accuracy of w is given by EPt

“

psign
`

wJx
˘

“ yq
‰

.

EPt

“

sign
`

wJx
˘

“ y
‰

“ EPt

“

y ¨ sign
`

wJx
˘

“ 1
‰

“ EPt

“

y ¨ pwJxq ą 0
‰

“ EPt

“

y ¨ pxJ
pl1 ¨ win ` l2 ¨ wspqq ą 0

‰

“ EPt ry ¨ pγ ¨ l1 ¨ y ` l2 ¨ σspq ą 0s

“ Ez„N p0,1q rpγ ¨ l1 ` y ¨ l2 ¨ σsp ¨ zq ą 0s

“ Ez„N p0,1q ry ¨ l2 ¨ σsp ¨ z ą ´γ ¨ l1s
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“ Ez„N p0,1q rl2 ¨ σsp ¨ z ą ´γ ¨ l1s

“ Ez„N p0,1q

„

z ą ´
γ ¨ l1
l2 ¨ σsp

ȷ

Using the definition of erfc function, we get the aforementioned accuracy expression.

Lemma E.7.11. For σ ą 0 and µ P R, we have

gpµ, σq :“ Ez„N p0,σq rexp p´ |µ ` z|qs (E.197)

“
1

2
pexp pσ

2
{2 ´ µq ¨ erfc p´µ{

?
2σ ` σ{

?
2q ` exp pσ

2
{2 ` µq ¨ erfc pµ{

?
2σ ` σ{

?
2qq

(E.198)

Proof. The proof uses simple algebra and the definition of erfc function.

gpµ, σq :“ Ez„N p0,σq rexp p´ |µ ` z|qs

“
1

?
2π

ż

z

exp p´ |µ ` z|q ¨ exp

ˆ

´
z2

2σ2

˙

dz

“
1

?
2π

ż 8

´8

exp p´ |µ ` z|q ¨ exp

ˆ

´
z2

2σ2

˙

dz

“
1

?
2π

ż 8

´µ

exp p´µ ` zq ¨ exp

ˆ

´
z2

2σ2

˙

dz `
1

?
2π

ż ´µ

´8

exp pµ ` zq ¨ exp

ˆ

´
z2

2σ2

˙

dz

“ exp
`

σ2
{2 ´ µ

˘

ż 8

´µ
?
2σ

`
?
2σ
2

expp´z2qdz ` exp
`

σ2
{2 ` µ

˘

ż
´µ

?
2σ

´
?
2σ
2

´8

expp´z2qdz

“
1

2
pexp pσ

2
{2 ´ µq ¨ erfc p´µ{

?
2σ ` σ{

?
2q ` exp pσ

2
{2 ` µq ¨ erfc pµ{

?
2σ ` σ{

?
2qq
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Appendix F

Appendix: RLSbench: Domain
Adaptation Under Relaxed Label Shift

F.1 Description of Plots

For each plot in Fig. 7.2, we obtain all the distribution shift pairs with a specific alpha
(i.e., the value on the x-axis). Then for each distribution shift pair (with a specific alpha
value), we obtain relative performance by subtracting the performance of a source-only
model trained on the source dataset of that distribution shift pair from the performance of
the model trained on that distribution shift pair with the DA algorithm of interest. Thus
for each alpha and each DA method, we obtain 112 relative performance values. We draw
the box plot and the mean of these relative performance values.

For (similar-looking) plots, we use the same technique throughout the chapter. The only
thing that changes is the group of points over which aggregation is performed.
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F.2 Tabular and NLP Results Omitted from the Main
Paper

F.2.1 Tabular Datasets
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(a) Performance of DA methods relative to source-only training with in-
creasing target label marginal shift
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(b) Relative performance of DA methods when paired with our meta-
algorithm (RS and RW corrections)

Figure F.1: Performance of different DA methods relative to a source-only model across all
distribution shift pairs in tabular datasets grouped by shift severity in label marginal. For
each distribution shift pair and DA method, we plot the relative accuracy of the model
trained with that DA method by subtracting the accuracy of the source-only model. Hence,
the black dotted line at 0 captures the performance of the source-only model. Smaller
the Dirichlet shift parameter, the more severe is the shift in target class proportion. (a)
Shifts with α “ tNone, 10.0, 3.0u have little to no impact on different DA methods whereas
the performance of all DA methods degrades when α P t1.0, 0.5u often falling below the
performance of a source-only classifier. (b) RS and RW (in our meta-algorithm) together
significantly improve aggregate performance over no correction for all DA methods. While
RS consistently helps (over no correction) across different label marginal shift severities,
RW hurts slightly when shift severity is small. However, for severe shifts (α P t3.0, 1.0, 0.5u)
RW significantly improves performance for all the methods.
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F.2.2 NLP Datasets
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(a) Performance of DA methods relative to source-only training with in-
creasing target label marginal shift
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(b) Relative performance of DA methods when paired with our meta-
algorithm (RS and RW corrections)

Figure F.2: Performance of different DA methods relative to a source-only model across
all distribution shift pairs in NLP datasets grouped by shift severity in label marginal. For
each distribution shift pair and DA method, we plot the relative accuracy of the model
trained with that DA method by subtracting the accuracy of the source-only model. Hence,
the black dotted line at 0 captures the performance of the source-only model. Smaller
the Dirichlet shift parameter, the more severe is the shift in target class proportion. (a)
Performance of DANN and IW-DANN methods degrades with increasing severity of target
label marginal shift often falling below the performance of a source-only classifier (except
for Noisy Student). Performance of PsuedoLabel, CDANN, and IW-CDANN show less
susceptibility to increasing severity in target marginal shift. (b) RS and RW (in our
meta-algorithm) together significantly improve aggregate performance over no correction
for all DA methods. While RS consistently helps (over no correction) across different
label marginal shift severities, RW hurts slightly for BN-adapt, TENT, and NoisyStudent
when shift severity is small. However, for severe shifts (α P t3.0, 1.0, 0.5u) RW significantly
improves performance for all the methods. Detailed results with all methods on individual
datasets in App. ??.
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F.3 Comparison between IW-CDANN, IW-DANN, and
SENTRY with Existing DA methods paired with
our Meta-Algorithm

Fig. F.3 shows the relevant comparison.
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Figure F.3: Comparison of existing DA methods paired with our RS and RW correction
and DA methods specifically proposed for relaxed label shift problems. Across vision and
tabular datasets, we observe the susceptibility of IW-DAN, IW-CDAN, and SENTRY with
increasing severity of target label marginal shifts. In particular, for severe target label
marginal shifts, the performance of IW-DAN, IW-CDAN, and SENTRY often falls below
that of the source-only model. However, existing DA techniques when paired with RS +
RW correction significantly improve over the source-only model. For NLP, datasets we
observe similar behavior but with relatively less intensity.

Note. On Officehome dataset, we observe a slight discrepancy between SENTRY results
with our runs and numbers originally reported in the paper (Prabhu et al., 2021). We find
that this is due to differences in batch size used in original work versus in our runs (which
we kept the same for all the algorithms). In App. ??, we report SENTRY results with
the updated batch size. With the new batch size, we reconcile SENTRY results but also
observe a significant improvement in FixMatch results. We refer reader to App. ?? for a
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more detailed discussion.

F.4 Dataset Details
In this section, we provide additional details about the datasets used in our benchmark
study.

Dataset Source Target

CIFAR10 CIFAR10v1 CIFAR10v1, CIFAR10v2, CIFAR10C-Frost (severity 4),
CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate (severity 5)

CIFAR100 CIFAR100
CIFAR100, CIFAR100C-Fog (severity 4),

CIFAR100C-Motion Blur (severity 2), CIFAR100C-Contrast (severity 4),
CIFAR100C-spatter (severity 2)

Camelyon Camelyon
(Hospital 1–3) Camelyon (Hospital 1–3), Camelyon (Hospital 4), Camelyon (Hospital 5)

FMoW FMoW (2002–’13) FMoW (2002–’13), FMoW (2013–’16), FMoW (2016–’18)

Entity13
Entity13

(ImageNetv1
sub-population 1)

Entity13 (ImageNetv1 sub-population 1),
Entity13 (ImageNetv1 sub-population 2),
Entity13 (ImageNetv2 sub-population 1),
Entity13 (ImageNetv2 sub-population 2)

Entity30
Entity30

(ImageNetv1
sub-population 1)

Entity30 (ImageNetv1 sub-population 1),
Entity30 (ImageNetv1 sub-population 2),
Entity30 (ImageNetv2 sub-population 1),
Entity30 (ImageNetv2 sub-population 2)

Living17
Living17

(ImageNetv1
sub-population 1)

Living17 (ImageNetv1 sub-population 1),
Living17 (ImageNetv1 sub-population 2),
Living17 (ImageNetv2 sub-population 1),
Living17 (ImageNetv2 sub-population 2)

Nonliving26
Nonliving26
(ImageNetv1

sub-population 1)

Nonliving26 (ImageNetv1 sub-population 1),
Nonliving26 (ImageNetv1 sub-population 2),
Nonliving26 (ImageNetv2 sub-population 1),
Nonliving26 (ImageNetv2 sub-population 2)

Officehome Product Product, Art, ClipArt, Real

DomainNet Real Real, Painiting, Sketch, ClipArt

Visda
Synthetic

(originally referred
to as train)

Synthetic, Real-1 (originally referred to as val),
Real-2 (originally referred to as test)

Civilcomments Train Train, Val and Test (all formed by disjoint partitions of online articles)

Mimic Readmissions Mimic Readmissions
(year: 2008)

Mimic Readmissions (year: 2008), Mimic Readmissions (year: 2009),
Mimic Readmissions (year: 2010), Mimic Readmissions (year: 2011),
Mimic Readmissions (year: 2012), Mimic Readmissions (year: 2013)

Retiring Adults
Retiring Adults

(year: 2014
states: [’MD’, ’NJ’, ’MA’])

Retiring Adults (year: 2015; states: [’MD’, ’NJ’, ’MA’]),
Retiring Adults (year: 2016; states: [’MD’, ’NJ’, ’MA’]),
Retiring Adults (year: 2017; states: [’MD’, ’NJ’, ’MA’]),
Retiring Adults (year: 2018; states: [’MD’, ’NJ’, ’MA’])

Table F.1: Details of the datasets considered in our RLSbench.

• CIFAR10 We use the original CIFAR10 dataset (Krizhevsky and Hinton, 2009) as
the source dataset. For target domains, we consider (i) synthetic shifts (CIFAR10-
C) due to common corruptions (Hendrycks and Dietterich, 2019); and (ii) natural
distribution shift, i.e., CIFAR10v2 (Recht et al., 2018; Torralba et al., 2008) due to
differences in data collection strategy. We randomly sample 3 set of CIFAR-10-C datasets.
Overall, we obtain 5 datasets (i.e., CIFAR10v1, CIFAR10v2, CIFAR10C-Frost (severity
4), CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate (severity 5)).
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Dataset Domains
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Figure F.4: Examples from all the domains in each vision dataset.

• CIFAR100 Similar to CIFAR10, we use the original CIFAR100 set as the source
dataset. For target domains we consider synthetic shifts (CIFAR100-C) due to com-
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mon corruptions. We sample 4 CIFAR100-C datasets, overall obtaining 5 domains
(i.e., CIFAR100, CIFAR100C-Fog (severity 4), CIFAR100C-Motion Blur (severity 2),
CIFAR100C-Contrast (severity 4), CIFAR100C-spatter (severity 2) ).

• FMoW In order to consider distribution shifts faced in the wild, we consider FMoW-
WILDs (Christie et al., 2018; Koh et al., 2021) from Wilds benchmark, which contains
satellite images taken in different geographical regions and at different times. We use the
original train as source and OOD val and OOD test splits as target domains as they are
collected over different time-period. Overall, we obtain 3 different domains.

• Camelyon17 Similar to FMoW, we consider tumor identification dataset from the
wilds benchmark (Bandi et al., 2018). We use the default train as source and OOD val
and OOD test splits as target domains as they are collected across different hospitals.
Overall, we obtain 3 different domains.

• BREEDs We also consider BREEDs benchmark (Santurkar et al., 2021) in our setup to
assess robustness to subpopulation shifts. BREEDs leverage class hierarchy in ImageNet
to re-purpose original classes to be the subpopulations and defines a classification task on
superclasses. We consider distribution shift due to subpopulation shift which is induced by
directly making the subpopulations present in the training and test distributions disjoint.
BREEDs benchmark contains 4 datasets Entity-13, Entity-30, Living-17, and Non-
living-26, each focusing on different subtrees and levels in the hierarchy. We also consider
natural shifts due to differences in the data collection process of ImageNet (Russakovsky
et al., 2015), e.g, ImageNetv2 (Recht et al., 2019b) and a combination of both. Overall, for
each of the 4 BREEDs datasets (i.e., Entity-13, Entity-30, Living-17, and Non-living-26),
we obtain four different domains. We refer to them as follows: BREEDsv1 sub-population
1 (sampled from ImageNetv1), BREEDsv1 sub-population 2 (sampled from ImageNetv1),
BREEDsv2 sub-population 1 (sampled from ImageNetv2), BREEDsv2 sub-population
2 (sampled from ImageNetv2). For each BREEDs dataset, we use BREEDsv1 sub-
population A as source and the other three as target domains.

• OfficeHome We use four domains (art, clipart, product and real) from OfficeHome
dataset (Venkateswara et al., 2017). We use the product domain as source and the other
domains as target.

• DomainNet We use four domains (clipart, painting, real, sketch) from the Domainnet
dataset (Peng et al., 2019). We use real domain as the source and the other domains as
target.

• Visda We use three domains (train, val and test) from the Visda dataset (Peng et al.,
2018). While ‘train’ domain contains synthetic renditions of the objects, ‘val’ and ‘test’
domains contain real world images. To avoid confusing, the domain names with their
roles as splits, we rename them as ‘synthetic’, ‘Real-1’ and ‘Real-2’. We use the synthetic
(original train set) as the source domain and use the other domains as target.

• Civilcomments (Borkan et al., 2019) from the wilds benchmark which includes three
domains: train, OOD val, and OOD test, for toxicity detection with domains corresponding
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to different demographic subpopulations. The dataset has subpopulation shift across
different demographic groups as the dataset in each domain is collected from a different
partition of online articles.

• Retiring Adults (Ding et al., 2021) where we consider the ACSIncome prediction task
with various domains representing different states and time-period; We randomly select
three states and consider dataset due to shifting time across those states. Details about
precise time-periods and states are in Table F.1.

• Mimic Readmission (Johnson et al., 2020; PhysioBank, 2000) where the task is to
predict readmission risk with various domains representing data from different time-period.
Details about precise time-periods are in Table F.1.

We provide scripts to setup these datasets with single command in our code. To investigate
the performance of different methods under the stricter label shift setting, we also include
a hold-out partition of source domain in the set of target domains. For these distribution
shift pairs where source and target domains are i.i.d. partitions, we obtain the stricter
label shift problem. We summarize the information about source and target domains in
Table F.1.

Train-test splits We partition each source and target dataset into 80% and 20% i.i.d.
splits. We use 80% splits for training and 20% splits for evaluation (or validation). We
throw away labels for the 80% target split and only use labels in the 20% target split for
final evaluation. The rationale behind splitting the target data is to use a completely unseen
batch of data for evaluation. This avoids evaluating on examples where a model potentially
could have overfit. over-fitting to unlabeled examples for evaluation. In practice, if the aim
is to make predictions on all the target data (i.e., transduction), we can simply use the
(full) target set for training and evaluation.

F.5 Illustration of Our Proposed Meta=algorithm

DA 
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Figure F.5: (left) Illustration of RS method at every iteration. (right) Illustration of
post-hoc reweighting of the classifier with RW method.
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F.6 Methods to estimate target marginal under the
stricter label shift assumption

In this section, we describe the methods proposed to estimate the target label marginal
under the stricter label shift assumption. Recall that under the label shift assumption, pspyq

can differ from ptpyq but the class conditional stays the same, i.e., ptpx|yq “ pspx|yq. We
focus our discussion on recent methods that leverage off-the-shelf classifier to yield consistent
estimates under mild assumptions (Alexandari et al., 2021; Azizzadenesheli et al., 2019;
Garg et al., 2020a; Lipton et al., 2018b). For simplicity, we assume we possess labeled source
data tpx1, y1q, px2, y2q, . . . , pxn, ynqu and unlabeled target data txn`1, xn`2, . . . , xn`mu.

RLLS First, we discuss Regularized Learning under Label Shift (RLLS) (Azizzadenesheli
et al., 2019) (a variant of Black Box Shift Estimation (BBSE, Lipton et al. (2018b))):
moment-matching based estimators that leverage (possibly biased, uncalibrated, or inaccu-
rate) predictions to estimate the shift. RLLS solves the following optimization problem to
estimate the importance weights wtpyq “

ptpyq

pspyq
as:

pwwRLLS
t “ argmin

wPW
∥ pwCfw ´ pwµf∥ 2 ` λRLLS ∥w ´ 1∥ 2 . (F.1)

where W “ tw P Rd|
ř

y wpyqpspyq “ 1 and @y P Y wpyq ą 0u. pwCf is empirical confusion
matrix of the classifier f on source data and rµf is the empirical average of predictions of
the classifier f on unlabeled target data. With labeled source data data, the empirical
confusion matrix can be computed as:

r pwCf si,j “
1

n

n
ÿ

k“1

fipxkq ¨ I ryk “ js .

To estimate target label marginal, we can multiple the estimated importance weights with
the source label marginal (we can estimate source label marginal simply from labeled source
data).

In our relaxed label shift problem, we use validation source data to compute the confusion
matrix and use hold portion of target unlabeled data to compute µf . Unless specified
otherwise, we use RLLS to estimate the target label marginal throughout the paper. We
choose λRLLS as suggested in the original paper (Azizzadenesheli et al., 2019).

MLLS Next, we discuss Maximum Likelihood Label Shift (MLLS) (Alexandari et al.,
2021; Saerens et al., 2002): an Expectation Maximization (EM) algorithm that maximize
the likelihood of observed unlabeled target data to estimate target label marginal assuming
access to a classifier that outputs the source calibrated probabilities. In particular, MLLS
uses the following objective:

pwwMLLS
t “ argmin

wPW

1

m

ÿ

i“1

logpwTfpxi`nqq , (F.2)
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where f is the classifier trained on source and W is the same constrained set defined above.
We can again estimate the target label marginal by simply multiplying the estimated
importance weights with the source label marginal.

Baseline estimator Given a classifier f , we can estimate the target label marginal as
simply the average of the classifier output on unlabeled target data, i.e.,

pwpbaseline
t “

1

m

ÿ

i“1

fpxi`nq . (F.3)

Note that all of the methods discussed before leverage an off-the-shelf classifier f . Hence,
we experiment with classifiers obtained with various deep domain adaptation heuristics to
estimate the target label marginal.

Having obtained an estimate of target label marginal, we can simply re-weight the classifier
with pwpt as f 1

j “
pwptpy “ jq ¨ fj

ř

k pwptpy “ kq ¨ fk
for all j P Y . Note that, if we train f on a non-uniform

source class-balance (and without re-balancing as in Step 1 of Algorithm 9), then we

can re-weight the classifier with importance-weights pwwt as f 1
j “

pwwtpy “ jq ¨ fj
ř

k pwwtpy “ kq ¨ fk
for all

j P Y .

F.7 Theoretical Definition for Relaxed Label Shift

Domain adaptation problems are, in general, ill-posed (Ben-David et al., 2010c). Several
attempts have been made to investigate additional assumptions that render the problem
well-posed. One such example includes the label-shift setting, where ppx|yq does not change
but that ppyq can. Under label shift, two challenges arise: (i) estimate the target label
marginal ptpyq; and (ii) train a classifier f to maximize the performance on the target
domain. However, these assumptions are typically, to some degree, violated in practice.
This paper aims to relax this assumption and focuses on relaxed label shift setting. In
particular, we assume that the label distribution can shift from source to target arbitrarily
but that ppx|yq varies between source and target in some comparatively restrictive way
(e.g., shifts arising naturally in the real world like ImageNet (Russakovsky et al., 2015) to
ImageNetV2 (Recht et al., 2019b)).

Mathematically, we assume a divergence-based restriction on ppx|yq, i.e., for some small
ϵ ą 0 and distributional distance D, we have maxy Dpptpx|yq, ptpx|yqq ď ϵ but allowing an
arbitrary shift in the label marginal ppyq. Previous works have defined these constraints in
different ways (Kumar et al., 2020; Tachet des Combes et al., 2020; Wu et al., 2019).

In particular, we can use Wasserstein-infinity distance to define our constraint. First, we
define Wasserstein given probability measures p, q on X :

W8pp, qq “ inftsup
xPRd

∥fpxq ´ x∥ 2 : f : Rd
Ñ Rd, f#p “ qu,
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where # denotes the push forward of a measure, i.e., for every set S Ď Rd, ppSq “ ppf´1pSqq.
Intuitively, W8 moves points from the distribution p to q by distance at most ϵ to match
the distributions. Hence, our D :“ maxy W8ppspx|yq, ptpx|yqq ď ϵ. Similarly, we can define
our distribution constraint in KL or TV distances. We can define our constraint in a
representation space Z obtained by projection inputs x P X with a function h : X Ñ Z.
Intuitively, we want to define the distribution distance with some h that captures all the
required information for predicting the label of interest but satisfies a small distributional
divergence in the projected space. However, in practice, it’s hard to empirically verify these
distribution distances for small enough ϵ with finite samples. Moreover, we lack a rigorous
characterization of the sense in which those shifts arise in popular DA benchmarks, and
since, the focus of our work is on the empirical evaluation with real-world datasets, we leave
a formal investigation for future work. .

F.8 Target Marginal Estimation and its Effect on Accu-
racy

F.8.1 Tabular Datasets
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Figure F.6: Target label marginal estimation (ℓ1) error with RLLS and classifiers
obtained with different DA methods
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Figure F.7: Relative performance of DA methods when paired with RW correc-
tions

Figure F.8: Target label marginal estimation (ℓ1) error and relative performance with
RLLS and classifiers obtained with different DA methods. For tabular datasets, RLLS with
classifiers obtained with DA methods improves over RLLS with a source-only classifier for
severe target label marginal shifts. Correspondingly for severe target label marginal shifts,
we see improved performance with post-hoc RW correction applied to classifiers trained
with DA methods as compared to when applied to source-only models.
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F.8.2 Vision Datasets
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Figure F.9: Target label marginal estimation (ℓ1) error with RLLS and
classifiers obtained with different DA methods
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Figure F.10: Relative performance of DA methods when paired with RW
corrections

Figure F.11: Target label marginal estimation (ℓ1) error and relative performance with
RLLS and classifiers obtained with different DA methods. Across all shift severities (except
for α “ 0.5) in vision datasets, RLLS with classifiers obtained with DA methods improves
over RLLS with a source-only classifier. Correspondingly, we see significantly improved
performance with post-hoc RW correction applied to classifiers trained with DA methods
as compared to when applied to source-only models.
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F.8.3 NLP Datasets
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Figure F.12: Target label marginal estimation (ℓ1) error with RLLS and classi-
fiers obtained with different DA methods
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Figure F.13: Relative performance of DA methods when paired with RW
corrections

Figure F.14: Target label marginal estimation (ℓ1) error and relative performance with
RLLS and classifiers obtained with different DA methods. For NLP datasets, RLLS with
source-only classifiers performs better than RLLS with classifiers obtained with DA methods.
Correspondingly, we see improved performance with post-hoc RW correction applied to
source-only models over classifiers trained with DA methods.

F.8.4 Comparison of different target label marginal estimation
methods

None 10.0 3.0 1.0 0.5
Dirichlet Shift (alpha)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
st

im
at

io
n

E
rr

or

Vision Datasets

RLLS

MLLS

Basline

None 10.0 3.0 1.0 0.5
Dirichlet Shift (alpha)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
st

im
at

io
n

E
rr

or

Tabular Datasets

RLLS

MLLS

Basline

None 10.0 3.0 1.0 0.5
Dirichlet Shift (alpha)

0.00

0.05

0.10

0.15

0.20

0.25

E
st

im
at

io
n

E
rr

or

Language Datasets

RLLS

MLLS

Basline

Figure F.15: Comparison of different target label marginal estimation methods. We plot
estimation errors with different methods with the source-only classifier. For all modalities,
we observe a trade-off between estimation error with the baseline method and RLLS (or
MLLS) method with severity in target marginal shift.
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F.9 Results with Oracle Early Stopping Criterion

In this section, we report results with oracle early stopping criterion. On vision and tabular
datasets, we observe differences in performance when using target performance versus source
hold-out performance for model selection. This highlights a more nuanced behavior than
the accuracy-on-the-line phenomena (Miller et al., 2021; Recht et al., 2019b). We hope to
study this contrasting behavior in more detail in future work.

S
ou

rc
e

(w
au

g)

B
N

-a
da

pt

S
ou

rc
e

(w
au

g)
(R

W
)

N
oi

sy
S

tu
de

nt
(R

S
+

R
W

)

N
oi

sy
S

tu
de

nt

IW
-D

A
N

N

D
A

N
N

B
N

-a
da

pt
(R

S
+

R
W

)

C
D

A
N

N

IW
-C

D
A

N
N

D
A

N
N

(R
S

+
R

W
)

C
D

A
N

N
(R

S
+

R
W

)

F
ix

M
at

ch

F
ix

M
at

ch
(R

S
+

R
W

)

55

60

65

70

75

80

A
vg

.
A

cc
ur

ac
y

Vision Datasets

source target

D
A

N
N

IW
-D

A
N

N

C
D

A
N

N

IW
-C

D
A

N
N

P
se

ud
oL

ab
el

S
ou

rc
e

(w
/o

au
g)

D
A

N
N

(R
S

+
R

W
)

S
ou

rc
e

(w
/o

au
g)

(R
W

)

P
se

ud
oL

ab
el

(R
S

+
R

W
)

C
D

A
N

N
(R

S
+

R
W

)

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

A
vg

.
A

cc
ur

ac
y

Tabular Datasets

source target

D
A

N
N

C
D

A
N

N

S
ou

rc
e

(w
/o

au
g)

IW
-D

A
N

N

IW
-C

D
A

N
N

P
se

ud
oL

ab
el

D
A

N
N

(R
S

+
R

W
)

P
se

ud
oL

ab
el

(R
S

+
R

W
)

C
D

A
N

N
(R

S
+

R
W

)

S
ou

rc
e

(w
/o

au
g)

(R
W

)

80

82

84

86

88

90

92

94

A
vg

.
A

cc
ur

ac
y

Language Datasets

source target

Figure F.16: Average accuracy of different DA methods aggregated across all distribution
pairs in each modality. We compare the performance with early stopping point obtained
with source validation performance and target validation performance.
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Figure F.17: Accuracy difference between using source and target performance as early
stopping criteria for different DA methods aggregated across all distribution shift pairs in
vision datasets. We observe that as the shift severity increases (i.e., as α decreases), the
accuracy difference increases for all the methods.
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Figure F.18: Accuracy difference between using source and target performance as early
stopping criteria for different DA methods aggregated across all distribution shift pairs in
language datasets. We observe that as the shift severity increases (i.e., as α decreases), the
accuracy difference increases for all the methods without any correction. With RS and RW
corrections, we observe that the accuracy difference remains relatively constant as the shift
severity increases.
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Figure F.19: Accuracy difference between using source and target performance as early
stopping criteria for different DA methods aggregated across all distribution shift pairs in
tabular datasets. We observe that as the shift severity increases (i.e., as α decreases), the
accuracy difference increases for all the methods.

F.10 Aggregate Accuracy with Different DA methods
on Each Dataset
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Dataset Source DANN IW-DANN CDANN IW-CDANN PseudoLabel

Civilcomments 86.85 86.62 86.95 86.91 87.16 87.4

Dataset
Source DANN CDANN PseudoLabel

None RW None RW RS RS+
RW None RW RS RS+

RW None RW RS RS+
RW

Civilcomments 86.8 89.1 86.6 88.8 87.1 88.8 86.9 89.0 86.9 88.9 87.4 89.3 86.9 88.6

Table F.2: Results with different DA methods on NLP datasets aggregated across target
label marginal shifts.

Dataset Source DANN IW-DANN CDANN IW-CDANN PseudoLabel

Retiring Adult 77.44 77.17 77.35 78.15 78.44 78.30
Mimic Readmission 57.57 56.36 56.48 56.67 56.71 57.35

Dataset
Source DANN CDANN PseudoLabel

None RW None RW RS RS+
RW None RW RS RS+

RW None RW RS RS+
RW

Retiring Adults 77.4 80.0 77.2 79.5 77.4 79.4 78.1 80.5 78.1 80.4 78.3 80.8 78.5 80.8
Mimic Readmissions 57.6 59.0 56.4 55.1 57.3 59.2 56.7 56.8 57.4 59.9 57.4 57.7 57.7 57.9

Table F.3: Results with different DA methods on tabular datasets aggregated across target
label marginal shifts.

