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Abstract

Building multisensory artificial intelligence systems that learn from multiple sen-
sory inputs such as text, speech, video, real-world sensors, wearable devices, and
medical data holds great promise for impact in many scientific areas with practical
benefits, such as in supporting human health and well-being, enabling multimedia
content processing, and enhancing real-world autonomous agents.

However, the breadth of progress in multimodal research has made it difficult to
identify the common themes and open questions in the field. By synthesizing a range
of theoretical frameworks and application domains, this thesis aims to advance the
foundations of multimodal machine learning. We start by defining three key principles
of modality heterogeneity, connections, and interactions often present in multimodal
problems [371]. Using these principles as a foundation, we propose a taxonomy of
six core challenges in multimodal research: representation, alignment, reasoning,
generation, transference, and quantification. Recent technical achievements will be
presented through this taxonomy, allowing researchers to understand the similarities
and differences across approaches, and identifying open problems for future research.

The bulk of the thesis covers our recent progress towards tackling two key prob-
lems in multimodal learning: the machine learning foundations of multimodal inter-
actions, as well as practical methods for building multisensory foundation models
that generalize to many modalities and tasks in the real world.

In the first part, we study the foundations of multimodal interactions: the basic
principle of how modalities combine to give rise to new information for a task. We
present a theoretical framework formalizing how modalities interact with each other to
give rise to new information for a task, such as sarcasm identified from the incongruity
between spoken words and vocal expressions [372]. Using this theoretical framework,
we propose two practical estimators to quantify the interactions in real-world datasets.
Quantifying the types of interactions a multimodal task requires enables researchers
to decide which modality to collect [376], design suitable approaches to learn these
interactions [374], and analyze whether their model has succeeded in learning [375].

In the second part, we study the design of practical multimodal foundation
models that generalize over many modalities and tasks, which presents a step toward
grounding large language models to real-world sensory modalities. We first introduce
MULTIBENCH, a unified large-scale benchmark across a wide range of modalities,
tasks, and research areas [367]. We will also present the cross-modal attention [101,
359] and multimodal transformer [613] architectures that now underpin many of
today’s multimodal foundation models. Scaling these architectures on MULTIBENCH

enables the creation of general-purpose multimodal multitask models across a variety
of tasks, and we have collaborated broadly with practitioners to apply these models
for real-world impact on affective computing, mental health, and cancer prognosis.

We conclude this thesis by discussing how future work can leverage these ideas
toward more general, interactive, and safe multimodal artificial intelligence.
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Chapter 1

Introduction

Multimodal artificial intelligence is a vibrant multi-disciplinary research field that aims to design
computer agents that can perceive, reason, and interact through multiple communicative modalities,
including linguistic, acoustic, visual, tactile, sensory, and physiological messages [46, 371].
Multimodal AI systems can bring great impact in many scientific areas with practical benefits,
such as in supporting human health and well-being [360, 427, 715], enabling multimedia content
processing [11, 485, 513], and enhancing real-world autonomous agents [63, 93, 334, 522, 545].

However, the breadth of progress in multimodal research has made it difficult to identify the
common themes and open questions in the field. By synthesizing a broad range of theoretical
frameworks and application domains from both historical and recent perspectives, this thesis
is designed to advance the theoretical and computational foundations of multimodal machine
learning. We start by defining three key principles of modality heterogeneity, connections, and
interactions often present in multimodal problems which brings unique challenges to machine
learning. The heterogeneity of multimodal data makes learning challenging, for example, language
is often seen as symbolic while audio and video are represented as continuous signals. At the
same time, these modalities contain overlapping connected information, and interact to give rise
to new information relevant for a task. It is crucial to learn these connections and interactions
for systems to perform well. Using these principles as a foundation, we propose a taxonomy of
six core challenges in multimodal research: representation, alignment, reasoning, generation,
transference, and quantification. Recent technical achievements will be presented through the
lens of this taxonomy, allowing researchers to understand the similarities and differences across
new approaches, and enabling us to identify key open problems for future research.

Using our taxonomy for multimodal machine learning, we highlight two key challenges that
are important for progress in multimodal learning: (1) building the foundations of multimodal
interactions so we can quantify the interactions present in datasets and model these interactions
correctly using machine learning methods, and (2) constructing multimodal models and datasets
that enable generalization across a large number of modalities and tasks for real-world societal
impact (Figure 1.1).
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Figure 1.1: This thesis is designed to advance the theoretical and computational foundations of multimodal
machine learning, and enable the creation of next-generation multimodal technologies. It starts by identi-
fying the common themes and open questions in the field, through a taxonomy of six core challenges in
multimodal research: representation, alignment, reasoning, generation, transference, and quantification.
The bulk of the thesis studies two core challenges in multimodal learning: (1) building a foundation
for multimodal interactions that enables the quantification of multimodal interactions in data and their
principled modeling using machine learning methods, and (2) the data requirements and model building
blocks enabling generalization of knowledge between modalities, tasks, and their representations.



1.1 Foundations of Multimodal Interactions
Multimodal interactions can be categorized into redundancy, uniqueness, and synergy: redun-
dancy quantifies information shared between modalities, such as smiling while telling an overtly
humorous joke; uniqueness quantifies the information present in only one, such as each medi-
cal sensor designed to provide new information; and synergy quantifies the emergence of new
information using both, such as conveying sarcasm through disagreeing verbal and nonverbal
cues [371]. These interactions are the basic principles of how modalities combine to give rise
to new information for a task, which is present in all multimodal problems. While there have
been intuitive definitions of these multimodal interactions, we still lack a formal foundation and
systematic understanding of how to learn these interactions from data. As a result, there remain
basic open questions like:

What interactions are in my data?
What interactions are learned by different models?

What models are suitable for my data?
To answer these questions, the first part of the thesis presents a theoretical framework for-

malizing the useful information in each modality and how modalities interact with each other to
give rise to new information for a task [372]. Based on this theoretical framework, we propose
two practical estimators to quantify the interactions in high-dimensional datasets, which can also
be used more broadly for estimating information-theoretic quantities in real-world distributions.
These estimators allow us to understand the information and interactions in multimodal datasets,
and design the right models that provably learn the desired interactions in data.

We further show several broader implications that quantifying multimodal interactions can
have on practitioners. Firstly, we operationalize the learning of multimodal interactions through a
new approach called Factorized Contrastive Learning to capture both shared and unique informa-
tion across modalities [374]. Secondly, a formal definition of multimodal interactions also enables
us to analyze through qualitative visualizations whether a trained model has succeeded in learning
the desired interactions from data [375]. Finally, we show how to use this information-theoretic
framework to estimate the performance of optimal multimodal models given only unimodal data,
which can inform practitioners which modalities to collect, and whether multimodal modeling is
worth it for maximum increase in performance [376]. We release all code for quantifying multi-
modal interaction (both exact and approximate), and their implications on understanding datasets
and models at https://github.com/pliang279/PID, code for Factorized Contrastive
Learning at https://github.com/pliang279/FactorCL, and code for visualizing and
debugging multimodal models at https://github.com/pliang279/MultiViz, which
can help practitioners navigate the multimodal modeling pipeline.

1.2 Multisensory Foundation Models
There has been substantial impact of foundation models (e.g., large language models) trained
on vast amounts of unlabeled data to obtain general-purpose capabilities over many predic-
tion tasks. The future will lie in multisensory foundation models that are grounded in the
world: being able to simultaneously process a large number of modalities beyond language, to
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vision, audio [11, 360, 381, 502], and leveraging advances in sensing technologies such as cell-
phones [366], wearable devices [218], autonomous vehicles [697], healthcare technologies [287],
and robots [53, 304]. The large number of heterogeneous modalities creates challenges in building
multisensory foundation models. For example, the healthcare domain typically collects tabular
data and high-frequency sensors [287], and it remains an open question how to best combine large
language models with tabular data and sensors [546]. In the second part of this thesis, we take
steps towards both data and modeling requirements to build the next generation of multisensory
foundation models:
What data sources do we need to train foundation models over many heterogeneous modalities?

What modeling architectures are suitable for scaling to many heterogeneous modalities?
To answer the first question, we introduce MULTIBENCH, the largest and most comprehen-
sive multimodal benchmark enabling the training of multisensory foundation models. MULTI-
BENCH collects and standardizes 15 realistic datasets across 10 diverse modalities, 20 prediction
tasks, and 6 research areas from multimedia, affective computing, robotics, HCI, finance, and
healthcare. MULTIBENCH is publicly available at https://github.com/pliang279/
MultiBench, and has been broadly used in the community to train and evaluate multimodal
architectures.

On the modeling side, prior work on multimodal learning has focused on a fixed set of modali-
ties (e.g., image and text), without tackling generalization to many heterogeneous modalities and
tasks necessary for truly multisensory models. To tackle the heterogeneity across many different
modalities, we treat modalities in their most general form as sequences of elements, and present
the cross-modal attention [101, 359] and multimodal transformer [613] architectures to learn
interactions between all sequences of elements. These multimodal transformers are scalable
and achieve strong results over a wide range of modalities, and we show their applications to
image, text, video, sensors, and medical data. Finally, using MULTIBENCH, we scale multimodal
transformers to the high-modality setting, resulting in a single model architecture with the same set
of parameters that can function across a large number of modalities partially observed for different
tasks [370] (e.g., image and text on the internet, video and audio in human communication, video
and sensors in robotics, and so on). This represents the most realistic setting of how humans
process the multisensory world, and we believe that general-purpose AI systems will also need
to be trained in the high-modality setting. Our collection of high-modality models, available
at https://github.com/pliang279/HighMMT, has already been extended for learning
over many modalities in the medical, internet-of-things, and affective computing domains.

We end the thesis by discussing our collaborative efforts in applying these multisensory models
for real-world impact on affective computing, mental health, and cancer prognosis.

1.3 Summary of Contributions
In this section, we provide a highlight of our main thesis contributions.

1. Literature survey and taxonomy of multimodal challenges (Chapter 2)
(a) Three key principles: We begin by defining three key principles that have driven

technical challenges and innovations: (1) modalities are heterogeneous because the
information present often shows diverse qualities, structures, and representations, (2)
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modalities are connected since they are often related and share commonalities, and (3)
modalities interact to give rise to new information when used for task inference.

(b) Six technical challenges: Building upon these principles, we propose a new tax-
onomy of six core challenges in multimodal learning: (1) Representation studies
how to summarize multimodal data to reflect the heterogeneity and interconnections
between individual modality elements, before (2) alignment captures the connections
and interactions between multiple local elements according to their structure. After
representation and alignment comes (3) reasoning, which aims to combine the infor-
mation from multimodal evidence in a principled way that respects the structure of
the problem to give more robust and interpretable predictions. While most systems
aim to predict the label y, there are also cases where the goal is (4) generation, to
learn a generative process to produce raw modalities that reflect cross-modal inter-
actions, structure, and coherence, or (5) transference, to transfer information from
high-resource modalities to low-resource ones and their representations. Finally, (6)
quantification revisits the previous challenges to give deeper empirical and theoretical
understanding of modality heterogeneity, interconnections, and the learning process.

(c) Current work and open directions: For each challenge, we create a taxonomy of
subchallenges and categorize recent advances in the field. This new taxonomy will
enable researchers to better understand the state of research, and we identify several
key directions for future work.

2. Foundations of multimodal interactions (Chapter 3)
(a) Multimodal interactions can be categorized into redundancy, uniqueness, and syn-

ergy: redundancy quantifies information shared between modalities, such as smiling
while telling an overtly humorous joke; uniqueness quantifies the information present
in only one, such as each medical sensor designed to provide new information; and
synergy quantifies the emergence of new information using both, such as conveying
sarcasm through disagreeing verbal and nonverbal cues [371].

(b) Formal framework and estimation: By introducing a new connection between
information theory and multimodal interactions [372], I designed scalable estimators
to quantify the interactions in large-scale multimodal datasets and those learned by
multimodal models. These estimators are based on max-entropy convex optimization
and a scalable end-to-end estimator suitable for high-dimensional continuous data.

(c) Model selection: We show that quantifying the interactions enables practitioners to
analyze their datasets and select the most appropriate model that captures the right
interactions in the data. We implemented these methods in two real-world case studies
in mental health assessment [366] and cancer prognosis [372] from multimodal data.
Domain experts appreciated the transparency that these methods convey as opposed to
black-box neural networks, resulting in trust and adoption in real-world practice.

3. Learning multimodal interactions using self-supervised learning (Chapter 4)
(a) From estimation to learning: Naturally, a formal definition of multimodal interac-

tions also translates to new training objectives to learn these interactions using neural
networks. We show how to better learn task-relevant unique information [374, 614]
using self-supervised learning, going beyond shared information between modalities.

(b) Factorized learning of each interaction: FACTORCL is built from three new con-



tributions: (1) factorizing task-relevant information into shared and unique repre-
sentations, (2) capturing task-relevant information via maximizing MI lower bounds
and removing task-irrelevant information via minimizing MI upper bounds, and (3)
multimodal data augmentations to approximate task relevance without labels.

(c) Real-world settings with unique information: On large-scale real-world datasets,
FACTORCL captures both shared and unique information and achieves state-of-the-art
results on six benchmarks, including tasks involving medical sensors or robotics
with force sensors that provide unique information, or cartoon images and figurative
captions (i.e., not literal but metaphoric or idiomatic descriptions of the images).

4. Visualizing multimodal interactions in trained models (Chapter 5)
(a) Interpreting multimodal models: MULTIVIZ is a framework for visualizing and

understanding multimodal models across multiple stages: (1) modality importance, (2)
multimodal interactions, and (3) multimodal reasoning. It includes tools to visualize
what the model has learned about each stage of the prediction process.

(b) Model simulation: To evaluate the fidelity of MULTIVIZ visualizations, we worked
with real-world stakeholders to judge the accuracy of explanations at each fine-grained
stage to determine if it helps users gain a deeper understanding of model behavior.