Dataset
Source
(wo
aug)

Source
(w
aug)

BN-
adapt TENT DANN IW-

DAN CDAN IW-
CDAN

Fix-
Match

Noisy-
Student

Sentry

CIFAR-10 89.69 89.14 89.21 89.20 90.86 90.78 90.00 89.93 91.87 90.72 91.83
CIFAR-100 65.99 76.69 77.57 77.58 74.80 74.81 74.57 74.66 79.03 77.60 74.74
FMoW 64.00 68.99 65.52 66.55 60.11 60.33 60.79 61.05 68.37 68.90 51.06
Camelyon 77.42 76.95 85.70 82.48 86.66 85.89 85.45 84.27 86.29 79.29 86.81
Domainnet 52.37 50.50 50.66 51.12 51.91 52.05 54.40 54.29 57.96 51.49 55.16
Entity13 76.93 80.07 77.99 78.04 78.26 78.75 79.74 79.28 80.25 80.37 73.58
Entity30 62.61 69.83 68.09 68.09 67.90 68.36 68.51 69.34 69.95 69.10 58.51
Living17 64.13 69.30 68.84 68.82 72.12 69.87 70.72 70.65 72.86 72.16 53.44
Nonliving26 54.75 63.95 62.60 63.02 61.69 61.99 62.53 64.51 62.98 63.60 44.82
Officehome 59.89 59.45 60.59 60.82 66.05 65.79 66.19 66.15 65.48 60.47 65.37
Visda 58.47 53.41 59.98 60.96 69.69 69.79 72.55 72.80 72.02 53.51 72.23

Avg 66.02 68.94 69.70 69.70 70.92 70.77 71.40 71.54 73.37 69.75 66.14

Table F.4: Results with different DA methods on vision datasets aggregated across target
label marginal shifts. While no single DA method performs consistently across different
datasets, FixMatch seems to provide the highest aggregate improvement over a source-only
classifier in our testbed.
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Dataset
Source BN-adapt CDANN FixMatch

None RW None RW RS RS+
RW None RW RS RS+

RW None RW RS RS+
RW

CIFAR-10 89.1 89.4 89.2 91.4 92.1 92.9 90.0 91.3 91.4 92.5 91.9 93.1 93.6 94.1
CIFAR-100 76.7 77.5 77.6 78.8 77.9 79.0 74.6 75.8 74.1 75.3 79.0 79.6 79.1 79.8
FMoW 69.0 70.3 65.5 67.2 66.2 65.6 60.8 61.9 57.0 55.2 68.4 69.4 64.9 66.7
Camelyon 77.0 77.9 85.7 85.9 88.5 89.3 85.5 85.8 87.9 88.5 86.3 87.0 86.6 86.8
Domainnet 50.5 48.2 50.7 50.1 51.4 49.8 54.4 54.2 54.7 54.3 58.0 57.5 58.4 57.8
Entity13 80.1 80.9 78.0 79.4 79.8 80.7 79.7 80.2 80.6 81.4 80.3 81.9 81.4 82.4
Entity30 69.8 70.1 68.1 69.2 69.1 70.0 68.5 69.6 69.4 70.5 70.0 71.6 70.1 71.2
Living17 69.3 69.9 68.8 69.7 69.6 70.1 70.7 71.3 72.9 72.7 72.9 72.8 72.3 71.9
Nonliving26 63.9 64.5 62.6 63.0 63.7 63.9 62.5 62.9 63.8 64.0 63.0 64.7 63.9 64.8
Officehome 59.4 57.9 60.6 60.5 60.9 60.4 66.2 66.3 66.1 65.1 65.5 64.9 66.5 66.1
Visda 53.4 52.1 60.0 60.6 59.5 58.8 72.6 72.6 75.3 75.3 72.0 72.5 73.5 73.8

Avg 68.9 69.0 69.7 70.5 70.8 70.9 71.4 72.0 72.1 72.3 73.4 74.1 73.7 74.1

Dataset
TENT DANN NoisyStudent

None RW RS RS+
RW None RW RS RS+

RW None RW RS RS+
RW

CIFAR-10 89.2 91.4 92.1 92.9 90.9 92.3 91.5 92.6 90.7 90.8 90.6 90.7
CIFAR-100 77.6 78.8 78.0 79.0 74.8 75.9 74.8 76.1 77.6 78.0 77.9 78.0
FMoW 66.6 67.4 66.7 66.1 60.1 61.6 56.4 54.5 68.9 69.8 67.1 68.0
Camelyon 82.5 82.7 87.8 88.9 86.7 87.3 88.4 88.8 79.3 79.1 79.2 79.3
Domainnet 51.1 50.6 51.8 50.3 51.9 52.1 53.6 53.5 51.5 49.8 51.3 49.5
Entity13 78.0 79.5 79.8 80.8 78.3 79.4 79.7 80.8 80.4 81.5 80.6 81.7
Entity30 68.1 69.2 69.1 70.1 67.9 69.2 69.0 69.8 69.1 70.1 69.3 70.3
Living17 68.8 69.7 69.6 70.1 72.1 73.0 71.8 72.3 72.2 71.1 69.3 69.4
Nonliving26 63.0 63.4 63.3 63.8 61.7 62.4 63.1 63.0 63.6 64.3 63.2 64.8
Officehome 60.8 60.4 60.9 60.4 66.1 66.1 66.5 65.3 60.5 59.5 60.8 59.5
Visda 61.0 61.5 60.3 59.6 69.7 69.9 73.1 73.2 53.5 51.5 55.7 54.3

Avg 69.7 70.4 70.8 71.1 70.9 71.7 71.6 71.8 69.7 69.6 69.5 69.6

Table F.5: Results with DA methods paired with re-sampling (RS) and re-weighting (RW)
correction (with RLLS estimate) aggregated across target label marginal shifts for vision
datasets. RS and RW seem to help for all datasets and they both together significantly
improve aggregate performance over no correction for all DA methods.
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F.11 Description of Deep Domain Adaptation Meth-
ods

In this section, we summarize deep DA methods compared in our RLSbench testbed. We
also discuss how each method combines with our meta-algorithm to handle shift in class
proportion.

F.11.1 Source only training

We consider empirical risk minimization on the labeled source data as a baseline. Since this
simply ignores the unlabeled target data, we call this as source only training. As mentioned
in the main paper, we perform source only training with and without data augmentations.
Formally, we minimize the following ERM loss:

Lsource onlypfq “
1

n

n
ÿ

i“1

ℓpfpT pxiq, yiqq , (F.4)

where T is the stochastic data augmentation operation for vision datasets and ℓ is a loss
function. For NLP and tabular datasets, T is the identity function. Throughout the
paper, we use cross-entropy loss minimization. Unless specified otherwise, we use strong
augmentations as the data augmentation technique for vision datasets. For NLP and tabular
datasets, we do not use any data augmentation.

As mentioned in the main paper, we do not include re-sampling results with a source only
model as it is trained only on source data and we observed no differences with just balancing
the source data (as for most datasets source is already balanced) in our experiments. After
obtaining a classifier f , we can first estimate the target label marginal and then adjust the
classifier f with post-hoc re-weighting with importance ratios wtpyq “ pwptpyq{ pwpspyq.

Adversarial training of a source only model Along with standard training of a source
only model with data augmentation, we experiment with adversarially robust models (Madry
et al., 2017). To train adversarially robust models, we replace the standard ERM objective
with a robust risk minimization objective:

Lsource only (adv)pfq “
1

n

n
ÿ

i“1

ℓpRpT pxiq, yiq, yiq , (F.5)

where Rp¨q performs the adversarial augmentation. In our paper, we use targeted Projected
Gradient Descent (PGD) attacks with ℓ2 perturbation model.

F.11.2 Domain-adversarial training methods

Domain-adversarial trianing methods aim to learn domain invariant feature representations.
These methods aimed at practical problems with non-overlapping support and are motivated
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by theoretical results showing that the gap between in- and out-of-distribution performance
depends on some measure of divergence between the source and target distributions (Ben-
David et al., 2010a; Ganin et al., 2016). While simultaneously minimizing the source
error, these methods align the representations between source and target distribution. To
perform alignment, these methods penalize divergence between feature representations
across domains, encouraging the model to produce feature representations that are similar
across domain.

Before describing these methods, we first define some notation. Consider a model f “ g ˝ h,
where h : X Ñ Rd is the featurizer that maps the inputs to some d dimensional feature
space, and the head g : Rd Ñ ∆k´1 maps the features to the prediction space. Following
Sagawa et al. (2021), with all of our domain invariant methods, we use strong augmentations
with source and target data for vision datasets. For NLP and tabular datasets, we do not
use any data augmentation.

DANN DANN was proposed in Ganin et al. (2016). DANN approximates the divergence
between feature representations of source and target domain by leveraging a domain
discriminator classifier. Domain discriminator fd aims to discriminate between source and
target domains. Given a batch of inputs from source and target, this deep network fd
classifies whether the examples are from the source data or target data. In particular, the
following loss function is used:

Ldomain disc.pfdq “
1

n

n
ÿ

i“1

ℓpfdphpT pxiqqq, 0q `
1

m

n`m
ÿ

i“n`1

ℓpfdphpT pxiqqq, 1q , (F.6)

where tx1, x2, . . . , xnu are n source examples and txn`1, . . . , xm`nu are m target examples.
Overall, the following loss function is used to optimize models with DANN:

LDANNph, g, fdq “ Lsource onlypg ˝ hq ´ λLdomain disc.pfdq . (F.7)

LDANNph, g, fdq is maximized with respect to the domain discriminator classifier and
LDANNph, g, fdq minimized with respect to the underlying featurize and the source classifier.
This is achieved by gradient reversal layer in practice. To train, three networks, we use
three different learning rate ηf , ηg, and ηfd . We discuss these hyperparameter details in
App. F.12. We adapted our DANN implementation from Sagawa et al. (2021) and Transfer
learning library (Jiang et al., 2022).

CDANN Conditional Domain adversarial neural network is a variant of DANN (Long
et al., 2018). Here the domain discriminator is conditioned on the classifier g’s prediction.
In particular, instead of training the domain discriminator on the representation output
of h, these methods operate on the outer product between the feature presentation hpxq

at an input x and the classifier’s probabilistic prediction f “ g ˝ hpxq (i.e., hpxq b fpxq).
Thus instead of training the domain discriminator classifier fd on the d dimensional input
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space, they train it on d ˆ k dimensional space. In particular, the following loss function is
used:

LCDAN domain disc.pfd, g, hq “
1

n

n
ÿ

i“1

ℓpfdpf b hpT pxiqqq, 0q `
1

n

n`m
ÿ

i“n`1

ℓpfdpf b hpT pxiqqq, 1q ,

(F.8)
where tx1, x2, . . . , xnu are n source examples and txn`1, . . . , xm`nu are m target exam-
ples. The overall loss is the same as DANN where Ldomain disc.pfdq is replaced with
LCDAN domain disc.pfd, g, hq.

We adapted our implementation for CDANN from Transfer learning library (Jiang et al.,
2022).

To adapt DANN and CDANN to our meta algorithm, at each epoch we can perform
re-balancing of source and target data as in Step 1 and 4 of Algorithm 9. After obtaining
the classifier f , we can use this classifier to first obtain an estimate of the target label
marginal and then perform re-weighting adjustment with the obtained estimate.

IW-DANN and IW-CDANN Tachet et al. (2020) proposed training with importance
re-weighting correction with DANN and CDANN objectives to accommodate for the shift
in the target label proportion. In particular, at every epoch of training they first estimate
the importance ratio pwwt (with BBSE on training source and training target data) and
then re-weight the domain discriminator objective and ERM objective. In particular, the
domain discriminator loss for IW-DANN can be written as:

L pww
domain disc.pfdq “

1

n

n
ÿ

i“1

pwwpyiqℓpfdphpT pxiqqq, 0q `
1

n

n`m
ÿ

i“n`1

ℓpfdphpT pxiqqq, 1q , (F.9)

where we multiply the source loss with importance weights. Similarly, we can re-write the
source only training objective with importance re-weighting as follows:

L pww
source onlypfq “

1

n

n
ÿ

i“1

pwwpyiqℓpfpT pxiq, yiqq . (F.10)

Overall, the following objective is used to optimize models with IW-DANN:

LIW-DANNph, g, fdq “ L pww
source onlypg ˝ hq ´ λL pww

domain disc.pfdq , (F.11)

where the importance weights are updated after every epoch with classifier obtained in
previous step. Similarly, with using importance re-weights with the CDANN objective, we
obtain IW-CDANN objective.

In population, IW-CDANN and IW-DANN correction matches the correction with our
meta-algorithm for DANN and CDANN. However, the behavior this importance re-weighting
correction can be different from our meta-algorithm for over-parameterized models with finite
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data (Byrd and Lipton, 2019). Recent empirical and theoretical findings have highlighted
that importance re-weighting have minor to no effect on overparameterized models when
trained for several epochs (Byrd and Lipton, 2019; Xu et al., 2021). On the other hand,
with finite samples, re-sampling (when class labels are available) has shown different and
promising empirical behavior (An et al., 2020; Idrissi et al., 2022). This may highlight the
differences in the behavior of IW-CDANN (or IW-DANN) with our meta algorithm on
CDANN (or DANN).

We refer to the implementation provided by the authors (Tachet et al., 2020).

F.11.3 Self-training methods

Self-training methods leverage unlabeled data by ‘pseudo-labeling’ unlabeled examples
with the classifier’s own predictions and training on them as if they were labeled examples.
Recent self-training methods also often make use of consistency regularization, for example,
encouraging the model to make similar predictions on augmented versions of unlabeled
example. In our work, we experiment with the following methods:

PseudoLabel (Lee et al., 2013) proposed PseudoLabel that leverages unlabeled examples
with classifier’s own prediction. This algorithm dynamically generates psuedolabels and
overfits on them in each batch. In particular, while pseudolabels are generated on unlabeled
examples, the loss is computed with respect to the same label. PseudoLabel only overfits to
the assigned label if the confidence of the prediction is greater than some threshold τ .

Refer to T as the data-augmentation technique (i.e., identity for NLP and tabular datasets
and strong augmentation for vision datasets). Then, PseudoLabel uses the following loss
function:

LPseudoLabelpfq “
1

n

n
ÿ

i“1

ℓpfpT pxiq, yiqq `
λt

m

m`n
ÿ

i“n`1

ℓpfpT pxiq, ryiqq ¨ I
„

max
y

fypT pxiqq ě τ

ȷ

,

where ryi “ argmaxy fypT pxiqq. PseudoLabel increases λt between labeled and unlabeled
losses over epochs, initially placing 0 weight on unlabeled loss and then linearly increasing
the unlabeled loss weight until it reaches the full value of hyperparameter λ at some
threshold step. We fix the step at which λt reaches its maximum value λ be 40% of the
total number of training steps, matching the implementation to (Sagawa et al., 2021; Sohn
et al., 2020).

FixMatch Sohn et al. (2020) proposed FixMatch as a variant of the simpler Pseudo-label
method (Lee et al., 2013). This algorithm dynamically generates psuedolabels and overfits
on them in each batch. FixMatch employs consistency regularization on the unlabeled data.
In particular, while pseudolabels are generated on a weakly augmented view of the unlabeled
examples, the loss is computed with respect to predictions on a strongly augmented view.
The intuition behind such an update is to encourage a model to make predictions on weakly
augmented data consistent with the strongly augmented example. Moreover, FixMatch only
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overfits to the assigned labeled with weak augmentation if the confidence of the prediction
with strong augmentation is greater than some threshold τ .

Refer to Tweak as the weak-augmentation and Tstrong as the strong-augmentation function.
Then, FixMatch uses the following loss function:

LFixMatchpfq “
1

n

n
ÿ

i“1

ℓpfpTstrongpxiq, yiqq

`
λ

m

m`n
ÿ

i“n`1

ℓpfpTstrongpxiq, ryiqq ¨ I
„

max
y

fypTstrongpxiqq ě τ

ȷ

,

where ryi “ argmaxy fypTweakpxiqq. We adapted our implementation from Sagawa et al.
(2021) which matches the implementation of Sohn et al. (2020) except for one detail. While
Sohn et al. (2020) augments labeled examples with weak augmentation, Sagawa et al. (2021)
proposed to strongly augment the labeled source examples.

NoisyStudent Xie et al. (2020b) proposed a different variant of Pseudo-labeling. Noisy
Student generates pseudolabels, fixes them, and then trains the model (from scratch)
until convergence before generating new pseudolabels. Contrast it with FixMatch and
PseudoLabel which dynamically generate pseudolabels. The first set of pseudolabels are
obtained by training an initial teacher model only on the source labeled data. Then in each
iteration, randomly initialized models fit the labeled source data and pseudolabeled target
data with pseudolabels assigned by the converged model in the previous iteration. Noisy
student objective can be summarized as:

LNoisyStudentpf
N

q “
1

n

n
ÿ

i“1

ℓpfN
pTstrongpxiq, yiqq `

1

m

m`n
ÿ

i“n`1

ℓpfN
pTstrongpxiq, ryiqq ,

where ryi “ argmaxy f
N´1
y pTweakpxiqq is computed with the classifier obtained at N ´ 1 step.

Note that the randomly initialized model at each iteration uses a dropout of p “ 0.5 in
the penultimate layer. We adopted our implementation of NoisyStudent to Sagawa et al.
(2021). To initialize the initial teacher model, we use the source-only model trained with
strong augmentations without dropout.

SENTRY Prabhu et al. (2021) proposed a different variant of pseudolabeling method.
This method is aimed to tackle DA under relaxed label shift scenario. a SENTRY incorpo-
rates a target instance based on its predictive consistency under a committee of strong image
transformations. In particular, SENTRY makes N strong augmentations of an unlabeled
target example and makes a prediction on those. If the majority of the committee matches
the prediction on the sample example with weak-augmentation then entropy is minimized
on that example, otherwise the entropy is maximized. Moreover, the authors employ an
’information-entropy’ objective aimed to match the prediction at every example with the
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estimated target label marginal. Overall the SENTRY objective is defined as follows:

LSENTRYpfq “
1

n

n
ÿ

i“1

ℓpfpTstrongpxiq, yiqq `
1

m

m`n
ÿ

i“n`1

k
ÿ

j“1

fkpy “ j|xiq logprptpy “ jqq

` λunsup
1

m

m`n
ÿ

i“n`1

k
ÿ

j“1

´fkpy “ j|xiq logpfkpy “ j|xiqq ¨ p2lpxq ´ 1q ,

where lpxq P t0, 1u is majority vote output of the committee consistency. For more
details, we refer the reader to Prabhu et al. (2021). Additionally, at each training epoch,
SENTRY balances the source data and pseudo-balances the target data. We adopted
our implementation with the official implementation in Prabhu et al. (2021) with minor
differences. In particular, to keep the implementation consistent with all the other DA
methods, we train with the objective above from scratch instead of training sequentially
after a initialization with source-only classifier as in the original paper (Prabhu et al.,
2021).

Since Fix-Match, NoisyStuent, and Sentry use strong data-augmentations in their imple-
mentation, the applicability of these algorithms is restricted to vision datasets. For NLP
and tabular datasets, we only train models with PseudoLabel as it doesn’t rely on any
augmentation technique.

F.11.4 Test-time training methods

These take an already trained source model and adapt a few parameters (e.g. batch norm
parameters, batch norm statistics) on the unlabeled target data with an aim to improve
target performance. Hence, we restrict these methods to vision datasets with architectures
that use batch norm. These methods are computationally cheaper than other DA methods
in the suite as they adapt a classifier on-the-fly. We include the following methods in our
experimental suite:

BN-adapt Li et al. (2016) proposed batch norm adaptation. More recently, Schneider
et al. (2020) showed gains with BN-adapt on common corruptions benchmark. Batch norm
adaptation is applicable for deep models with batch norm parameters. With this method
we simply adapt the Batchnorm statistics, in particular, mean and std of each batch norm
layer.

TENT Wang et al. (2021a) proposed optimizing batch norm parameters to minimize the
entropy of the predictor on the unlabeled target data. In our implementation of TENT, we
perform BN-adapt before learning batch norm parameters.

CORAL Sun et al. (2016) proposed CORAL to adapt a model trained on the source to
target by whitening the feature representations. In particular, say pwΣs is the empirical
covariance of the target data representations and Σs is the empirical covariance of the source
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data representations, CORAL adjusts a linear layer g on target by re-training the final layer
on the outputs: Σ1{2

t Σ
´1{2
s hpxq. DARE (Rosenfeld et al., 2022) simplified the procedure and

showed that this is equivalent to training a linear head h on Σ
´1{2
s hpxq and whitening target

data representations with Σ
´1{2
t hpxq before input to the classifier. We choose to implement

the latter procedure as it is cheap to train a single classifier in multi-domain datasets.

With our meta-algorithm, before adapting the source-only classifier with test time adaptation
methods, we use it to perform the re-sampling correction. After obtaining the adapted
classifier, we estimate target label marginal and use it to adjust the classifier with re-
weighting.

F.12 Hyperparameter and Architecture Details

F.12.1 Architecture and Pretraining Details

For all datasets, we used the same architecture across different algorithms:

• CIFAR-10: Resnet-18 (He et al., 2016) pretrained on Imagenet

• CIFAR-100: Resnet-18 (He et al., 2016) pretrained on Imagenet

• Camelyon: Densenet-121 (Huang et al., 2017) not pretrained on Imagenet as per the
suggestion made in (Koh et al., 2021)

• FMoW: Densenet-121 (Huang et al., 2017) pretrained on Imagenet

• BREEDs (Entity13, Entity30, Living17, Nonliving26): Resnet-18 (He et al., 2016) not
pretrained on Imagenet as per the suggestion in (Santurkar et al., 2021). The main
rationale is to avoid pre-training on the superset dataset where we are simulating
sub-population shift.

• Officehome: Resnet-50 (He et al., 2016) pretrained on Imagenet

• Domainnet: Resnet-50 (He et al., 2016) pretrained on Imagenet

• Visda: Resnet-50 (He et al., 2016) pretrained on Imagenet

• Civilcomments: Pre-trained DistilBERT-base-uncased (Sanh et al., 2019a)

• Retiring Adults: We use an MLP with 2 hidden layers and 100 hidden units in both
of the hidden layer

• Mimic Readmissions: We use the transformer architecture described in Yao et al.
(2022)1

Except for Resnets on CIFAR datasets, we used the standard pytorch implementation (Gard-
ner et al., 2018). For Resnet on cifar, we refer to the implementation here: https:

1https://github.com/huaxiuyao/Wild-Time/.
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//github.com/kuangliu/pytorch-cifar. For all the architectures, whenever applicable,
we add antialiasing (Zhang, 2019). We use the official library released with the paper.

For imagenet-pretrained models with standard architectures, we use the publicly avail-
able models here: https://pytorch.org/vision/stable/models.html. For imagenet-
pretrained models on the reduced input size images (e.g. CIFAR-10), we train a model
on Imagenet on reduced input size from scratch. We include the model with our publicly
available repository. For bert-based models, we use the publicly available models here:
https://huggingface.co/docs/transformers/.

F.12.2 Hyperparameters

First, we tune learning rate and ℓ2 regularization parameter by fixing batch size for each
dataset that correspond to maximum we can fit to 15GB GPU memory. We set the number
of epochs for training as per the suggestions of the authors of respective benchmarks. Note
that we define the number of epochs as a full pass over the labeled training source data.
We summarize learning rate, batch size, number of epochs, and ℓ2 regularization parameter
used in our study in Table F.6.

Dataset Epoch Batch size ℓ2 regularization Learning rate

CIFAR10 50 200 0.0001 (chosen from t0.0001, 0.001,1e-5, 0.0u) 0.01 (chosen from t0.001, 0.01, 0.0001u)

CIFAR100 50 200 0.0001 (chosen from t0.0001, 0.001,1e-5, 0.0u) 0.01 (chosen from t0.001, 0.01, 0.0001u)

Camelyon 10 96 0.01 (chosen from t0.01, 0.001, 0.0001, 0.0u) 0.03 (chosen from t0.003, 0.3, 0.0003, 0.03u)

FMoW 30 64 0.0 (chosen from t0.0001, 0.001,1e-5,0.0u) 0.0001 (chosen from t0.001, 0.01, 0.0001u)

Entity13 40 256 5e-5 (chosen from t5e-5, 5e-4, 1e-4, 1e-5u) 0.2 (chosen from t0.1, 0.5, 0.2, 0.01, 0.0u)

Entity30 40 256 5e-5 (chosen from t5e-5, 5e-4, 1e-4, 1e-5u) 0.2 (chosen from t0.1, 0.5, 0.2, 0.01, 0.0u)

Living17 40 256 5e-5 (chosen from t5e-5, 5e-4, 1e-4, 1e-5u) 0.2 (chosen from t0.1, 0.5, 0.2, 0.01, 0.0u)

Nonliving26 40 256 0 5e-5 (chosen from t5e-5, 5e-4, 1e-4, 1e-5u) 0.2 (chosen from t0.1, 0.5, 0.2, 0.01, 0.0u)

Officehome 50 96 0.0001 (chosen from t0.0001, 0.001,1e-5, 0.0u) 0.01 (chosen from t0.001, 0.01, 0.0001u)

DomainNet 15 96 0.0001 (chosen from t0.0001, 0.001,1e-5, 0.0u) 0.01 (chosen from t0.001, 0.01, 0.0001u)

Visda 10 96 0.0001 (chosen from t0.0001, 0.001,1e-5, 0.0u) 0.01 (chosen from t0.001, 0.01, 0.0001u)

Civilcomments 5 32 0.01 (chosen from t0.01, 0.001, 0.0001, 0.0u) 2e-5 (chosen from t2e ´ 4, 2e ´ 5u)

Retiring Adults 50 200 0.0001 (chosen from t0.01, 0.001, 0.0001, 0.0u) 0.01 (chosen from t0.001, 0.01, 0.0001u)

Mimic Readmissions 100 128 0.0 (chosen from t0.01, 0.001, 0.0001, 0.0u) 5e-4 (chosen from t0.005, 0.00010.0005u)

Table F.6: Details of the learning rate and batch size considered in our RLSbench

For each algorithm, we use the hyperparameters reported in the initial papers. For domain-
adversarial methods (DANN and CDANN), we refer to the suggestions made in Transfer
Learning Library (Jiang et al., 2022). We tabulate hyperparameters for each algorithm
next:

• DANN, CDANN, IW-CDANN and IW-DANN As per Transfer Learning
Library suggestion, we use a learning rate multiplier of 0.1 for the featurizer when
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initializing with a pre-trained network and 1.0 otherwise. We default to a penalty
weight of 1.0 for all datasets with pre-trained initialization.

• FixMatch We use the lambda is 1.0 and use threshold τ as 0.9.

• NoisyStudent We repeat the procedure for 2 iterations and use a drop level of
p “ 0.5.

• SENTRY We use λsrc “ 1.0, λent “ 1.0, and λunsup “ 0.1. We use a committee of
size 3.

• PsuedoLabel We use the lambda is 1.0 and use threshold τ as 0.9.

Recent works (Baek et al., 2022; Chen et al., 2021a; Deng and Zheng, 2021; Garg et al.,
2022b; Guillory et al., 2021; Jiang et al., 2021) have proposed numerous heuristics to predict
classifier performance under distribution shift. Analyzing the usefulness of these heuristics
for hyperparameter selection is an interesting avenue for future work.

F.12.3 Compute Infrastructure

Our experiments were performed across a combination of Nvidia T4, A6000, P100 and
V100 GPUs. Overall, to run the entire RLSbench suite on a T4 GPU machine with 8
CPU cores we would approximately need 70k GPU hours of compute.

F.12.4 Data Augmentation

In our experiments, we leverage data augmentation techniques that encourage robustness
to some variations between domains for vision datasets.

For weak augmentation, we leverage random horizontal flips and random crops of pre-defined
size. For strong augmentation, we apply the following transformations sequentially: random
horizontal flips, random crops of pre-defined size, augmentation with Cutout (DeVries and
Taylor, 2017), and RandAugment (Cubuk et al., 2020). For the exact implementation
of RandAugment, we directly use the implementation of Sohn et al. (2020). The pool
of operations includes: autocontrast, brightness, color jitter, contrast, equalize, posterize,
rotation, sharpness, horizontal and vertical shearing, solarize, and horizontal and vertical
translations. We apply N = 2 random operations for all experiments.
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Appendix G

Appendix: RATT: Leveraging Unlabeled
Data to Guarantee Generalization

Throughout this discussion, we will make frequently use of the following standard results
concerning the exponential concentration of random variables:
Lemma G.0.1 (Hoeffding’s inequality for independent RVs (Hoeffding, 1994)). Let Z1, Z2, . . . , Zn

be independent bounded random variables with Zi P ra, bs for all i, then

P

˜

1

n

n
ÿ

i“1

pZi ´ E rZisq ě t

¸

ď exp

ˆ

´
2nt2

pb ´ aq2

˙

and

P

˜

1

n

n
ÿ

i“1

pZi ´ E rZisq ď ´t

¸

ď exp

ˆ

´
2nt2

pb ´ aq2

˙

for all t ě 0.
Lemma G.0.2 (Hoeffding’s inequality for sampling with replacement (Hoeffding, 1994)).
Let Z “ pZ1, Z2, . . . , ZNq be a finite population of N points with Zi P ra.bs for all i. Let
X1, X2, . . . Xn be a random sample drawn without replacement from Z. Then for all t ě 0,
we have

P

˜

1

n

n
ÿ

i“1

pXi ´ µq ě t

¸

ď exp

ˆ

´
2nt2

pb ´ aq2

˙

and

P

˜

1

n

n
ÿ

i“1

pXi ´ µq ď ´t

¸

ď exp

ˆ

´
2nt2

pb ´ aq2

˙

,

where µ “ 1
N

řN
i“1 Zi.
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We now discuss one condition that generalizes the exponential concentration to dependent
random variables.
Condition G.0.3 (Bounded difference inequality). Let Z be some set and ϕ : Zn Ñ R.
We say that ϕ satisfies the bounded difference assumption if there exists c1, c2, . . . cn ě 0 s.t.
for all i, we have

sup
Z1,Z2,...,Zn,Z1

iPZn`1

|ϕpZ1, . . . , Zi, . . . , Znq ´ ϕpZ1, . . . , Z
1
i, . . . , Znq| ď ci .

Lemma G.0.4 (McDiarmid’s inequality (McDiarmid, 1989)). Let Z1, Z2, . . . , Zn be inde-
pendent random variables on set Z and ϕ : Zn Ñ R satisfy bounded difference inequality
(Condition G.0.3). Then for all t ą 0, we have

P pϕpZ1, Z2, . . . , Znq ´ E rϕpZ1, Z2, . . . , Znqs ě tq ď exp

ˆ

´
2t2

řn
i“1 c

2
i

˙

and

P pϕpZ1, Z2, . . . , Znq ´ E rϕpZ1, Z2, . . . , Znqs ď ´tq ď exp

ˆ

´
2t2

řn
i“1 c

2
i

˙

.

G.1 Proofs from Sec. 8.3
Additional notation Let m1 be the number of mislabeled points (rSM) and m2 be the
number of correctly labeled points (rSC). Note m1 ` m2 “ m.