(c) Model debugging: Furthermore, we ran user studies to show MULTIVIZ as a tool
to highlight errors made by models and help users debug multimodal models for
real-world deployment.

5. Estimating multimodal performance for modality selection (Chapter 6)
(a) Modality selection: We extended our analysis to quantify interactions in a semi-

supervised setting with only labeled unimodal data (x1, y), (x2, y) and naturally
co-occurring multimodal data (x1, x2) (e.g., unlabeled images and captions, video and
corresponding audio) but when labeling them is time-consuming [376]. We show how
to approximately estimate the multimodal interactions in the unseen full distribution
(x1, x2, y), which enables practitioners to prioritize collecting data for modalities that
has the most synergy with existing ones.

(b) Estimating performance: Our approximation is based on lower and upper bounds
for synergy: a lower bound based on the disagreement between modality predictors,
and an upper bound based on a connection to min-entropy couplings. Lower and upper
bounds on synergistic information translate to bounds on multimodal performance.

(c) On disagreement: Finally, we show that disagreement is a critical quality that can
result in synergy between modalities, and propose a learning algorithm that captures
disagreement between modalities beyond agreement that is typically done.

6. MULTIBENCH: A benchmark for real-world generalization (Chapter 7)
(a) Real-world benchmarks: We describe MULTIBENCH, the largest unified benchmark

for multimodal representation learning [367]. MULTIBENCH provides an end-to-end
machine learning pipeline that simplifies and standardizes data loading, experimental
setup, and model evaluation, while ensuring reproducibility and ease of use.

(b) Standardized building blocks: To accompany this benchmark, we also provide a
standardized implementation of 20 core approaches in multimodal learning spanning
innovations in fusion paradigms, optimization objectives, and training approaches.

(c) Benefits of standardization: We find that standardizing and sharing methods pro-



posed in different research areas can improve performance on several datasets. MULTI-
BENCH also provides a better understanding of the capabilities and limitations of
multimodal models.

7. Learning multimodal interactions across time (Chapter 8)
(a) Temporal interactions: To tackle heterogeneity across many different modalities, we

treat modalities in their most general form as a sequence of elements, such as words
in a sentence, patches in an image, frames in a video, and time steps in time-series
data. This introduces a critical challenge of learning multimodal interactions across
sequences, such as relating a word with a facial expression within a long video.

(b) Recurrent cross-modal attention: While prior work summarized temporal modali-
ties into a single static feature before fusion, I developed a new method for fine-grained
temporal fusion to learn interactions between all elements across the sequence, such
as between individual words, gestures, and vocal expressions [101, 359]. We call
this module recurrent cross-modal attention, by using attention weights to recursively
learn interactions based on the current input and previous signals.

(c) Multimodal transformers: We extended recurrent attention into multimodal trans-
formers that learn all interactions across sequences in parallel [613]. The multimodal
transformer learns a cross-modal attention matrix to highlight related signals across
time (e.g., rolling eyes and sighing). This matrix is used to learn a new representation
for each modality fused with other modalities in parallel over the entire sequence,
which provides huge efficiency gains when trained on modern GPUs.

8. Multimodal and multitask foundation models (Chapter 9)
(a) High-modality learning: Chapter 9 builds upon the diverse modalities and tasks

provided by MULTIBENCH by designing methods for high-modality learning: where
there are a large number of modalities partially observed for different tasks [370]. This
represents the most realistic setting of how humans process the multisensory world,
and we believe that general-purpose AI systems will also need to be multisensory.

(b) A single model for many modalities and tasks: We propose HIGHMMT, a single
shared high-modality model that achieves generalization over more than 10 modalities
and 15 tasks, and transfers to new modalities and tasks.

(c) Tackling extreme heterogeneity: We’ve seen two extremes - full parameter sharing
across everything, and no sharing at all across modality and task-specific models. A
key idea in HIGHMMT is to find the optimal amount of parameter sharing balancing
performance and efficiency. We do this by defining a new measure of which modalities
are similar, and which modality pairs interact similarly, to inform parameter sharing.

1.4 Other Contributions
I have also pursued the following selected research directions during my Ph.D. studies, which
are excluded from this thesis. The first major direction lies in datasets and methods for learning
representations from a fixed set of input modalities (i.e., without modeling generalization). To
that end, I have contributed core resources and models for multimodal representation learning,
especially in the application domain of modeling human communication. I have also engaged in
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Figure 1.2: I have also pursued the following directions during my Ph.D. studies: (1) new machine
learning and deep learning models to learn multimodal representations (without modeling generalization),
(2) collaborating with real-world stakeholders to apply these methods in affective computing, socially
intelligent AI, healthcare, and education, and (3) mitigating real-world issues of deploying multimodal
models in the face of real-world noise topologies, dataset biases, and privacy concerns.

collaborations with real-world stakeholders particularly in the healthcare and affective computing
space where multimodal learning paradigms offer opportunities to learn from high-dimensional
multimodal data. Finally, I have also worked on addressing the real-world societal concerns these
models, such as improving their robustness, fairness, and privacy.

1.4.1 Multimodal representation learning
Computational modeling of human multimodal language: From a computational perspective,
the modeling of human communication across both verbal and nonverbal behaviors enables
real-world tasks such as multimodal sentiment analysis [427], emotion recognition [74], and
personality traits recognition [467]. To comprehend human communication, there is a need for 1)
large multimodal resources with diversity in training samples, topics, speakers, and annotations,
as well as 2) powerful models for multimodal communication.

As a first step, we have worked towards addressing the lack of multimodal resources by col-
lecting and releasing the largest dataset of multimodal sentiment and emotion recognition enabling
generalizable studies of human communication. CMU-MOSEI contains 23,500 annotated video
segments from 1,000 distinct speakers and 250 topics. The diversity in topics, speakers, annota-
tions, and modalities allows for generalizable studies of speaker and topic-independent features.
The multimodal dataset and a general multimodal data loading framework are provided to the
scientific community to encourage valuable research in human communication analysis [360, 717].
Since then, the dataset has also been the subject of two workshop challenges in modeling human
multimodal language at ACL 2018 and ACL 2020, and has been a standard benchmark dataset for



the multimodal machine learning community.
Multimodal gated fusion: With the increasing popularity of video sharing websites such as

YouTube and Facebook, multimodal sentiment analysis has received increasing attention from
the scientific community [427, 477, 663]. We develop a novel deep architecture for multimodal
sentiment analysis that performs modality fusion at the word level [101]. We proposed the
GME-LSTM model that is composed of 2 modules. The Gated Multimodal Embedding alleviates
the difficulties of fusion when there are noisy modalities. The LSTM with Temporal Attention
performs word level fusion at a finer fusion resolution between input modalities and attends to the
most important time steps. As a result, the GME-LSTM is able to better model the multimodal
structure of speech through time and perform better sentiment comprehension. We demonstrate the
effectiveness of this approach by achieving state-of-the-art sentiment classification and regression
results. Qualitative analysis on our model emphasizes the importance of the Temporal Attention
Layer in sentiment prediction because the additional acoustic and visual modalities are noisy.
We also demonstrate the effectiveness of the Gated Multimodal Embedding layer in selectively
filtering these noisy modalities out. Our results and analysis open new areas in the study of
sentiment analysis in human communication and provide new models for multimodal fusion.

Factorized multimodal representations: Using MULTIBENCH and other related multi-
modal benchmarks enables us a deeper study of the desiderata for multimodal representations
beyond discriminative performance [614]. While the two main pillars of research in multimodal
representation learning have considered discriminative [88, 101, 181, 553, 712] and genera-
tive [442, 482, 555, 565, 585] objectives individually, we demonstrate that factorizing multimodal
representations into multimodal discriminative and modality-specific generative factors marries
the strengths of discriminative learning of joint features across modalities that achieves state-of-
the-art performance for affect analysis with controllable generation of human language based
on individual factors, robustness to partially missing modalities, and interpretable local contri-
butions from each modality during prediction. Our resulting Multimodal Factorization Model
(MFM) defines a flexible latent variable framework balancing prediction with robustness and
understandability for real-world human multimodal language.

Efficient statistical baselines: The constraints of real-world edge devices have created a
demand for data and compute-efficient multimodal learning via simple yet strong models [569].
We proposed an approach based on stronger statistical baselines rather than black-box neural
networks. By assuming a fully-factorized probabilistic generative model of multimodal data
from a latent representation, careful model design allows us to capture expressive unimodal,
bimodal, and trimodal interactions while at the same time retaining simplicity and efficiency
during learning and inference [362]. These models show strong performance on both supervised
and semi-supervised multimodal prediction, as well as significant (10 times) speedups over neural
models during inference.

1.4.2 Applications in affective computing, social intelligence, and healthcare
Improving the generalization and quantification of multimodal models enables a step towards
real-world models capturing the benefits of multimodal data while mitigating its risks. However,
tangible real-world impact requires direct collaboration with real-world stakeholders to determine
their precise computational needs. During my PhD, I have had the pleasure of collaborating on



the following real-world applications:
Multimodal affective computing: As an application-specific instantiation of multimodal

learning, we studied the problem of continuous-time human affect analysis and proposed a
new perspective by modeling both person-independent and person-dependent signals through
insights from human psychology [361]. Some emotional expressions are almost universal person-
independent behaviors and can be recognized directly from a video [145, 305]. For example,
an open mouth with raised eyebrows and a loud voice is likely to be associated with surprise.
However, emotions are also expressed in a person-dependent fashion with idiosyncratic behaviors
where it may not be possible to directly estimate absolute emotion intensities. Instead, it would
be easier to compare two video segments of the same person and judge whether there was a
relative change in emotion intensities [163, 419, 567]. For example, a person could have naturally
furrowed eyebrows and we should not always interpret this as a display of anger, but rather
compare two video segments to determine relative changes in anger. By designing a model
combining both signals, we are able to achieve state-of-the-art audio-visual emotion recognition
performance and allow for fine-grained investigation of person-independent and person-dependent
behaviors.

Social intelligence question-answering: As intelligent systems increasingly blend into our
everyday life, artificial social intelligence becomes a prominent area of research. Intelligent
systems must be socially intelligent in order to comprehend human intents and maintain a
rich level of interaction with humans [268, 302, 600, 636]. Human language offers a unique
unconstrained approach to probe through questions and reason through answers about social
situations [11, 343]. This unconstrained approach extends previous attempts to model social
intelligence through numeric supervision (e.g. sentiment and emotions labels). We introduced the
Social-IQ dataset [715], an unconstrained benchmark specifically designed to train and evaluate
socially intelligent technologies. By providing a rich source of open-ended questions and answers,
Social-IQ opens the door to explainable social intelligence. The dataset contains rigorously
annotated and validated videos, questions and answers, as well as annotations for the complexity
level of each question and answer. Social-IQ contains 1,250 natural in-the-wild social situations,
7,500 questions and 52,500 correct and incorrect answers. Although humans can reason about
social situations with very high accuracy (95.08%), existing state-of-the-art computational models
struggle on this task. As a result, Social-IQ brings novel challenges that will spark future research
in social intelligence modeling, visual reasoning, and multimodal question answering (QA).

Privacy-preserving mood prediction from mobile data: Mental health conditions remain
underdiagnosed even in countries with common access to advanced medical care [178, 328].
The ability to accurately and efficiently predict mood from easily collectible data has several
important implications for the early detection, intervention, and treatment of mental health
disorders [200, 433]. One promising data source to help monitor human behavior is daily
smartphone usage [492]. However, care must be taken to summarize behaviors without identifying
the user through personal (e.g., personally identifiable information) or protected (e.g., race, gender)
attributes [313, 365, 539, 580]. Through data collected via a collaboration with psychiatrists and
psychologists at the University of Oregon, Columbia University, and the University of Pittsburgh,
we study behavioral markers of daily mood using a recent dataset of mobile behaviors from
adolescent populations at high risk of suicidal behaviors [366]. Using computational models, we
find that language and multimodal representations of mobile typed text (spanning typed characters,



words, keystroke timings, and app usage) are predictive of daily mood. However, we find that
models trained to predict mood often also capture private user identities in their intermediate
representations. To tackle this problem, we evaluate approaches that obfuscate user identity while
remaining predictive. By combining multimodal representations with privacy-preserving learning,
we are able to push forward the performance-privacy frontier.

1.4.3 Real-world robustness, fairness, and privacy
Finally, the third major direction studies the real-world concerns of deploying multimodal models
in the face of real-world noise topologies, dataset biases, and privacy concerns.

Robustness to noisy modalities: Different modalities often display different noise topologies,
and real-world multimodal signals possibly suffer from missing or noisy data in at least one
of the modalities [46, 150, 336]. Human-centric data is also often imperfect due to personal
idiosyncrasies which affect the contribution of certain modalities during social interactions [204,
524]. For example, multimodal dialogue systems trained on acted TV shows are susceptible to
poor performance when deployed in the real world where users might be less expressive in using
facial gestures. This calls for robust models that can still make accurate predictions despite only
having access to a (possibly noisy) subset of signals.

As a step towards robustness, we propose a tensor representation learning method to deal with
noisy modalities in time-series data (e.g., text, videos, audio) [364]. This method is based on the
observation that multimodal time series data often exhibits correlations across time and modalities
which lead to low-rank multimodal representations [237, 327, 690]. However, the presence of
noise or incomplete values breaks these correlations and results in tensor representations of higher
rank. Regularizing the rank of tensor representations therefore provides a denoising effect which
achieves strong results across various levels of imperfection. We show how to integrate an upper-
bound of tensor rank minimization as a simple regularizer for training in the presence of imperfect
data, thereby combining the strength of temporal non-linear transformations of multimodal data
with principled regularization on tensor structures. Through experiments on multimodal video
data, our results back up our intuitions that imperfect data increases tensor rank and demonstrates
strong results across various levels of imperfection.