G.1.1 Proof of Theorem 8.3.1

Proof of Lemma 8.3.2. The main idea of our proof is to regard the clean portion of the
data (S Y rSC) as fixed. Then, there exists an (unknown) classifier f˚ that minimizes the
expected risk calculated on the (fixed) clean data and (random draws of) the mislabeled
data rSM . Formally,

f˚ :“ argmin
fPF

E
qDpfq , (G.1)

where
qD “

n

m ` n
S `

m2

m ` n
rSC `

m1

m ` n
D1 .

Note here that qD is a combination of the empirical distribution over correctly labeled data
S Y rSC and the (population) distribution over mislabeled data D1. Recall that

pwf :“ argmin
fPF

ESYrSpfq . (G.2)

Since, pf minimizes 0-1 error on S Y rS, using ERM optimality on (G.2), we have

ESY rSp pfq ď ESY rSpf˚
q . (G.3)
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Moreover, since f˚ is independent of rSM , using Hoeffding’s bound, we have with probability
at least 1 ´ δ that

E
rSM

pf˚
q ď ED1pf˚

q `

d

logp1{δq

2m1

. (G.4)

Finally, since f˚ is the optimal classifier on qD, we have

E
qDpf˚

q ď E
qDp pfq . (G.5)

Now to relate (H.20) and (H.22), we multiply (H.21) by m1

m`n
and add n

m`n
ESpfq` m2

m`n
E
rSC

pfq

both the sides. Hence, we can rewrite (H.21) as follows:

ESY rSpf˚
q ď E

qDpf˚
q `

m1

m ` n

d

logp1{δq

2m1

. (G.6)

Now we combine equations (H.20), (G.6), and (H.22), to get

ESY rSp pwfq ď E
qDp pwfq `

m1

m ` n

d

logp1{δq

2m1

, (G.7)

which implies

E
rSM

p pwfq ď ED1p pwfq `

d

logp1{δq

2m1

. (G.8)

Since rS is obtained by randomly labeling an unlabeled dataset, we assume 2m1 « m 1.
Moreover, using ED1 “ 1 ´ ED we obtain the desired result.

Proof of Lemma 8.3.3. Recall E
rSpfq “ m1

m
E
rSM

pfq ` m2

m
E
rSC

pfq. Hence, we have

2E
rSpfq ´ E

rSM
pfq ´ E

rSC
pfq “

ˆ

2m1

m
E
rSM

pfq ´ E
rSM

pfq

˙

`

ˆ

2m2

m
E
rSC

pfq ´ E
rSC

pfq

˙

(G.9)

“

ˆ

2m1

m
´ 1

˙

E
rSM

pfq `

ˆ

2m2

m
´ 1

˙

E
rSC

pfq . (G.10)

Since the dataset is labeled uniformly at random, with probability at least 1 ´ δ, we have
`

2m1

m
´ 1

˘

ď

b

logp1{δq

2m
. Similarly, we have with probability at least 1 ´ δ,

`

2m2

m
´ 1

˘

ď
b

logp1{δq

2m
. Using union bound, with probability at least 1 ´ δ, we have

2E
rS ´ E

rSM
pfq ´ E

rSC
pfq ď

c

logp2{δq

2m

´

E
rSM

pfq ` E
rSC

pfq

¯

. (G.11)

1Formally, with probability at least 1 ´ δ, we have pm ´ 2m1q ď
a

m logp1{δq{2.

325



With re-arranging E
rSM

pfq ` E
rSC

pfq and using the inequality 1 ´ a ď 1
1`a

, we have

2E
rS ´ E

rSM
pfq ´ E

rSC
pfq ď 2E

rS

c

logp2{δq

2m
. (G.12)

Proof of Lemma 8.3.4. In the set of correctly labeled points SY rSC , we have S as a random
subset of S Y rSC . Hence, using Hoeffding’s inequality for sampling without replacement
(Lemma G.0.2), we have with probability at least 1 ´ δ

E
rSC

p pwfq ´ ESY rSC
p pwfq ď

d

logp1{δq

2m2

. (G.13)

Re-writing ESY rSC
p pwfq as m2

m2`n
E
rSC

p pwfq ` n
m2`n

ESp pwfq, we have with probability at least
1 ´ δ

ˆ

n

n ` m2

˙

´

E
rSC

p pwfq ´ ESp pwfq

¯

ď

d

logp1{δq

2m2

. (G.14)

As before, assuming 2m2 « m, we have with probability at least 1 ´ δ

E
rSC

p pwfq ´ ESp pwfq ď

´

1 `
m2

n

¯

c

logp1{δq

m
ď

´

1 `
m

2n

¯

c

logp1{δq

m
. (G.15)

Proof of Theorem 8.3.1. Having established these core intermediate results, we can now
combine above three lemmas to prove the main result. In particular, we bound the
population error on clean data (EDp pwfq) as follows:

(i) First, use (G.8), to obtain an upper bound on the population error on clean data, i.e.,
with probability at least 1 ´ δ{4, we have

EDp pwfq ď 1 ´ E
rSM

p pwfq `

c

logp4{δq

m
. (G.16)

(ii) Second, use (G.12), to relate the error on the mislabeled fraction with error on clean
portion of randomly labeled data and error on whole randomly labeled dataset, i.e.,
with probability at least 1 ´ δ{2, we have

´E
rSM

pfq ď E
rSC

pfq ´ 2E
rS ` 2E

rS

c

logp4{δq

2m
. (G.17)
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(iii) Finally, use (G.15) to relate the error on the clean portion of randomly labeled data
and error on clean training data, i.e., with probability 1 ´ δ{4, we have

E
rSC

p pwfq ď ´ESp pwfq `

´

1 `
m

2n

¯

c

logp4{δq

m
. (G.18)

Using union bound on the above three steps, we have with probability at least 1 ´ δ:

EDp pwfq ď ESp pwfq ` 1 ´ 2E
rSp pwfq `

´?
2E

rS ` 2 `
m

2n

¯

c

logp4{δq

m
. (G.19)

G.1.2 Proof of Proposition 8.3.5

Proof of Proposition 8.3.5. For a classifier f : X Ñ t´1, 1u, we have 1 ´ 2 I rfpxq ‰ ys “

y ¨ fpxq. Hence, by definition of E , we have

1 ´ 2E
rSpfq “

1

m

m
ÿ

i“1

yi ¨ fpxiq ď sup
fPF

1

m

m
ÿ

i“1

yi ¨ fpxiq . (G.20)

Note that for fixed inputs px1, x2, . . . , xmq in rS, py1, y2, . . . ymq are random labels. Define
ϕ1py1, y2, . . . , ymq :“ supfPF

1
m

řm
i“1 yi ¨ fpxiq. We have the following bounded difference

condition on ϕ1. For all i,

sup
y1,...ym,y1

iPt´1,1um`1

|ϕ1py1, . . . , yi, . . . , ymq ´ ϕ1py1, . . . , y
1
i, . . . , ymq| ď 1{m. (G.21)

Similarly, we define ϕ2px1, x2, . . . , xmq :“ Eyi„U t´1,1u

“

supfPF
1
m

řm
i“1 yi ¨ fpxiq

‰

. We have
the following bounded difference condition on ϕ2. For all i,

sup
x1,...xm,x1

iPXm`1

|ϕ2px1, . . . , xi, . . . , xmq ´ ϕ1px1, . . . , x
1
i, . . . , xmq| ď 1{m. (G.22)

Using McDiarmid’s inequality (Lemma G.0.4) twice with Condition (G.21) and (G.22),
with probability at least 1 ´ δ, we have

sup
fPF

1

m

m
ÿ

i“1

yi ¨ fpxiq ´ Ex,y

«

sup
fPF

1

m

m
ÿ

i“1

yi ¨ fpxiq

ff

ď

c

2 logp2{δq

m
. (G.23)

Combining (G.20) and (G.23), we obtain the desired result.
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G.1.3 Proof of Theorem 8.3.6

Proof of Theorem 8.3.6 follows similar to the proof of Theorem 8.3.1. Note that the same
results in Lemma 8.3.2, Lemma 8.3.3, and Lemma 8.3.4 hold in the regularized ERM case.
However, the arguments in the proof of Lemma 8.3.2 change slightly. Hence, we state the
lemma for regularized ERM and prove it here for completeness.
Lemma G.1.1. Assume the same setup as Theorem 8.3.6. Then for any δ ą 0, with
probability at least 1 ´ δ over the random draws of mislabeled data rSM , we have

EDp pfq ď 1 ´ E
rSM

p pfq `

c

logp1{δq

m
. (G.24)

Proof. The main idea of the proof remains the same, i.e. regard the clean portion of the
data (S Y rSC) as fixed. Then, there exists a classifier f˚ that is optimal over draws of the
mislabeled data rSM .

Formally,

f˚ :“ argmin
fPF

E
qDpfq ` λRpfq , (G.25)

where
qD “

n

m ` n
S `

m1

m ` n
rSC `

m2

m ` n
D1 .

That is, qD a combination of the empirical distribution over correctly labeled data S Y rSC

and the (population) distribution over mislabeled data D1. Recall that

pwf :“ argmin
fPF

ESYrSpfq ` λRpfq . (G.26)

Since, pf minimizes 0-1 error on S Y rS, using ERM optimality on (G.2), we have

ESY rSp pfq ` λRp pwfq ď ESY rSpf˚
q ` λRpf˚

q . (G.27)

Moreover, since f˚ is independent of rSM , using Hoeffding’s bound, we have with probability
at least 1 ´ δ that

E
rSM

pf˚
q ď ED1pf˚

q `

d

logp1{δq

2m1

. (G.28)

Finally, since f˚ is the optimal classifier on qD, we have

E
qDpf˚

q ` λRpf˚
q ď E

qDp pfq ` λRp pwfq . (G.29)

Now to relate (G.27) and (G.29), we can re-write the (G.28) as follows:

ESY rSpf˚
q ď E

qDpf˚
q `

m1

m ` n

d

logp1{δq

2m1

. (G.30)
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After adding λRpf˚q on both sides in (G.30), we combine equations (G.27), (G.30), and
(G.29), to get

ESY rSp pwfq ď E
qDp pwfq `

m1

m ` n

d

logp1{δq

2m1

, (G.31)

which implies

E
rSM

p pwfq ď ED1p pwfq `

d

logp1{δq

2m1

. (G.32)

Similar as before, since rS is obtained by randomly labeling an unlabeled dataset, we assume
2m1 « m. Moreover, using ED1 “ 1 ´ ED we obtain the desired result.

G.1.4 Proof of Theorem 8.3.7

To prove our results in the multiclass case, we first state and prove lemmas parallel to those
used in the proof of balanced binary case. We then combine these results to obtain the
result in Theorem 8.3.7.

Before stating the result, we define mislabeled distribution D1 for any D. While D1 and D
share the same marginal distribution over inputs X , the conditional distribution over labels
y given an input x „ DX is changed as follows: For any x, the Probability Mass Function
(PMF) over y is defined as: pD1p¨|xq :“ 1´pDp¨|xq

k´1
, where pDp¨|xq is the PMF over y for the

distribution D.
Lemma G.1.2. Assume the same setup as Theorem 8.3.7. Then for any δ ą 0, with
probability at least 1 ´ δ over the random draws of mislabeled data rSM , we have

EDp pfq ď pk ´ 1q

´

1 ´ E
rSM

p pfq

¯

` pk ´ 1q

c

logp1{δq

m
. (G.33)

Proof. The main idea of the proof remains the same. We begin by regarding the clean
portion of the data (S Y rSC) as fixed. Then, there exists a classifier f˚ that is optimal over
draws of the mislabeled data rSM .

However, in the multiclass case, we cannot as easily relate the population error on mislabeled
data to the population accuracy on clean data. While for binary classification, we could
lower bound the population accuracy 1 ´ ED with the empirical error on mislabeled data
E
rSM

(in the proof of Lemma 8.3.2), for multiclass classification, error on the mislabeled data
and accuracy on the clean data in the population are not so directly related. To establish
(G.33), we break the error on the (unknown) mislabeled data into two parts: one term
corresponds to predicting the true label on mislabeled data, and the other corresponds to
predicting neither the true label nor the assigned (mis-)label. Finally, we relate these errors
to their population counterparts to establish (G.33).
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Formally,

f˚ :“ argmin
fPF

E
qDpfq ` λRpfq , (G.34)

where
qD “

n

m ` n
S `

m1

m ` n
rSC `

m2

m ` n
D1 .

That is, qD is a combination of the empirical distribution over correctly labeled data S Y rSC

and the (population) distribution over mislabeled data D1. Recall that

pwf :“ argmin
fPF

ESYrSpfq ` λRpfq . (G.35)

Following the exact steps from the proof of Lemma G.1.1, with probability at least 1 ´ δ,
we have

E
rSM

p pwfq ď ED1p pwfq `

d

logp1{δq

2m1

. (G.36)

Similar to before, since rS is obtained by randomly labeling an unlabeled dataset, we assume
k

k´1
m1 « m.

Now we will relate ED1p pwfq with EDp pwfq. Let yT denote the (unknown) true label for a
mislabeled point px, yq (i.e., label before replacing it with a mislabel).

Epx,yqP„D1 rI r pwfpxq ‰ yss “ Epx,yqP„D1

“

I
“

pwfpxq ‰ y ^ pwfpxq ‰ yT
‰‰

l jh n

I

` Epx,yqP„D1

“

I
“

pwfpxq ‰ y ^ pwfpxq “ yT
‰‰

l jh n

II

. (G.37)

Clearly, term 2 is one minus the accuracy on the clean unseen data, i.e.,

II “ 1 ´ Ex,y„D rI r pwfpxq ‰ yss “ 1 ´ EDp pwfq . (G.38)

Next, we relate term 1 with the error on the unseen clean data. We show that term 1 is
equal to the error on the unseen clean data scaled by k´2

k´1
, where k is the number of labels.

Using the definition of mislabeled distribution D1, we have

I “
1

k ´ 1

˜

Epx,yqP„D

«

ÿ

iPY^i‰y

I r pwfpxq ‰ i ^ pwfpxq ‰ ys

ff¸

“
k ´ 2

k ´ 1
EDp pwfq . (G.39)

Combining the result in (G.38), (G.39) and (G.37), we have

ED1p pwfq “ 1 ´
1

k ´ 1
EDp pwfq . (G.40)
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Finally, combining the result in (G.40) with equation (G.36), we have with probability
1 ´ δ,

EDp pwfq ď pk ´ 1q

´

1 ´ E
rSM

p pwfq

¯

` pk ´ 1q

d

k logp1{δq

2pk ´ 1qm
. (G.41)

Lemma G.1.3. Assume the same setup as Theorem 8.3.7. Then for any δ ą 0, with
probability at least 1 ´ δ over the random draws of rS, we have∣∣∣kE

rSp pfq ´ E
rSC

p pfq ´ pk ´ 1qE
rSM

p pfq

∣∣∣ ď 2k

c

logp4{δq

2m
.

Proof. Recall E
rSpfq “ m1

m
E
rSM

pfq ` m2

m
E
rSC

pfq. Hence, we have

kE
rSpfq ´ pk ´ 1qE

rSM
pfq ´ E

rSC
pfq “ pk ´ 1q

ˆ

km1

pk ´ 1qm
E
rSM

pfq ´ E
rSM

pfq

˙

`

ˆ

km2

m
E
rSC

pfq ´ E
rSC

pfq

˙

“ k

„ˆ

m1

m
´

k ´ 1

k

˙

E
rSM

pfq `

ˆ

m2

m
´

1

k

˙

E
rSC

pfq

ȷ

.

Since the dataset is randomly labeled, we have with probability at least 1´ δ,
`

m1

m
´ k´1

k

˘

ď
b

logp1{δq

2m
. Similarly, we have with probability at least 1 ´ δ,

`

m2

m
´ 1

k

˘

ď

b

logp1{δq

2m
. Using

union bound, we have with probability at least 1 ´ δ

kE
rSpfq ´ pk ´ 1qE

rSM
pfq ´ E

rSC
pfq ď k

c

logp2{δq

2m

´

E
rSM

pfq ` E
rSC

pfq

¯

. (G.42)

Lemma G.1.4. Assume the same setup as Theorem 8.3.7. Then for any δ ą 0, with
probability at least 1 ´ δ over the random draws of rSC and S, we have∣∣∣E

rSC
p pfq ´ ESp pfq

∣∣∣ ď 1.5

c

k logp2{δq

2m
.

Proof. In the set of correctly labeled points SY rSC , we have S as a random subset of SY rSC .
Hence, using Hoeffding’s inequality for sampling without replacement (Lemma G.0.2), we
have with probability at least 1 ´ δ

E
rSc

p pwfq ´ ESY rSC
p pwfq ď

d

logp1{δq

2m2

. (G.43)
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Re-writing ESY rSC
p pwfq as m2

m2`n
E
rSC

p pwfq ` n
m2`n

ESp pwfq, we have with probability at least
1 ´ δ

ˆ

n

n ` m2

˙

`

E
rSc

p pwfq ´ ESp pwfq
˘

ď

d

logp1{δq

2m2

. (G.44)

As before, assuming km2 « m, we have with probability at least 1 ´ δ

E
rSc

p pwfq ´ ESp pwfq ď

´

1 `
m2

n

¯

c

k logp1{δq

2m
ď

ˆ

1 `
1

k

˙

c

k logp1{δq

2m
. (G.45)

Proof of Theorem 8.3.7. Having established these core intermediate results, we can now
combine above three lemmas. In particular, we bound the population error on clean data
(EDp pwfq) as follows:

(i) First, use (G.41), to obtain an upper bound on the population error on clean data,
i.e., with probability at least 1 ´ δ{4, we have

EDp pwfq ď pk ´ 1q

´

1 ´ E
rSM

p pwfq

¯

` pk ´ 1q

d

k logp4{δq

2pk ´ 1qm
. (G.46)

(ii) Second, use (G.42) to relate the error on the mislabeled fraction with error on clean
portion of randomly labeled data and error on whole randomly labeled dataset, i.e.,
with probability at least 1 ´ δ{2, we have

´pk ´ 1qE
rSM

pfq ď E
rSC

pfq ´ kE
rS ` k

c

logp4{δq

2m
. (G.47)

(iii) Finally, use (G.45) to relate the error on the clean portion of randomly labeled data
and error on clean training data, i.e., with probability 1 ´ δ{4, we have

E
rSC

p pwfq ď ´ESp pwfq `

´

1 `
m

kn

¯

c

k logp4{δq

2m
. (G.48)

Using union bound on the above three steps, we have with probability at least 1 ´ δ:

EDp pwfq ď ESp pwfq ` pk ´ 1q ´ kE
rSp pwfq ` p

a

kpk ´ 1q ` k `
?
k `

m

n
?
k

q

c

logp4{δq

2m
.

(G.49)

Simplifying the term in RHS of (G.49), we get the desired result. in the final bound.
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G.2 Proofs from Sec. 8.4
We suppose that the parameters of the linear function are obtained via gradient descent on
the following L2 regularized problem:

LSpw;λq :“
n
ÿ

i“1

pwTxi ´ yiq
2

` λ ∥w∥ 22 , (G.50)

where λ ě 0 is a regularization parameter. We assume access to a clean dataset S “

tpxi, yiquni“1 „ Dn and randomly labeled dataset rS “ tpxi, yiqu
n`m
i“n`1 „ rDm. Let X “

rx1, x2, ¨ ¨ ¨ , xm`ns and y “ ry1, y2, ¨ ¨ ¨ , ym`ns. Fix a positive learning rate η such that
η ď 1{

`
∥∥XTX

∥∥ op ` λ2
˘

and an initialization w0 “ 0. Consider the following gradient
descent iterates to minimize objective (G.50) on S Y rS:

wt “ wt´1 ´ η∇wLSYrSpwt´1;λq @t “ 1, 2, . . . (G.51)

Then we have twtu converge to the limiting solution pww “
`

XTX ` λI
˘´1

XTy. Define
pfpxq :“ fpx; pwwq.

G.2.1 Proof of Theorem 8.4.2

We use a standard result from linear algebra, namely the Shermann-Morrison formula
(Sherman and Morrison, 1950) for matrix inversion:
Lemma G.2.1 (Sherman and Morrison (1950)). Suppose A P Rnˆn is an invertible square
matrix and u, v P Rn are column vectors. Then A ` uvT is invertible iff 1 ` vTAu ‰ 0 and
in particular

pA ` uvT q
´1

“ A´1
´

A´1uvTA´1

1 ` vTA´1u
. (G.52)

For a given training set S Y rSC , define leave-one-out error on mislabeled points in the
training data as

ELOOprSM q
“

ř

pxi,yiqPrSM
Epfpiqpxiq, yiq∣∣∣rSM

∣∣∣ ,

where fpiq :“ fpA, pS Y rSqpiqq. To relate empirical leave-one-out error and population error
with hypothesis stability condition, we use the following lemma:
Lemma G.2.2 (Bousquet and Elisseeff (2002)). For the leave-one-out error, we have

E
„

´

ED1p pwfq ´ ELOOprSM q

¯2
ȷ

ď
1

2m1

`
3β

n ` m
. (G.53)

Proof of the above lemma is similar to the proof of Lemma 9 in Bousquet and Elisseeff
(2002) and can be found in App. G.4. Before presenting the proof of Theorem 8.4.2, we
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introduce some more notation. Let Xpiq denote the matrix of covariates with the ith point
removed. Similarly, let ypiq be the array of responses with the ith point removed. Define

the corresponding regularized GD solution as pwwpiq “

´

XT
piqXpiq ` λI

¯´1

XT
piqypiq. Define

pwfpiqpxq :“ fpx; pwwpiqq.

Proof of Theorem 8.4.2. Because squared loss minimization does not imply 0-1 error mini-
mization, we cannot use arguments from Lemma 8.3.2. This is the main technical difficulty.
To compare the 0-1 error at a train point with an unseen point, we use the closed-form
expression for pw and Shermann-Morrison formula to upper bound training error with
leave-one-out cross validation error.

The proof is divided into three parts: In part one, we show that 0-1 error on mislabeled
points in the training set is lower than the error obtained by leave-one-out error at those
points. In part two, we relate this leave-one-out error with the population error on mislabeled
distribution using Condition 8.4.1. While the empirical leave-one-out error is an unbiased
estimator of the average population error of leave-one-out classifiers, we need hypothesis
stability to control the variance of empirical leave-one-out error. Finally, in part three,
we show that the error on the mislabeled training points can be estimated with just the
randomly labeled and clean training data (as in proof of Theorem 8.3.1).

Part 1 First we relate training error with leave-one-out error. For any training point
pxi, yiq in rS Y S, we have

Ep pwfpxiq, yiq “ I
“

yi ¨ xT
i pww ă 0

‰

“ I
”

yi ¨ xT
i

`

XTX ` λI
˘´1

XTy ă 0
ı

(G.54)

“ I

»

—

—

–

yi ¨ xT
i

`

XT
piqXpiq ` xT

i xi ` λI
˘´1

l jh n

I

pXT
piqypiq ` yi ¨ xiq ă 0

fi

ffi

ffi

fl

. (G.55)

Letting A “

´

XT
piqXpiq ` λI

¯

and using Lemma G.2.1 on term 1, we have

Ep pwfpxiq, yiq “ I
„

yi ¨ xT
i

„

A´1
´

A´1xix
T
i A

´1

1 ` xT
i A

´1xi

ȷ

pXT
piqypiq ` yi ¨ xiq ă 0

ȷ

(G.56)

“ I
„

yi ¨

„

xT
i A

´1p1 ` xT
i A

´1xiq ´ xT
i A

´1xix
T
i A

´1

1 ` xT
i A

´1xi

ȷ

pXT
piqypiq ` yi ¨ xiq ă 0

ȷ

(G.57)

“ I
„

yi ¨

„

xT
i A

´1

1 ` xT
i A

´1xi

ȷ

pXT
piqypiq ` yi ¨ xiq ă 0

ȷ

. (G.58)

Since 1 ` xT
i A

´1xi ą 0, we have

Ep pwfpxiq, yiq “ I
“

yi ¨ xT
i A

´1
pXT

piqypiq ` yi ¨ xiq ă 0
‰

(G.59)

“ I
“

xT
i A

´1xi ` yi ¨ xT
i A

´1
pXT

piqypiqq ă 0
‰

(G.60)
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ď I
“

yi ¨ xT
i A

´1
pXT

piqypiqq ă 0
‰

“ Ep pwfpiqpxiq, yiq . (G.61)

Using (G.61), we have

E
rSM

p pwfq ď ELOOprSM q
:“

ř

pxi,yiqPrSM
Ep pwfpiqpxiq, yiq∣∣∣ rSM

∣∣∣ . (G.62)

Part 2 We now relate RHS in (G.62) with the population error on mislabeled distribution.
To do this, we leverage Condition 8.4.1 and Lemma G.2.2. In particular, we have

ESY rSM

„

´

ED1p pwfq ´ ELOOprSM q

¯2
ȷ

ď
1

2m1

`
3β

m ` n
. (G.63)

Using Chebyshev’s inequality, with probability at least 1 ´ δ, we have

ELOOprSM q
ď ED1p pwfq `

d

1

δ

ˆ

1

2m1

`
3β

m ` n

˙

. (G.64)

Part 3 Combining (G.64) and (G.62), we have

E
rSM

p pwfq ď ED1p pwfq `

d

1

δ

ˆ

1

2m1

`
3β

m ` n

˙

. (G.65)

Compare (G.65) with (G.8) in the proof of Lemma 8.3.2. We obtain a similar relationship
between E

rSM
and ED1 but with a polynomial concentration instead of exponential concen-

tration. In addition, since we just use concentration arguments to relate mislabeled error
to the errors on the clean and unlabeled portions of the randomly labeled data, we can
directly use the results in Lemma 8.3.3 and Lemma 8.3.4. Therefore, combining results
in Lemma 8.3.3, Lemma 8.3.4, and (G.65) with union bound, we have with probability at
least 1 ´ δ

EDp pfq ď ESp pfq ` 1 ´ 2E
rSp pfq `

´?
2E

rSp pfq ` 1 `
m

2n

¯

c

logp4{δq

m
`

d

4

δ

ˆ

1

m
`

3β

m ` n

˙

.

(G.66)
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G.2.2 Extension to multiclass classification

For multiclass problems with squared loss minimization, as standard practice, we con-
sider one-hot encoding for the underlying label, i.e., a class label c P rks is treated as
p0, ¨, 0, 1, 0, ¨, 0q P Rk (with c-th coordinate being 1). As before, we suppose that the param-
eters of the linear function are obtained via gradient descent on the following L2 regularized
problem:

LSpw;λq :“
n
ÿ

i“1

∥∥wTxi ´ yi
∥∥ 22 ` λ

k
ÿ

j“1

∥wj∥ 22 , (G.67)

where λ ě 0 is a regularization parameter. We assume access to a clean dataset S “

tpxi, yiquni“1 „ Dn and randomly labeled dataset rS “ tpxi, yiqu
n`m
i“n`1 „ rDm. Let X “

rx1, x2, ¨ ¨ ¨ , xm`ns and y “ rey1 , ey2 , ¨ ¨ ¨ , eym`ns. Fix a positive learning rate η such that
η ď 1{

`∥∥XTX
∥∥ op ` λ2

˘

and an initialization w0 “ 0. Consider the following gradient
descent iterates to minimize objective (G.50) on S Y rS:

wj
t

“ wj
t´1

´ η∇wj
LSYrSpwt´1;λq @t “ 1, 2, . . . and j “ 1, 2, . . . , k . (G.68)

Then we have twj
tu for all j “ 1, 2, ¨ ¨ ¨ , k converge to the limiting solution pwwj “

`

XTX ` λI
˘´1

XTyj. Define pfpxq :“ fpx; pwwq.
Theorem G.2.3. Assume that this gradient descent algorithm satisfies Condition 8.4.1
with β “ Op1q. Then for a multiclass classification problem wth k classes, for any δ ą 0,
with probability at least 1 ´ δ, we have:

EDp pfq ď ESp pfq ` pk ´ 1q

ˆ

1 ´
k

k ´ 1
E
rSp pfq

˙

`

ˆ

k `
?
k `

m

n
?
k

˙

c

logp4{δq

2m
`
a

kpk ´ 1q

d

4

δ

ˆ

1

m
`

3β

m ` n

˙

. (G.69)

Proof. The proof of this theorem is divided into two parts. In the first part, we relate the
error on the mislabeled samples with the population error on the mislabeled data. Similar
to the proof of Theorem 8.4.2, we use Shermann-Morrison formula to upper bound training
error with leave-one-out error on each pwwj. Second part of the proof follows entirely from
the proof of Theorem 8.3.7. In essence, the first part derives an equivalent of (G.36) for GD
training with squared loss and then the second part follows from the proof of Theorem 8.3.7.

Part-1: Consider a training point pxi, yiq in rS Y S. For simplicity, we use ci to denote
the class of i-th point and use yi as the corresponding one-hot embedding. Recall error
in multiclass point is given by Ep pwfpxiq, yiq “ I

“

ci R argmaxxT
i pww

‰

. Thus, there exists a
j ‰ ci P rks, such that we have

Ep pwfpxiq, yiq “ I
“

ci R argmaxxT
i pww

‰

“ I
“

xT
i pwwci ă xT

i pwwj

‰

(G.70)

“ I
”

xT
i

`

XTX ` λI
˘´1

XTyci ă xT
i

`

XTX ` λI
˘´1

XTyj

ı

(G.71)

336



“ I

»

—

—

–

xT
i

`

XT
piqXpiq ` xT

i xi ` λI
˘´1

l jh n

I

´

XT
piqyci piq ` xi ´ XT

piqyjpiq

¯

ă 0

fi

ffi

ffi

fl

.