Learning fair sentence representations: To safely deploy human-centric multimodal models
in real-world scenarios such as healthcare, legal systems, and social science, it is also necessary
to recognize the role they play in shaping social biases and stereotypes. Previous work has
revealed the presence of representational biases in widely used word embeddings - harmful
biases resulting from stereotyping that propagate negative generalizations involving gender, race,
religion, and other social constructs [64, 193, 233, 432, 518, 542]. While some methods were
proposed to debias these word-level embeddings [67, 405], there is a need to perform debiasing
at the sentence-level given the recent shift towards new contextualized sentence representations
such as ELMo [479] and BERT [144] which have become core components in both real-world
language [19, 257, 656] and multimodal prediction systems [348, 390]. We investigated the
presence of social biases in sentence-level representations and proposed a new method, SENT-
DEBIAS, to reduce these biases [365]. We show that SENT-DEBIAS is effective in reducing
biases from the geometry of contextual representation spaces, and at the same time, preserves
performance on sentence-level downstream NLP tasks such as sentiment analysis, linguistic



acceptability, and natural language understanding.
Mitigating social biases in language models: In addition to sentence representations de-

ployed primarily for discriminative tasks, large-scale pretrained language models (LMs) have also
become widely-deployed for generative applications such as text generation [496], dialog sys-
tems [730], recommendation systems [533], and search engines [43, 455]. Recent work has found
that these language models can potentially generate text propagating negative generalizations
about particular social groups [432], language that is denigrating to particular social groups [542],
and toxic speech [193], while at the same time also being unable to reason about human-aligned
values such as ethics [233], social bias implications [518], and allocational harms across social
groups [386]. As a step towards improving the fairness of LMs, we carefully defined several
sources of representational biases before proposing new benchmarks and metrics to measure
them [368]. With these tools, we propose A-INLP, an approach towards post-hoc debiasing
of large pretrained LMs. The key to our approach lies in dynamically finding bias-sensitive
tokens rather than relying on a predefined set of bias-sensitive words that are common in existing
literature [67]. Our empirical results and human evaluation on large language models such as
GPT-2 demonstrate effectiveness in mitigating bias while retaining crucial context information for
high-fidelity text generation, thereby pushing forward the performance-fairness Pareto frontier.
These steps are critical towards improving the safety of language and multimodal models.

Privacy-preserving federated learning: More broadly, federated learning is a method of
training models on private data distributed over multiple devices [68, 356, 413, 552]. To keep
device data private, a single global model is trained by only communicating parameters and updates
which poses scalability challenges for large models [446]. Furthermore, current approaches use
the same model architecture across all local models and the global aggregated model, which
causes federated learning to struggle with data heterogeneity across devices [248, 356, 731]. This
is made worse when each device contains multimodal data sources that are used unequally across
users [426]. To this end, we propose a new federated learning algorithm, Local Global Federated
Averaging (LG-FEDAVG), that jointly learns compact local representations on each device and a
global model across all devices [363]. As a result, the global model can be smaller since it only
operates on local representations, reducing the number of communicated parameters. Furthermore,
well-designed local models enable learning of personalized representations for user-specific
behavior modeling while enjoying the benefit of global model learning across many users’ data.
Theoretically, we provide a generalization analysis which shows that a combination of local and
global models reduces both variance in the data as well as variance across device distributions.
Empirically, we demonstrate that local models enable communication-efficient training while
retaining performance. We also evaluate on the task of personalized mood prediction from real-
world mobile data where privacy is key. Finally, we show that local models handle heterogeneous
data from new devices, and learn fair representations that obfuscate protected attributes such as
race, age, and gender [67].



Chapter 2

Literature Survey and Taxonomy of
Multimodal Challenges

2.1 Introduction
It has always been a grand goal of artificial intelligence to develop computer agents with intelligent
capabilities such as understanding, reasoning, and learning through multimodal experiences and
data, similar to how humans perceive and interact with our world using multiple sensory modalities.
With recent advances in embodied autonomous agents [69, 522], self-driving cars [674], image
and video understanding [18, 576], image and video generation [502, 550], and multisensor fusion
in application domain such as robotics [335, 408] and healthcare [287, 367], we are now closer
than ever to intelligent agents that can integrate and learn from many sensory modalities. This
vibrant multi-disciplinary research field of multimodal machine learning brings unique challenges
given the heterogeneity of the data and the interconnections often found between modalities, and
has widespread applications in multimedia [436], affective computing [489], robotics [308, 335],
human-computer interaction [450, 538], and healthcare [76, 429].

However, the rate of progress in multimodal research has made it difficult to identify the
common themes underlying historical and recent work, as well as the key open questions in the
field. By synthesizing a broad range of research, this paper is designed to provide an overview of
the methodological, computational, and theoretical foundations of multimodal machine learning.
We begin by defining (in §2.2) three key principles that have driven technical challenges and
innovations: (1) modalities are heterogeneous because the information present often shows diverse
qualities, structures, and representations, (2) modalities are connected since they are often related
and share commonalities, and (3) modalities interact to give rise to new information when used
for task inference. Building upon these definitions, we propose a new taxonomy of six core
challenges in multimodal learning: representation, alignment, reasoning, generation, transference,
and quantification (see Figure 2.1). These core multimodal challenges are understudied in
conventional unimodal machine learning and need to be tackled in order to progress the field
forward:
1. Representation (§2.3): Can we learn representations that reflect heterogeneity and intercon-

nections between modality elements? We will cover approaches for (1) representation fusion:
integrating information from two or more modalities to capture cross-modal interactions, (2)
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Figure 2.1: Core research challenges in multimodal learning: Every multimodal problem typically requires
tackling representation and alignment: (1) Representation studies how to summarize multimodal data to
reflect the heterogeneity and interconnections between individual modality elements, before (2) alignment
captures the connections and interactions between multiple local elements according to their structure. After
representation and alignment comes (3) reasoning, which aims to combine the information from multimodal
evidence in a principled way that respects the structure of the problem to give more robust and interpretable
predictions. While most systems aim to predict the label y, there are also cases where the goal is (4)
generation, to learn a generative process to produce raw modalities that reflect cross-modal interactions,
structure, and coherence, or (5) transference, to transfer information from high-resource modalities to
low-resource ones and their representations. Finally, (6) quantification revisits the previous challenges to
give deeper empirical and theoretical understanding of modality heterogeneity, interconnections, and the
learning process.

representation coordination: interchanging cross-modal information to keep the same number
of representations but improve multimodal contextualization, and (3) representation fission:
creating a larger set of disjoint representations that reflects knowledge about internal structure
such as data clustering or factorization.

2. Alignment (§2.4): How can we identify the connections and interactions between modality
elements? Alignment is challenging since it may depend on long-range dependencies, in-
volves ambiguous segmentation (e.g., words or utterances), and could be either one-to-one,
many-to-many, or not exist at all. We cover (1) discrete alignment: identifying connections
between discrete elements across modalities, (2) continuous alignment: modeling alignment
between continuous modality signals with ambiguous segmentation, and (3) contextualized
representations: learning better representations by capturing cross-modal interactions between
elements.

3. Reasoning (§2.5) is defined as composing knowledge, usually through multiple inferential
steps, that exploits the problem structure for a specific task. Reasoning involves (1) modeling
the structure over which composition occurs, (2) the intermediate concepts in the composition
process, (3) understanding the inference paradigm of more abstract concepts, and (4) leveraging
large-scale external knowledge in the study of structure, concepts, and inference.

4. Generation (§2.6) involves learning a generative process to produce raw modalities. We
categorize its subchallenges into (1) summarization: summarizing multimodal data to reduce



information content while highlighting the most salient parts of the input, (2) translation: trans-
lating from one modality to another and keeping information content while being consistent
with cross-modal connections, and (3) creation: simultaneously generating multiple modalities
to increase information content while maintaining coherence within and across modalities.

5. Transference (§2.7) aims to transfer knowledge between modalities, usually to help the target
modality, which may be noisy or with limited resources. Transference is exemplified by (1)
cross-modal transfer: adapting models to tasks involving the primary modality, (2) co-learning:
transferring information from secondary to primary modalities by sharing representation
spaces between both modalities, and (3) model induction: keeping individual unimodal models
separate but transferring information across these models.

6. Quantification (§2.8): The sixth and final challenge involves empirical and theoretical studies
to better understand (1) the dimensions of heterogeneity in multimodal datasets and how
they subsequently influence modeling and learning, (2) the presence and type of modality
connections and interactions in multimodal datasets and captured by trained models, and (3)
the learning and optimization challenges involved with heterogeneous data.
Finally, we conclude this paper with a long-term perspective on multimodal learning by

motivating open research questions identified by this taxonomy. This survey was also presented
by the authors in a visual medium through tutorials at CVPR 2022 and NAACL 2022, as well
as courses 11-777 Multimodal Machine Learning and 11-877 Advanced Topics in Multimodal
Machine Learning at CMU. The reader is encouraged to refer to these public video recordings,
additional readings, and discussion probes for more mathematical depth on certain topics, visual
intuitions and explanations, and more open research questions in multimodal learning.

This paper is designed to complement other surveys that belong broadly to the study of multiple
modalities or views: multi-view learning [443, 577, 685] is concerned with settings where different
views (e.g., camera views) typically provide overlapping (redundant) information but not the other
core challenges we cover, surveys on multimodal foundation models [157, 185] go into detail
on tackling representation, fusion, and alignment using large-scale pretraining but do not cover
other core challenges, and several application-oriented surveys in vision-language models [627],
language and reinforcement learning [394], multimedia analysis [34], and multimodal human-
computer interaction [277] discuss specific multimodal challenges faced in these applications.
This survey presents a telescoping overview suitable as a starting point for researchers who can
then diver deeper into methodology or application-specific research areas.

2.1.1 Key modalities and application domains
In this subsection, we first contextualize our subsequent discussion of multimodal machine
learning by listing some key modalities of interest, standard multimodal datasets and toolkits, and
major applications of multimodal learning in the real world.

Affective computing studies the perception of human affective states such as emotions,
sentiment, and personalities from multimodal human communication: spoken language, facial
expressions and gestures, body language, vocal expressions, and prosody [483]. Some com-
monly studied tasks involve predicting sentiment [556, 710], emotions [717], humor [225], and
sarcasm [83] from multimodal videos of social interactions.

Healthcare: Machine learning can help integrate complementary medical signals from lab

https://cmu-multicomp-lab.github.io/mmml-tutorial/cvpr2022/
https://cmu-multicomp-lab.github.io/mmml-tutorial/naacl2022/
https://cmu-multicomp-lab.github.io/mmml-course/fall2022/
https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2023/
https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2023/


tests, imaging reports, patient-doctor conversations, and multi-omics data to assist doctors in
the clinical process [5, 21, 383]. Multimodal physiological signals recorded regularly from
smartphones and wearable devices can also provide non-invasive health monitoring [134, 189,
366]. Public datasets include MIMIC [287] with patient tabular data, medical reports, and
medical sensor readings, question answering on pathology [230] and radiology [329] images, and
multi-omics data integration [610].

Robotics systems are often equipped with multiple sensors to aid in robust decision-making
for real-world physical tasks such as grasping, cleaning, and delivery. These sensors can include
vision (RGB and depth), force, and proprioception [335]. These multi-sensor robots have been suc-
cessfully applied in haptic [459, 530] and surgical robots [4, 60]. More generally, language [394]
and audio [135] have also emerged as useful signals for robot learning.

Interactive agents in the virtual world can assist humans in multimedia web tasks and
computer tasks [183] as well as in the social world through virtual agents [471, 472]. These agents
need to understand human commands and behaviors, process various forms of visual, tabular, and
multimedia content, use external web tools and APIs, and interact in multi-step decision-making
tasks. Webshop [695] and WebAreana [735] are recent environments testing the capabilities of AI
agents in navigating image and text content to solve web tasks.

Multimedia data spanning text, images, videos, audio, and music is abundant on the internet
and has fueled a significant body of multimodal research [34], such as classification [728],
retrieval [504], and recommendation [423, 513, 732] of multimedia content, image and video
question answering [11, 317, 339] and captioning [156, 640]), multimedia and entertainment
content description [532] (including movies [32], memes [301, 537], and cartoons [236]), and
more recently in automatic creation of text [726], images [511], videos [667], music [9], and
more.

Human-computer interaction has sought to endow computers with multimodal capabilities
to provide more natural, powerful, and compelling interactive user experiences [624]. These
systems have leveraged speech, touch, vision, gestures, affective states [462] and affordable
wearable and mobile sensors [277, 457, 624]. Public datasets have enabled the study of multimodal
user interfaces [340, 644], speech and gesture interactions [166], and human sensing [89, 139,
526].

Science and environment: Deepening our knowledge of the natural sciences and physi-
cal environments can bring about impactful changes in scientific discovery, sustainability, and
conservation. This requires processing modalities such as chemical molecules [570], protein
structures [725], satellite images [109, 693], remote sensing [243, 346], wildlife movement [389],
scientific diagrams and texts [392], and various physical sensors [424].

Education: AI can broaden access to educational content by digitizing lecture slides and
videos, creating personalized tutors, and designing interactive learning curricula. It introduces
challenges in processing recorded lecture slides and videos [333], and modeling student learning
via asked questions, spoken feedback and non-verbal gestures [87, 574, 679].
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Figure 2.2: The information present in different modalities will often show diverse qualities, structures,
and representations. Dimensions of heterogeneity can be measured via differences in individual elements
and their distribution, the structure of elements, as well as modality information, noise, and task relevance.

2.2 Foundational Principles in Multimodal Research
A modality refers to a way in which a natural phenomenon is perceived or expressed. For example,
modalities include speech and audio recorded through microphones, images and videos captured
via cameras, and force and vibrations captured via haptic sensors. Modalities can be placed along
a spectrum from raw to abstract: raw modalities are those more closely detected from a sensor,
such as speech recordings from a microphone or images captured by a camera. Abstract modalities
are those farther away from sensors, such as language extracted from speech recordings, objects
detected from images, or even abstract concepts like sentiment intensity and object categories.

Multimodal refers to situations where multiple modalities are involved. From a research
perspective, multimodal entails the computational study of heterogeneous and interconnected
modalities. Firstly, modalities are heterogeneous because the information present in different
modalities will often show diverse qualities, structures, and representations. Secondly, these
modalities are not independent entities but rather share connections due to complementary
information. Thirdly, modalities interact in different ways when they are integrated for a task. We
expand on these three foundational principles of multimodal research in the following subsections.

2.2.1 Principle 1: Modalities are heterogeneous
The principle of heterogeneity reflects the observation that the information present in different
modalities will often show diverse qualities, structures, and representations. Heterogeneity should
be seen as a spectrum: two images from the same camera that capture the same view modulo
camera wear and tear are closer to homogeneous, two different languages that capture the same
meaning but from different language families are slightly heterogeneous, language and vision are
even more heterogeneous, and so on. In this section, we present a non-exhaustive list of dimensions
of heterogeneity (see Figure 2.2 for an illustration). These dimensions are complementary and
may overlap; each multimodal problem likely involves heterogeneity in multiple dimensions.
1. Element representation: Each modality is typically comprised of a set of elements - the most

basic unit of data which cannot (or rather, the user chooses to not) be broken down into further
units [49, 358]. For example, typed text is recorded via a set of characters, videos are recorded
via a set of frames, and graphs are recorded via a set of nodes and edges. What are the basic
elements present in each modality, and how can we represent them? Formally, this dimension
measures heterogeneity in the sample space or representation space of modality elements.

2. Distribution refers to the frequency and likelihood of modality elements. Elements typically



follow a unique distribution, with words in a linguistic corpus following Zipf’s Law [743] as
an example. Distribution heterogeneity refers to the differences in frequencies and likelihoods
of elements, such as different frequencies in recorded signals and the density of elements.

3. Structure: Natural data exhibits structure in the way individual elements are composed to
form entire modalities [71]. For example, images exhibit spatial structure across objects,
language is hierarchically composed of words, and signals exhibit temporal structure across
time. Structure heterogeneity refers to differences in this underlying structure.

4. Information measures the total information content present in each modality. Subsequently,
information heterogeneity measures the differences in information content across modalities,
which could be formally measured by information theoretic metrics [535].

5. Noise: Noise can be introduced at several levels across naturally occurring data and also
during the data recording process. Natural data noise includes occlusions, imperfections in
human-generated data (e.g., imperfect keyboard typing or unclear speech), or data ambiguity
due to sensor failures [367]. Noise heterogeneity measures differences in noise distributions
across modalities, as well as differences in signal-to-noise ratio.

6. Relevance: Finally, each modality shows different relevance toward specific tasks and contexts
- certain modalities may be more useful for certain tasks than others [192]. Task relevance
describes how modalities can be used for inference, while context relevance describes how
modalities are contextualized with other modalities.

It is useful to take these dimensions of heterogeneity into account when studying both unimodal
and multimodal data. In the unimodal case, specialized encoders are typically designed to capture
these unique characteristics in each modality [71]. In the multimodal case, modeling heterogeneity
is useful when learning representations and capturing alignment [718], and is a key subchallenge
in quantifying multimodal models [370].

2.2.2 Principle 2: Modalities are connected
Although modalities are heterogeneous, they are often connected due to shared complementary
information. The presence of shared information is often in contrast to unique information that
exists solely in a single modality [662]. Modality connections describe the extent and dimensions
to which information can be shared across modalities. When reasoning about the connections in
multimodal data, it is helpful to think about both bottom-up (statistical) and top-down (semantic)
approaches (see Figure 2.3). From a statistical data-driven perspective, connections are identified
from distributional patterns in multimodal data, while semantic approaches define connections
based on our domain knowledge about how modalities share and contain unique information.
1. Statistical association exists when the values of one variable relate to the values of another.

For example, two elements may co-occur with each other, resulting in a higher frequency of
both occurring at the same time. Statistically, this could lead to correlation - the degree to which
elements are linearly related, or other non-linear associations. From a data-driven perspective,
discovering which elements are associated with each other is important for modeling the joint
distributions across modalities during multimodal representation and alignment [605].

2. Statistical dependence goes deeper than association and requires an understanding of the
exact type of statistical dependency between two elements. For example, is there a causal
dependency from one element to another, or an underlying confounder causing both elements
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Figure 2.3: Modality connections describe how modalities are related and share commonalities, such as
correspondences between the same concept in language and images or dependencies across spatial and
temporal dimensions. Connections can be studied through both statistical and semantic perspectives.

to be present at the same time? Other forms of dependencies could be spatial or temporal: one
element occurring above the other, or after the other. Typically, while statistical association
can be estimated purely from data, understanding the nature of statistical dependence requires
some knowledge of the elements and their underlying relationships [445, 625].

3. Semantic correspondence can be seen as the problem of ascertaining which elements in one
modality share the same semantic meaning as elements in another modality [456]. Identify-
ing correspondences is fundamental in many problems related to language grounding [86],
translation and retrieval [485], and cross-modal alignment [588].

4. Semantic relations: Finally, semantic relations generalize semantic correspondences: instead
of modality elements sharing the same exact meaning, semantic relations include an attribute
describing the exact nature of the relationship between two modality elements, such as semantic,
logical, causal, or functional relations. Identifying these semantically related connections is
important for higher-order reasoning [49, 410].

2.2.3 Principle 3: Modalities interact
Modality interactions study how modality elements interact to give rise to new information
when integrated together for task inference. We note an important difference between modality
connections and interactions: connections exist within multimodal data itself, whereas interactions
only arise when modalities are integrated and processed together to bring a new response. In
Figure 2.4, we provide a high-level illustration of some dimensions of interactions that can exist.
1. Interaction information investigates the type of connected information that is involved in an

interaction. When an interaction involves shared information common to both modalities, the
interaction is redundant, while a non-redundant interaction is one that does not solely rely on
shared information, and instead relies on different ratios of shared, unique, or possibly even
synergistic information [372, 662].

2. Interaction mechanics are the functional operators involved when integrating modality ele-
ments for task inference. For example, interactions can be expressed as statistically additive,
non-additive, and non-linear forms [283], as well as from a semantic perspective where two
elements interact through a logical, causal, or temporal operation [626].

3. Interaction response studies how the inferred response changes in the presence of multiple
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Figure 2.4: Several dimensions of modality interactions: (1) Interaction information studies whether
common redundant information or unique non-redundant information is involved in interactions; (2)
interaction mechanics study the manner in which interaction occurs, and (3) interaction response studies
how the inferred task changes in the presence of multiple modalities.

modalities. For example, through sub-dividing redundant interactions, we can say that two
modalities create an equivalence response if the multimodal response is the same as responses
from either modality, or enhancement if the multimodal response displays higher confidence.
On the other hand, non-redundant interactions such as modulation or emergence happen when
there exist different multimodal versus unimodal responses [468].

2.2.4 Core technical challenges

Building on these three core principles and our detailed review of recent work, we propose a new
taxonomy to characterize the core technical challenges in multimodal research: representation,
alignment, reasoning, generation, transference, and quantification. In Table 2.1 we summarize
our full taxonomy of these six core challenges, their subchallenges, categories of corresponding
approaches, and recent examples in each category. In the following sections, we describe our new
taxonomy in detail and also revisit the principles of heterogeneity, connections, and interactions
to see how they pose research questions and inspire research in each of these six challenges.

2.3 Challenge 1: Representation

The first fundamental challenge is to learn representations that reflect cross-modal interactions
between individual elements across different modalities. This challenge can be seen as learning a
‘local’ representation between elements, or a representation using holistic features. This section
covers (1) representation fusion: integrating information from 2 or more modalities, effectively
reducing the number of separate representations, (2) representation coordination: interchanging
cross-modal information by keeping the same number of representations but improving multimodal
contextualization, and (3) representation fission: creating a new decoupled set of representations,
usually larger number than the input set, that reflects knowledge about internal structure such as
data clustering or factorization (Figure 2.5).



Table 2.1: This table summarizes our taxonomy of 6 core challenges in multimodal machine learning, their
subchallenges, categories of corresponding approaches, and representative examples. We believe that this
taxonomy can help to catalog rapid progress in this field and better identify the open research questions.

Challenge Subchallenge Approaches & key examples

Representation (2.3)
Fusion (2.3.1) Abstract [283, 712] & raw [47, 501] fusion

Coordination (2.3.2) Strong [181, 497] & partial [634, 727] coordination
Fission (2.3.3) Modality-level [235, 614] & fine-grained [1, 92] fission

Alignment (2.4)
Discrete connections (2.4.1) Local [121, 247] & global [351] alignment

Continuous alignment (2.4.2) Warping [224, 252] & segmentation [576]
Contextualization (2.4.3) Joint [348], cross-modal [232, 390] & graphical [687]

Reasoning (2.5)

Structure modeling (2.5.1) Hierarchical [26], temporal [676], interactive [394], discovery [478]
Intermediate concepts (2.5.2) Attention [680], discrete symbols [22, 632], language [265, 722]

Inference paradigm (2.5.3) Logical [203, 586] & causal [8, 448, 698]
External knowledge (2.5.4) Knowledge graphs [213, 739] & commonsense [466, 719]

Generation (2.6)
Summarization (2.6.1) Extractive [96, 628] & abstractive [345, 461]

Translation (2.6.2) Exemplar-based [294, 331] & generative [13, 281, 502]
Creation (2.6.3) Conditional decoding [142, 452, 737]

Transference (2.7)
Cross-modal transfer (2.7.1) Tuning [500, 622], multitask [370, 551] & transfer [391]

Co-learning (2.7.2) Representation [285, 716] & generation [482, 589]
Model Induction (2.7.3) Co-training [65, 159] & co-regularization [563, 692]

Quantification (2.8)
Heterogenity (2.8.1) Importance [192, 465], bias [231, 473] & noise [398]

Interconnections (2.8.2) Connections [7, 79, 601] & interactions [235, 375, 654]
Learning (2.8.3) Generalization [370, 505], optimization [651, 670], tradeoffs [367]

2.3.1 Subchallenge 1a: Representation fusion

Representation fusion aims to learn a joint representation that models cross-modal interactions
between individual elements of different modalities, effectively reducing the number of separate
representations. We categorize these approaches into fusion with abstract modalities and fusion
with raw modalities (Figure 2.6). In fusion with abstract modalities, suitable unimodal encoders
are first applied to capture a holistic representation of each element (or modality entirely), after
which several building blocks for representation fusion are used to learn a joint representation. As
a result, fusion happens at the abstract representation level. On the other hand, fusion with raw
modalities entails representation fusion at very early stages with minimal preprocessing, perhaps
even involving raw modalities themselves.

Fusion with abstract modalities: We begin our treatment of representation fusion of abstract
representations with additive and multiplicative interactions. These operators can be seen as
differentiable building blocks combining information from two streams of data that can be flexibly
inserted into almost any unimodal machine learning pipeline. Given unimodal data or features x1

and x2, additive fusion can be seen as learning a new joint representation zmm = w0+w1x1+w2x2+ε,
where w1 and w2 are the weights learned for additive fusion of x1 and x2, w0 the bias term, and
ε the error term. If the joint representation zmm is directly taken as a prediction ŷ, then additive
fusion resembles late or ensemble fusion ŷ = f1(x1) + f2(x2) with unimodal predictors f1 and
f2 [180]. Otherwise, the additive representation zmm can also undergo subsequent unimodal or
multimodal processing [46]. Multiplicative interactions extend additive interactions to include
a cross term w3(x1 × x2). These models have been used extensively in statistics, where it can
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Figure 2.5: Challenge 1 aims to learn representations that reflect cross-modal interactions between
individual modality elements, through (1) fusion: integrating information to reduce the number of separate
representations, (2) coordination: interchanging cross-modal information by keeping the same number
of representations but improving multimodal contextualization, and (3) fission: creating a larger set of
decoupled representations that reflects knowledge about internal structure.
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Figure 2.6: We categorize representation fusion approaches into (1) fusion with abstract modalities,
where unimodal encoders first capture a holistic representation of each element before fusion at relatively
homogeneous representations, and (2) fusion with raw modalities which entails representation fusion at
very early stages, perhaps directly involving heterogeneous raw modalities.

be interpreted as a moderation effect of x1 affecting the linear relationship between x2 and
y [48]. Overall, purely additive interactions zmm = w0 + w1x1 + w2x2 can be seen as a first-
order polynomial between input modalities x1 and x2, combining additive and multiplicative
zmm = w0 +w1x1 +w2x2 +w3(x1 × x2) captures a second-order polynomial.

To further go beyond first and second-order interactions, tensors are specifically designed to
explicitly capture higher-order interactions across modalities [712]. Given unimodal data x1,x2,
tensors are defined as zmm = x1 ⊗x2 where ⊗ denotes an outer product [55, 182]. Tensor products
of higher order represent polynomial interactions of higher order between elements [245]. How-
ever, computing tensor products is expensive since their dimension scales exponentially with the
number of modalities, so several efficient approximations based on low-rank decomposition have
been proposed [245, 388]. Finally, Multiplicative Interactions (MI) generalize additive and multi-
plicative operators to include learnable parameters that capture second-order interactions [283].
In its most general form, MI defines a bilinear product zmm = x1Wx2 + x⊺1U +Vx2 + b where
W,U,Z, and b are trainable parameters.