(G.72)

Letting A “

´

XT
piqXpiq ` λI

¯

and using Lemma G.2.1 on term 1, we have

Ep pwfpxiq, yiq “ I
„

xT
i

„

A´1
´

A´1xix
T
i A

´1

1 ` xT
i A

´1xi

ȷ

´

XT
piqyci piq ` xi ´ XT

piqyjpiq

¯

ă 0

ȷ

(G.73)

“ I
„„

xT
i A

´1p1 ` xT
i A

´1xiq ´ xT
i A

´1xix
T
i A

´1

1 ` xT
i A

´1xi

ȷ

´

XT
piqyci piq ` xi ´ XT

piqyjpiq

¯

ă 0

ȷ

(G.74)

“ I
„„

xT
i A

´1

1 ` xT
i A

´1xi

ȷ

´

XT
piqyci piq ` xi ´ XT

piqyjpiq

¯

ă 0

ȷ

. (G.75)

Since 1 ` xT
i A

´1xi ą 0, we have

Ep pwfpxiq, yiq “ I
”

xT
i A

´1
´

XT
piqyci piq ` xi ´ XT

piqyjpiq

¯

ă 0
ı

(G.76)

“ I
”

xT
i A

´1xi ` xT
i A

´1XT
piqyci piq ´ xT

i A
´1XT

piqyjpiq ă 0
ı

(G.77)

ď I
”

xT
i A

´1XT
piqyci piq ´ xT

i A
´1XT

piqyjpiq ă 0
ı

“ Ep pwfpiqpxiq, yiq . (G.78)

Using (G.78), we have

E
rSM

p pwfq ď ELOOprSM q
:“

ř

pxi,yiqPrSM
Ep pwfpiqpxiq, yiq∣∣∣ rSM

∣∣∣ . (G.79)

We now relate RHS in (G.62) with the population error on mislabeled distribution. Similar
as before, to do this, we leverage Condition 8.4.1 and Lemma G.2.2. Using (G.64) and
(G.79), we have

E
rSM

p pwfq ď ED1p pwfq `

d

1

δ

ˆ

1

2m1

`
3β

m ` n

˙

. (G.80)

We have now derived a parallel to (G.36). Using the same arguments in the proof of
Lemma G.1.2, we have

EDp pwfq ď pk ´ 1q

´

1 ´ E
rSM

p pwfq

¯

` pk ´ 1q

d

k

δpk ´ 1q

ˆ

1

2m1

`
3β

m ` n

˙

. (G.81)
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Part-2: We now combine the results in Lemma G.1.3 and Lemma G.1.4 to obtain the final
inequality in terms of quantities that can be computed from just the randomly labeled and
clean data. Similar to the binary case, we obtained a polynomial concentration instead of
exponential concentration. Combining (G.81) with Lemma G.1.3 and Lemma G.1.4, we
have with probability at least 1 ´ δ

EDp pfq ď ESp pfq ` pk ´ 1q

ˆ

1 ´
k

k ´ 1
E
rSp pfq

˙

`

ˆ

k `
?
k `

m

n
?
k

˙

c

logp4{δq

2m
`
a

kpk ´ 1q

d

4

δ

ˆ

1

m
`

3β

m ` n

˙

. (G.82)

G.2.3 Discussion on Condition 8.4.1

The quantity in LHS of Condition 8.4.1 measures how much the function learned by the
algorithm (in terms of error on unseen point) will change when one point in the training set
is removed. We need hypothesis stability condition to control the variance of the empirical
leave-one-out error to show concentration of average leave-one-error with the population
error.

Additionally, we note that while the dominating term in the RHS of Theorem 8.4.2
matches with the dominating term in ERM bound in Theorem 8.3.1, there is a polynomial
concentration term (dependence on 1{δ instead of logp

a

1{δq) in Theorem 8.4.2. Since with
hypothesis stability, we just bound the variance, the polynomial concentration is due to the
use of Chebyshev’s inequality instead of an exponential tail inequality (as in Lemma 8.3.2).
Recent works have highlighted that a slightly stronger condition than hypothesis stability
can be used to obtain an exponential concentration for leave-one-out error (Abou-Moustafa
and Szepesvári, 2019), but we leave this for future work for now.

G.2.4 Formal statement and proof of Proposition 8.4.3

Before formally presenting the result, we will introduce some notation. By LSpwq, we
denote the objective in (G.50) with λ “ 0. Assume Singular Value Decomposition (SVD) of
X as

?
nUS1{2V T . Hence XTX “ V SV T . Consider the GD iterates defined in (G.51).

We now derive closed form expression for the tth iterate of gradient descent:

wt “ wt´1 ` η ¨ XT
py ´ Xwt´1q “ pI ´ ηV SV T

qwk´1 ` ηXTy . (G.83)

Rotating by V T , we get

rwt “ pI ´ ηSq rwk´1 ` ηry, (G.84)

where rwt “ V Twt and ry “ V TXTy. Assuming the initial point w0 “ 0 and applying the
recursion in (G.84), we get

rwt “ S´1
pI ´ pI ´ ηSq

k
qry , (G.85)
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Projecting solution back to the original space, we have

wt “ V S´1
pI ´ pI ´ ηSq

k
qV TXTy . (G.86)

Define ftpxq :“ fpx;wtq as the solution at the tth iterate. Let rwλ “ argminw LSpw;λq “

pXTX ` λIq´1XTy “ V pS ` λIq´1V TXTy. and define rfλpxq :“ fpx; rwλq as the regular-
ized solution. Assume κ be the condition number of the population covariance matrix and
let smin be the minimum positive singular value of the empirical covariance matrix. Our
proof idea is inspired from recent work on relating gradient flow solution and regularized
solution for regression problems (Ali et al., 2018). We will use the following lemma in the
proof:
Lemma G.2.4. For all x P r0, 1s and for all k P N, we have (a) kx

1`kx
ď 1 ´ p1 ´ xqk and

(b) 1 ´ p1 ´ xqk ď 2 ¨ kx
kx`1

.

Proof. Using p1 ´ xqk ď 1
1`kx

, we have part (a). For part (b), we numerically maximize
p1`kxqp1´p1´xqkq

kx
for all k ě 1 and for all x P r0, 1s.

Proposition G.2.5 (Formal statement of Proposition 8.4.3). Let λ “ 1
tη

. For a training
point x, we have

Ex„S

”

pftpxq ´ rfλpxqq
2
ı

ď cpt, ηq ¨ Ex„S
“

ftpxq
2
‰

,

where cpt, ηq :“ minp0.25, 1
s2mint

2η2
q. Similarly for a test point, we have

Ex„DX

”

pftpxq ´ rfλpxqq
2
ı

ď κ ¨ cpt, ηq ¨ Ex„DX

“

ftpxq
2
‰

.

Proof. We want to analyze the expected squared difference output of regularized linear regres-
sion with regularization constant λ “ 1

ηt
and the gradient descent solution at the tth iterate.

We separately expand the algebraic expression for squared difference at a training point and
a test point. Then the main step is to show that

“

S´1pI ´ pI ´ ηSqkq ´ pS ` λIq´1
‰

ĺ

cpη, tq ¨ S´1pI ´ pI ´ ηSqkq.

Part 1 First, we will analyze the squared difference of the output at a training point (for
simplicity, we refer to S Y rS as S), i.e.,

Ex„S

„

´

ftpxq ´ rfλpxq

¯2
ȷ

“ ∥Xwt ´ X rwλ∥ 22 (G.87)

“
∥∥XV S´1

pI ´ pI ´ ηSq
t
qV TXTy ´ XV pS ` λIq

´1V TXTy
∥∥ 22

(G.88)
“

∥∥XV
`

S´1
pI ´ pI ´ ηSq

t
q ´ pS ` λIq

´1
˘

V TXTy
∥∥ 2

(G.89)

“ yTV X

¨

˚

˚

˝

S´1
pI ´ pI ´ ηSq

t
q ´ pS ` λIq

´1

l jh n

I

˛

‹

‹

‚

2

SV TXTy .

(G.90)
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We now separately consider term 1. Substituting λ “ 1
tη

, we get

S´1
pI ´ pI ´ ηSq

t
q ´ pS ` λIq

´1
“ S´1

`

pI ´ pI ´ ηSq
t
q ´ pI ` S´1λq

´1
˘

(G.91)
“ S´1

`

pI ´ pI ´ ηSq
t
q ´ pI ` pStηq

´1
q

´1
˘

l jh n

A

. (G.92)

We now separately bound the diagonal entries in matrix A. With si, we denote ith diagonal
entry of S. Note that since η ď 1{ ∥S∥ op, for all i, ηsi ď 1. Consider ith diagonal term
(which is non-zero) of the diagonal matrix A, we have

Aii “
1

si

ˆ

1 ´ p1 ´ siηq
t

´
tηsi

1 ` tηsi

˙

“
1 ´ p1 ´ siηqt

si

¨

˚

˚

˚

˚

˝

1 ´
tηsi

p1 ` tηsiqp1 ´ p1 ´ siηqtq
l jh n

II

˛

‹

‹

‹

‹

‚

(G.93)

ď
1

2

„

1 ´ p1 ´ siηqt

si

ȷ

. (Using Lemma G.2.4 (b))

Additionally, we can also show the following upper bound on term 2:

1 ´
tηsi

p1 ` tηsiqp1 ´ p1 ´ siηqtq
“

p1 ` tηsiqp1 ´ p1 ´ siηqtq ´ tηsi
p1 ` tηsiqp1 ´ p1 ´ siηqtq

(G.94)

ď
1 ´ p1 ´ siηqt ´ tηsip1 ´ siηqt

p1 ` tηsiqp1 ´ p1 ´ siηqtq
(G.95)

ď
1

tηsi
. (Using Lemma G.2.4 (a))

Combining both the upper bounds on each diagonal entry Aii, we have

A ĺ c1pη, tq ¨ S´1
pI ´ pI ´ ηSq

t
q , (G.96)

where c1pη, tq “ minp0.5, 1
tsiη

q. Plugging this into (G.90), we have

Ex„S

„

´

ftpxq ´ rfλpxq

¯2
ȷ

ď cpη, tq ¨ yTV X
`

S´1
pI ´ pI ´ ηSq

t
q
˘2

SV TXTy (G.97)

“ cpη, tq ¨ yTV X
`

S´1
pI ´ pI ´ ηSq

t
q
˘

S
`

S´1
pI ´ pI ´ ηSq

t
q
˘

V TXTy
(G.98)

“ cpη, tq ¨ ∥Xwt∥ 22 (G.99)

“ cpη, tq ¨ Ex„S
“

pftpxqq
2
‰

, (G.100)
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where cpη, tq “ minp0.25, 1
t2s2i η

2 q.

Part 2 With Σ, we denote the underlying true covariance matrix. We now consider the
squared difference of output at an unseen point:

Ex„DX

„

´

ftpxq ´ rfλpxq

¯2
ȷ

“ Ex„DX

“
∥∥xTwt ´ xT

rwλ

∥∥ 2‰ (G.101)

“
∥∥xTV S´1

pI ´ pI ´ ηSq
t
qV TXTy ´ xTV pS ` λIq

´1V TXTy
∥∥ 2

(G.102)
“

∥∥xTV
`

S´1
pI ´ pI ´ ηSq

t
q ´ pS ` λIq

´1
˘

V TXTy
∥∥ 2

(G.103)
“ yTV X

`

S´1
pI ´ pI ´ ηSq

t
q ´ pS ` λIq

´1
˘

V TΣV
(G.104)

`

pI ´ pI ´ ηSq
t
q ´ pS ` λIq

´1
˘

V TXTy
(G.105)

ď σmax ¨ yTV X

¨

˚

˚

˝

S´1
pI ´ pI ´ ηSq

t
q ´ pS ` λIq

´1

l jh n

I

˛

‹

‹

‚

2

V TXTy ,

(G.106)

where σmax is the maximum eigenvalue of the underlying covariance matrix Σ. Using the
upper bound on term 1 in (G.96), we have

Ex„DX

„

´

ftpxq ´ rfλpxq

¯2
ȷ

ď σmax ¨ cpη, tq ¨ yTV X
`

S´1
pI ´ pI ´ ηSq

t
q
˘2

V TXTy

(G.107)
“ κ ¨ cpη, tq ¨ σmin ¨

∥∥V `

S´1
pI ´ pI ´ ηSq

t
q
˘

V TXTy
∥∥ 22
(G.108)

ď κ ¨ cpη, tq ¨
“

V
`

S´1
pI ´ pI ´ ηSq

t
q
˘

V TXT
‰T

Σ (G.109)
“

V
`

S´1
pI ´ pI ´ ηSq

t
q
˘

V TXT
‰

y
(G.110)

“ κ ¨ cpη, tq ¨ Ex„DX

“
∥∥xTwt

∥∥ 2‰ . (G.111)

G.2.5 Extension to deep learning

Under Assumption G.2.6, we present the formal result parallel to Theorem 8.3.7.
Theorem G.2.6. Consider a multiclass classification problem with k classes. Under
Assumption 2, for any δ ą 0, with probability at least 1 ´ δ, we have

EDp pfq ď ESp pfq ` pk ´ 1q

´

1 ´ k
k´1

E
rSp pfq

¯

` c

d

logp4
δ
q

2m
, (G.112)
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for some constant c ď ppc ` 1qk `
?
k ` m

n
?
k
q.

The proof follows exactly as in step (i) to (iii) in Theorem 8.3.7.

G.2.6 Justifying Assumption 2

Motivated by the analysis on linear models, we now discuss alternate (and weaker) conditions
that imply Assumption 2. We need hypothesis stability (Condition 8.4.1) and the following
assumption relating training error and leave-one-error:
Assumption 6. Let pwf be a model obtained by training with algorithm A on a mixture of
clean S and randomly labeled data rS. Then we assume we have

E
rSM

p pwfq ď ELOOprSM q
,

for all pxi, yiq P rSM where pwfpiq :“ fpA, S Y rSM piqq and ELOOprSM q
:“

ř

pxi,yiqP rSM
Ep pwfpiqpxiq,yiq

| rSM | .

Intuitively, this assumption states that the error on a (mislabeled) datum px, yq included in
the training set is less than the error on that datum px, yq obtained by a model trained
on the training set S ´ tpx, yqu. We proved this for linear models trained with GD in the
proof of Theorem G.2.3. Condition 8.4.1 with β “ Op1q and Assumption 6 together with
Lemma G.2.2 implies Assumption 2 with a polynomial residual term (instead of logarithmic
in 1{δ):

ESM
p pwfq ď ED1p pwfq `

d

1

δ

ˆ

1

m
`

3β

m ` n

˙

. (G.113)
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G.3 Additional experiments and details

G.3.1 Datasets

Toy Dataset Assume fixed constants µ and σ. For a given label y, we simulate features
x in our toy classification setup as follows:

x :“ concat rx1, x2s where x1 „ N py ¨ µ, σ2Idˆdq and x1 „ N p0, σ2Idˆdq .

In experiements throughout the paper, we fix dimention d “ 100, µ “ 1.0, and σ “
?
d.

Intuitively, x1 carries the information about the underlying label and x2 is additional noise
independent of the underlying label.

CV datasets We use MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky and Hinton,
2009). We produce a binary variant from the multiclass classification problem by mapping
classes t0, 1, 2, 3, 4u to label 1 and t5, 6, 7, 8, 9u to label ´1. For CIFAR dataset, we also
use the standard data augementation of random crop and horizontal flip. PyTorch code is
as follows:

(transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip())

NLP dataset We use IMDb Sentiment analysis (Maas et al., 2011) corpus.

G.3.2 Architecture Details

All experiments were run on NVIDIA GeForce RTX 2080 Ti GPUs. We used Py-
Torch (Paszke et al., 2019) and Keras with Tensorflow (Abadi et al., 2016) backend
for experiments.

Linear model For the toy dataset, we simulate a linear model with scalar output and
the same number of parameters as the number of dimensions.

Wide nets To simulate the NTK regime, we experiment with 2´layered wide nets. The
PyTorch code for 2-layer wide MLP is as follows:

nn.Sequential(
nn.Flatten(),
nn.Linear(input_dims, 200000, bias=True),
nn.ReLU(),
nn.Linear(200000, 1, bias=True)
)

We experiment both (i) with the second layer fixed at random initialization; (ii) and
updating both layers’ weights.

Deep nets for CV tasks We consider a 4-layered MLP. The PyTorch code for 4-layer
MLP is as follows:
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nn.Sequential(nn.Flatten(),
nn.Linear(input_dim, 5000, bias=True),
nn.ReLU(),
nn.Linear(5000, 5000, bias=True),
nn.ReLU(),
nn.Linear(5000, 5000, bias=True),
nn.ReLU(),
nn.Linear(1024, num_label, bias=True)
)

For MNIST, we use 1000 nodes instead of 5000 nodes in the hidden layer. We also experiment
with convolutional nets. In particular, we use ResNet18 (He et al., 2016). Implementation
adapted from: https://github.com/kuangliu/pytorch-cifar.git.

Deep nets for NLP We use a simple LSTM model with embeddings intialized with ELMo
embeddings (Peters et al., 2018). Code adapted from: https://github.com/kamujun/
elmo_experiments/blob/master/elmo_experiment/notebooks/elmo_text_classification_
on_imdb.ipynb

We also evaluate our bounds with a BERT model. In particular, we fine-tune an off-the-shelf
uncased BERT model (Devlin et al., 2019). Code adapted from Hugging Face Trans-
formers (Wolf et al., 2020): https://huggingface.co/transformers/v3.1.0/custom_
datasets.html.

G.3.3 Additonal experiments

Results with SGD on underparameterized linear models

0.0 0.1 0.2 0.3 0.4
Fraction of unlabeled data

50

60

70

80

90

100

Ac
cu

ra
cy

Underparameterized model
MSE
CE

Test
Predicted bound

Figure G.1: We plot the accuracy and corresponding bound (RHS in (8.1)) at δ “ 0.1 for
toy binary classification task. Results aggregated over 3 seeds. Accuracy vs fraction of
unlabeled data (w.r.t clean data) in the toy setup with a linear model trained with SGD.
Results parallel to Fig. 8.2(a) with SGD.

Results with wide nets on binary MNIST

Results on CIFAR 10 and MNIST We plot epoch wise error curve for results in
Table 8.1(Fig. G.3 and Fig. G.4). We observe the same trend as in Fig. 8.1. Additionally, we
plot an oracle bound obtained by tracking the error on mislabeled data which nevertheless
were predicted as true label. To obtain an exact emprical value of the oracle bound, we
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(a) GD with MSE loss
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(b) SGD with CE loss
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(c) SGD with MSE loss

Figure G.2: We plot the accuracy and corresponding bound (RHS in (8.1)) at δ “ 0.1 for
binary MNIST classification. Results aggregated over 3 seeds. Accuracy vs fraction of
unlabeled data for a 2-layer wide network on binary MNIST with both the layers training
in (a,b) and only first layer training in (c). Results parallel to Fig. 8.2(b) .

need underlying true labels for the randomly labeled data. While with just access to extra
unlabeled data we cannot calculate oracle bound, we note that the oracle bound is very
tight and never violated in practice underscoring an importamt aspect of generalization in
multiclass problems. This highlight that even a stronger conjecture may hold in multiclass
classification, i.e., error on mislabeled data (where nevertheless true label was predicted)
lower bounds the population error on the distribution of mislabeled data and hence, the
error on (a specific) mislabeled portion predicts the population accuracy on clean data. On
the other hand, the dominating term of in Theorem 8.3.7 is loose when compared with the
oracle bound. The main reason, we believe is the pessimistic upper bound in (G.36) in the
proof of Lemma G.1.2. We leave an investigation on this gap for future.
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(b) ResNet

Figure G.3: Per epoch curves for CIFAR10 corresponding results in Table 8.1. As before,
we just plot the dominating term in the RHS of (8.5) as predicted bound. Additionally,
we also plot the predicted lower bound by the error on mislabeled data which nevertheless
were predicted as true label. We refer to this as “Oracle bound”. See text for more details.

Results on CIFAR 100 On CIFAR100, our bound in (8.5) yields vacous bounds.
However, the oracle bound as explained above yields tight guarantees in the initial phase of
the learning (i.e., when learning rate is less than 0.1) (Fig. G.5).
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(a) MLP
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(b) ResNet

Figure G.4: Per epoch curves for MNIST corresponding results in Table 8.1. As before,
we just plot the dominating term in the RHS of (8.5) as predicted bound. Additionally,
we also plot the predicted lower bound by the error on mislabeled data which nevertheless
were predicted as true label. We refer to this as “Oracle bound”. See text for more details.
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Figure G.5: Predicted lower bound by the error on mislabeled data which nevertheless were
predicted as true label with ResNet18 on CIFAR100. We refer to this as “Oracle bound”.
See text for more details. The bound predicted by RATT (RHS in (8.5)) is vacuous.

G.3.4 Hyperparameter Details

Fig. 8.1 We use clean training dataset of size 40, 000. We fix the amount of unlabeled
data at 20% of the clean size, i.e. we include additional 8, 000 points with randomly assigned
labels. We use test set of 10, 000 points. For both MLP and ResNet, we use SGD with
an initial learning rate of 0.1 and momentum 0.9. We fix the weight decay parameter at
5 ˆ 10´4. After 100 epochs, we decay the learning rate to 0.01. We use SGD batch size of
100.

Fig. 8.2 (a) We obtain a toy dataset according to the process described in Sec. G.3.1.
We fix d “ 100 and create a dataset of 50, 000 points with balanced classes. Moreover, we
sample additional covariates with the same procedure to create randomly labeled dataset.
For both SGD and GD training, we use a fixed learning rate 0.1.

Fig. 8.2 (b) Similar to binary CIFAR, we use clean training dataset of size 40, 000 and
fix the amount of unlabeled data at 20% of the clean dataset size. To train wide nets, we
use a fixed learning of 0.001 with GD and SGD. We decide the weight decay parameter and
the early stopping point that maximizes our generalization bound (i.e. without peeking at
unseen data ). We use SGD batch size of 100.

Fig. 8.2 (c) With IMDb dataset, we use a clean dataset of size 20, 000 and as before,
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fix the amount of unlabeled data at 20% of the clean data. To train ELMo model, we use
Adam optimizer with a fixed learning rate 0.01 and weight decay 10´6 to minimize cross
entropy loss. We train with batch size 32 for 3 epochs. To fine-tune BERT model, we use
Adam optimizer with learning rate 5 ˆ 10´5 to minimize cross entropy loss. We train with
a batch size of 16 for 1 epoch.

Table 8.1 For multiclass datasets, we train both MLP and ResNet with the same
hyperparameters as described before. We sample a clean training dataset of size 40, 000
and fix the amount of unlabeled data at 20% of the clean size. We use SGD with an initial
learning rate of 0.1 and momentum 0.9. We fix the weight decay parameter at 5 ˆ 10´4.
After 30 epochs for ResNet and after 50 epochs for MLP, we decay the learning rate to
0.01. We use SGD with batch size 100. For Fig. G.5, we use the same hyperparameters as
CIFAR10 training, except we now decay learning rate after 100 epochs.

In all experiments, to identify the best possible accuracy on just the clean data, we use the
exact same set of hyperparamters except the stopping point. We choose a stopping point
that maximizes test performance.

G.3.5 Summary of experiments

Classification type Model category Model Dataset

Binary

Low dimensional Linear model Toy Gaussain dataset
Overparameterized 2-layer wide net Binary MNISTlinear nets

Deep nets

MLP Binary MNIST
Binary CIFAR

ResNet Binary MNIST
Binary CIFAR

ELMo-LSTM model IMDb Sentiment Analysis
BERT pre-trained model IMDb Sentiment Analysis

Multiclass Deep nets

MLP MNIST
CIFAR10

ResNet
MNIST

CIFAR10
CIFAR100
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G.4 Proof of Lemma G.2.2
Proof of Lemma G.2.2. Recall, we have a training set S Y rSC . We defined leave-one-out
error on mislabeled points as

ELOOprSM q
“

ř

pxi,yiqPrSM
Epfpiqpxiq, yiq∣∣∣rSM

∣∣∣ ,

where fpiq :“ fpA, pS Y rSqpiqq. Define S 1 :“ S Y rS. Assume px, yq and px1, y1q as i.i.d.
samples from D1. Using Lemma 25 in Bousquet and Elisseeff (2002), we have

E
„

´

ED1p pwfq ´ ELOOprSM q

¯2
ȷ

ďES1,px,yq,px1,y1q rEp pwfpxq, yqEp pwfpx1
q, y1

qs ´ 2ES1,px,yq

“

Ep pwfpxq, yqEpfpiqpxiq, yiq
‰

`
m1 ´ 1

m1

ES1

“

Epfpiqpxiq, yiqEpfpjqpxjq, yjq
‰

`
1

m1

ES1

“

Epfpiqpxiq, yiq
‰

.

(G.114)

We can rewrite the equation above as :

E
„

´

ED1p pwfq ´ ELOOprSM q

¯2
ȷ

ď ES1,px,yq,px1,y1q

“

Ep pwfpxq, yqEp pwfpx1
q, y1

q ´ Ep pwfpxq, yqEpfpiqpxiq, yiq
‰

l jh n

I

` ES1

“

Epfpiqpxiq, yiqEpfpjqpxjq, yjq ´ Ep pwfpxq, yqEpfpiqpxiq, yiq
‰

l jh n

II

`
1

m1

ES1

“

Epfpiqpxiq, yiq ´ Epfpiqpxiq, yiqEpfpjqpxjq, yjq
‰

l jh n

III

.

(G.115)

We will now bound term III. Using Cauchy-Schwarz’s inequality, we have

ES1

“

Epfpiqpxiq, yiq ´ Epfpiqpxiq, yiqEpfpjqpxjq, yjq
‰2

ď ES1

“

Epfpiqpxiq, yiq
‰2 ES1

“

1 ´ Epfpjqpxjq, yjq
‰2

(G.116)

ď
1

4
. (G.117)

Note that since pxi, yiq, pxj, yjq, px, yq, and px1, y1q are all from same distribution D1, we
directly incorporate the bounds on term I and II from the proof of Lemma 9 in Bousquet
and Elisseeff (2002). Combining that with (G.117) and our definition of hypothesis stability
in Condition 8.4.1, we have the required claim.
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Appendix H

Appendix: Leveraging Unlabeled Data
to Predict Out-of-Distribution
Performance

H.1 Proofs from Sec. 12.2
Before proving results from Sec. 12.2, we introduce some notations. Define Epfpxq, yq :“
I
“

y R argmaxjPY fjpxq
‰

. We express the population error on distribution D as EDpfq :“
Epx,yq„D rEpfpxq, yqs.

Proof of Proposition 9.3.1. Consider a binary classification problem. Assume P be the set
of possible target conditional distribution of labels given pspx, yq and ptpxq.

The forward direction is simple. If P “ tptpy|xqu is singleton given pspx, yq and ptpxq, then
the error of any classifier f on the target domain is identified and is given by

EDT pfq “ Ex„ptpxq,y„ptpy|xq

„

I
„

argmax
jPY

fjpxq ‰ y

ȷȷ

. (H.1)

For the reverse direction assume that given ptpxq and pspx, yq, we have two possible
distributions DT and DT 1 with ptpy|xq, p1

tpy|xq P P such that on some x with ptpxq ą 0,
we have ptpy|xq ‰ p1

tpy|xq. Consider XM “ tx P X |ptpxq ą 0 and ptpy “ 1|xq ‰ p1
tpy “

1|xqu be the set of all input covariates where the two distributions differ. We will now
choose a classifier f such that the error on the two distributions differ. On a subset
X 1

M “ tx P X |ptpxq ą 0 and ptpy “ 1|xq ą p1
tpy “ 1|xqu, assume fpxq “ 0 and on a subset

X 2
M “ tx P X |ptpxq ą 0 and ptpy “ 1|xq ă p1

tpy “ 1|xqu, assume fpxq “ 1. We will show
that the error of f on distribution with ptpy|xq is strictly greater than the error of f on
distribution with p1

tpy|xq. Formally,

EDT pfq ´ EDT 1 pfq
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“ Ex„ptpxq,y„ptpy|xq

„

I
„

argmax
jPY

fjpxq ‰ y

ȷȷ

´ Ex„ptpxq,y„p1
tpy|xq

„

I
„

argmax
jPY

fjpxq ‰ y

ȷȷ

“

ż

xPXM

I rfpxq ‰ 0s pptpy “ 0|xq ´ p1
tpy “ 0|xqq ptpxqdx

`

ż

xPXM

I rfpxq ‰ 1s pptpy “ 1|xq ´ p1
tpy “ 1|xqq ptpxqdx

“

ż

xPX 2
M

pptpy “ 0|xq ´ p1
tpy “ 0|xqq ptpxqdx `

ż

xPX 1
M

pptpy “ 1|xq ´ p1
tpy “ 1|xqq ptpxqdx

ą 0 , (H.2)

where the last step follows by construction of the set X 1
M and X 2

M . Since EDT pfq ‰ EDT 1 pfq,
given the information of ptpxq and pspx, yq it is impossible to distinguish the two values
of the error with classifier f . Thus, we obtain a contradiction on the assumption that
ptpy|xq ‰ p1

tpy|xq. Hence, we must pose restrictions on the nature of shift such that P is
singleton to to identify accuracy on the target.

Proof of Corollary 9.3.2. The corollary follows directly from Proposition 9.3.1. Since two
different target conditional distribution can lead to different error estimates without as-
sumptions on the classifier, no method can estimate two different quantities from the same
given information. We illustrate this in Example 1 next.

H.2 Estimating accuracy in covariate shift or label shift
Accuracy estimation under covariate shift assumption Under the assumption that
ptpy|xq “ pspy|xq, accuracy on the target domain can be estimated as follows:

EDTpfq “ Epx,yq„DS

„

ptpx, yq

pspx, yq
I rfpxq ‰ ys

ȷ

(H.3)

“ Epx,yq„DS

„

ptpxq

pspxq
I rfpxq ‰ ys

ȷ

. (H.4)

Given access to ptpxq and pspxq, one can directly estimate the expression in (H.4).