Multimodal gated units/attention units learn representations that dynamically change for
every input [88, 651]. Its general form can be written as zmm = x1 ⊙ h(x2), where h represents
a function with sigmoid activation and ⊙ denotes element-wise product. h(x2) is commonly
referred to as ‘attention weights’ learned from x2 to attend on x1. Recent work has explored more
expressive forms of learning attention weights such as using Query-Key-Value mechanisms [613],
fully-connected neural network layers [32, 88], or even hard gated units for sharper attention [101].

Fusion with raw modalities entails representation fusion at very early stages, perhaps even
involving raw modalities themselves. These approaches typically bear resemblance to early
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Figure 2.7: There is a spectrum of representation coordination functions: strong coordination aims to
enforce strong equivalence in all dimensions, whereas in partial coordination only certain dimensions may
be coordinated to capture more general connections such as correlation, order, hierarchies, or relationships.

fusion [46], which performs concatenation of input data before applying a prediction model (i.e.,
zmm = [x1,x2]). Fusing at the raw modality level is more challenging since raw modalities are
likely to exhibit more dimensions of heterogeneity. Nevertheless, Barnum et al. [47] demonstrated
robustness benefits of fusion at early stages, while Gadzicki et al. [184] also found that complex
early fusion can outperform abstract fusion. To account for the greater heterogeneity during
complex early fusion, many approaches rely on generic encoders that are applicable to both
modalities, such as convolutional layers [47, 184] and Transformers [370, 378]. However, do these
complex non-additive fusion models actually learn non-additive interactions between modality
elements? Not necessarily, according to Hessel and Lee [235]. We cover these fundamental
analysis questions and more in the quantification challenge (§2.8).

2.3.2 Subchallenge 1b: Representation coordination
Representation coordination aims to learn multimodal contextualized representations that are
coordinated through their interconnections (Figure 2.7). In contrast to representation fusion, coor-
dination keeps the same number of representations but improves multimodal contextualization. We
start our discussion with strong coordination that enforces strong equivalence between modality
elements, before moving on to partial coordination that captures more general connections such
as correlation, order, hierarchies, or relationships beyond similarity.

Strong coordination aims to bring semantically corresponding modalities close together in a
coordinated space, thereby enforcing strong equivalence between modality elements. For example,
these models would encourage the representation of the word ‘dog’ and an image of a dog to
be close (i.e., semantically positive pairs), while the distance between the word ‘dog’ and an
image of a car to be far apart (i.e., semantically negative pairs) [181]. The coordination distance is
typically cosine distance [414] or max-margin losses [250]. Recent work has explored large-scale
representation coordination by scaling up contrastive learning of image and text pairs [497],
and also found that contrastive learning provably captures redundant information across the
two views [604, 608] (but not non-redundant information). In addition to contrastive learning,
several approaches instead learn a coordinated space by mapping corresponding data from one
modality to another [162]. For example, Socher et al. [553] maps image embeddings into word
embedding spaces for zero-shot image classification. Similar ideas were used to learn coordinated
representations between text, video, and audio [482], as well as between pretrained language
models and image features [589].

Partial coordination: Instead of capturing strong equivalences, partial coordination captures
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Figure 2.8: Representation fission creates a larger set of decoupled representations that reflects knowledge
about internal structure. (1) Modality-level fission factorizes into modality-specific information primarily in
each modality, and multimodal information redundant in both modalities, while (2) fine-grained fission
attempts to further break multimodal data down into individual subspaces.

more general modality connections such as correlation, order, hierarchies, or relationships. Par-
tially coordinated models enforce different types of constraints on the representation space beyond
semantic similarity, and perhaps only on certain dimensions of the representation.

Canonical correlation analysis (CCA) computes a linear projection that maximizes the
correlation between two random variables while enforcing each dimension in a new representation
to be orthogonal to each other [599]. CCA models have been used extensively for cross-modal
retrieval [504] audio-visual signal analysis [521], and emotion recognition [439]. To increase
the expressiveness of CCA, several nonlinear extensions have been proposed including Kernel
CCA [325], Deep CCA [27], and CCA Autoencoders [650].

Ordered and hierarchical spaces: Another example of representation coordination comes
from order-embeddings of images and language [634], which aims to capture a partial order on
the language and image embeddings to enforce a hierarchy in the coordinated space. A similar
model using denotation graphs was also proposed by Young et al. [702] where denotation graphs
are used to induce such a partial ordering hierarchy.

Relationship coordination: In order to learn a coordinated space that captures semantic relation-
ships between elements beyond correspondences, Zhang et al. [727] use structured representations
of text and images to create multimodal concept taxonomies. Delaherche and Chetouani [138]
learn coordinated representations capturing hierarchical relationships, while Alviar et al. [20]
apply multiscale coordination of speech and music using partial correlation measures. Finally, Xu
et al. [678] learn coordinated representations using a Cauchy loss to strengthen robustness to
outliers.

2.3.3 Subchallenge 1c: Representation fission
Finally, representation fission aims to create a new decoupled set of representations (usually a
larger number than the input representation set) that reflects knowledge about internal multimodal
structure such as data clustering, independent factors of variation, or modality-specific information.
In comparison with joint and coordinated representations, representation fission enables careful
interpretation and fine-grained controllability. Depending on the granularity of decoupled factors,
methods can be categorized into modality-level and fine-grained fission (Figure 2.8).

Modality-level fission aims to factorize into modality-specific information primarily in each
modality and multimodal information redundant in both modalities [249, 374, 614]. Disentangled
representation learning aims to learn mutually independent latent variables that each explain
a particular variation of the data [57, 238], and has been useful for modality-level fission by
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Figure 2.9: Alignment aims to identify cross-modal connections and interactions between modality
elements. Recent work has involved (1) discrete alignment to identify connections among discrete elements,
(2) continuous alignment of continuous signals with ambiguous segmentation, and (3) contextualized
representation learning to capture these cross-modal interactions between connected elements.

enforcing independence constraints on modality-specific and multimodal latent variables [249,
614]. Tsai et al. [614] and Hsu and Glass [249] study factorized multimodal representations and
demonstrate the importance of modality-specific and multimodal factors towards generation and
prediction. Shi et al. [544] study modality-level fission in multimodal variational autoencoders
using a mixture-of-experts layer, while Wu and Goodman [668] instead use a product-of-experts
layer.

Post-hoc representation disentanglement is suitable when it is difficult to retrain a disentangled
model, especially for large pretrained multimodal models. Empirical multimodally-additive
function projection (EMAP) [235] is an approach for post-hoc disentanglement of the effects
of unimodal (additive) contributions from cross-modal interactions in multimodal tasks, which
works for arbitrary multimodal models and tasks. EMAP is also closely related to the use of
Shapley values for feature disentanglement and interpretation [417], which can also be used for
post-hoc representation disentanglement in general models.

Fine-grained fission: Beyond factorizing only into individual modality representations, fine-
grained fission attempts to further break multimodal data down into the individual subspaces
covered by the modalities [637]. Clustering approaches that group data based on semantic similar-
ity [402] have been integrated with multimodal networks for end-to-end representation fission and
prediction. For example, Hu et al. [250] combine k-means clustering in representations with unsu-
pervised audiovisual learning. Chen et al. [92] combine k-means clustering with self-supervised
contrastive learning on videos. Subspace clustering [1, 299], manifold learning [354] approximate
graph Laplacians [298], conjugate mixture models [297], and dictionary learning [306] have also
been integrated with multimodal models. Matrix factorization techniques have also seen several
applications in multimodal fission for prediction [16] and cross-modal retrieval [77].

2.4 Challenge 2: Alignment
A second challenge is to identify cross-modal connections and interactions between elements
of multiple modalities. For example, when analyzing the speech and gestures of a human sub-
ject, how can we align specific gestures with spoken words or utterances? Alignment between
modalities is challenging since it may depend on long-range dependencies, involves ambiguous
segmentation (e.g., words or utterances), and could be either one-to-one, many-to-many, or not
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Figure 2.10: Discrete alignment identifies connections between discrete elements, spanning (1) local
alignment to discover connections given matching pairs, and (2) global alignment where alignment must
be performed globally to learn both the connections and matchings between modality elements.

exist at all. This section covers recent work in multimodal alignment involving (1) discrete
alignment: identifying connections between discrete elements across modalities, (2) continuous
alignment: modeling alignment between continuous modality signals with ambiguous segmen-
tation, and (3) contextualized representations: learning better multimodal representations by
capturing cross-modal interactions between elements (Figure 2.9).

2.4.1 Subchallenge 2a: Discrete alignment
The first subchallenge aims to identify connections between discrete elements of multiple modal-
ities. We describe recent work in (1) local alignment to discover connections between a given
matching pair of modality elements, and (2) global alignment where alignment must be performed
globally to learn both the connections and matchings (Figure 2.10).

Local alignment between connected elements is particularly suitable for multimodal tasks
where there is clear segmentation into discrete elements such as words in text or object bound-
ing boxes in images or videos (e.g., tasks such as visual coreference resolution [315], visual
referring expression recognition [120, 122], and cross-modal retrieval [181, 485]). When we
have supervised data in the form of connected modality pairs, contrastive learning is a popular
approach where the goal is to match representations of the same concept expressed in different
modalities [46]. Several objective functions for learning aligned spaces from varying quantities
of paired [80, 260] and unpaired [207] data have been proposed. Many of the ideas that enforce
strong [181, 369] or partial [27, 634, 727] representation coordination (§2.3.2) are also appli-
cable for local alignment. Several examples include aligning books with their corresponding
movies/scripts [740], matching referring expressions to visual objects [407], and finding simi-
larities between image regions and their descriptions [254]. Methods for local alignment have
also enabled the learning of shared semantic concepts not purely based on language but also on
additional modalities such as vision [260], sound [121, 553], and multimedia [740] that are useful
for downstream tasks.

Global alignment: When the ground-truth modality pairings are not available, alignment
must be performed globally between all elements across both modalities. Optimal transport (OT)-
based approaches [639] (which belong to a broader set of matching algorithms) are a potential
solution since they jointly optimize the coordination function and optimal coupling between
modality elements by posing alignment as a divergence minimization problem. These approaches
are useful for aligning multimodal representation spaces [351, 491]. To alleviate computational
issues, several recent advances have integrated them with neural networks [99], approximated
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Figure 2.11: Continuous alignment tackles the difficulty of aligning continuous signals where element
segmentation is not readily available. We cover related work in (1) continuous warping of representation
spaces and (2) modality segmentation of continuous signals into discrete elements at an appropriate
granularity.

optimal transport with entropy regularization [659], and formulated convex relaxations for efficient
learning [207].

2.4.2 Subchallenge 2b: Continuous alignment
So far, one important assumption we have made is that modality elements are already segmented
and discretized. While certain modalities display clear segmentation (e.g., words/phrases in a
sentence or object regions in an image), there are many cases where the segmentation is not readily
provided, such as in continuous signals (e.g, financial or medical time-series), spatiotemporal data
(e.g., satellite or weather images), or data without clear semantic boundaries (e.g., MRI images).
In these settings, methods based on warping and segmentation have been recently proposed:

Continuous warping aims to align two sets of modality elements by representing them as
continuous representation spaces and forming a bridge between these representation spaces, such
as aligning continuous audio and video data [187, 602, 603]. Adversarial training is a popular
approach to warp one representation space into another. Initially used in domain adaptation [54],
adversarial training learns a domain-invariant representation across domains where a domain
classifier is unable to identify which domain a feature came from [14]. These ideas have been
extended to align multimodal spaces [247, 252, 431]. Hsu et al. [247] use adversarial training to
align images and medical reports, Hu et al. [252] design an adversarial network for cross-modal
retrieval, and Munro and Damen [431] design both self-supervised alignment and adversarial
alignment objectives for multimodal action recognition. Dynamic time warping (DTW) [321]
segments and aligns multi-view time-series data by maximizing their similarity via time warping
(inserting frames) such that they are aligned across time. For multimodal tasks, it is necessary to
design similarity metrics between modalities [28, 593], such as combining DTW with CCA or
other coordination functions [611].

Modality segmentation involves dividing high-dimensional data into elements with seman-
tically meaningful boundaries. A common problem involves temporal segmentation, where the
goal is to discover the temporal boundaries across sequential data. Several approaches for tem-
poral segmentation include forced alignment, a popular approach to align discrete speech units
with individual words in a transcript [708]. Malmaud et al. [404] explore multimodal alignment
using a factored hidden Markov model to align ASR transcripts to the ground truth. Clustering
approaches have also been used to group continuous data based on semantic similarity [402].
Clustering-based discretization has recently emerged as an important preprocessing step for
generalizing language-based pretraining (with clear word/byte pair segmentation boundaries and
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Figure 2.12: Contextualized representation learning aims to model modality connections to learn better
representations. Recent directions include (1) joint undirected alignment that captures undirected symmetric
connections, (2) cross-modal directed alignment that models asymmetric connections in a directed manner,
and (3) graphical alignment that generalizes the sequential pattern into arbitrary graph structures.

discrete elements) to video or audio-based pretraining (without clear segmentation boundaries and
continuous elements). By clustering raw video or audio features into a discrete set, approaches
such as VideoBERT [576] perform masked pretraining on raw video and audio data. Similarly,
approaches such as DALL.E [502], VQ-VAE [629], and CMCM [384] also utilize discretized
intermediate layers obtained via vector quantization and showed benefits in modality alignment.

2.4.3 Subchallenge 2c: Contextualized representations
Finally, contextualized representation learning aims to model all modality connections and in-
teractions to learn better representations. Contextualized representations have been used as an
intermediate (often latent) step enabling better performance on a number of downstream tasks in-
cluding speech recognition, machine translation, media description, and visual question-answering.
We categorize work in contextualized representations into (1) joint undirected alignment, (2)
cross-modal directed alignment, and (3) alignment with graph networks (Figure 2.12).

Joint undirected alignment aims to capture undirected connections across pairs of modalities,
where the connections are symmetric in either direction. This is commonly referred to in the
literature as unimodal, bimodal, trimodal interactions, and so on [401]. Joint undirected alignment
is typically captured by parameterizing models with alignment layers and training end-to-end for a
multimodal task. These alignment layers can include attention weights [88], tensor products [388,
712], and multiplicative interactions [283]. More recently, transformer models [631] have emerged
as powerful encoders for sequential data by automatically aligning and capturing complementary
features at different time steps. Building upon the initial text-based transformer model, multimodal
transformers have been proposed that perform joint alignment using a full self-attention over
modality elements concatenated across the sequence dimension (i.e., early fusion) [348, 576]. As
a result, all modality elements become jointly connected to all other modality elements similarly
(i.e., modeling all connections using dot-product similarity kernels).

Cross-modal directed alignment relates elements from a source modality in a directed
manner to a target modality, which can model asymmetric connections. For example, temporal
attention models use alignment as a latent step to improve many sequence-based tasks [676, 724].
These attention mechanisms are typically directed from the output to the input so that the resulting
weights reflect a soft alignment distribution over the input. Multimodal transformers perform
directed alignment using query-key-value attention mechanisms to attend from one modality’s
sequence to another, before repeating in a bidirectional manner. This results in two sets of
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Figure 2.13: Reasoning aims to combine knowledge, usually through multiple inferential steps, exploiting
the problem structure. Reasoning involves (1) structure modeling: defining or learning the relationships
over which reasoning occurs, (2) the intermediate concepts used in reasoning, (3) inference of increasingly
abstract concepts from evidence, and (4) leveraging external knowledge in the study of structure, concepts,
and inference.

asymmetric contextualized representations to account for the possibly asymmetric connections
between modalities [390, 588, 613]. These methods are useful for sequential data by automatically
aligning and capturing complementary features at different time-steps [613].

Large vision-language foundation models have emerged as powerful models capable of
learning contextualized representations for multiple tasks involving natural language, images,
video, and audio [185, 370, 454, 497, 505]. These models typically build on top of pretrained
language models [496], pretrained visual encoders [154] combined with an alignment layer. Align-
ment can be done via end-to-end training with multimodal transformers [681] (e.g., Flamingo [18],
OpenFlamingo [37], Kosmos [474]), or keeping the language and vision parts frozen and only train-
ing a post-hoc alignment layer (e.g., MiniGPT-4 [736], BLIP-2 [347], InstructBLIP [128], LLaMA-
Adapter V2 [186]). Self-supervised pretraining has emerged as an effective way to train these
architectures to learn general-purpose representations from larger-scale unlabeled multimodal
data before transferring to specific downstream tasks via supervised fine-tuning [155, 348, 736].
Pretraining objectives typically consist of unimodal language modeling [496, 498], image-to-text
or text-to-image alignment [232, 736], and multimodal instruction tuning [128, 385, 393]. We
refer the reader to recent survey papers discussing these large vision-language models in more
detail [157, 185].

Graphical alignment generalizes the sequential pattern seen in undirected or directed align-
ment into arbitrary graph structures between elements. This has several benefits since it does
not require all elements to be connected, and allows the user to choose different edge functions
for different connections. Graph neural networks [633] can be used to recursively learn element
representations contextualized with the elements in locally connected neighborhoods [523, 633],
such as in MTAG [687] and F2F-CL [661] for multimodal and multi-speaker videos.

2.5 Challenge 3: Reasoning
Reasoning is defined as combining knowledge, usually through multiple inferential steps, exploit-
ing multimodal alignment and the problem structure. We categorize work towards multimodal
reasoning into 4 subchallenges of structure modeling, intermediate concepts, inference paradigm,
and external knowledge (Figure 2.13). (1) Structure modeling involves defining or learning the
relationships over which reasoning occurs, (2) intermediate concepts studies the parameterization
of individual multimodal concepts in the reasoning process, (3) inference paradigm learns how
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Figure 2.14: Structure modeling aims to define the relationship over which composition occurs, which
can be (1) hierarchical (i.e., more abstract concepts are defined as a function of less abstract ones), (2)
temporal (i.e., organized across time), (3) interactive (i.e., where the state changes depending on each
step’s decision), and (4) discovered when the latent structure is unknown and instead directly inferred from
data and optimization.

increasingly abstract concepts are inferred from individual multimodal evidence, and (4) external
knowledge aims to leverage large-scale databases in the study of structure, concepts, and inference.

2.5.1 Subchallenge 3a: Structure modeling
Structure modeling aims to capture the hierarchical relationship over which composition occurs,
usually via a data structure parameterizing atoms, relations, and the reasoning process. Commonly
used data structures include trees [244], graphs [706], or neural modules [26]. We cover recent
work in modeling latent hierarchical, temporal, and interactive structure, as well as structure
discovery when the latent structure is unknown (Figure 2.14).

Hierarchical structure defines a system of organization where abstract concepts are defined
as a function of less abstract ones. Hierarchical structure is present in many tasks involving
language syntax, visual syntax, or higher-order reasoning. These approaches typically construct
a graph based on predefined node and edge categories before using (heterogeneous variants of)
graph neural networks to capture a representation of structure [543], such as using language
syntactic structure to guide visual modules that discover specific information in images [26, 120].
Graph-based reasoning approaches have been applied for visual commonsense reasoning [380],
visual question answering [519], machine translation [699], recommendation systems [592], web
image search [647], and social media analysis [525].

Temporal structure extends the notion of compositionality to elements across time, which
is necessary when modalities contain temporal information, such as in video, audio, or time-
series data. Explicit memory mechanisms have emerged as a popular choice to accumulate
multimodal information across time so that long-range cross-modal interactions can be captured
through storage and retrieval from memory. Rajagopalan et al. [501] explore various memory
representations including multimodal fusion, coordination, and factorization. Insights from key-
value memory [676] and attention-based memory [713] have also been successfully applied to
applications including question answering, video captioning, emotion recognition, and sentiment
analysis.

Interactive structure extends the challenge of reasoning to interactive settings, where the
state of the reasoning agent changes depending on the local decisions made at every step. Typi-
cally formalized by the sequential decision-making framework, the challenge lies in maximizing
long-term cumulative reward despite only interacting with the environment through short-term
actions [582]. To tackle the challenges of interactive reasoning, the growing research field of mul-



timodal reinforcement learning (RL) has emerged from the intersection of language understanding,
embodiment in the visual world, deep reinforcement learning, and robotics. We refer the reader to
the extensive survey paper by Luketina et al. [394] and the position paper by Bisk et al. [62] for a
full review of this field. Luketina et al. [394] separate the literature into multimodal-conditional
RL (in which multimodal interaction is necessitated by the problem formulation itself, such as
instruction following [88, 653]) and language-assisted RL (in which multimodal data is optionally
used to facilitate learning, such as reading instruction manuals [437]).

Structure discovery: It may be challenging to define the structure of multimodal composition
without some domain knowledge of the given task. As an alternative approach, recent work has
also explored using differentiable strategies to automatically search for the structure in a fully
data-driven manner. To do so, one first needs to define a candidate set of reasoning atoms and
relationships, before using a ‘meta’ approach such as architecture search to automatically search
for the ideal sequence of compositions for a given task [478, 682]. These approaches can benefit
from optimization tricks often used in the neural architecture search literature. Memory, Attention,
and Composition (MAC) similarly search for a series of attention-based reasoning steps from data
in an end-to-end approach [266]. Finally, Hu et al. [255] extend the predefined reasoning structure
obtained through language parsing in Andreas et al. [26] by instead using policy gradients to
automatically optimize a compositional structure over a discrete set of neural modules.

2.5.2 Subchallenge 3b: Intermediate concepts
The second subchallenge studies how we can parameterize individual multimodal concepts within
the reasoning process. While intermediate concepts are usually dense vector representations in
standard neural architectures, there has also been substantial work towards interpretable attention
maps, discrete symbols, and language as an intermediate medium for reasoning.

Attention maps are a popular choice for intermediate concepts since they are, to a certain
extent, human-interpretable, while retaining differentiability. For example, Andreas et al. [26]
design individual modules such as ‘attend’, ‘combine’, ‘count’, and ‘measure’ that are each
parametrized by attention operations on the input image for visual question answering. Xu
et al. [680] explore both soft and hard attention mechanisms for reasoning in image captioning
generation. Related work has also used attention maps through dual attention architectures [434]
or stacked latent attention architectures [169] for multimodal reasoning. These are typically
applied for problems involving complex reasoning steps such as CLEVR [289] or VQA [729].

Discrete symbols: A further level of discretization beyond attention maps involves using
discrete symbols to represent intermediate concepts. Recent work in neuro-symbolic learning
aims to integrate these discrete symbols as intermediate steps in multimodal reasoning in tasks
such as visual question answering [26, 406, 632] or referring expression recognition [120]. A
core challenge in this approach lies in maintaining the differentiability of discrete symbols, which
has been tackled via logic-based differentiable reasoning [22, 531].

Language as a medium: Finally, perhaps the most human-understandable form of intermedi-
ate concepts is natural language (through discrete words or phrases) as a medium. Recently, Zeng
et al. [722] explored using language as an intermediate medium to coordinate multiple separate
pretrained models in a zero-shot manner. Several approaches also used language phrases obtained
from external knowledge graphs to facilitate interpretable reasoning [213, 739]. Hudson and



Manning [265] designed a neural state machine to simulate the execution of a question being
asked about an image, while using discrete words as intermediate concepts.

2.5.3 Subchallenge 3c: Inference paradigms
The third subchallenge in multimodal reasoning defines how increasingly abstract concepts are
inferred from individual multimodal evidence. While advances in local representation fusion (such
as additive, multiplicative, tensor-based, attention-based, and sequential fusion, see §2.3.1 for a
full review) are also generally applicable here, the goal of reasoning is to be more interpretable
in the inference process through domain knowledge about the multimodal problem. To that end,
we cover recent directions in explicitly modeling the inference process via logical and causal
operators as examples of recent trends in this direction.

Logical inference: Logic-based differentiable reasoning has been widely used to represent
knowledge in neural networks [22, 531]. Many of these approaches use differentiable fuzzy
logic [630] which provides a probabilistic interpretation of logical predicates, functions, and
constants to ensure differentiability. These logical operators have been applied for visual question
answering [203] and visual reasoning [22]. Among the greatest benefits of logical reasoning
lies in its ability to perform interpretable and compositional multi-step reasoning [267]. Logical
frameworks have also been useful for visual-textual entailment [586] and geometric numerical
reasoning [94], fields where logical inductive biases are crucial toward strong performance.

Causal inference extends the associational level of reasoning to interventional and counter-
factual levels [470], which requires extensive knowledge of the world to imagine counterfactual
effects. For example, Yi et al. [698] propose the CLEVRER benchmark focusing on four specific
elements of reasoning on videos: descriptive (e.g., ‘what color’), explanatory (‘what’s responsible
for’), predictive (‘what will happen next’), and counterfactual (‘what if’). Beyond CLEVRER,
recent work has also proposed Causal VQA [8] and Counterfactual VQA [448] to measure the
robustness of VQA models under controlled interventions to the question as a step towards mitigat-
ing language bias in VQA models. Methods inspired by integrating causal reasoning capabilities
into neural network models have also been shown to improve robustness and reduce biases [649].

2.5.4 Subchallenge 3d: External knowledge
The final subchallenge studies the derivation of knowledge in the study of defining composition
and structure. Knowledge can refer to any data source that is complementary to the limited
supervised training data that models typically see, which encapsulates larger banks of unlabeled
internet data (e.g., textbooks, Wikipedia, videos), curated knowledge graphs and knowledge bases,
and expert domain knowledge for specific tasks such as healthcare and robotics.

Multimodal knowledge graphs extend classic work in language and symbolic knowledge
graphs (e.g., Freebase [66], DBpedia [35], YAGO [572], WordNet [420]) to semantic networks
containing multimodal concepts as nodes and multimodal relationships as edges [738]. Multi-
modal knowledge graphs are important because they enable the grounding of structured infor-
mation in the visual and physical world. For example, Liu et al. [387] constructs multimodal
knowledge graphs containing both numerical features and images for entities. Visual Genome is
another example containing dense annotations of objects, attributes, and relationships in images
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Challenge 4: Generation

Definition: Learning a generative process to produce raw modalities that 
reflects cross-modal interactions, structure and coherence
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Figure 2.15: How can we learn a generative process to produce raw modalities that reflect cross-modal
interactions, structure, and coherence? Generation involves (1) summarizing multimodal data to highlight
the most salient parts, (2) translating from one modality to another while being consistent with modality
connections, and (3) creating multiple modalities simultaneously while maintaining coherence.

and text [317]. These multimodal knowledge bases have been shown to benefit visual ques-
tion answering [671, 739], knowledge base completion [480], and image captioning [415]. Gui
et al. [213] integrates knowledge into vision-and-language transformers for automatic reasoning
over both knowledge sources. Another promising approach is multimodal knowledge expan-
sion [495, 672, 683] using knowledge distillation to expand knowledge from unimodal data to
multimodal settings. We refer the reader to a comprehensive survey by Zhu et al. [738] for
additional references.

Multimodal commonsense reasoning requires deeper real-world knowledge potentially span-
ning logical, causal, and temporal relationships between concepts. For example, elements of
causal reasoning are required to answer the questions regarding images in VCR [719] and Visu-
alCOMET [466], while other works have also introduced datasets with video and text inputs to
test for temporal reasoning (e.g., MovieQA [594], MovieFIB [403], TVQA [339]). Benchmarks
for multimodal commonsense typically require leveraging external knowledge from knowledge
bases [558] or pretraining paradigms on large-scale datasets [390, 720].