Accuracy estimation under label shift assumption Under the assumption that
ptpx|yq “ pspx|yq, accuracy on the target domain can be estimated as follows:

EDTpfq “ Epx,yq„DS

„

ptpx, yq

pspx, yq
I rfpxq ‰ ys

ȷ

(H.5)

“ Epx,yq„DS

„

ptpyq

pspyq
I rfpxq ‰ ys

ȷ

. (H.6)

Estimating importance ratios ptpxq{pspxq is straightforward under covariate shift assumption
when the distributions ptpxq and pspxq are known. For label shift, one can leverage moment
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matching approach called BBSE (Lipton et al., 2018b) or likelihood minimization approach
MLLS (Garg et al., 2020b). Below we discuss the objective of MLLS:

w “ argmax
wPW

Ex„ptpxq

“

log pspy|xq
Tw

‰

, (H.7)

where W “ tw | @y , wy ě 0 and
řk

y“1wypspyq “ 1u. MLLS objective is guaranteed to ob-
tain consistent estimates for the importance ratios w˚pyq “ ptpyq{pspyq under the following
condition.
Theorem H.2.1 (Theorem 1 (Garg et al., 2020b)). If the distributions tppxq|yq : y “

1, . . . , ku are strictly linearly independent, then w˚ is the unique maximizer of the MLLS
objective (H.7).

We refer interested reader to Garg et al. (2020b) for details.

Above results of accuracy estimation under label shift and covariate shift can be extended
to a generalized label shift and covariate shift settings. Assume a function h : X Ñ Z such
that y is independent of x given hpxq. In other words hpxq contains all the information
needed to predict label y. With help of h, we can extend estimation to following settings:
(i) Generalized covariate shift, i.e., pspy|hpxqq “ ptpy|hpxqq and psphpxqq ą 0 for all x P Xt;
(ii) Generalized label shift, i.e., psphpxq|yq “ ptphpxq|yq and pspyq ą 0 for all y P Yt. By
simply replacing x with hpxq in (H.4) and (H.7), we will obtain consistent error estimates
under these generalized conditions.

Proof of Example 1. Under covariate shift using (H.4), we get

E1 “ Epx,yq„pspx,yq

„

ptpxq

pspxq
I rfpxq ‰ ys

ȷ

“ Ex„pspx,y“0q

„

ptpxq

pspxq
I rfpxq ‰ 0s

ȷ

` Ex„pspx,y“1q

„

ptpxq

pspxq
I rfpxq ‰ 1s

ȷ

“

ż

I rfpxq ‰ 0s ptpxqpspy “ 0|xqdx `

ż

I rfpxq ‰ 1s ptpxqpspy “ 1|xqdx

Under label shift using (H.6), we get

E2 “ Epx,yq„DS

„

ptpyq

pspyq
I rfpxq ‰ ys

ȷ

“ Ex„pspx,y“0q

„

β

α
I rfpxq ‰ 0s

ȷ

` Ex„pspx,y“1q

„

1 ´ β

1 ´ α
I rfpxq ‰ 1s

ȷ

“

ż

I rfpxq ‰ 0s
β

α
pspy “ 0|xqpspxqdx `

ż

I rfpxq ‰ 1s
p1 ´ βq

p1 ´ αq
pspy “ 1|xqpspxqdx

Then E1 ´ E2 is given by

E1 ´ E2 “

ż

I rfpxq ‰ 0s pspy “ 0|xq

„

ptpxq ´
β

α
pspxq

ȷ

dx

351



`

ż

I rfpxq ‰ 1s pspy “ 1|xq

„

ptpxq ´
p1 ´ βq

p1 ´ αq
pspxq

ȷ

dx

“

ż

I rfpxq ‰ 0s pspy “ 0|xq
pα ´ βq

α
ϕpµ2qdx

`

ż

I rfpxq ‰ 1s pspy “ 1|xq
pα ´ βq

1 ´ α
ϕpµ1qdx . (H.8)

If α ą β, then E1 ą E2 and if α ă β, then E1 ă E2. Since E1 ‰ E2 for arbitrary f , given
access to pspx, yq, and ptpxq, any method that consistently estimates error under covariate
shift will give an incorrect estimate under label shift and vice-versa. The reason being that
the same ptpxq and pspx, yq can correspond to error E1 (under covariate shift) or error E2
(under label shift) either of which is not discernable absent further assumptions on the
nature of shift.

H.3 Alternate interpretation of ATC
Consider the following framework: Given a datum px, yq, define a binary classification
problem of whether the model prediction argmax fpxq was correct or incorrect. In particular,
if the model prediction matches the true label, then we assign a label 1 (positive) and
conversely, if the model prediction doesn’t match the true label then we assign a label 0
(negative).

Our method can be interpreted as identifying examples for correct and incorrect prediction
based on the value of the score function spfpxqq, i.e., if the score spfpxqq is greater than or
equal to the threshold t then our method predicts that the classifier correctly predicted
datum px, yq and vice-versa if the score is less than t. A method that can solve this task
will perfectly estimate the target performance. However, such an expectation is unrealistic.
Instead, ATC expects that most of the examples with score above threshold are correct
and most of the examples below the threshold are incorrect. More importantly, ATC
selects a threshold such that the number of falsely identified correct predictions match
falsely identified incorrect predictions on source distribution, thereby balancing incorrect
predictions. We expect useful estimates of accuracy with ATC if the threshold transfers to
target, i.e. if the number of falsely identified correct predictions match falsely identified
incorrect predictions on target. This interpretation relates our method to the OOD
detection literature where Hendrycks and Gimpel (2017); Hendrycks et al. (2019) highlight
that classifiers tend to assign higher confidence to in-distribution examples and leverage
maximum softmax confidence (or logit) to perform OOD detection.

H.4 Details on the Toy Model
Skews observed in this toy model In Fig. H.1, we illustrate the toy model used in
our empirical experiment. In the same setup, we empirically observe that the margin on
population with less density is large, i.e., margin is much greater than γ when the number
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(a) (b)

(c) (d)

Figure H.1: Illustration of toy model. (a) Source data at n “ 100. (b) Target data with
p1
s “ 0.5. (b) Target data with p1

s “ 0.9. (c) Margin of xinv in the minority group in source
data. As sample size increases the margin saturates to true margin γ “ 0.1.

of observed samples is small (in Fig. H.1 (d)). Building on this observation, Nagarajan
et al. (2020) showed in cases when margin decreases with number of samples, a max margin
classifier trained on finite samples is bound to depend on the spurious features in such cases.
They referred to this skew as geometric skew.

Moreover, even when the number of samples are large so that we do not observe geometric
skews, Nagarajan et al. (2020) showed that training for finite number of epochs, a linear
classifier will have a non zero dependency on the spurious feature. They referred to this
skew as statistical skew. Due both of these skews, we observe that a linear classifier obtained
with training for finite steps on training data with finite samples, will have a non-zero
dependency on the spurious feature. We refer interested reader to Nagarajan et al. (2020)
for more details.

Proof of Theorem 9.6.1 Recall, we consider a easy-to-learn binary classification problem
with two features x “ rx´1 , xsps P R2 where xinv is fully predictive invariant feature with a
margin γ ą 0 and xsp P t´1, 1u is a spurious feature (i.e., a feature that is correlated but
not predictive of the true label). Conditional on y, the distribution over xinv is given as
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follows:

xinv|y „

#

U rγ, cs y “ 1

U r´c,´γs y “ ´1
, (H.9)

where c is a fixed constant greater than γ. For simplicity, we assume that label distribution
on source is uniform on t´1, 1u. xsp is distributed such that Psrxsp ¨ p2y ´ 1q ą 0s “ psp,
where psp P p0.5, 1.0q controls the degree of spurious correlation. To model distribution
shift, we simulate target data with different degree of spurious correlation, i.e., in target
distribution Ptrxsp ¨ p2y ´ 1q ą 0s “ p1

sp P r0, 1s. Note that here we do not consider shifts in
the label distribution but our result extends to arbitrary shifts in the label distribution as
well.

In this setup, we examine linear sigmoid classifiers of the form fpxq “

”

1

1`ewT x
, ew

T x

1`ewT x

ı

where w “ rw´1 , wsps P R2. We show that given a linear classifier that relies on the spurious
feature and achieves a non-trivial performance on the source (i.e., winv ą 0), ATC with
maximum confidence score function consistently estimates the accuracy on the target
distribution. Define XM “ tx|xsp ¨ p2y ´ 1q ă 0u and XC “ tx|xsp ¨ p2y ´ 1q ą 0u. Notice
that in target distributions, we are changing the fraction of examples in XM and XC but
we are not changing the distribution of examples within individual set.
Theorem H.4.1. Given any classifier f with winv ą 0 in the above setting, assume that
the threshold t is obtained with finite sample approximation of (9.1), i.e., t is selected such
that1

n
ÿ

i“1

„

I
„

max
jPY

fjpxiq ă t

ȷȷ

“

n
ÿ

i“1

„

I
„

argmax
jPY

fjpxiq ‰ yi

ȷȷ

, (H.10)

where tpxi, yiquni“1 „ pDSqn are n samples from source distribution. Fix a δ ą 0. Assuming
n ě 2 logp4{δq{p1 ´ pspq2, then the estimate of accuracy by ATC as in (9.2) satisfies the
following with probability at least 1 ´ δ,∣∣∣∣Ex„DT rI rspfpxqq ă tss ´ Epx,yq„DT

„

I
„

argmax
jPY

fjpxq ‰ y

ȷȷ
∣∣∣∣ ď

d

logp8{δq

n ¨ csp
, (H.11)

where DT is any target distribution considered in our setting and csp “ p1 ´ pspq if wsp ą 0
and csp “ psp otherwise.

Proof. First we consider the case of wsp ą 0. The proof follows in two simple steps. First
we notice that the classifier will make an error only on some points in XM and the threshold
t will be selected such that the fraction of points in XM with maximum confidence less than
the threshold t will match the error of the classifier on XM . Classifier with wsp ą 0 and
w´1 ą 0 will classify all the points in XC correctly. Second, since the distribution of points
is not changing within XM and XC , the same threshold continues to work for arbitrary

1Note that this is possible because a linear classifier with sigmoid activation assigns a unique score to
each point in source distribution.
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shift in the fraction of examples in XM , i.e., p1
sp.

Note that when wsp ą 0, the classifier makes no error on points in XC and makes an error
on a subset XErr “ tx|xsp ¨ p2y ´ 1q ă 0& pwinvxinv ` wspxspq ¨ p2y ´ 1q ď 0u of XM , i.e.,
XErr Ď XM . Consider Xthres “ tx| argmaxyPY fypxq ď tu as the set of points that obtain a
score less than or equal to t. Now we will show that ATC chooses a threshold t such that
all points in XC gets a score above t, i.e., Xthres Ď XM . First note that the score of points
close to the true separator in XC , i.e., at x1 “ pγ, 1q and x2 “ p´γ,´1q match. In other
words, score at x1 matches with the score of x2 by symmetricity, i.e.,

argmax
yPY

fypx1q “ argmax
yPY

fypx2q “
ewinvγ`wsp

p1 ` ewinvγ`wspq
. (H.12)

Hence, if t ě argmaxyPY fypx1q then we will have |XErr| ă |Xthres| which is contradiction
violating definition of t as in (H.10). Thus Xthres Ď XM .

Now we will relate LHS and RHS of (H.10) with their expectations using Hoeffdings and
DKW inequality to conclude (H.11). Using Hoeffdings’ bound, we have with probability at
least 1 ´ δ{4∣∣∣∣∣ ÿ

iPXM

“

I
“

argmaxjPY fjpxiq ‰ yi
‰‰

|XM | ´ Epx,yq„DT

„

I
„

argmax
jPY

fjpxq ‰ y

ȷȷ

∣∣∣∣∣ ď

d

logp8{δq

2 |XM | .

(H.13)

With DKW inequality, we have with probability at least 1 ´ δ{4∣∣∣∣∣ ÿ
iPXM

rI rmaxjPY fjpxiq ă t1ss

|XM | ´ Epx,yq„DT

„

I
„

max
jPY

fjpxq ă t1

ȷȷ

∣∣∣∣∣ ď

d

logp8{δq

2 |XM | , (H.14)

for all t1 ą 0. Combining (H.13) and (H.14) at t1 “ t with definition (H.10), we have with
probability at least 1 ´ δ{2∣∣∣∣Ex„DT rI rspfpxqq ă tss ´ Epx,yq„DT

„

I
„

argmax
jPY

fjpxq ‰ y

ȷȷ
∣∣∣∣ ď

d

logp8{δq

2 |XM | . (H.15)

Now for the case of wsp ă 0, we can use the same arguments on XC . That is, since now
all the error will be on points in XC and classifier will make no error XM , we can show
that threshold t will be selected such that the fraction of points in XC with maximum
confidence less than the threshold t will match the error of the classifier on XC . Again,
since the distribution of points is not changing within XM and XC , the same threshold
continues to work for arbitrary shift in the fraction of examples in XM , i.e., p1

sp. Thus with
similar arguments, we have∣∣∣∣Ex„DT rI rspfpxqq ă tss ´ Epx,yq„DT

„

I
„

argmax
jPY

fjpxq ‰ y

ȷȷ
∣∣∣∣ ď

d

logp8{δq

2 |XC |
. (H.16)
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(a)

Figure H.2: Failure of ATC in our toy model. Shifting the support of target class conditional
ptpx´1 |yq may introduce a bias in ATC estimates, e.g., shrinking the support to c1(ă c)
(while maintaining uniform distribution) in the target leads to overestimation bias.

Using Hoeffdings’ bound, with probability at least 1 ´ δ{2, we have

|XM ´ n ¨ p1 ´ pspq| ď

c

n ¨ logp4{δq

2
. (H.17)

With probability at least 1 ´ δ{2, we have

|XC ´ n ¨ psp| ď

c

n ¨ logp4{δq

2
. (H.18)

Combining (H.17) and (H.15), we get the desired result for wsp ą 0. For wsp ă 0, we
combine (H.18) and (H.16) to get the desired result.

Issues with IM in toy setting As described in App. ??, we observe that IM is sensitive
to binning strategy. In the main paper, we include IM result with uniform mass binning
with 100 bins. Empirically, we observe that we recover the true performance with IM if we
use equal width binning with number of bins greater than 5.

Biased estimation with ATC in our toy model We assumed that both in source
and target x´1 |y “ 1 is uniform between rγ, cs and x|y “ ´1 is uniform between r´c,´γs.
Shifting the support of target class conditional ptpx´1 |yq may introduce a bias in ATC
estimates, e.g., shrinking the support to c1(ă c) (while maintaining uniform distribution)
in the target will lead to an over-estimation of the target performance with ATC. We
show this failure in Fig. H.2. The reason being that with the same threshold that we see
more examples falsely identified as correct as compared to examples falsely identified as
incorrect.
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H.4.1 A More General Result

Recall, for a given threshold t, we categorize an example px, yq as a falsely identified correct
prediction (ficp) if the predicted label pwy “ argmax fpxq is not the same as y but the
predicted score f

pwypxq is greater than t. Similarly, an example is falsely identified incorrect
prediction (fiip) if the predicted label pwy is the same as y but the predicted score f

pwypxq is
less than t.

In general, we believe that our method will obtain consistent estimates in scenarios where
the relative distribution of covariates doesn’t change among examples that are falsely
identified as incorrect and examples that are falsely identified as correct. In other words,
ATC is expected to work if the distribution shift is such that falsely identified incorrect
predictions match falsely identified correct prediction.

H.4.2 ATC produces consistent estimate on source distribution

Proposition H.4.2. Given labeled validation data tpxi, yiquni“1 from a distribution DS and
a model f , choose a threshold t as in (9.1). Then for δ ą 0, with probability at least 1 ´ δ,
we have

Epx,yq„D

„

I
„

max
jPY

fjpxq ă t

ȷ

´ I
„

argmax
jPY

fjpxq ‰ y

ȷȷ

ď 2

c

logp4{δq

2n
(H.19)

Proof. The proof uses (i) Hoeffdings’ inequality to relate the accuracy with expected
accuracy; and (ii) DKW inequality to show the concentration of the estimated accuracy
with our proposed method. Finally, we combine (i) and (ii) using the fact that at selected
threshold t the number of false positives is equal to the number of false negatives.

Using Hoeffdings’ bound, we have with probability at least 1 ´ δ{2∣∣∣∣∣ n
ÿ

i“1

„

I
„

argmax
jPY

fjpxiq ‰ yi

ȷȷ

´ Epx,yq„D

„

I
„

argmax
jPY

fjpxq ‰ y

ȷȷ

∣∣∣∣∣ ď

c

logp4{δq

2n
. (H.20)

With DKW inequality, we have with probability at least 1 ´ δ{2∣∣∣∣∣ n
ÿ

i“1

„

I
„

max
jPY

fjpxiq ă t1

ȷȷ

´ Epx,yq„D

„

I
„

max
jPY

fjpxq ă t1

ȷȷ

∣∣∣∣∣ ď

c

logp4{δq

2n
, (H.21)

for all t1 ą 0. Finally by definition, we have

n
ÿ

i“1

„

I
„

max
jPY

fjpxiq ă t1

ȷȷ

“

n
ÿ

i“1

„

I
„

argmax
jPY

fjpxiq ‰ yi

ȷȷ

(H.22)

Combining (H.20), (H.21) at t1 “ t, and (H.22), we have the desired result.
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H.5 Basline Methods
Importance-re-weighting (IM) If we can estimate the importance-ratios ptpxq

pspxq
with

just the unlabeled data from the target and validation labeled data from source, then we
can estimate the accuracy as on target as follows:

EDTpfq “ Epx,yq„DS

„

ptpxq

pspxq
I rfpxq ‰ ys

ȷ

. (H.23)

As previously discussed, this is particularly useful in the setting of covariate shift (within
support) where importance ratios estimation has been explored in the literature in the past.
Mandolin (Chen et al., 2021b) extends this approach. They estimate importance-weights
with use of extra supervision about the axis along which the distribution is shifting.

In our work, we experiment with uniform mass binning and equal width binning with the
number of bins in r5, 10, 50s. Overall, we observed that equal width binning works the best
with 10 bins. Hence throughout this paper we perform equal width binning with 10 bins to
include results with IM.

Average Confidence (AC) If we expect the classifier to be argmax calibrated on the
target then average confidence is equal to accuracy of the classifier. Formally, by definition
of argmax calibration of f on any distribution D, we have

EDpfq “ Epx,yq„D

„

I
„

y R argmax
jPY

fjpxq

ȷȷ

“ Epx,yq„D

„

max
jPY

fjpxq

ȷ

. (H.24)

Difference Of Confidence We estimate the error on target by subtracting difference of
confidences on source and target (as a distributional distance (Guillory et al., 2021)) from
expected error on source distribution, i.e, DOCDT “ Ex„DS

“

I
“

argmaxjPY fjpxq ‰ y
‰‰

`

Ex„DT rmaxjPY fjpxqs ´ Ex„DS rmaxjPY fjpxqs. This is referred to as DOC-Feat in (Guillory
et al., 2021).

Generalized Disagreement Equality (GDE) Jiang et al. (2021) proposed average
disagreement of two models (trained on the same training set but with different initialization
and/or different data ordering) as a approximate measure of accuracy on the underlying
data, i.e.,

EDpfq “ Epx,yq„D rI rfpxq ‰ f 1
pxqss . (H.25)

They show that marginal calibration of the model is sufficient to have expected test error
equal to the expected of average disagreement of two models where the latter expectation
is also taken over the models used to calculate disagreement.

H.6 Details on the Dataset Setup
In our empirical evaluation, we consider both natural and synthetic distribution shifts. We
consider shifts on ImageNet (Russakovsky et al., 2015), CIFAR Krizhevsky and Hinton
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Train (Source) Valid (Source) Evaluation (Target)

MNIST (train) MNIST (valid) USPS, SVHN and Q-MNIST
CIFAR10 (train) CIFAR10 (valid) CIFAR10v2, 95 CIFAR10-C datasets (Fog and Motion blur, etc. )
CIFAR100 (train) CIFAR100 (valid) 95 CIFAR100-C datasets (Fog and Motion blur, etc. )

FMoW (2002-12) (train) FMoW (2002-12) (valid) FMoW {(2013-15, 2016-17) ˆ

(All, Africa, Americas, Oceania, Asia, and Europe)}

RxRx1 (train) RxRx1(id-val) RxRx1 (id-test, OOD-val, OOD-test)
Amazon (train) Amazon (id-val) Amazon (OOD-val, OOD-test)

CivilComments (train) CivilComments (id-val) CiviComments (8 demographic identities male, female, LGBTQ,
Christian, Muslim, other religions, Black, and White)

ImageNet (train) ImageNet (valid) 3 ImageNetv2 datasets, ImageNet-Sketch,
95 ImageNet-C datasets

ImageNet-200 (train) ImageNet-200 (valid) 3 ImageNet-200v2 datasets, ImageNet-R,
ImageNet200-Sketch, 95 ImageNet200-C datasets

Breeds (train) Breeds (valid)
Same subpopulations as train but unseen images from natural

and synthetic shifts in ImageNet, Novel subpopulations on
natural and synthetic shifts

Table H.1: Details of the test datasets considered in our evaluation.

(2009), FMoW-Wilds (Christie et al., 2018), RxRx1-Wilds (Taylor et al., 2019), Amazon-
Wilds (Ni et al., 2019), CivilComments-Wilds (Borkan et al., 2019), and MNIST (LeCun
et al., 1998) datasets.

ImageNet setup. First, we consider synthetic shifts induced to simulate 19 different visual
corruptions (e.g., shot noise, motion blur, pixelation etc.) each with 5 different intensities
giving us a total of 95 datasets under ImageNet-C (Hendrycks and Dietterich, 2019). Next,
we consider natural distribution shifts due to differences in the data collection process. In
particular, we consider 3 ImageNetv2 (Recht et al., 2019b) datasets each using a different
strategy to collect test sets. We also evaluate performance on images with artistic renditions
of object classes, i.e., ImageNet-R (Hendrycks et al., 2021b) and ImageNet-Sketch (Wang
et al., 2019b) with hand drawn sketch images. Note that renditions dataset only contains
200 classes from ImageNet. Hence, in the main paper we include results on ImageNet
restricted to these 200 classes, which we call as ImageNet-200, and relegate results on
ImageNet with 1k classes to appendix.

We also consider Breeds benchmark (Santurkar et al., 2021) in our evaluation to assess
robustness to subpopulation shifts, in particular, to understand how accuracy estimation
methods behave when novel subpopulations not observed during training are introduced.
Breeds leverages class hierarchy in ImageNet to repurpose original classes to be the
subpopulations and defines a classification task on superclasses. Subpopulation shift is
induced by directly making the subpopulations present in the training and test distributions
disjoint. Overall, Breeds benchmark contains 4 datasets Entity-13, Entity-30, Living-
17, Non-living-26, each focusing on different subtrees in the hierarchy. To generate
Breeds dataset on top of ImageNet, we use the open source library: https://github.com/
MadryLab/BREEDS-Benchmarks. We focus on natural and synthetic shifts as in ImageNet
on same and different subpopulations in BREEDs. Thus for both the subpopulation (same
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or novel), we obtain a total of 99 target datasets.

CIFAR setup. Similar to the ImageNet setup, we consider (i) synthetic shifts (CIFAR-10-C)
due to common corruptions; and (ii) natural distribution shift (i.e., CIFARv2 (Recht
et al., 2018; Torralba et al., 2008)) due to differences in data collection strategy on on
CIFAR-10 (Krizhevsky and Hinton, 2009). On CIFAR-100, we just have synthetic shifts
due to common corruptions.

FMoW-Wilds setup. In order to consider distribution shifts faced in the wild, we consider
FMoW-wilds (Christie et al., 2018; Koh et al., 2021) from Wilds benchmark, which
contains satellite images taken in different geographical regions and at different times. We
obtain 12 different OOD target sets by considering images between years 2013–2016 and
2016–2018 and by considering five geographical regions as subpopulations (Africa, Americas,
Oceania, Asia, and Europe) separately and together.

RxRx1–Wilds setup. Similar to FMoW, we consider RxRx1-Wilds (Taylor et al., 2019)
from Wilds benchmark, which contains image of cells obtained by fluorescent microscopy
and the task is to genetic treatments the cells received. We obtain 3 target datasets with
shift induced by batch effects which make it difficult to draw conclusions from data across
experimental batches.

Amazon-Wilds setup. For natural language task, we consider Amazon-Wilds (Ni et al.,
2019) dataset from Wilds benchmark, which contains review text and the task is get a
corresponding star rating from 1 to 5. We obtain 2 target datasets by considered shifts
induced due to different set of reviewers than the training set.

CivilComments-Wilds setup. We also consider CivilComments-Wilds (Borkan et al., 2019)
from Wilds benchmark, which contains text comments and the task is to classify them for
toxicity. We obtain 18 target datasets depending on whether a comment mentions each
of the 8 demographic identities male, female, LGBTQ, Christian, Muslim, other religions,
Black, and White.

MNIST setup. For completeness, we also consider distribution shifts on MNIST (LeCun
et al., 1998) digit classification as in the prior work (Deng and Zheng, 2021). We use
three real shifted datasets, i.e., USPS (Hull, 1994), SVHN (Netzer et al., 2011a) and
QMNIST (Yadav and Bottou, 2019).

H.7 Details on the Experimental Setup

All experiments were run on NVIDIA Tesla V100 GPUs. We used PyTorch (Paszke et al.,
2019) for experiments.

Deep nets We consider a 4-layered MLP. The PyTorch code for 4-layer MLP is as
follows:

nn.Sequential(nn.Flatten(),
nn.Linear(input_dim, 5000, bias=True),
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nn.ReLU(),
nn.Linear(5000, 5000, bias=True),
nn.ReLU(),
nn.Linear(5000, 50, bias=True),
nn.ReLU(),
nn.Linear(50, num_label, bias=True)
)

We mainly experiment convolutional nets. In particular, we use ResNet18 (He et al.,
2016), ResNet50, and DenseNet121 (Huang et al., 2017) architectures with their default
implementation in PyTorch. Whenever we initial our models with pre-trained models, we
again use default models in PyTorch.

Hyperparameters and Training details As mentioned in the main text we do not alter
the standard training procedures and hyperparameters for each task. We present results at
final model, however, we observed that the same results extend to an early stopped model
as well. For completeness, we include these details below:

CIFAR10 and CIFAR100 We train DenseNet121 and ResNet18 architectures from scratch.
We use SGD training with momentum of 0.9 for 300 epochs. We start with learning rate
0.1 and decay it by multiplying it with 0.1 every 100 epochs. We use a weight decay of
5 ˆ 10´4. We use batch size of 200. For CIFAR10, we also experiment with the same
models pre-trained on ImageNet.

ImageNet For training, we use Adam with a batch size of 64 and learning rate 0.0001. Due
to huge size of ImageNet, we could only train two models needed for GDE for 10 epochs.
Hence, for relatively small scale experiments, we also perform experiments on ImageNet
subset with 200 classes, which we call as ImageNet-200 with the same training procedure.
These 200 classes are the same classes as in ImageNet-R dataset. This not only allows us
to train ImageNet for 50 epochs but also allows us to use ImageNet-R in our testbed. On
the both the datasets, we observe a similar superioriy with ATC. Note that all the models
trained here were initialized with a pre-trained ImageNet model with the last layer replaced
with random weights.

FMoW-wilds For all experiments, we follow Koh et al. (2021) and use two architec-
tures DenseNet121 and ResNet50, both pre-trained on ImageNet. We use the Adam
optimizer (Kingma and Ba, 2014) with an initial learning rate of 10´4 that decays by 0.96
per epoch, and train for 50 epochs and with a batch size of 64.

RxRx1-wilds For all experiments, we follow Koh et al. (2021) and use two architectures
DenseNet121 and ResNet50, both pre-trained on ImageNet. We use Adam optimizer with
a learning rate of 1e ´ 4 and L2-regularization strength of 1e ´ 5 with a batch size of 75
for 90 epochs. We linearly increase the learning rate for 10 epochs, then decreasing it
following a cosine learning rate schedule. Finally, we pick the model that obtains highest
in-distribution validation accuracy.

Amazon-wilds For all experiments, we follow Koh et al. (2021) and finetuned DistilBERT-
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base-uncased models (Sanh et al., 2019a), using the implementation from Wolf et al. (2020),
and with the following hyperparameter settings: batch size 8; learning rate 1e ´ 5 with the
AdamW optimizer (Loshchilov and Hutter, 2017); L2-regularization strength 0.01; 3 epochs
with early stopping; and a maximum number of tokens of 512.

CivilComments-wilds For all experiments, we follow Koh et al. (2021) and fine-tuned
DistilBERT-base-uncased models (Sanh et al., 2019a), using the implementation from
Wolf et al. (2020) and with the following hyperparameter settings: batch size 16; learning
rate 1e ´ 5 with the AdamW optimizer (Loshchilov and Hutter, 2017) for 5 epochs; L2-
regularization strength 0.01; and a maximum number of tokens of 300.

Living17 and Nonliving26 from Breeds For training, we use SGD with a batch size of 128,
weight decay of 10´4, and learning rate 0.1. Models were trained until convergence. Models
were trained for a total of 450 epochs, with 10-fold learning rate drops every 150 epochs.
Note that since we want to evaluate models for novel subpopulations no pre-training was
used. We train two architectures DenseNet121 and ResNet50.

Entity13 and Entity30 from Breeds For training, we use SGD with a batch size of 128,
weight decay of 10´4, and learning rate 0.1. Models were trained until convergence. Models
were trained for a total of 300 epochs, with 10-fold learning rate drops every 100 epochs.
Note that since we want to evaluate models for novel subpopulations no pre-training was
used. We train two architectures DenseNet121 and ResNet50.

MNIST For MNIST, we train a MLP described above with SGD with momentum 0.9 and
learning rate 0.01 for 50 epochs. We use weight decay of 10´5 and batch size as 200.

We have a single number for CivilComments because it is a binary classification task. For
multiclass problems, ATC-NE and ATC-MC can lead to different ordering of examples
when ranked with the corresponding scoring function. Temperature scaling on top can
further alter the ordering of examples. The changed ordering of examples yields different
thresholds and different accuracy estimates. However for binary classification, the two
scoring functions are the same as entropy (i.e. p logppq ` p1 ´ pq logppq) has a one-to-one
mapping to the max conf for p P r0, 1s. Moreover, temperature scaling also doesn’t change
the order of points for binary classification problems. Hence for the binary classification
problems, both the scoring functions with and without temperature scaling yield the same
estimates. We have made this clear in the updated draft.