2.6 Challenge 4: Generation
The fourth challenge involves learning a generative process to produce raw modalities that reflect
cross-modal interactions, structure, and coherence, through summarization, translation, and
creation (Figure 9.3). These three categories are distinguished based on the information change
from input to output modalities, following categorizations in text generation [141]. We will cover
recent advances as well as the evaluation of generated content.

2.6.1 Subchallenge 4a: Summarization
Summarization aims to compress data to create an abstract that represents the most important
or relevant information within the original content. Recent work has explored various input
modalities to guide text summarization, such as images [95], video [352], and audio [167, 282,
345]. Recent trends in multimodal summarization include extractive and abstractive approaches.
Extractive approaches aim to filter words, phrases, and other unimodal elements from the input
to create a summary [96, 282, 345]. Beyond text as output, video summarization is the task of
producing a compact version of the video (visual summary) by encapsulating the most informative
parts [515]. Li et al. [345] collected a dataset of news videos and articles paired with manually
annotated summaries as a benchmark towards multimodal summarization. Finally, UzZaman et al.



[628] aim to simplify complex sentences by extracting multimodal summaries for accessibility.
On the other hand, abstractive approaches define a generative model to generate the summary at
multiple levels of granularity [95, 350]. Although most approaches only focus on generating a
textual summary from multimodal data [461], several directions have also explored generating
summarized images to supplement the generated textual summary [95, 352].

2.6.2 Subchallenge 4b: Translation

Translation aims to map one modality to another while respecting semantic connections and
information content [640]. For example, generating a descriptive caption of an image can help
improve the accessibility of visual content for blind people [215]. Multimodal translation brings
about new difficulties involving the generation of high-dimensional structured data as well as
their evaluation. Recent approaches can be classified as exemplar-based, which are limited to
retrieving from training instances to translate between modalities but guarantee fidelity [171],
and generative models which can translate into arbitrary instances interpolating beyond the
data but face challenges in quality, diversity, and evaluation [310, 502, 622]. Despite these
challenges, recent progress in large-scale generative models has yielded impressive results in text-
to-image [502, 511], text-to-video [550], audio-to-image [281], text-to-speech [507], speech-to-
gesture [13], speaker-to-listener [441], language to pose [12], and speech and music generation [9,
124, 452].

2.6.3 Subchallenge 4c: Creation

Creation aims to generate novel high-dimensional data (which could span text, images, audio,
video, and other modalities) from small initial examples or latent conditional variables. This
conditional decoding process is extremely challenging since it needs to be (1) conditional:
preserve semantically meaningful mappings from the initial seed to a series of long-range parallel
modalities, (2) synchronized: semantically coherent across modalities, (3) stochastic: capture
many possible future generations given a particular state, and (4) auto-regressive across possibly
long ranges. Many modalities have been considered as targets for creation. Language generation
has been explored for a long time [496], and recent work has explored high-resolution speech and
sound generation using neural networks [452]. Photorealistic image generation has also recently
become possible due to advances in large-scale generative modeling [295]. Furthermore, there
have been a number of attempts at generating abstract scenes [587], computer graphics [418], and
talking heads [737]. While there has been some progress toward video generation [550], complete
synchronized generation of realistic video, text, and audio remains a challenge.

Finally, one of the biggest challenges facing multimodal generation is difficulty in evaluating
generated content, especially when there exist serious ethical issues when fake news [56], hate
speech [3, 193], deepfakes [222], and lip-syncing videos [583] can be easily generated. While
the ideal way to evaluate generated content is through user studies, it is time-consuming, costly,
and can potentially introduce subjectivity bias [195]. Several automatic proxy metrics have been
proposed [25, 98] by none are universally robust across many generation tasks.
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Challenge 5: Transference

Definition: Transfer knowledge between modalities, usually to help the 
target modality which may be noisy or with limited resources
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Figure 2.16: Transference studies the transfer of knowledge between modalities, usually to help a noisy
or limited primary modality, via (1) cross-modal transfer from models trained with abundant data in
the secondary modality, (2) multimodal co-learning to share information across modalities by sharing
representations, and (3) model induction that keeps individual unimodal models separate but induces
behavior in separate models.

2.7 Challenge 5: Transference
Transference aims to transfer knowledge between modalities and their representations, and is often
used when there is a primary modality that we care about making predictions on but suffers from
limited resources - a lack of annotated data, noisy inputs, or unreliable labels, and a secondary
modality with more abundant or reliable data. How can knowledge learned from a secondary
modality (e.g., predicted labels or representation) help a model trained on a primary modality?
We call this challenge transference, since the transfer of information from the secondary modality
gives rise to new behaviors previously unseen in the primary modality. We identify three types
of approaches: (1) cross-modal transfer, (2) multimodal co-learning, and (3) model induction
(Figure 2.16).

2.7.1 Subchallenge 5a: Cross-modal transfer
In most settings, it may be easier to collect either labeled or unlabeled data in the secondary
modality and train strong supervised or pretrained models. These models can then be conditioned
or fine-tuned for a downstream task involving the primary modality. In other words, this line of
research extends unimodal transfer and fine-tuning to cross-modal settings.

Tuning: Inspired by prior work in NLP involving prefix tuning [357] and prompt tuning [342],
recent work has also studied the tuning of pretrained language models to condition on visual and
other modalities. For example, Tsimpoukelli et al. [622] quickly conditions a pretrained, frozen
language model on images for image captioning. Related work has also adapted prefix tuning for
image captioning [97], multimodal fusion [226], and summarization [705]. While prefix tuning
is simple and efficient, it provides the user with only limited control over how information is
transferred. Representation tuning goes a level deeper by modifying the inner representations
of the language model via contextualization with other modalities. For example, Ziegler et al.
[741] includes additional self-attention layers between language model layers and external modal-
ities. Rahman et al. [500] design a shifting gate to adapt language model layers with audio and
visual information.

Multitask learning aims to use multiple large-scale tasks to improve performance as com-
pared to learning on individual tasks. Several models such as Perceiver [276], MultiModel [291],
ViT-BERT [353], and PolyViT [378] have explored the possibility of using the same unimodal



encoder architecture for different inputs across unimodal tasks (i.e., language, image, video, or
audio-only). The Transformer architecture has emerged as a popular choice due to its suitability
for serialized inputs such as text (sequence of tokens) [144], images (sequence of patches) [154],
video (sequence of images) [576], and other time-series data (sequence of timesteps) [379]. There
have also been several attempts to build a single model that works well on a suite of multimodal
tasks, including both not limited to HighMMT [370], VATT [15], FLAVA [551], and Gato [505].

Transfer learning: While more research has focused on transfer within the same modality
with external information [553, 675, 716], Liang et al. [369] studies transfer to new modalities
using small amounts of paired but unlabeled data. Lu et al. [391] found that Transformers
pretrained on language transfer to other sequential modalities as well. Liang et al. [370] builds a
single multimodal model capable of transferring to completely new modalities and tasks. Recently,
there has also been a line of work investigating the transfer of pretrained language models for
planning [259], interactive decision-making [355], and robotics [70].

2.7.2 Subchallenge 5b: Multimodal co-learning
Multimodal co-learning aims to transfer information learned through secondary modalities to
target tasks involving the primary modality by sharing intermediate representation spaces between
both modalities. These approaches essentially result in a single joint model across all modalities.

Co-learning via representation aims to learn a joint or coordinated representation space
using both modalities as input. Typically, this involves adding secondary modalities during the
training process, designing a suitable representation space, and investigating how the multimodal
model transfers to the primary modality during testing. For example, DeViSE learns a coordi-
nated space between image and text to improve image classification [181]. Marino et al. [409]
use knowledge graphs for image classification via a graph-based joint representation. Jia et al.
[285] improve image classifiers with contrastive learning between images and noisy captions.
Finally, Zadeh et al. [716] showed that implicit co-learning is also possible without explicit
co-learning objectives.

Co-learning via generation instead learns a translation model from the primary to secondary
modality, resulting in enriched representations of the primary modality that can predict both the
label and ‘hallucinate’ secondary modalities containing shared information. Classic examples
in this category includes language modeling by mapping contextualized text embeddings into
images [589], image classification by projecting image embeddings into word embeddings [553],
and language sentiment analysis by translating language into video and audio [482].

2.7.3 Subchallenge 5c: Model induction
In contrast to co-learning, model induction approaches keep individual unimodal models across
primary and secondary modalities separate but transfer information across them. There are two
general ways of doing so. The first is co-training, where each unimodal model’s predictions on
their own modality are used to pseudo-label new unlabeled examples in the other modality, thereby
enlarging the training set of the other modality [65]. The second is co-regularization [549, 563],
in which the predictions from separate unimodal classifiers are regularized to be similar, thereby
encouraging both classifiers to share information (i.e., redundancy). Therefore, information is
transferred across modalities through model predictions instead of shared representation spaces.
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Challenge 6: Quantification

Definition: Empirical and theoretical study to better understand heterogeneity, 
cross-modal interactions and the multimodal learning process
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Figure 2.17: Quantification: what are the empirical and theoretical studies we can design to better
understand (1) the dimensions of heterogeneity, (2) the presence and type of interconnections, and (3) the
learning and optimization challenges?

Multimodal co-training extends co-training by jointly learning classifiers for multiple modal-
ities [239]. Guillaumin et al. [214] use a classifier on both image and text to pseudo-label unlabeled
images before training a final classifier on both labeled and unlabeled images. Cheng et al. [111]
performs semi-supervised multimodal learning using a diversity-preserving co-training algorithm.
Finally, Dunnmon et al. [159] applies ideas from data programming to the problem of cross-modal
weak supervision, where weak labels derived from a secondary modality (e.g., text) are used to
train models over the primary modality (e.g., images).

Co-regularization methods employs a regularizer that penalizes functions from either modal-
ity that disagree with each other. These methods are useful in controlling model complexity by
preferring hypothesis classes with redundancy across the two modalities [549]. Sridharan and
Kakade [563] provide guarantees for these approaches using an information-theoretic framework.
More recently, similar co-regularization approaches have also been applied for multimodal feature
selection [246], semi-supervised multimodal learning [692], and video summarization [428].

2.8 Challenge 6: Quantification
Quantification aims to provide a deeper empirical and theoretical study of multimodal models
to gain insights and improve their robustness, interpretability, and reliability in real-world appli-
cations. We break down quantification into 3 sub-challenges: (1) quantifying the dimensions of
heterogeneity and how they subsequently influence modeling and learning, (2) quantifying the
presence and type of connections and interactions in multimodal datasets and trained models,
and (3) characterizing the learning and optimization challenges involved when learning from
heterogeneous data (Figure 2.17).

2.8.1 Subchallenge 6a: Dimensions of heterogeneity
This subchallenge aims to understand the dimensions of heterogeneity commonly encountered in
multimodal research, and how they subsequently influence modeling and learning (Figure 2.18).

Modality information: Understanding the information of modalities and their constituents
is important for determining which parts contributed to subsequent modeling. Recent work
can be categorized into (1) interpretable methods that explicitly model how each modality is
used [465, 615, 717] or (2) post-hoc explanations of black-box models [85, 205]. In the former,
methods such as Concept Bottleneck Models [311] and fitting sparse linear layers [666] or
decision trees [641] on top of deep feature representations have emerged as promising choices. In
the latter, gradient-based visualizations [205, 529, 548]) and feature attributions (e.g., modality
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Figure 2.18: The subchallenge of heterogeneity quantification aims to understand the dimensions of
heterogeneity commonly encountered in multimodal research, such as (1) different quantities and usages
of modality information, (2) the presence of modality biases, and (3) quantifying and mitigating modality
noise.

contribution [192], LIME [509], and Shapley values [417]) have been used to highlight regions of
modality importance.

Modality biases are unintended correlations between input and outputs that could be in-
troduced during data collection [61, 67], modeling [194], or during human annotation [143].
Modality biases can lead to unexpectedly poor performance in the real world [516], or even
more dangerously, potential for harm towards underrepresented groups [231, 473]. For exam-
ple, Goyal et al. [206] found unimodal biases in the language modality of VQA tasks, resulting
in mistakes due to ignoring visual information [10]. Subsequent work has developed carefully
curated diagnostic benchmarks to mitigate data collection biases, like VQA 2.0 [206], GQA [267],
and NLVR2 [573]. Recent work has also found compounding social biases in multimodal sys-
tems [114, 512, 564] stemming from gender bias in both language and visual modalities [73, 542],
which may cause danger when deployed [473].

Modality noise topologies and robustness: The study of modality noise topologies aims
to benchmark and improve how multimodal models perform in the presence of real-world data
imperfections. Each modality has a unique noise topology, which determines the distribution of
noise and imperfections that it commonly encounters. For example, images are susceptible to
blurs and shifts, typed text is susceptible to typos following keyboard positions, and multimodal
time-series data is susceptible to correlated imperfections across synchronized time steps. Liang
et al. [367] collect a comprehensive set of targeted noisy distributions unique to each modality.
In addition to natural noise topologies [338, 399], related work has also explored adversarial
attacks [149] and distribution shifts [176] in multimodal systems. Finally, there have been recent
efforts on incomplete multimodal learning [370, 398, 648, 691] to account for noisy or missing
modalities, such as modality imputation using probabilistic models [398], autoencoders [609],
translation models [482], low-rank approximations [364], or knowledge distillation [648], or
training general models with a wide range of modalities so they can still operate on partial
subsets [370, 505]. However, they may run the risk of possible error compounding and require
knowing which modalities are imperfect beforehand.