Implementation for Temperature Scaling We use temperature scaling implementation
from https://github.com/kundajelab/abstention. We use validation set (the same we
use to obtain ATC threshold or DOC source error estimate) to tune a single temperature
parameter.

H.7.1 Details on Fig. 11.1 (right) setup

For vision datasets, we train a DenseNet model with the exception of FCN model for
MNIST dataset. For language datasets, we fine-tune a DistilBERT-base-uncased model.
For each of these models, we use the exact same setup as described Sec. H.7. Importantly,
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to obtain errors on the same scale, we rescale all the errors by subtracting the error of
Average Confidence method for each model. Results are reported as mean of the re-scaled
errors over 4 seeds.

H.8 Additional Results

H.8.1 CIFAR pretraining Ablation
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Figure H.3: Results with a pretrained DenseNet121 model on CIFAR10. We observe similar
behaviour as that with a model trained from scratch.

H.8.2 Breeds results with regression model
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Figure H.4: Scatter plots for DOC with linear fit. Results parallel to Fig. 9.3(Middle) on
other Breeds dataset.
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Dataset DOC (w/o fit) DOC (w fit) ATC-MC (Ours) (w/o fit)

Living-17 24.32 13.65 10.07

Nonliving-26 29.91 18.13 19.37

Entity-13 22.18 8.63 8.01

Entity-30 24.71 12.28 10.21

Table H.2: Mean Absolute estimation Error (MAE) results for BREEDs datasets with
novel populations in our setup. After fitting a robust linear model for DOC on same
subpopulation, we show predicted accuracy on different subpopulations with fine-tuned
DOC (i.e., DOC (w/ fit)) and compare with ATC without any regression model, i.e., ATC
(w/o fit). While observe substantial improvements in MAE from DOC (w/o fit) to DOC
(w/ fit), ATC (w/o fit) continues to outperform even DOC (w/ fit).
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Figure H.5: Scatter plot of predicted accuracy versus (true) OOD accuracy. For vision
datasets except MNIST we use a DenseNet121 model. For MNIST, we use a FCN. For
language datasets, we use DistillBert-base-uncased. Results reported by aggregating
accuracy numbers over 4 different seeds.
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Figure H.6: Scatter plot of predicted accuracy versus (true) OOD accuracy for vision
datasets except MNIST with a ResNet50 model. Results reported by aggregating MAE
numbers over 4 different seeds.
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Appendix I

Appendix: (Almost) Provable Error
Bounds Under Distribution Shift via
Disagreement Discrepancy

I.1 Comparing Disagreement Losses
We define the alternate losses for maximizing disagreement:

1. Chuang et al. (2020) minimize the negative cross-entropy loss, which is concave in the
model logits. That is, they add the term log softmaxphpxqyq to the objective they are
minimizing. This loss results in substantially lower disagreement discrepancy than
the other two.

2. Pagliardini et al. (2023) use a loss which is not too different from ours. They define
the disagreement objective for a point px, yq as

log

˜

1 `
expphpxqyq

ř

py‰y expphpxq
pyq

¸

. (I.1)

For comparison, ℓdis can be rewritten as

log

¨

˝1 `
expphpxqyq

exp
´

1
|Y|´1

ř

py‰y hpxq
py

¯

˛

‚, (I.2)

where the incorrect logits are averaged and the exponential is pushed outside the sum.
This modification results in (I.2) being convex in the logits and an upper bound to the
disagreement 0-1 loss, whereas (I.1) is neither.

Fig. I.1 displays histograms of the achieved disagreement discrepancy across all distributions
for each of the disagreement losses (all hyperparameters and random seeds are the same for
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Loss Mean Discrepancy (Train) Mean Discrepancy (Test)

Neg. X-Ent (Chuang et al., 2020) 0.3555 ˘ .0124 0.1694 ˘ .0105
D-BAT (Pagliardini et al., 2023) 0.8145 ˘ .0177 0.3224 ˘ .0212
ℓdis (Ours) 0.8333 ˘ .0132 0.3322 ˘ .0205

Figure I.1: Histogram of disagreement discrepancies for each of the three losses, and the
average values across all datasets. Bold (resp. Underline) indicates the method has higher
average discrepancy under a paired t-test at significance p “ .01 (resp. p “ .025).

all three losses). The table below it reports the mean disagreement discrepancy on the train
and test sets. We find that the negative cross-entropy, being a concave function, results in
very low discrepancy. The D-BAT loss (Eq. (I.1)) is reasonably competitive with our loss
(Eq. (I.2)) on average, seemingly because it gets very high discrepancy on a subset of shifts.
This suggests that it may be particularly suited for a specific type of distribution shift,
though it is less good overall. Though the averages are reasonably close, the samples are
not independent, so we run a paired t-test and we find that the increases to average train
and test discrepancies achieved by ℓdis are significant at levels p “ 0.024 and p “ 0.009,
respectively. With enough holdout data, a reasonable approach would be to split the data
in two: one subset to validate critics trained on either of the two losses, and another to
evaluate the discrepancy of whichever one is ultimately selected.

I.2 Exploration of the Validity Score
To experiment with reducing the complexity of the class H, we evaluate Dis2 on progressively
fewer top principal components (PCs) of the features. Precisely, for features of dimension
d, we evaluate Dis2 on the same features projected onto their top d{k components, for
k P r1, 4, 16, 32, 64, 128s (Fig. I.2). We see that while projecting to fewer and fewer PCs does
reduce the error bound value, unlike the logits it is a rather crude way to reduce complexity
of H, meaning at some point it goes too far and results in invalid error bounds.

However, during the optimization process we observe that around when this violation occurs,
the task of training a critic to both agree on S and disagree on T goes from “easy” to “hard”.
Fig. I.3 shows that on the full features, the critic rapidly ascends to maximum agreement on
S, followed by slow decay (due to both overfitting and learning to simultaneously disagree
on T ). As we drop more and more components, this optimization becomes slower.
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Figure I.2: Dis2 bound as fewer principal components are kept. Reducing the
number of top principal components crudely reduces complexity of H—this leads to lower
error estimates, but at some point the bounds become invalid for a large fraction of shifts.

Figure I.3: Agreement on one shift between ph and h1 on pS during optimization.
We observe that as the number of top PCs retained drops, the optimization occurs more
slowly and less monotonically. For this particular shift, the bound becomes invalid when
keeping only the top 1{128 components, depicted by the brown line.

We therefore design a “validity score” intended to capture this phenomenon which we
refer to as the cumulative ℓ1 ratio. This is defined as the maximum agreement achieved,
divided by the cumulative sum of absolute differences in agreement across all epochs up
until the maximum was achieved. Formally, let taiu

T
i“1 represent the agreement between

h1 and ph after epoch i, i.e. 1 ´ ϵ
pSpph, h1

iq, and define m :“ argmaxiPrT s ai. The cumulative
ℓ1 ratio is then am

a1`
řm

i“2 |ai´ai´1|
. Thus, if the agreement rapidly ascends to its maximum

without ever going down over the course of an epoch, this ratio will be equal to 1, and
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if it non-monotonically ascends then the ratio will be significantly less. This definition
was simply the first metric we considered which approximately captures the behavior we
observed; we expect it could be greatly improved.
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Figure I.4: Cumulative ℓ1 ratio versus error prediction gap. Despite its simplicity,
the ratio captures the information encoded in the optimization trajectory, roughly linearly
correlating with the tightness and validity of a given prediction. It is thus a useful metric
for identifying the ideal number of top PCs to use.

Fig. I.4 displays a scatter plot of the cumulative ℓ1 ratio versus the difference in estimated
and true error for Dis2 evaluated on the full range of top PCs. A negative value implies that
we have underestimated the error (i.e., the bound is not valid). We see that even this very
simply metric roughly linearly correlates with the tightness of the bound, which suggests
that evaluating over a range of top PC counts and only keeping predictions whose ℓ1 ratio
is above a certain threshold can improve raw predictive accuracy without reducing coverage
by too much. Fig. I.5 shows that this is indeed the case: compared to Dis2 evaluated on
the logits, keeping all predictions above a score threshold can produce more accurate error
estimates, without too severely underestimating error in the worst case.

I.3 Making Baselines More Conservative with LOOCV

To more thoroughly compare Dis2 to prior estimation techniques, we consider a strengthening
of the baselines which may give them higher coverage without too much cost to prediction
accuracy. Specifically, for each desired coverage level α P r0.9, 0.95, 0.99s, we use all but one
of the datasets to learn a parameter to either scale or shift a method’s predictions enough
to achieve coverage α. We then evaluate this scaled or shifted prediction on the distribution
shifts of the remaining dataset, and we repeat this for each one.
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Figure I.5: Dis2 bounds and MAE / coverage as the cumulative ℓ1 ratio threshold
is lowered. Values in parenthesis are (MAE / coverage). By only keeping predictions with
ratio above a varying threshold, we can smoothly interpolate between bound validity and
raw error prediction accuracy.

The results, found in Table I.1, demonstrate that prior methods can indeed be made to
have much higher coverage, although as expected their MAE suffers. Furthermore, they still
underestimate error on the tail distribution shifts by quite a bit, and they rarely achieve
the desired coverage on the heldout dataset—though they usually come reasonably close.
In particular, ATC (Garg et al., 2022c) and COT (Lu et al., 2023) do well with a shift
parameter, e.g. at the desired coverage α “ 0.95 ATC matches Dis2 in MAE and gets 94.4%
coverage (compared to 98.9% by Dis2). However, its conditional average overestimation
is quite high, almost 9%. COT gets much lower overestimation (particularly for higher
coverage levels), and it also appears to suffer less on the tail distribution shifts in the sense
that α “ 0.99 does not induce nearly as high MAE as it does for ATC. However, at that
level it only achieves 95.6% coverage, and it averages almost 5% accuracy overestimation
on the shifts it does not correctly bound (compared to 0.1% by Dis2). Also, its MAE is
still substantially higher than Dis2, despite getting lower coverage. Finally, we evaluate
the scale/shift approach on our Dis2 bound without the lower order term, but based on
the metrics we report there appears to be little reason to prefer it over the untransformed
version, one of the baselines, or the original Dis2 bound.

Taken together, these results imply that if one’s goal is predictive accuracy and tail behavior
is not important (worst ~10%), ATC or COT will likely get reasonable coverage with a
shift parameter—though they still significantly underestimate error on a non-negligible
fraction of shifts. If one cares about the long tail of distribution shifts, or prioritizes being
conservative at a slight cost to average accuracy, Dis2 is clearly preferable. Finally, we
observe that the randomness which determines which shifts are not correctly bounded by
Dis2 is “decoupled” from the distributions themselves under Theorem 10.2.4, in the sense
that it is an artifact of the random samples, rather than a property of the distribution (recall
??). This is in contrast with the shift/scale approach which would produce almost identical
results under larger sample sizes because it does not account for finite sample effects. This
implies that some distribution shifts are simply “unsuitable” for prior methods because
they do not satisfy whatever condition these methods rely on, and observing more samples
will not remedy this problem. It is clear that working to understand these conditions is
crucial for reliability and interpretability, since we are not currently able to identify which
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distributions are suitable a priori.

MAE pÓq Coverage pÒq Overest. pÓq

α Ñ 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99
Method Adjustment

AC none 0.106 0.122 0.118
shift 0.153 0.201 0.465 0.878 0.922 0.956 0.119 0.138 0.149
scale 0.195 0.221 0.416 0.911 0.922 0.967 0.135 0.097 0.145

DoC none 0.105 0.167 0.122
shift 0.158 0.200 0.467 0.878 0.911 0.956 0.116 0.125 0.154
scale 0.195 0.223 0.417 0.900 0.944 0.967 0.123 0.139 0.139

ATC NE none 0.067 0.289 0.083
shift 0.117 0.150 0.309 0.900 0.944 0.978 0.072 0.088 0.127
scale 0.128 0.153 0.357 0.889 0.933 0.978 0.062 0.074 0.144

COT none 0.069 0.256 0.085
shift 0.115 0.140 0.232 0.878 0.944 0.956 0.049 0.065 0.048
scale 0.150 0.193 0.248 0.889 0.944 0.956 0.074 0.066 0.044

Dis2 (w/o δ) none 0.083 0.756 0.072
shift 0.159 0.169 0.197 0.889 0.933 0.989 0.021 0.010 0.017
scale 0.149 0.168 0.197 0.889 0.933 0.989 0.023 0.021 0.004

Dis2 (δ “ 10´2) none 0.150 0.989 0.001
Dis2 (δ “ 10´3) none 0.174 1.000 0.000

Table I.1: MAE, coverage, and conditional average overestimation for the strengthened
baselines with a shift or scale parameter on non-domain-adversarial representations. Because
a desired coverage α is only used when an adjustment is learned, “none”—representing no
adjustment—does not vary with α.

I.4 Proving that Assumption 4 Holds for Some Datasets

Here we describe how the equivalence of Assumption 4 and the bound in Theorem 10.2.4
allow us to prove that the assumption holds with high probability. By repeating essentially
the same proof as Theorem 10.2.4 in the other direction, we get the following corollary:
Corollary I.4.1. If Assumption 4 does not hold, then with probability ě 1 ´ δ,

ϵ
pT pphq ą ϵ

pSpphq ` p∆pph, h1
q ´

d

2pnS ` nT q log 1{δ

nSnT

.

Note that the concentration term here is different from Theorem 10.2.4 because we are
bounding the empirical target error, rather than the true target error. The reason for this
change is that now we can make direct use of its contrapositive:
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Corollary I.4.2. With probability ě 1 ´ δ over the randomness of the samples pS and pT , if
it is the case that

ϵ
pT pphq ď ϵ

pSpphq ` p∆pph, h1
q ´

d

2pnS ` nT q log 1{δ

nSnT

,

then Assumption 4 must hold.

We evaluate this bound on non-domain-adversarial shifts with δ “ 10´6. As some of the
BREEDS shifts have as few as 68 test samples, we restrict ourselves to shifts with nT ě 500
to ignore those where the finite-sample term heavily dominates; this removes a little over
20% of all shifts. Among the remainder, we find that the bound in Theorem I.4.2 holds
55.7% of the time when using full features and 25.7% of the time when using logits. This
means that for these shifts, we can be essentially certain that Assumption 4—and therefore
also Assumption 3—is true.

Note that the fact that the bound is not violated for a given shift does not at all imply that
the assumption is not true. In general, the only rigorous way to prove that Assumption 4
does not hold would be to show that for a fixed δ, the fraction of shifts for which the bound
in Theorem 10.2.4 does not hold is larger than δ (in a manner that is statistically significant
under the appropriate hypothesis test). Because this never occurs in our experiments, we
cannot conclude that the assumption is ever false. At the same time, the fact that the
bound does hold at least 1 ´ δ of the time does not prove that the assumption is true—it
merely suggests that it is reasonable and that the bound should continue to hold in the
future. This is why it is important for Assumption 4 to be simple and intuitive, so that we
can trust that it will persist and anticipate when it will not.

However, Theorem I.4.2 allows us to make a substantially stronger statement. In fact, it
says that for any distribution shift, with enough samples, we can prove a posteriori whether
or not Assumption 4 holds, because the gap between these two bounds will shrink with
increasing sample size.

I.5 Fig. 10.1 Stratified by Training Method

I.6 Additional Figures and Discussion

I.6.1 How does Dis2 Improve over H∆H-Divergence?

Consider the task of learning a linear classifier to discriminate between squares and circles
on the source distribution S (blue) and then bounding the error of this classifier on the
target distribution T (red), whose true labels are unknown and are therefore depicted
as triangles. Fig. I.7(a) demonstrates that both H- and H∆H-divergence achieve their
maximal value of 1, because both h1 and h2 ‘ h3 perfectly discriminate between S and T .
Thus both bounds would be vacuous.
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Figure I.6: Error prediction stratified by training method. Stars denote Dis2, circles
are ATC NE. We see that Dis2 maintains its validity across different training methods.

(a) (b) (c)

Figure I.7: The advantage of Dis2 over bounds based on H- and H∆H-divergence.
Consider the task of classifying circles and squares (triangles are unlabeled). (a): Because h1

and h2 ‘ h3 perfectly discriminate between S (blue) and T (red), H- and H∆H-divergence
bounds are always vacuous. In contrast, Dis2 is only vacuous when 0% accuracy is induced
by a reasonably likely ground truth (such as y˚

3 in (c), but not y˚
1 in (b)), and can often

give non-vacuous bounds (such as y˚
2 in (b)).

Now, suppose we were to learn the max-margin ph on the source distribution (Fig. I.7(b)). It
is possible that the true labels are given by the worst-case boundary as depicted by y˚

1 (pink),
thus “flipping” the labels and causing ph to have 0 accuracy on T . In this setting, a vacuous
bound is correct. However, this seems rather unlikely to occur in practice—instead, recent
experimental evidence (Kang et al., 2020; Kirichenko et al., 2022; Rosenfeld et al., 2022)
suggests that the true y˚ will be much simpler. The maximum disagreement discrepancy
here would be approximately 0.5, giving a test accuracy lower bound of 0.5—this is consistent
with plausible alternative labeling functions such as y˚

2 (orange). Even if y˚ is not linear,
we still expect that some linear function will induce larger discrepancy; this is precisely
?? 3. Suppose instead we learn ph as depicted in Fig. I.7(c). Then a simple ground truth
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such as y˚
3 (green) is plausible, which would mean ph has 0 accuracy on T . In this case, y˚

3 is
also a critic with disagreement discrepancy equal to 1, and so Dis2 would correctly output
an error upper bound of 1.

I.6.2 Dis2 on Domain-Adversarial Training Methods
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Figure I.8: Dis2 may be invalid when the features are explicitly learned to violate
Assumption 4. Domain-adversarial representation learning algorithms such as DANN
(Ganin et al., 2016) and CDAN (Long et al., 2018) indirectly minimize maxh1PH∆pph, h1q,
meaning the necessary condition is less likely to be satisfied. Nevertheless, when Dis2 does
overestimate accuracy, it almost always does so by less than prior methods.

I.7 Proof of Theorem 10.2.4
Proof. Assumption 4 gives ϵT pphq ď ϵSpphq ` ∆pph, h1q “ ϵSpph, y˚q ` ϵT pph, h1q ´ ϵSpph, h1q. We
now define the random variables for pS Y pT :

ri “

$

’

’

’

&

’

’

’

%

1{nS, h1pxiq “ phpxiq ‰ yi, xi P pS
´1{nS, h1pxiq ‰ phpxiq “ yi, xi P pS
1{nT , phpxiq ‰ h1pxiq, xi P pT ,

0, otherwise.

Noting that the expectation of their sum is exactly the above three terms, we apply
Hoeffding’s inequality: the probability that the expectation exceeds their sum by t is no
more than exp

´

´ 2t2

nSp2{nSq
2

`nT p1{nT q
2

¯

. Now simply solve for t.
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Appendix J

Appendix: TiC-CLIP: Continual
Training of CLIP Models

J.1 Continual Learning Benchmarks and Methods
We introduce a large-scale image-text benchmark with web scale streaming image text
pairs specially developed for studying how efficiently one can get a fresh CLIP model with
new incoming batches of data. Table J.1 compares the proposed benchmark with existing
datasets for continual learning. Note that this table is not aimed to be an exhaustive list of
all CL datasets, but the most popular benchmarks in each domain. For language modeling
tasks we report the number of examples/documents as the number of samples and for
detection tasks we report the number of labeled objects/bounding boxes.

Table J.1: Comparison with continual learning benchmarks.
Benchmark # Samples Years Time-Continual Image-Text Task

Split-MNIST (Goodfellow et al., 2013) 60K 1998 ✗ ✗ Classification
Perm-MNIST (Goodfellow et al., 2013) 60K 1998 ✗ ✗ Classification
Rot-MNIST (Lopez-Paz and Ranzato, 2017) 60K 1998 ✗ ✗ Classification
Split-CIFAR-100 (Zenke et al., 2017) 50K 2008 ✗ ✗ Classification
Split-MINI-ImageNet (Chaudhry et al., 2019) 50K 2009 ✗ ✗ Classification
Split-ImageNet (Wen et al., 2020) 1.2M 2009 ✗ ✗ Classification
Split-ImageNet-R (Wang et al., 2022b) 30K 2019 ✗ ✗ Classification
CORe50 (Lomonaco and Maltoni, 2017) 165K 2017 ✗ ✗ Detection
CLAD (Verwimp et al., 2023) 23K 2021 ✗ ✗ Detection
WANDERLUST (Wang et al., 2021b) 326K 2021 ✓ ✗ Detection
Inc-PASCAL (Michieli and Zanuttigh, 2019) 11K 2012 ✗ ✗ Segmentation
Inc-ADE20K (Cermelli et al., 2020) 20K 2012 ✗ ✗ Segmentation
StreamingQA (Liška et al., 2022) 100K 2007–2020 ✓ ✗ Question Answering
TemporalWiki (Jang et al., 2022) 32M 2021 ✓ ✗ Language Modeling
CKL (Jang et al., 2021) 30K 2019-2021 ✗ ✗ Language Modeling
CTrL (Veniat et al., 2020) 300K 1998-2017 ✗ ✗ Classification
CLOC (Cai et al., 2021b) 39M 2006-2014 ✓ ✗ Classification
CLEAR (Lin et al., 2021) 7.8M 2004-2014 ✓ ✗ Classification
NEVIS (Bornschein et al., 2022) 8M 1992-2021 ✓ ✗ Classification
Mod-X (Ni et al., 2023) 156K 2014 ✗ ✓ Retrieval
CLiMB (Srinivasan et al., 2022) 1.3M 2013-2021 ✗ ✓ Classification

TiC-YFCC 15M 2008-2014 ✓ ✓ Retrieval / ZS Classification
TiC-RedCaps 12M 2011-2020 ✓ ✓ Retrieval / ZS Classification
TiC-DataComp 100M/1B/12B 2014-2022 ✓ ✓ Retrieval / ZS Classification
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J.1.1 Extended Related Work

Neural networks trained on new data suffer from catastrophic forgetting of prior knowl-
edge (Goodfellow et al., 2013; Sutton, 1986). Addressing the continual learning challenge,
researchers have primarily honed in on methods tailored for small-scale benchmarks, specif-
ically focusing on domain, class, or task incremental benchmarks (Hsu et al., 2018; Van de
Ven and Tolias, 2019). Continual learning of foundation models would significantly reduce
the costs and increase quick adaptability. While some recent works have started to introduce
continual learning benchmarks, they are not naturally time-continual and are comparatively
much smaller in scale (Ni et al., 2023; Srinivasan et al., 2022). While evaluations on these
benchmarks often neglect the consideration of “training time”, it becomes a pivotal factor
when scaling continual learning approaches to scenarios involving the training of foundation
models such as CLIP.

In our study, we abstain from comparing with continual learning methods that notably
prolong the “training time”. Methods such as GEM (Chaudhry et al., 2018; Lopez-Paz and
Ranzato, 2017), and IMM (Lee et al., 2017), which compute gradients for two models in each
training iteration, essentially double the training duration. For completeness, we include
a comparison with LWF (Ding et al., 2022; Li and Hoiem, 2017) and EWC (Kirkpatrick
et al., 2017). While these methods increase computation cost over standard training due to
an additional forward pass, the increase in computation cost is relatively much smaller than
methods that compute additional gradients. Our LWF implementation is motivated by Ding
et al. (2022) which focuses on continual fine-tuning CLIP models on classification tasks by
adapting LwF to CLIP models. Instead, for setups where additional compute resources are
available, we run our Cumulative-All approach for slightly longer. Cumulative-All narrows
the gap with Oracle (refer to Table 11.2). Given that data storage costs are substantially
lower than computational costs at scale, we advocate for taking computational efficiency
into consideration in future endeavors.

J.1.2 Discussion and comparison with CLOC Benchmark

Cai et al. (2021b) provide interesting discussion/analysis for continual learning at a large
number of steps. However, our study differs from Cai et al. (2021b) in several crucial
respects: (i) Training Methodology: We employ noisy supervision using contrastive loss
between image-text pairs, as opposed to the cross-entropy loss used by Cai et al. (2021b).
(ii) Scale of Experiments: Our experiments on the TiC-DataComp dataset are orders of
magnitude larger, scaling up by 200ˆ.

These differences introduce unique challenges. The use of contrastive loss (i) necessitates a
tailored approach to designing our evaluation studies. The significantly larger scale of our
experiments (ii) poses challenges in collecting timestamped data and understanding if and
how distribution shifts impact learning at this scale.
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J.2 Additional Experimental Results

J.2.1 Detailed Results on Our Benchmarks
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Figure J.1: Static and dynamic evaluation performance over time with selected
methods in our testbed. As we get more data, all methods improve on both static and
forward transfer on dynamic tasks but methods with limited replay buffer start performing
slightly worse for backward transfer.
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J.2.2 Results with Basic Filtering on TiC-DataComp XL

Filtering strategy changes the ordering of performance on static and dynamic
retrieval tasks. We observe that while Bestpool filtering models outperform basic filterining
models on TiC-DataComp (XL) by 6% on static tasks, they underperform by over 5%
on dynamic retrieval task (see Fig. J.3). In the main paper (Table 11.2), we included
TiC-DataComp (xlarge) results with Bestpool filtering. In Table J.2, we include basic
filtering results. We observe that while Bestpool filtering models perform better than basic
filtering models on static tasks, the order is flipped on dynamic retrieval tasks. Hence, we
resort to including results with Basic filtering at smaller scales, but include Bestpool results
for completeness as it achieves better results on static tasks.

Table J.2: Zero shot performance on our time-continual benchmarks (Basic and
Bestpool filtering). ˚ and ˚˚ denote methods that violate the compute budget and use
extra compute. For static tasks, we tabulate accuracy of the models obtained on the final
timestamp. For dynamic tasks, we tabulate forward transfer, backward transfer and ID
performance. For all metrics, higher is better. Bestpool filtering results are copied from
Table 11.2.

Benchmark Method
Compute
(MACs)

Static Tasks Dynamic Retrieval Tasks

ImageNet ImageNet
dist. shift Flickr30k Average over

28 datasets
Backward
Transfer

ID Per-
formance

Forward
Transfer

TiC-
DataComp
(XL; Bestpool)

Sequential 2.7 ˆ 1020 66.5 54.2 61.2 61.0 63.1 68.9 56.8
Cumulative-All 2.7 ˆ 1020 71.6 58.8 65.1 64.8 70.7 68.5 57.1
Cumulative-All˚ 3.5 ˆ 1020 72.8 60.4 66.5 66.7 71.0 68.6 57.1

Oracle˚˚ 1.1 ˆ 1021 73.3 61.3 68.0 65.8 - - -
TiC-
DataComp
(XL; Basic)

Cumulative-All 2.7 ˆ 1020 63.5 52.0 62.8 58.7 64.6 55.5 47.6
Sequential 2.7 ˆ 1020 60.2 48.9 62.4 56.6 51.6 50.3 45.0
Oracle˚˚ 1.1 ˆ 1021 66.0 54.0 63.8 59.6 - - -
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(d) TiC-DataComp (L).

Figure J.2: Dynamic retrieval evaluation results on our benchmarks with Sequential,
Cumulative-Exp, Cumulative-All and Oracle. These evaluations highlight the catastrophic
forgetting observed with Sequential and Cumulative-Exp. Moreover, by observing new data,
we not only benefit on tasks from current time step but also improve performance on tasks
from old time steps.
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Figure J.3: Comparing Oracle models trained on Bestpool and Basic filtering trained on
data from all time steps. Our results clearly highlight that Basic filtering performs better
than Bestpool filtering on dynamic retrieval task. However, on static tasks, the order is
reversed. Moreover, Bestpool filtering shows a drop in retrieval performance from 2016 to
2022 when compared with Basic filtering.

J.2.3 Ablations with learning rate warmup and maximum learning
rate

To continually train models as more data arrives sequentially over time, we use multiple
cycles of cosine learning rate schedule (Fig. J.4). There are two crucial design choices: (i)
Should we warm up the learning rate for subsequent continual runs? and (ii) How should
the maximum learning rate change for sequential training runs?

Table J.3: Zero shot performance on our time-continual benchmarks with and
without initial LR wamrup for subsequent runs. Using warm up on sequential runs
after training on the first time step hurts slightly when compared with not using warm up
on sequential runs.

Benchmark Method
Static Tasks Dynamic Retrieval Tasks

ImageNet
ImageNet
dist.
shift

Flickr30k Average over
28 datasets

Backward
Transfer

ID Per-
formance

Forward
Transfer

TiC-DataComp (M) Cumulative-All (w/o warmup) 24.0 20.2 20.9 17.9 33.8 26.4 15.1
Cumulative-All (w warmup) 23.3 20.1 20.3 17.6 33.3 26.1 14.8

TiC-DataComp (L) Cumulative-All (w/o warmup) 48.9 41.3 50.9 36.3 62.1 57.3 41.2
Cumulative-All (w warmup) 47.6 40.6 50.0 35.2 60.1 53.0 39.5
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(a) Multiple cycles of standard cosine learning rate schedules which involves warm-up for all
subsequent training runs.
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(b) Our proposed cosine learning rate schedule without learning rate warm-up for subsequent
training runs.

Figure J.4: Learning rate schedule ablations. Schedules vary on how continual training
is performed when the training run is initialized with the best previous model. When
training with cosine learning schedules for subsequent runs, we observe that keeping the
same maximum learning rate as the first run performs the best.

Table J.4: Cumulative experiments on TiC-DataComp (M) with different maximum
learning rates for subsequent runs with first run fixed at LR 0.00025. Our default choice
for subsequent runs is 0.00025. Performance reported on ImageNet. At maximum learning
rate 0.001, the runs crashed with Nan in loss.

Method Max LR

0.00005 0.0001 0.00025 0.0005 0.001

Cumulative-All 16.3 19.0 24.0 10.1 –

When training with large batches, linear learning rate warm-up is typically employed to
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stabilize the start of the training when beginning from a random initialization (Goyal et al.,
2017; Steiner et al., 2021). However, when training sequentially by initializing models with
checkpoints from the previous step, it remains unclear whether we should employ a learning
rate warm up or not. Our observations highlight that while warm up is benefits for the
first time step, not using warm up on subsequent runs performs better. In particular, we
observe that removing the warm up for the first training run hurts the final performance.
On TiC-DataComp (large), we observe that training a ViT-B/16 with warm up on the
first time step (i.e., 2016) gets 29.9 zero-shot on Imagenet, whereas, without warm up
ViT-B/16 achieves only 24.1 zero-shot performance on Imagenet. Table J.3 shows the final
performance of models trained with and without warmup on subsequent time steps (after
training on the first time step with warmup). In particular, on TiC-DataComp (large),
we observe 1.5% accuracy gap on Imagenet and 4.3% accuracy gap on dynamic ID retrieval
performance on models trained with and without warm up.

Hence, we default to using warmup when training on the first time step and not using it on
the subsequent time steps with all methods except for training on TiC-DataComp (XL)
where we add a smaller warm up (10% of the warm up iterations used in first step) to
stabilize training.

Next, we experiment with different maximum learning rate when training with cosine
schedules. We ablate on TiC-DataComp (M) to investigate how to change LR after training
on data from the first time step. Unlike conventional pretraining and finetuning settings
where LR is typically decreased for subsequent training, we observe that decaying maximum
LR for subsequent steps in our setup hurts on static and dynamic tasks and consequently,
we use the same maximum LR across our runs (see Table J.4).

J.2.4 Preliminary experiments comparing random subsampling
with other strategies to reduce buffer size

In our preliminary experiments, we explored the efficacy of subsampling old data based
on the alignment between text and image content from previous time steps. Specifically,
when training a model at time step t ` 1, we used the model from the end of time step t to
assess this alignment. We employed two distinct subsampling methods:

1. Retaining half of the data with the lowest alignment scores, based on the premise
that these data points might be more challenging to learn and require additional gradient
steps.

2. Retaining half of the data with the highest alignment scores, under the assumption that
these represent higher quality data, as indicated by the stronger alignment between text
and image pairs.

We applied these methods to the TiC-YFCC dataset and evaluated their performance against
a baseline of random sampling. The outcomes revealed minimal differences: less than 0.2%
variation in Imagenet performance and under 0.5% in dynamic retrieval performance
across different time steps. Given that these minor improvements came with a significant
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computational cost—requiring a full forward pass to compute alignment post each training
epoch—they exceeded our compute budget constraints. As a result, we opted for random
sampling in our research. We leave investigation on improved subsampling techniques for
future work.

J.2.5 Const-Cosine: An alternative learning rate schedule

The defacto LR schedule for training CLIP models is an initial linear increase to a maximum
value, i.e., warm up, followed by a cosine decay (Gadre et al., 2023; Radford et al., 2021).
In the main paper, we default to using cosine LR schedule for each sequential run, resulting
in a cyclic schedule. We observe a significant increase in training loss early in subsequent
runs when the LR is high. Comparing the loss on training data with Cumulative and Oracle
methods, we observe that as training progresses the training loss increases every time the
learning rate is increased to the maximum LR (Fig. J.5).

It would be ideal for continual training to employ a learning rate schedule that is “forward
looking”, allowing us to continually train from a previous checkpoint without experiencing a
significant increase in training loss. One desirable property of such a learning rate schedule
would be its ability to adapt without requiring prior knowledge of the decay period.

0 200 400 600 800 1000 1200 1400 1600
Iterations

5

10

15

T
ra

in
in

g
lo

ss

Cumulative (All) Oracle

200 400 600 800 1000 1200 1400
2.0

2.5

3.0

3.5

4.0

4.5

5.0

Figure J.5: Training loss increases every time the LR is reset to maximum LR
for Cumulative. Loss comparison on training data with Cumulative and Oracle method.
Cumulative is trained with a cyclic cosine schedule without warm up for sequential training
runs. For Cumulative, we plot the loss on training data, and as the training progresses,
samples from new time steps are added to the training pool. For Oracle, the training data
is the union of data from all time steps and remains the same throughout the training.

383



0 0.5T T 1.5T 2T (N-1)T (N - 0.5)T NT
Iterations

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

L
ea

rn
in

g
R

at
e

Warm up Decay Decay
Decay

(0.2*N*T)

Spawn a new run
with lr decay

Constant + Cosine learning schedule

Figure J.6: Const-Cosine: Our proposed alternative forward-looking learning rate schedule
schedule which trains one model with constant learning rate and decays the learning rate
with cosine schedule only for a fraction of iterations before obtaining a deployable model.
Const-Cosine schedule uses an extra compute budget than an Oracle run because an extra
training run is launched for the fraction of training when learning rate is decayed.

In our work, we perform preliminary experiments with the simplest alternative, Const-
Cosine where after the warm up period, we train with a constant learning rate and decay
the learning rate only for a small fraction of training towards the end when we want a
deployable model (Fig. J.6). This allows us to continue training for subsequent runs from
the checkpoint at the end of the constant learning rate schedule and decay the LR only in
the end. For our experiments, we fix the decay period as 0.2 of the total training iterations.
Due to this, Const-Cosine schedule slightly increases the overall training budget of the
Cumulative runs when compared with cyclic cosine schedules.

For Const-Cosine, we only ablate at relatively smaller scale datasets in our testbed (i.e.,
TiC-YFCC, TiC-RedCaps, and TiC-DataComp (medium)). For a fair comparison, we also
re-run Oracle methods with the same Const-Cosine schedule. Note that for Const-Cosine
experiments, we use the same maximum LR as with the cosine schedule.

We observe that training with Const-Cosine schedule significantly improves both Cumulative
and Oracle as compared to their counterparts trained with cosine learning rates 1. Moreover,
as expected, we do not observe jumps in training loss when training Cumulative with
Const-Cosine schedule. However, the gap between Oracle and Cumulative with Const-
Cosine doesn’t decrease when compared with gap between Oracle and Cumulative with
cosine learning rate schedules. This highlights that the jumps in the training loss observed

1We also experimented with Const-Cosine schedule for Oracle training on TiC-DataComp (large) and
TiC-DataComp (xlarge). We observe that with a decay fraction of 0.2, Const-Cosine achieves similar
results to that of the cosine learning rate schedule. In particular, Const-Cosine achieves 61.3 on large
and 73.0 on xlarge versus Cosine schedule achieves 62.3 on large and 73.3 on xlarge. This highlights
the potential of training with Const-Cosine schedule in scenarios where total training duration might be
unknown apriori.
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while training with the cyclic cosine schedule might have benign effects on the final
performance.

Table J.5: Zero shot performance on Imagenet with Const-Cosine LR schedule.
We observe that Const-Cosine improves over cyclic cosine LR schedule. However, the gap
between cyclic cosine LR schedule and Const-Cosine for different LR schedules remains the
same. ˚˚ denote methods that violate the compute budget.

Benchmark
Method Cosine LR Schedule Const-Cosine LR schedule

Compute (MACs) ImageNet Compute (MACs) ImageNet

TiC-YFCC Cumulative-All 3.4 ˆ 1018 29.3 4.4 ˆ 1018 32.8
Oracle˚˚ 8.5 ˆ 1018 29.2 8.5 ˆ 1018 33.2

TiC-RedCaps Cumulative-All 3.4 ˆ 1018 32.2 4.4 ˆ 1018 35.1
Oracle˚˚ 8.5 ˆ 1018 32.7 8.5 ˆ 1018 36.2

TiC-DataComp (M) Cumulative-All 3.0 ˆ 1018 24.0 3.6 ˆ 1018 28.2
Oracle˚˚ 1.2 ˆ 1019 25.5 1.2 ˆ 1019 28.9

J.2.6 OpenCLIP models obtained by retraining after removing any
duplicate examples from the test set

OpenCLIP models (e.g., models trained on Datacomp and LAION-5B) have been trained
on data curated from Common Crawl. Since the retrieval tasks we constructed are built on
top of data curated from Common Crawl, one may argue there is a possibility of train/test
overlap in our evaluations of OpenCLIP models. Thus, we retrain OpenCLIP models on
DataComp datasets after removing the samples in our test sets. Figure J.7 shows that the
trends observed for OpenCLIP models holds for our retrained models.
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Figure J.7: We replicate OpenCLIP models by training from scratch and removing duplicates
from the evaluation dataset. We observe that trends continue to hold.

J.2.7 Results on dynamic classification task

In the main paper, we include results on our dynamic retrieval task. For completeness, here
we include results on dynamic classification tasks on TiC-DataComp splits (Table J.6).

385



Along with including results on all nodes of ImageNet, we also include results on classification
task restricted to classes in the “motor vehicles” subtree of ImageNet hierarchy. For the
dynamic classification task, we observe trends similar to the dynamic retrieval task.

Table J.6: Zero shot performance on our TiC-DataComp-Net classification task.
˚ and ˚˚ denote methods that violate the compute budget. We tabulate forward/backward
transfer and ID performance on classification tasks (Sec. 11.2.3). For TiC-DataComp (XL),
we include results with Bestpool filtering.

Benchmark Method
Compute
(MACs)

Dynamic Retrieval Tasks (All) Dynamic Retrieval Tasks (‘Motor Vehicles’)

Backward
Transfer

ID Per-
formance

Forward
Transfer

Backward
Transfer

ID Per-
formance

Forward
Transfer

TiC-DataComp (M)

Sequential 3.0 ˆ 1018 15.9 13.3 9.9 34.5 30.0 22.6
Patching 3.0 ˆ 1018 15.6 13.1 9.7 34.4 29.2 22.1

Cumulative-Exp 3.0 ˆ 1018 17.6 14.4 10.4 36.6 30.9 23.5
Cumulative-Equal 3.0 ˆ 1018 17.5 14.2 10.4 36.4 31.1 23.5
Cumulative-All 3.0 ˆ 1018 18.3 14.7 10.6 38.2 31.7 23.7

LwF˚ 3.8 ˆ 1018 16.0 13.5 9.9 35.1 30.7 23.3
Cumulative-All˚ 3.9 ˆ 1018 20.7 16.0 10.9 40.4 32.3 23.9

Oracle˚˚ 1.2 ˆ 1019 19.2 15.2 10.7 38.7 31.9 23.5

TiC-DataComp (L)

Sequential 2.7 ˆ 1019 38.3 36.9 33.3 58.4 55.6 49.7
Patching 2.7 ˆ 1019 38.6 36.8 33.3 58.3 54.9 49.3

Cumulative-Exp 2.7 ˆ 1019 40.2 37.9 34.2 60.7 56.8 51.1
Cumulative-Equal 2.7 ˆ 1019 40.6 38.0 34.2 60.7 56.8 50.8
Cumulative-All 2.7 ˆ 1019 41.3 38.3 34.4 61.4 56.6 50.9
Cumulative-All˚ 4.1 ˆ 1019 43.0 39.2 34.6 62.7 57.5 51.1

Oracle˚˚ 1.1 ˆ 1020 43.8 40.0 35.2 62.6 56.8 50.7

TiC-DataComp (XL)
Sequential 2.7 ˆ 1020 55.4 55.1 53.3 67.8 66.0 63.5

Cumulative-All 2.7 ˆ 1020 58.5 56.7 54.3 70.2 67.4 63.8
Cumulative-All˚ 3.5 ˆ 1020 58.8 56.9 54.3 70.5 67.5 63.8

J.2.8 Addressing differences between Sequential and Cumulative-
All between TiC-YFCC and TiC-DataComp

In Table 11.2, we observe differences in the behavior of Sequential and Cumulative-Allon
TiC-YFCC when compared with TiC-DataComp. For instance, differences between the
ID performance between Sequential and Cumulative-All is larger in TiC-YFCC than in
TiC-DataComp (M). Similar observations hold true for backward transfer performance. In
this section, we explain the underlying causes for these differences.

We identify two primary reasons:

(i) the nature of the distribution shift observed in TiC-YFCC. We observe that models
trained with Sequential on TiC-YFCC suffer from relatively larger drops on old-time
steps than TiC-DataComp (M) due to catastrophic forgetting (see Fig. J.2).

(ii) compute used at each time step per data available at each time step is different
for these bencmarks. Overall YFCC is 2x smaller than Tic-Datacomp (M) but the
compute we used in both TiC-YFCC and TiC-Datacomp setup is of similar order (in
fact, it is slightly higher in TiC-YFCC). We re-ran the experiments for Tic-YFCC
by reducing the compute. In the updated runs, we observe that the gap between ID
performances of Sequential and Cumulative-All vanishes.
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Figure J.8: Dynamic retrieval evaluation results with Sequential, Cumulative-All on TiC-
YFCC with reduced compute.

Table J.7: Zero shot retrieval performance on TiC-YFCC with Sequential and
Cumulative-All with reduced compute.

Benchmark Method

Dynamic Retrieval Tasks (original compute) Dynamic Retrieval Tasks (reduced compute)

Compute
(MACs)

Backward
Transfer

ID Per-
formance

Forward
Transfer

Compute
(MACs)

Backward
Transfer

ID Per-
formance

Forward
Transfer

TiC-YFCC Sequential 3.4 ˆ 1018 42.2 48.4 23.7 1.5 ˆ 1018 27.0 42.0 15.7
Cumulative-All 3.4 ˆ 1018 66.4 60.2 27.6 1.5 ˆ 1018 46.3 38.7 17.3

J.3 Additional Benchmark Details

J.3.1 Filtering ablations on TiC-DataComp

For Basic Filtering, Gadre et al. (2023) performs the following three steps: filter by English
language (using fasttext (Joulin et al., 2017)), filter by caption length over two words
and 5 characters, and filter by image sizes with smallest dimensions over 200 pixels and
aspect ratio above 3. We do not default to other filtering techniques that use off-the-shelf
CLIP models from Gadre et al. (2023) to avoid biasing dataset selection from each time
step. In Fig. J.9, we show that “Bestpool” filtering (which filters image-text pairs with
CLIP scores and ImageNet image embeddings) biases dataset selection to preferring old
time step data over new timestamp data. Moreover, we also show that models trained
with Bestpool filtering is less robust when evaluated on our dynamic tasks from 2021-2022
(Fig. J.9). Nevertheless, for completeness and to highlight the significance of our findings
even for state-of-the-art filtering techniques, we perform continual learning experiments
with Bestpool filtering at xlarge scale which is included in the main paper. In App. J.2.2,
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we include results with Basic filtering at xlarge.
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Figure J.9: (Left) Gap in retrieval performance for different OpenCLIP models that use
different filtering techniques. (Right) Reduction in TiC-DataComp data at different times
with different filtering techniques. This clearly highlights that there is a selection bias
towards retaining more old data for CLIP/BestPool filtering. No such bias exists for basic
filtering.

J.3.2 Static Datasets considered for evaluation

Table J.8: Evaluation tasks borrowed from Gadre et al. (2023).

Task type Dataset Task Test set size Number of classes Main metric

Food-101 (Bossard et al., 2014) Food recognition 25,250 101 accuracy
GTSRB (Stallkamp et al., 2011) Traffic sign recognition 12,630 43 accuracy
ImageNet 1k (Deng et al., 2009) Visual recognition 50,000 1,000 accuracy
ImageNet Sketch (Wang et al., 2019a) Visual recognition 50,889 1,000 accuracy
ImageNet V2 (Recht et al., 2019a) Visual recognition 10,000 1,000 accuracy
ImageNet-A (Hendrycks et al., 2021c) Visual recognition 7,500 200 accuracy
ImageNet-O (Hendrycks et al., 2021c) Visual recognition 2,000 200 accuracy
ImageNet-R (Hendrycks et al., 2021a) Visual recognition 30,000 200 accuracy
KITTI distance (Geiger et al., 2012; Zhai et al., 2019) Distance prediction 711 4 accuracy
MNIST (LeCun et al., 1998) Digit recognition 10,000 10 accuracy
ObjectNet (Barbu et al., 2019) Visual recognition 18,574 113 accuracy
Oxford Flowers-102 (Nilsback and Zisserman, 2008) Flower recognition 6,149 102 mean per class
Oxford-IIIT Pet (Parkhi et al., 2012; Zhai et al., 2019) Pet classification 3,669 37 mean per class
Pascal VOC 2007 (Everingham et al., 2007) Object recognition 14,976 20 accuracy
PatchCamelyon (Veeling et al., 2018; Zhai et al., 2019) Metastatic tissue cls. 32,768 2 accuracy
Rendered SST2 (Zhai et al., 2019) Sentiment classification 1,821 2 accuracy
RESISC45 (Cheng et al., 2017; Zhai et al., 2019) Satellite imagery recognition 6,300 45 accuracy
Stanford Cars (Krause et al., 2013) Vehicle recognition 8,041 196 accuracy
STL-10 (Coates et al., 2011) Visual recognition 8,000 10 accuracy
SUN-397 (Xiao et al., 2016) Scene recognition 108,754 397 accuracy
SVHN (Netzer et al., 2011b; Zhai et al., 2019) Digit recognition 26032 10 accuracy
iWildCam (Beery et al., 2020; Koh et al., 2021) Animal recognition 42,791 182 macro F1 score
Camelyon17 (Bandi et al., 2018; Koh et al., 2021) Metastatic tissue cls. 85,054 2 accuracy

Classification

FMoW (Christie et al., 2018; Koh et al., 2021) Satellite imagery recognition 22,108 62 worst-region acc.

Retrieval Flickr30k (Young et al., 2014) Image and text retrieval 31,014 N/A R@1
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J.3.3 Our Benchmark Statistics

In this section, we discuss statistics of our constructed benchmarks. Fig. J.10 summarizes
TiC-RedCaps, TiC-YFCC and TiC-DataComp dataset sizes. Fig. J.11 summarizes original
YFCC dataset sizes. Table J.9, Table J.10 and Table J.11 present the exact numbers for
these datasets. For TiC-DataComp, we only discuss the sizes at xlarge scale.
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Figure J.10: Number of examples in each year in our benchmarks.

Figure J.11: Number of examples in each year in original YFCC 15M. X-axis the upload
month and y-axis is the number of examples in that month.

Table J.9: Number of examples in TiC-RedCaps in each year.

Dataset Year

2017 2018 2019 2020

TiC-RedCaps 4,220,262 1,660,003 2,526,575 3,115,715

Table J.10: Number of examples in TiC-YFCC in each year.

Dataset Year

2004–2008 2009–2010 2011–2012 2012–2014

TiC-YFCC 4,337,727 4,050,166 3,976,339 2,312,753
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Table J.11: Number of examples in TiC-DataComp in each year before filtering.

Dataset Year

2014 2015 2016 2017 2018 2019 2020 2021 2022

TiC-DataComp (no filter) 244,802,598 175,648,045 666,019,511 1,906,357,755 1,877,561,875 2,016,011,588 1,778,751,066 2,044,463,701 1,442,233,121
TiC-DataComp (basic filter) 52,764,775 50,757,898 133,333,267 400,225,598 501,347,511 519,575,760 417,067,014 494,038,122 371,748,613

Next, we tabulate the number of examples in our retrieval evaluation datasets. Since the
evaluation dataset sizes are different at different time steps, we subsample the dataset to
a fixed size before performing retrieval evaluations. On TiC-YFCC and TiC-RedCaps,
we randomly sampled 1000 image-text pairs from these evaluation datasets. For TiC-
DataComp, we randomly sample 4000 image-text pairs. We repeat this process for 3 seeds
and report the aggregated performance.

Table J.12: Number of retrieval evaluation examples in TiC-RedCaps in each year.

Dataset Year

2017 2018 2019 2020

TiC-RedCaps 31,316 42,539 16,738 25,565

Table J.13: Number of retrieval evaluation examples in TiC-YFCC in each year.

Dataset Year

2004–2008 2009–2010 2011–2012 2012–2014

TiC-YFCC 43,820 40,909 40,165 23,354

Table J.14: Number of retrieval evaluation examples in TiC-DataComp in each year before
filtering.

Dataset Year

2016 2017 2018 2019 2020 2021 2022

TiC-DataComp 23,085 39,289 50,450 53058 42,239 49,841 38,051

J.3.4 Compute Constraints for Different Datasets

We closely follow compute budget constraints from Gadre et al. (2023). In particular, on
TiC-DataComp, we restrict to using exactly the same amount of overall compute as fixed
in Gadre et al. (2023). Below we list exact total MACs on each dataset:

• TiC-YFCC: Total MACs: 3.4 ˆ 1018

• TiC-RedCaps: Total MACs: 3.4 ˆ 1018

• TiC-DataComp medium: Total MACs: 3.0 ˆ 1018

• TiC-DataComp large: Total MACs: 2.7 ˆ 1019

• TiC-DataComp xlarge: Total MACs: 2.7 ˆ 1020
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For a ViT-B architecure, these values correspond to 20k iterations on TiC-YFCC (batch
size: 8192), TiC-RedCaps (batch size: 8192), 35k iterations on TiC-DataComp (M) (batch
size: 4096), 157k iterations on TiC-DataComp (L) (batch size: 8192), and 143.5k iterations
on TiC-DataComp (XL) (batch size: 90100). We divide these iterations equally among all
time steps.

J.3.5 Creation Pipeline for Evaluation Datasets

TiC-DataComp-Retrieval To create a retrieval task, we sample a batch of IID image-
text pairs from different timestamps and evaluate text retrieval performance given the
corresponding image (similarly, image retrieval given the corresponding text). Alongside
general evaluations, we also construct datasets from specific domains, e.g., Covid-19 subset
and Flickr subset. To create Covid-19, we filter the dataset to only retain pairs where
the caption contains a mention of "covid". This search process restricts the data to time
only after 2019. For the Flickr subset, we filter the dataset to only retain pairs where the
corresponding “url” contains data from Flickr.

TiC-DataComp-Net We create our dynamic classification dataset TiC-DataComp-Net
with ImageNet classes from the CommonPool data augmented with temporal information.
Our construction process draws inspiration from the LAIONet construction process described
in Shirali and Hardt (2023). In particular, we first filter examples where the corresponding
caption contains one and only one of the synsets of ImageNet-1K. We also apply additional
basic filtering (Gadre et al., 2023) to make sure that images are of at least 200 size in smallest
dimension and the caption contains at least 2 words and 5 characters. After filtering for
examples with ImageNet synsets, we only retain examples where the similarity—as evaluated
by an off-the-shelf sentence embedding model (Reimers and Gurevych, 2019)—between
imagenet synset definition and the caption exceeds a threshold of 0.5. The goal of this
filtering step is to restrict examples with “high” alignment between caption and imagenet
synset definition. This last step differs from the LAIONet construction. Crucially, unlike
LAIONet, we do not filter the image-text pairs with CLIP similarity scores to avoid biasing
the dataset selection process.
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J.3.6 Distribution Shift Analysis on Proposed benchmarks
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Figure J.12: (Left) Comparison of retrieval performance on COVID queries versus Flickr
queries (construction described in App. J.3.5). (Right) Comparison on old Flickr versus
new Flickr data. Clearly, we observe that while gap on old versus new flickr data is small,
the gap is significantly larger on Covid queries.
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Figure J.13: (Left) Comparison on old versus new data from TiC-DataComp-Net. (Right)
Comparison on motor vehicles node from TiC-DataComp-Net. For our classification task,
we observe a very small drop (« 1%) when averaged across all categories. However, we
observe a substantial gap on classes in “motor vehicle” subtree, when comparing OpenAI
and OpenCLIP models. These findings highlight that while overall ImageNet classes may
remain timeless, certain categories tend to evolve faster than others.

TiC-DataComp analysis through the lens of constructed evaluation tasks Here,
we compare performance of OpenAI and OpenCLIP models on our datasets. We observe
a significant performance gap between OpenAI and OpenCLIP models on our dynamic
retrieval task (Fig. 11.1). This gap widens notably on retrieval queries where captions
mention COVID-19. On the other hand, OpenAI and OpenCLIP models exhibit similar
robustness for retrieval on data coming from Flickr highlighting that data from some
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domains do not exhibit shifts that cause performance drops. For our classification task,
we observe a very small drop (« 1%) when averaged across all categories. However, we
observe a substantial gap on specific subtrees in ImageNet. For example, classes in “motor
vehicle” subtree show an approximate 7% performance drop, when comparing OpenAI
and OpenCLIP models. These findings highlight that while overall ImageNet classes may
remain timeless, certain categories tend to evolve faster than others. Our qualitative and
quantitative analysis on TiC-DataComp clearly highlights evolution of distributions and
captures different properties than standard benchmarks.

Quantitative analysis on TiC-YFCC We analyze TiC-YFCC using off-the-shelf
sentence and image encoders. For off-the-shelf sentence embedder, we used an existing
sentence transformer from Hugging Face (Reimers and Gurevych, 2019). For the image
encoder, we use a CLIP pretrained ViT-B-16 model (Ilharco et al., 2021; Radford et al.,
2021).

We first embed images from different time steps with an OpenAI CLIP encoder and then
compute Frechet Inception Distance (FID; Seitzer (2020)). As time progresses, we observe
that FID distance increases with respect to data from first time step (Fig. J.14). Similarly,
we use the pretrained sentence transformer to extract top-5 categories from Wordnet Nouns
for each caption. We then obtain a distribution over these Nouns for each time step. We
observe that the TV distance over the distribution of WordNet nouns evolves over time
when compared to data from the first time step.

J.3.7 Creation Pipiline for TiC-DataComp

We collect timestamps for the CommonPool dataset introduced in DataComp. We repeat
the crawling process described in Gadre et al. (2023) to download WARC files from Common
Crawl. In particular, we follow the same multistep process which involved: (i) parsing
URLs and alt-text from Common Crawl dumps and downloading these images; (ii) tagging
images with meta data and id of the common crawl batch; and (iii) conducting evaluation
set duplication and safety content filtering. After downloading the WARC files, we perform
a join with the datacomp 12.8B examples. During this join, we lost approximately 0.1B of
examples that are no longer available online. Moreover, while performing this join, we only
retain examples with their first occurrence. This is done before running any de-duplication
on image-text pairs for exact matches as done in Gadre et al. (2023).

The source of DataComp is Common Crawl, which periodically releases web-crawled data
snapshots, typically on a monthly basis since 2014 with new and updated webpages. This
process provides timestamps at the granularity of months, spanning years 2014–2022.

We note that while this augmented time information may contain some noise, on average,
we find it to be a reasonably accurate proxy for the upload time of web pages. To perform
an initial check, we note that our data contains images from flickr which provides an API
to query for true upload timestamp. So we extract 10k examples from our benchmark
TiC-DataComp and query Flickr for their true timestamp. Fig. J.16 summarizes true
timestamps with timestamps extracted from CC.
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(a) TiC-YFCC.

(b) TiC-DataComp (M).

Figure J.14: Distribution shift results. Analysis on TiC-YFCC and TiC-DataComp (M)
using off-the-shelf sentence and image encoders. We first embed images from different time
steps with an OpenAI CLIP encoder and then compute Frechet Inception Distance (FID;
Seitzer (2020)). As time progresses, we observe that FID distance increases with respect to
data from first time step. Similarly TV distance over categorical distribution on Wordnet
Noun synsets also increases with time when compared to categorical distribution on first
timestep.

J.4 Additional Experimental Details

J.4.1 Additional details on ImageNet IID split continual learning
experiment

With ImageNet data, we consider 2, 4 and 8 splits including the full dataset. This design is
inspired by Ash and Adams (2020). We consider ViT-B/16 architecture trained for 300
epochs on full data and split the iterations corresponding to 300 epochs equally among k
splits when training sequentially. We keep all other hyperparameters, such as learning rate,
optimizer, and batch size, set to the standard values typically employed for training ViT-
B/16 on the ImageNet dataset (Dosovitskiy et al., 2020). We also employ ℓ2 regularization
and augmentation on ImageNet training data. We evaluate the models on IID ImageNet
test set.
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Figure J.15: Distribution shift analysis on TiC-DataComp (M) using off-the-shelf sentence
and image encoders. We first embed images from different time steps with an OpenAI
CLIP encoder and then compute Frechet Inception Distance (FID; Seitzer (2020)). As time
progresses, we observe that FID distance increases with respect to data from first time step.
Similarly TV distance over categorical distribution on Wordnet Noun synsets also increases
with time when compared to categorical distribution on first timestep.

Our Imagenet experiments were primarily inspired by the “loss of plasticity” phenomenon
described in Ash and Adams (2020). Their study demonstrates that models sequentially
trained on two splits of CIFAR-10 data (initially on 50%, followed by 100% of data) exhibit
poorer generalization compared to models trained from scratch on the entire dataset. Since
we do not observe this behavior for continual training of CLIP, we investigated the existence
of such behaviors on up to 8 splits of Imagenet. Our findings reveal that the simple
cumulative baseline (with no extra budget) remains competitively close to the Oracle model
(that benefits from using the full compute budget on the entire pooled training data from
the beginning).

Prior works (Hu et al., 2021; Prabhu et al., 2023) performed continual learning experiments
on Imagenet to compare different methods and highlight the effectiveness of continual
training on synthetic continual learning setups derived from ImageNet. While these papers
include results with an Oracle method, differences in the settings considered in these studies
limit direct comparisons.

In particular, we show the performance gap of less than 1% in the same setup used otherwise
in the paper when using SOTA training procedures achieving 81% validation performance.
Comparitively the referenced Hu et al. (2021) does not show whether the 65% to 77%
performance gap in their Table 1 can be bridged by increasing the compute for their method.
Instead, authors show that if they restrict the compute for Oracle in Table 2, the Oracle
performance drops to 68% (with « 3% gap).

Moreover, in Prabhu et al. (2023), authors perform experiments on DI-Imagenet-2k where
they start with an initial memory of Imagenet-1k 1.2 M samples and sequentially observe
data for the same classes 1k classes from Imagenet-21k pool. This makes comparing
streaming accuracy (or Imagenet-1k accuracy) for different methods incomparable with our
setup (with a gap of over 7% in streaming accuracy even at step 8 as compared to less than
1% in our setup).
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Figure J.16: Comparison of Common Crawl assigned timestamp and true timestamp on a
subset of 10k examples containing image-text pairs from Flickr. We observe a clear trend
where CC timestamps correlate with true timestamps.

J.4.2 Training and Hyperparameter Details

We create a common experimental setup by fixing the training procedure for sequential
runs. Unless specified otherwise, we closely follow the CLIP training recipe proposed in
(Ilharco et al., 2021; Radford et al., 2021) where we train models with a contrastive objective
over images and captions. Given a set of image-text pairs, we train an image encoder and
a text encoder such that the similarity between the representations of images and their
corresponding text is maximized relative to unaligned pairs. Only LwF deviates from this
standard training procedure. For each benchmark, we pick Vision Transformers (ViTs) as
the image encoder, in particular, we fix the model architecture to ViT-B/16 (Dosovitskiy
et al., 2021). We fix the Adam optimizer and its hyperparameters to values suggested in
(Ilharco et al., 2021).

We primarily ablate over only two things: maximum learning rate with cosine learning
schedule and warm up iterations for sequential training. For choosing other hyperparameters,
we follow the OpenCLIP library (Ilharco et al., 2021).

J.4.3 Replay sizes with Exp and Equal strategies

We default to using 2D size of data where D represents incoming data size from new time
step. As described in the main text, for -Exp, we reduce the buffer size by half of what we
used at old time step and use rest of the half as data from previous time step. App. J.3.3
lists the dataset sizes for each benchmark which dictate the exact buffer sizes.
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J.5 Results with Other Continual Learning Methods

J.5.1 Results with EWC Method

As proposed in the original work Kirkpatrick et al. (2017), we implement EWC method
where we optimize the following loss:

LEWCpθq “ Lpθq `
ÿ

i

λEWC

2
Fipθi ´ θt´1,iq

2 ,

where Lpθq is the standard contrastive loss on data from time step t, Fi is the i-th diagonal
entry of the fisher information matrix, and θt´1 are the frozen parameters from previous
time step. We perform experiments with different values of λEWC P t1, 10, 100, 400u (see
Table J.15).

Table J.15: Zero shot performance on our time-continual benchmarks with EWC.
˚ and ˚˚ denote methods that violate the compute budget. For static tasks, we tabulate
accuracy of the models obtained on the final timestamp. For dynamic tasks, we tabulate
forward/backward transfer and ID performance on retrieval tasks (Sec. 11.2.3). We observe
that EWC performs worse than Sequential, Patching and LwF.

Benchmark Method
Compute
(MACs)

Static Tasks Dynamic Retrieval Tasks

ImageNet
ImageNet
dist.
shift

Flickr30k Average over
28 datasets

Backward
Transfer

ID Per-
formance

Forward
Transfer

TiC-DataComp (M) Sequential 3.0 ˆ 1018 19.2 16.4 16.4 15.0 25.7 26.4 14.9
Patching 3.0 ˆ 1018 19.3 16.8 18.5 14.7 26.9 25.4 14.5

LwF˚ 3.8 ˆ 1018 19.2 16.5 17.7 14.3 25.6 26.6 14.9
EWC (λEWC = 1)˚ 3.6 ˆ 1018 18.7 16.3 16.2 15.1 25.5 26.4 14.8
EWC (λEWC = 10)˚ 3.6 ˆ 1018 18.1 15.8 16.8 14.7 24.8 25.7 14.4
EWC (λEWC = 100)˚ 3.6 ˆ 1018 17.6 15.4 16.3 14.8 24.4 25.4 14.3
EWC (λEWC = 400)˚ 3.6 ˆ 1018 17.0 15.0 16.4 14.3 24.1 24.9 14.0

J.5.2 Results with Oversampling + Counting Based Sampling
Method

In this section, we perform ablation on Cumulative-Equal. In particular, we made the
following two modifications: (i) Count based sampling : Instead of random sampling, we
implemented the count-based subsampling that prioritizes not/less used examples; (ii)
Oversampling : We oversampled data from old timesteps with ratio inversely proportional
to the ratio of examples, i.e., if the old data is of size D/2 and the new data is of size D,
then we upsample old data with 2:1 ratio.

However, we observe that this method doesn’t improve performance over Cumulative-Equal
and in fact hurts the performance slightly (see Table J.16). We hypothesize that this can be
due to a decreasing marginal utility of labeled data as highlighted in Cui et al. (2019). Their
work argues that due to information overlap among data, as the number of samples increases,
the marginal benefit a model can extract from the data diminishes. As a result, Cui et al.
(2019) proposed using of “effective sample size” instead of the actual number of samples to
obtain the ratio used to perform re-sampling or re-weighting. In particular, the expression
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of “effective sample size” is given by En “
1´βn

1´β
where n is the original sample size and β is

a hyperparameter that Cui et al. (2019) selects from β P t0.9, 0.99, 0.999, 0.9999u.

For different time steps, we leverage this expression of En to calculate the effective number
of samples. In our settings (even at small scales), our datasets contain an order of 100k
image-text pairs even after subsampling data from old time step. For example, with -Equal
baseline, when training on the last time step (i.e., 2022), the smallest dataset (i.e., 2016) is
of approximately 400k samples. Plugging in the expression for effective sample size from
Cui et al. (2019), we observe that for all β P p0, 0.99999q, the ratio of effective sample sizes
for different time steps remains close to 1. This may highlight why our naive over-sampling
strategy doesn’t improve over no-oversampling.

Table J.16: Zero shot performance on our time-continual benchmarks with
oversampling and counting-based sampling. ˚ and ˚˚ denote methods that violate the
compute budget. For static tasks, we tabulate accuracy of the models obtained on the final
timestamp. For dynamic tasks, we tabulate forward/backward transfer and ID performance
on retrieval tasks (Sec. 11.2.3).

Benchmark Method
Compute
(MACs)

Static Tasks Dynamic Retrieval Tasks

ImageNet
ImageNet
dist.
shift

Flickr30k Average over
28 datasets

Backward
Transfer

ID Per-
formance

Forward
Transfer

TiC-DataComp (M) Sequential 3.0 ˆ 1018 19.2 16.4 16.4 15.0 25.7 26.4 14.9
Cumulative-Equal (Counts + OS) 3.0 ˆ 1018 18.1 15.3 14.3 16.5 28.9 23.7 14.2

Cumulative-Equal 3.0 ˆ 1018 22.1 18.4 19.2 17.1 31.8 26.8 15.1

J.6 Results With New Evaluation Metrics on Dynamic
Tasks

Recall, T represent the number of time steps for which we have data. For each training
method, we generate a total of T models, each corresponding to the end of training at
a particular time step. For each model and a dynamic evaluation task, we obtain T
performance values. We represent these values using the performance matrix E , where each
entry Ei,j signifies the performance of the model obtained after observing training data at
time step i when evaluated on a dataset from time step j. Defining backward metrics as in
Sec. 11.2.2 involves averaging the entries in the upper and lower diagonal of our performance
matrix E , i.e., it was calculated as the average of time steps before each training step
(i.e., the lower triangular of E), i.e.,

ř

iěj Eij
pT pT´1qq{2

. This backward transfer metric has been
used in prior works Lin et al. (2021). However, this approach inadvertently resulted in
the backward transfer metric being influenced by later evaluation time steps resulting in
backward transfer performance numbers slightly larger than ID performance.

To address this issue, we’ve revised our metric calculation method to metric as in Díaz-
Rodríguez et al. (2018). Now, we normalize the data in each row, which corresponds to
evaluation time steps by subtracting the ID performance. This adjustment ensures a more
balanced and accurate representation across all training time steps. In particular, our
updated forward and backward transfer metrics can be summarized as:
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Table J.17: Zero shot performance on our time-continual benchmarks. ˚ and
˚˚ denote methods that violate the compute budget. For dynamic tasks, we tabulate
forward/backward transfer and ID performance on retrieval tasks with updated metrics as
defined in App. J.6.

Benchmark Method
Compute
(MACs)

Dynamic Retrieval Tasks

Backward
Transfer

ID Per-
formance

Forward
Transfer

Relative
Backward
Transfer

Relative
Forward
Transfer

TiC-YFCC

Restart 3.4 ˆ 1018 13.2 41.4 18.6 ´29.8 ´21.2
Sequential 3.4 ˆ 1018 42.2 48.4 23.7 ´9.5 ´21.5
Patching 3.4 ˆ 1018 44.7 53.4 24.5 ´15.6 ´22.0

Cumulative-Exp 3.4 ˆ 1018 60.4 60.1 27.1 ´9.8 ´23.0
Cumulative-Equal 3.4 ˆ 1018 60.4 60.4 27.1 ´10.3 ´23.0
Cumulative-All 3.4 ˆ 1018 66.4 60.2 27.6 ´4.1 ´22.4

LwF˚ 4.1 ˆ 1018 36.6 56.0 23.2 ´27.4 ´24.9
Cumulative-All˚ 3.6 ˆ 1018 66.8 60.3 27.6 ´3.9 ´22.4

Oracle˚˚ 8.5 ˆ 1018 66.1 61.8 26.9 ´6.6 ´24.0

TiC-RedCaps

Restart 3.4 ˆ 1018 21.3 25.4 22.4 ´4.5 ´2.7
Sequential 3.4 ˆ 1018 33.0 33.6 27.5 ´3.8 ´3.0
Patching 3.4 ˆ 1018 34.8 34.8 27.8 ´3.9 ´3.0

Cumulative-Exp 3.4 ˆ 1018 44.5 42.0 32.6 ´3.0 ´4.0
Cumulative-Equal 3.4 ˆ 1018 44.4 42.0 32.6 ´3.0 ´4.0
Cumulative-All 3.4 ˆ 1018 48.9 43.2 33.4 ´0.6 ´3.5

LwF˚ 4.1 ˆ 1018 35.4 36.0 28.4 ´4.6 ´3.7
Cumulative-All˚ 3.6 ˆ 1018 49.0 43.4 33.4 ´1.0 ´3.5

Oracle˚˚ 8.5 ˆ 1018 48.5 43.1 33.4 ´1.0 ´3.4

TiC-DataComp (M)

Sequential 3.0 ˆ 1018 25.7 26.4 14.9 ´4.7 ´7.6
Patching 3.0 ˆ 1018 26.9 25.4 14.5 ´1.9 ´7.4

Cumulative-Exp 3.0 ˆ 1018 31.7 27.1 15.2 0.3 ´7.6
Cumulative-Equal 3.0 ˆ 1018 31.8 26.8 15.1 0.9 ´7.6
Cumulative-All 3.0 ˆ 1018 33.8 26.4 15.1 3.5 ´7.3

LwF˚ 3.8 ˆ 1018 25.6 26.6 14.9 ´4.8 ´8.0
Cumulative-All˚ 3.9 ˆ 1018 36.7 28.3 15.5 3.0 ´7.3

Oracle˚˚ 1.2 ˆ 1019 34.9 27.8 15.6 2.5 ´7.7

TiC-DataComp (L)

Sequential 2.7 ˆ 1019 52.6 58.4 41.1 ´8.7 ´14.4
Patching 2.7 ˆ 1019 55.2 57.5 40.9 ´4.9 ´13.9

Cumulative-Exp 2.7 ˆ 1019 60.4 58.4 41.4 ´1.1 ´13.8
Cumulative-Equal 2.7 ˆ 1019 60.9 58.2 41.4 ´0.3 ´13.8
Cumulative-All 2.7 ˆ 1019 62.1 57.3 41.2 2.2 ´13.5
Cumulative-All˚ 4.1 ˆ 1019 63.0 57.8 41.2 2.1 ´13.5

Oracle˚˚ 1.1 ˆ 1020 64.3 58.6 41.8 2.2 ´13.3

TiC-DataComp (XL)
Sequential 2.7 ˆ 1020 63.1 68.9 56.8 ´5.6 ´12.3

Cumulative-All 2.7 ˆ 1020 70.7 68.5 57.1 2.5 ´11.7
Cumulative-All˚ 3.5 ˆ 1020 71.0 68.6 57.1 2.5 ´11.7

• Backward transfer : Let Bi denote the average performance on evaluation tasks before
time i, then we define backward transfer as average of Bi across each training step, i.e.,
řT

i“2

ř

iěj Eij´Eii
T pT´1q{2

• Forward transfer : Let Fi denote the average performance on evaluation tasks after
time i, then we define forward transfer as average of Fi across each training step, i.e.,
řT´1

i“1

ř

iďj Eij´Eii
T pT´1q{2
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Appendix K

Appendix: Prompting is a Double-Edged
Sword: Improving Worst-Group
Robustness of Foundation Models

K.1 Extended Related Works

Theoretically analyzing robustness of self-supervised learning. While several
works theortically analyze (HaoChen and Ma, 2022; HaoChen et al., 2021; Mitrovic et al.,
2020; Saunshi et al., 2022; Tian et al., 2020; Wang and Isola, 2020) models pretrained
with contrastive learning, masked image and language modeling, they mainly do this for
few-shot in-distribution generalization on downstream tasks. In contrast, there are fewer
works that focus on out-of-distribution robustness (HaoChen et al., 2022; Kumar et al.,
2022a; Shen et al., 2022), and even fewer on robustness to spurious correlations (Garg et al.,
2023b), and all of them do this for unimodal few-shot settings. In contrast, we theoretically
analyse zero-shot generalization for multimodal contrastive learning. (Chen et al., 2023;
Zhang et al., 2023) are recent works that also theoretically analyze the multimodal setting,
and the former only studies few-shot in-distribution generalization, similar to Lee et al.
(2021). Closest to our analysis is Zhang et al. (2023), which analyzes zero-shot performance
of CLIP, but unlike us they do not specifically model the pretraining distribution to also
include spurious attributes from the downstream task, which we show impacts robustness
to spurious correlations.

K.2 Proofs for our theoretical results

K.2.1 Worst group guarantees for PfR

Theorem K.2.1 (PfR’s worst group error; restated). For PfR output pf , w.h.p. 1 ´ δ,
worst group generalization error of pf is ă

„

a

log CpFqK{δ{n ` errcpFMptcqq, where CpFq is
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complexity of F , K is number of groups and latter term is FM’s zero-shot performance on
confounder prediction.

Proof. Recall the objective for PfR which minimizes worst group loss over predicted groups
pG1, . . . , pGK . Let,

f ‹ :“ inf
fPF

sup
kPrKs

EPT

”

lphpxq, yq | px, yq P pGk

ı

(K.1)

Lemma K.2.2 (worst-case risk generalization (Group DRO)). With probability ě 1 ´ δ
over dataset D „ P n, the worst group risk for f ‹ can be upper bounded by the following,
where opt is the minimum on the training objective,

sup
kPrKs

EPT

”

lphpxq, yq | px, yq P pGk

ı

ă
„ opt `

d

log
`

CK
δ

˘

n
,

where C is the complexity of class F ( e.g. the covering number ()).

Proof. We first apply the generalization bound for a single group, which is given by
b

logpC
δ q

n

(Wainwright, 2019), followed by a union bound over the K groups.

We can break down down the worst group loss for the learned function pf on the true groups
G1, . . . , GK in the following way, where we assume loss ℓ is M bounded:

sup
kPrKs

EPT

”

lp pfpxq, yq | px, yq P Gk

ı

ď sup
kPrKs

EPT

”

lp pfpxq, yq | px, yq P Gk X pGk

ı

(K.2)

` MEPT

”

1px P pGkq | x P Gk

ı

(K.3)

` MEPT

”

1px P Gkq | x P pGk

ı

(K.4)

Since max1,2pa1`b1, a2`b2q ď max1,2pa1, a2q` ď max1,2pb1, b2q for some scalars a1, a2, b1, b2,
we can upper bound supkPrKs EPT

”

lp pfpxq, yq | px, yq P Gk

ı

as:

sup
kPrKs

EPT

”

lp pfpxq, yq | px, yq P Gk

ı

ď sup
kPrKs

EPT

”

1px P pGkq | x P xGk

ı

` E r1pFMpx, tcq ‰ cqs

“ sup
kPrKs

EPT

”

1px P pGkq | x P xGk

ı

` erravgsp pFMpx, tcqq.

for positive losses. Above, we replaced the group mixmatch error with the error of the
zero-shot classifier FMpx, tcq. Further, in our case M “ 1.

The above result when used in a simple triangle inequality with the result in Lemma K.2.2
completes the proof of Theorem K.2.2.
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K.2.2 Analysis of multimodal contrastive pretraining

Before, we present our the proofs for our main theoretical result, we will prove a key
Lemma that allows us to derive general solutions for multimodal spectral contrastive loss
in Equation (12.2), done on any class of ϕ, ω.

General solution for any function class

Lemma K.2.3 (General solutions for multimodal contrastive learning). When ϕ, ω are
restricted to orthonormal functions in L2pP q, then the objective in Equation (12.2) is
equivalent to minϕ,ω

ş

x
ϕpxq

a

qpxqApwptq
a

qptqqpxq dx. Here, Apfptqq is the linear operator

Apfptqq “:

ż

t

ppx,tqfptq{
?

qpxqqptq dt,

and A` is its adjoint. Its adjoint is then:

A`
pgpxqq “:

ż

x

ppx,tqgpxq{
?

ppxqpptq dt.

Given the constraints on ϕ, ω, to be orthonormal and operators A,A` in Proposition K.2.3,
the optimal solutions for (12.2) are ϕipxq “ fipxq{

?
ppxq and ωiptq “ giptq{

?
pptq, where tfiu

k
i“1

and tgiu
k
i“1 are the top k eigen functions of self-adjoint AA` and A`A respectively.

Proof. First, we break down the spectral contrastive loss in the following way where q is
the density of the measure Qpx, tq:

´ 2E
“

ϕpxq
Jωptq

‰

` ExEtpϕpxq
Jωptqq

2 (K.5)

“

ż

X ,T

˜

Qpx, tq
a

qpxq
a

qptq
´
a

Qpxqϕpxq
Jωptq

a

qptq

¸2

dxdt ` const. (K.6)

Then consider the case where the output dimension is 1. We consider the constrained
objective where

ş

X ϕ2pxq dx “ 1 and
ş

T ω2ptq dt “ 1. Plugging this in, we conclude the
above objective is equivalent to: to Aprωqpxq “

ş qpxqqptq?
qpxqqptq

rωptqdt. Here:

rωptq “ ωptq
a

qptq rϕpxq “
a

qpxqϕpxq (K.7)

Following Eckart and Young (1936), we know that the solution to the above optimization
problem is given by the eigenvectors of the self-adjoint operators AA: and A:A.

For the multimodal spectral contrastive loss in Equation (12.2), when we additionally
require the image and text encoders to be normalized in L2pP q, (i.e. any f : X ÞÑ R or
f : T ÞÑ R such that

ş

f 2dP ă 8), then the objective can be redefined with the linear
operator A in Lemma K.2.3.
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Leveraging the result above, we closely analyze the impact the of the distribution skew
by deriving closed form solutions for ϕ, ω when they are restricted to the class of linear
functions. Note, given the one hot encoding of the text in T the linearity assumption in no
way restricts the class of text encoders. We present our result in Theorem K.2.4.

Proof of Theorem 12.4.2

Theorem K.2.4 (Optimal solution for spectral contrastive loss). Let p ě p0 ą 0.5 for
some fixed p0 and ϕ “ AJx, ω “ BJt are linear with A,B P Rkˆd. Then, under slightly
stricter constraints on ϕ, the solutions A‹,B‹ for the objective in (12.2), are the top k

columns of the matrix on the left and right respectively, where tanp2θq “
4γαpγ

2
{∇2`1q

pp2p´1q`1{2p´1q
and

Udn P Rdnˆdn is unitary.
«

cospθq{
?

∇2`γ2 sinpθq{
?

∇2`γ2 0J
dn

´sinpθq{α cospθq{α 0J
dn

0dn
0dn

Udn

ff

, 0.5

»

—

–

`1 `1 `1 ´1
`1 `1 ´1 `1
`1 ´1 ´1 ´1
`1 ´1 `1 `1

fi

ffi

fl

.

In the above statement, α “ γ “ 1.

Proof. Recall from Lemma K.2.3, the general solutions are given by eigen functions of
AA:, and A:A. For linear functions, that are norm regularized, i.e. ErϕpxqϕpxqJs “ Ik and
ErωptqωptqJs “ Ik, we derive the following objective:

max
ϕ:ϕJΣϕ“1

ϕJ
rΣϕ,

Σ “ ErxxJ
s rΣ “ EtrErx|tsErx|tsJ

s.

Here, we encode text as a one-hot vector: Thus, the set of text descriptions T is: t

“y is `1”, “c is `1”, “c is ´1” and “y is ´1” u, which we input as one hot encodings
r1, 0, 0, 0s

J , r0, 1, 0, 0s
J ,

“

0, 0, 1, 0J
‰

and r0, 0, 0, 1s
J respectively to the text encoder ω.

max
ϕ:ωJΣtω“1

ωJ
ĂΣtω,

Σt “ ErttJ
s rΣt “ ExrErt|xsErt|xs

J
s.

Since both are identical but involve different matrices, we show our working for one, and
plug in values from the distribution for the other.

First we note that changing the constraint to ϕJΣϕ ď 1, does not change the optimal
solution, since these are eigen vectors and Σ is full rank in both cases. Second, we recall
the identity:

ϕJΣϕ ď 2 ¨ ϕJdiagΣϕ.

Thus, we replace the constraint on ϕ, with the right right hand side of the above expression.
Note that, whenever the right hand side ď 1{2, our original constrained is satisfied. So, we
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solve this more regularized objective for conveniece of obtaining a more precise closed form
solution.

Recall that in our setup both rΣ and Σ are positive definite and invertible matrices.
To solve the above problem, let’s consider a re-parameterization: ϕ1 “ diagpΣq1{2ϕ, thus
ϕJdiagpΣqϕ “ 1, is equivalent to the constraint }ϕ1}22 “ 1. Based on this re-parameterization
we are now solving:

argmax
}ϕ1}22“1

ϕ1JdiagpΣq
´1
2 ¨ rΣ ¨ diagpΣq

´1{2ϕ1, (K.8)

which is nothing but the top eigenvector for diagpΣq´1{2 ¨ rΣ ¨ diagpΣq´1{2.

Now, to extend the above argument from k “ 1 to k ą 1, we need to care of one additional
form of constraint in the form of feature diversity: ϕJ

i ΣAϕj “ 0 when i ‰ j. But, we can
easily redo the reformulations above and arrive at the following optimization problem:

argmax
}ϕ1

i}
2
2 “ 1, @i

ϕ1J
i ϕ1

j “ 0, @i ‰ j

rϕ1
1, ϕ

1
2, . . . , ϕ

1
ks

J
diagpΣq

´1{2
¨ rΣ ¨ diagpΣq

´1{2
rϕ1

1, ϕ
1
2, . . . , ϕ

1
ks , (K.9)

where ϕ1
i “ diagpΣq1{2ϕi. The above is nothing but the top k eigenvectors for the matrix

diagpΣq´1{2 ¨ rΣ ¨ diagpΣq´1{2.

Let SVDk is the top k singular vectors of an SVD decomposition. Now, from our problem
description we state values of the four matrices above. For the image encoder, the solution
is given by:

pΣq
´1{2SVDkpdiagpΣq

´1{2
¨ rΣ ¨ diagpΣq

´1{2
q

where Σ, rΣ are defined as follows:

Σ “:

»

–

1 ` ∇2 2p ´ 1 0dn

2p ´ 1 1 0dn

0J
dn

0J
dn

Ik

fi

fl (K.10)

rΣ “:

»

–

p1 ` p2p ´ 1q2q{2 2p ´ 1 0dn

2p ´ 1 p1 ` p2p ´ 1q2q{2 0dn

0J
dn

0J
dn

Ik

fi

fl .

On the other hand, for the text encoder, it is given by:

pΣtq
´1{2SVDkpdiagpΣtq

´1{2
¨ ĂΣt ¨ diagpΣtq

´1{2
q

Σt “ I4 and rΣ is:
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rΣ “:

»

—

—

–

1 p 1 ´ p 0
p 1 0 1 ´ p

1 ´ p 0 1 p
0 1 ´ p p 1

fi

ffi

ffi

fl

Lemma K.2.5 (closed-form expressions for eigenvalues and eigenvectors of Σ, rΣ). For

a 2 ˆ 2 real symmetric matrix
„

a, b
c, d

ȷ

the eigenvalues λ1, λ2 are given by the following

expressions:

λ1 “
pa ` b ` δq

2
, λ2 “

pa ` b ´ δq

2
,

where δ “
a

4c2 ` pa ´ bq2. Further, the eigenvectors are given by U “

„

cospθq,´ sinpθq

sinpθq, cospθq

ȷ

,

where:
tanpθq “

b ´ a ` δ

2c
.

For full proof of these statements see (Deledalle et al., 2017).

Plugging the above expressions into Lemma K.2.5 gives us the final solution and completes
the proof.

Proof of Theorem 12.4.1

Theorem K.2.6. (zero-shot robustness; restated) Let the zero-shot label pfq and confounder
classifier pgq be obtained by minimizing the loss in (12.2) on infinite pretraining data.
Then, for ∇ “ Ωp1q, label classifier is worse than random on the worst group, since
errwg

y pfq “ 1{2 erfcp´c1∇pq. On the other hand, the confounder classifier suffers small error
on all groups since errwg

sp pgq “ 1{2 erfcpc2∇pq. Here, c1, c2 ą 0 are constants .

Proof. First, we state the formal version of the theorem statement. Let f be zero-shot label
predictor, and g be the zero-shot confounder predictor extracted from ϕ, ω in Theorem K.2.4.
Then, the worst group error for f is:

errwg
y pfq “ 1{2 ¨ erfc pρ{

?
2q ,

and for g is:

errwg
sp pgq “ 1{2 ¨ erf pρ{

?
2q ,

where ρ “ ´1{∇ ´ cotpθq
a

1{∇2 ` 1. Here, θ is the value defined in Theorem K.2.4.

Using our expressions for the zero-shot predictor in Sec. 12.4, we use the result from
Theorem K.2.4 to define:
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fprxr, xcsq “ gprxr, xcsq “ 21p´
2xr sin θ
?
1 ` σ2

` 2xc cos θq ´ 1

Now, based on the signs along xr and xc, we conclude that the worst group for f is
y “ 1, c “ ´1.

Prpfprxr, xcsq ď 1 | py, cq “ p1,´1qq

“ Prp
´2 sin θ
?
1 ` ∇2

ď ´2 cos θq

“ Prp
xr ´ 1

∇ ě ´
1

∇ `

c

1

∇2
` 1 cot θ cos θq

“
1

2
erfcp

´1

∇ ´ cot θp
a

1 ` 1{∇2qq

“
1

2
erfcpρ{

?
2q.

On the other hand the worst group for the confounder is py, cq “ p1, 1q, but even here, the
error is negligible.

Prpfprxr, xcsq ď 1 | py, cq “ p1, 1qq

“
1

2
erfcp

´1

∇ ` cot θp
a

1 ` 1{∇2qq

“
1

2
erfpρ{

?
2q.

This completes our proof.

K.3 Experimental Setup

K.3.1 Prompts used for Zero-Shot Label Inference

CivilComments:

Predict label, ignore confounder:

Toxicity Prompt:

You are an AI bot that is an expert at detecting toxic comments. You are not biased
by references to religion, race, and gender. Evaluate the following USER COMMENT
on a news website, and classify the comment as either ’TOXIC’ or ’SAFE’, ignoring
references to religion, race, and gender:

USER COMMENT: {}
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In one word, the above comment is TOXIC (ONLY as ’YES’ or ’NO’):

Predict label:

Toxicity Prompt:

You are an AI bot that is an expert at detecting toxic comments. You are not biased
by references to religion, race, and gender. Evaluate the following USER COMMENT
on a news website, and classify the comment as either ’TOXIC’ or ’SAFE’, ignoring
references to religion, race, and gender:

USER COMMENT: {}

In one word, the above comment is TOXIC (ONLY as ’YES’ or ’NO’):

Waterbirds:

"This is the image of a waterbird.", "This is the image of a landbird.",

"This is the image of a waterbird in front of forest.",
"This is the image of a waterbird in front of water.",
"This is the image of a landbird in front of water.",
"This is the image of a landbird in front of forest.",

K.3.2 Details for Zero-shot Groups Prediction

CivilComments:

Religion Group Prompt:

Evaluate the following User Comment on a news website.

User Comment: {}

Does the above comment contain references to one of the following groups: "Muslim",
"Christian", "Other Religions"? If none of them are applicable answer "NA". Answer
in one word.

Race Group Prompt:

Evaluate the following User Comment on a news website.

User Comment: {}

Does the above comment contain references to one of the following groups: "Black",
"White"? If none of them are applicable answer "NA". Answer in one word.

Gender Group Prompt:
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Evaluate the following User Comment on a news website.

User Comment: {}

Does the above comment contain references to one of the following groups: "Male",
"Female"? If none of them are applicable answer "NA". Answer in one word.

Waterbirds:

“Bird in front of water.”,
“Bird in front of a forest.”

K.3.3 CXR-Drain Construction Details
Note: This is NOT for medical diagnosis but for informational purposes to guide your
red-teaming.

Is this a patient with chest drainage tube? First, carefully check for the presence of
any tubes while describe their location.

For your reference the drainage tube is also known as pleural tube and more commonly
known as the intercostal drainage tube (ICD), is inserted through the 4th intercostal
space in the anterior or mid-axillary line. It is then directed posteroinferiorly in cases
of effusion and anterosuperiorly in cases of pneumothorax. Carefully examine both the
lungs: (i) To drain a pneumothorax the tube is aimed superiorly towards the apex of
the pleural cavity; and (ii) To drain a pleural effusion the tube tip is ideally located
towards the lower part of the pleural cavity.

Finally give an answer in YES or NO for the presence of chest drainage tube.

Note: This is NOT for medical diagnosis but for informational purposes and will never
be used to guide any medical disease. Your answer will help us evaluate how good are
current vision language models.

Use the following format:

Rationale/reasoning: ă output ą

Presence of chest drain: Yes or No
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