2.8.2 Subchallenge 6b: Modality interconnections
Modality connections and interactions are an essential component of multimodal models, which
has inspired an important line of work in visualizing and understanding the nature of modality
interconnections in datasets and trained models. We divide recent work into quantifying (1)
connections: how modalities are related and share commonality, and (2) interactions: how
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Figure 2.19: Quantifying modality interconnections studies (1) connections: can we discover what
modality elements are related to each other and why, and (2) interactions: can we understand how modality
elements interact during inference?

modality elements interact during inference (Figure 2.19).
Connections: Recent work has explored the quantification of modality connections through

visualization tools on joint representation spaces [271] or attention maps [7]. Perturbation-based
analysis perturbs the input and observes changes in the output to understand internal connec-
tions [375, 448]. Finally, specifically curated diagnostic datasets are also useful in understanding
semantic connections: Winoground [601] probes vision and language models for visio-linguistic
compositionality, and PaintSkills [114] measures the connections necessary for visual reasoning.

Interactions: One common categorization of interactions involves redundancy, uniqueness,
and synergy [662]. Redundancy describes task-relevant information shared among features,
uniqueness studies the task-relevant information present in only one of the features, and synergy
investigates the emergence of new information when both features are present. From a statistical
perspective, measures of redundancy include mutual information [44, 65] and contrastive learning
estimators [608, 616]. Other approaches have studied these measures in isolation, such as redun-
dancy via distance between prediction logits using either feature [411], statistical distribution
tests on input features [36], or via human annotations [514]. From the semantic view, recent
work in Causal VQA [8] and Counterfactual VQA [448] seek to understand the interactions
captured by trained models by measuring their robustness under controlled semantic edits to the
question or image. Finally, recent work has formalized definitions of non-additive interactions to
quantify their presence in trained models [562, 619, 684]. Parallel research such as EMAP [235],
DIME [396], M2Lens [654], and MultiViz [375] take a more visual approach to visualize the
interactions in real-world multimodal datasets and models through higher-order gradient activa-
tions of learned representations. Despite this, accurately visualizing multimodal information and
interactions remains a challenge due to the brittleness of interpretation methods [197], difficulty
in evaluation [318], and challenges in extending visualization methods to applications such as
biomedical data integration, imaging, intelligent systems and user interfaces.

2.8.3 Subchallenge 6c: Multimodal learning process
Finally, there is a need to characterize the learning and optimization challenges involved when
learning from heterogeneous data. This section covers recent work in (1) generalization across
modalities and tasks, (2) better optimization for balanced and efficient training, and (3) balanc-
ing the tradeoffs between performance, robustness, and complexity in real-world deployment
(Figure 2.20).

Generalization: With advances in sensing technologies, many real-world platforms such as
cellphones, smart devices, self-driving cars, healthcare technologies, and robots now integrate a
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Figure 2.20: Studying the multimodal learning process involves understanding (1) generalization across
modalities and tasks, (2) optimization for balanced and efficient training, and (3) tradeoffs between
performance, robustness, and complexity in the real-world deployment of multimodal models.

much larger number of sensors beyond the prototypical text, video, and audio modalities [263].
Recent work has studied generalization across paired modality inputs [369, 497] and in unpaired
scenarios where each task is defined over only a small subset of all modalities [370, 391, 505].

Optimization challenges: Related work has also explored the optimization challenges of
multimodal learning, where multimodal networks are often prone to overfitting due to increased
capacity, and different modalities overfit and generalize at different rates so training them jointly
with a single optimization strategy is sub-optimal [651]. Subsequent work has studied why
joint training of multimodal networks may be difficult and proposed methods to improve the
optimization process via weighting approaches [670], adaptive learning [261, 262], or contrastive
learning [377].

Modality Tradeoffs: In real-world deployment, a balance between performance, robustness,
and complexity is often required. Therefore, one often needs to balance the utility of additional
modalities with the additional complexity in data collection and modeling [367] as well as
increased susceptibility to noise and imperfection in the additional modality [482]. How can we
formally quantify the utility and risks of each input modality, while balancing these tradeoffs for
reliable real-world usage? There have been several attempts toward formalizing the semantics of a
multimodal representation and how these benefits can transfer to downstream tasks [358, 598, 616],
while information-theoretic arguments have also provided useful insights [65, 563].



Chapter 3

Machine Learning Foundations of
Multimodal Interactions

A core challenge in machine learning lies in capturing the interactions between multiple input
modalities. Learning different types of multimodal interactions is often quoted as motivation
for many successful multimodal modeling paradigms, such as contrastive learning to capture
redundancy [307, 497], modality-specific representations to retain unique information [614], as
well as tensors and multiplicative interactions to learn higher-order interactions [283, 364, 712].
However, several fundamental research questions remain: How can we quantify the interactions
that are necessary to solve a multimodal task? Subsequently, what are the most suitable multimodal
models to capture these interactions? This paper aims to formalize these questions by proposing
an approach to quantify the nature (i.e., which type) and degree (i.e., the amount) of modality
interactions, a fundamental principle underpinning our understanding of multimodal datasets and
models [371].

By bringing together two previously disjoint research fields of Partial Information Decom-
position (PID) in information theory [59, 210, 662] and multimodal machine learning [46, 371],
we provide precise definitions categorizing interactions into redundancy, uniqueness, and syn-
ergy. Redundancy quantifies information shared between modalities, uniqueness quantifies the
information present in only one of the modalities, and synergy quantifies the emergence of new
information not previously present in either modality. A key aspect of these four measures is that
they not only quantify interactions between modalities, but also how they relate to a downstream
task. Figure 3.1 shows a depiction of these four measures, which we refer to as PID statistics.
Leveraging insights from neural representation learning, we propose two new estimators for PID
statistics that can scale to high-dimensional multimodal datasets and models. The first estimator is
exact, based on convex optimization, and is able to scale to features with discrete support, while
the second estimator is an approximation based on sampling, which enables us to handle features
with large discrete or even continuous supports. We validate our estimation of PID in 2 ways: (1)
on synthetic datasets where PID statistics are known from the nature of data generation, and (2)
on real-world data where PID is compared with human annotation. Finally, we demonstrate that
estimated PID statistics can help in multimodal applications involving:
1. Dataset quantification: We apply PID to quantify large-scale multimodal datasets, showing

that these estimates match common intuition for interpretable modalities (e.g., language, vision,

41



and audio) and yield new insights in other domains (e.g, healthcare, HCI, and robotics).
2. Model quantification: Across a suite of models, we apply PID to interpret model predictions

and find consistent patterns of interactions that different models capture.
3. Model selection: Given our findings from dataset and model quantification, a new research

question naturally arises: given a new multimodal task, can we quantify its PID values to
infer (a priori) what type of models are most suitable? Our experiments show success in
model selection for both existing benchmarks and completely new case studies engaging with
domain experts in computational pathology, mood prediction, and robotics to select the best
multimodal model.
Finally, we release a suite of trained models across 10 model families and 30 datasets to acceler-

ate future analysis of multimodal interactions at https://github.com/pliang279/PID.

3.1 Background and Related Work
Let Xi and Y be sample spaces for features and labels. Define ∆ to be the set of joint distributions
over (X1,X2,Y). We are concerned with features X1,X2 (with support Xi) and labels Y (with
support Y) drawn from some distribution p ∈ ∆. We denote the probability mass (or density)
function by p(x1, x2, y), where omitted parameters imply marginalization. Key to our work is
defining estimators that given p or samples {(x1, x2, y) ∶ X1 × X2 × Y} thereof (i.e., dataset or
model predictions), estimates the amount of redundant, unique, and synergistic interactions.

3.1.1 Partial information decomposition
Classical Information Theory Partial Information Decomposition

Figure 3.1: PID decomposes I(X1,X2;Y ) into redun-
dancy R between X1 and X2, uniqueness U1 in X1 and
U2 in X2, and synergy S in both X1 and X2.

Information theory formalizes the amount of
information that one variable provides about
another [535]. However, its extension to
3 variables is an open question [190, 412,
596, 658]. In particular, the natural three-
way mutual information I(X1;X2;Y ) =
I(X1;X2) − I(X1;X2∣Y ) [412, 596] can be
both positive and negative, which makes it
difficult to interpret. In response, Partial in-
formation decomposition (PID) [662] gen-
eralizes information theory to multiple vari-
ables by decomposing Ip(X1,X2;Y ), the total information 2 variables X1,X2 provide about a
task Y into 4 quantities (see Figure 3.1): redundancy R between X1 and X2, uniqueness U1 in X1

and U2 in X2, and synergy S that only emerges when both X1 and X2 are present. We adopt the
PID definition proposed by Bertschinger et al. [59]:

R = max
q∈∆p

Iq(X1;X2;Y ), (3.1)

U1 = min
q∈∆p

Iq(X1;Y ∣X2), U2 = min
q∈∆p

Iq(X2;Y ∣X1), (3.2)

S = Ip(X1,X2;Y ) −min
q∈∆p

Iq(X1,X2;Y ), (3.3)

https://github.com/pliang279/PID


where ∆p = {q ∈ ∆ ∶ q(xi, y) = p(xi, y) ∀y ∈ Y, xi ∈ Xi, i ∈ [2]} and the notation Ip(⋅) and Iq(⋅)
disambiguates mutual information under p and q respectively. The key lies in optimizing q ∈ ∆p to
satisfy the marginals q(xi, y) = p(xi, y), but relaxing the coupling between x1 and x2: q(x1, x2)
need not be equal to p(x1, x2). The intuition behind this is that one should be able to infer
redundancy and uniqueness given only access to p(x1, y) and p(x2, y), and therefore they should
only depend on q ∈ ∆p. Synergy is the only term that should depend on the coupling p(x1, x2),
and this is reflected in (6.2) depending on the full p distribution. This definition enjoys several
useful properties in line with intuition, as we will see in comparison with related frameworks for
interactions below [59].

3.1.2 Related frameworks for feature interactions
Information-theoretic definitions: Perhaps the first measure of redundancy in machine learning
is co-training [44, 65, 116], where 2 variables are redundant if they are conditionally independent
given the task: I(X1;X2∣Y ) = 0. As a result, redundancy can be measured by I(X1;X2;Y ).
The same definition of redundancy is used in multi-view learning [563, 605, 608] which further
define I(X1;Y ∣X2) and I(X2;Y ∣X1) as unique information in X1,X2. However, I(X1;X2;Y )
can be both positive and negative [280]. PID resolves this by separating R and S such that
R − S = I(X1;X2;Y ), identifying that prior measures confound redundancy and synergy. This
crucially provides an explanation for the distinction between mediation, where one feature conveys
the information already in another (i.e., R > S), versus moderation, where one feature affects
the relationship of other features (i.e., S > R) [48, 196]. Furthermore, if I(X1;X2;Y ) = 0 then
existing frameworks are unable to distinguish between positive R and S canceling each other out.

Statistical measures: Other approaches have studied interaction measures via statistical
measures, such as redundancy via distance between prediction logits using either feature [411],
statistical distribution tests on input features [36, 703], or via human annotations [514]. However,
it is unclear how to extend these definitions to uniqueness and synergy while remaining on
the same standardized scale like PID provides. Also of interest are notions of redundant and
synergistic interactions in human and animal communication [175, 468, 469, 514], which we aim
to formalize.

Model-based methods: Prior research has formalized definitions of non-additive interac-
tions [180] to quantify their presence [235, 562, 619, 620] in trained models, or used Shapley
values on trained features to measure interactions [272]. Parallel research has also focused on
qualitative visualizations of real-world multimodal datasets and models, such as DIME [396],
M2Lens [654], and MultiViz [375].

3.2 Scalable Estimators for PID
PID as a framework for multimodality: Our core insight is that PID provides a formal frame-
work to understand both the nature and degree of interactions involved when two features X1 and
X2 are used for task Y . The nature of interactions is afforded by a precise decomposition into
redundant, unique, and synergistic interactions, and the degree of interactions is afforded by a
standardized unit of measure (bits). However, computing PID is a considerable challenge, since it
involves optimization over ∆p and estimating information-theoretic measures. Up to now, analytic



approximations of these quantities were only possible for discrete and small support [59, 210, 664]
or continuous but low-dimensional variables [460, 493, 665]. Leveraging ideas in representation
learning, Sections 3.2.1 and 3.2.2 are our first technical contributions enabling scalable estimation
of PID for high-dimensional distributions. The first, CVX, is exact, based on convex optimization,
and is able to scale to problems where ∣Xi∣ and ∣Y ∣ are around 100. The second, BATCH, is an
approximation based on sampling, which enables us to handle large or even continuous supports
for Xi and Y . Applying these estimators in Section 3.3, we show that PID provides a path towards
understanding the nature of interactions in datasets and those learned by different models, and
principled approaches for model selection.

3.2.1 CVX: Dataset-level optimization

Our first estimator, CVX, directly compute PID from its definitions using convex programming.
Crucially, Bertschinger et al. [59] show that the solution to the max-entropy optimization problem:
q∗ = arg maxq∈∆p

Hq(Y ∣X1,X2) equivalently solves (3.1)-(6.2). When Xi and Y are small and
discrete, we can represent all valid distributions q(x1, x2, y) as a set of tensors Q of shape
∣X1∣ × ∣X2∣ × ∣Y ∣ with each entry representing Q[i, j, k] = p(X1 = i,X2 = j, Y = k). The problem
then boils down to optimizing over valid tensors Q ∈ ∆p that match the marginals p(xi, y).

Given a tensor Q representing q, our objective is the concave function Hq(Y ∣X1,X2).
While Bertschinger et al. [59] report that direct optimization is numerically difficult as rou-
tines such as Mathematica’s FINDMINIMUM do not exploit convexity, we overcome this by
rewriting conditional entropy as a KL-divergence [201], Hq(Y ∣X1,X2) = log ∣Y ∣ −KL(q∣∣q̃),
where q̃ is an auxiliary product density of q(x1, x2) ⋅ 1

∣Y ∣
enforced using linear constraints:

q̃(x1, x2, y) = q(x1, x2)/∣Y ∣. Finally, optimizing over Q ∈ ∆p that match the marginals can
also be enforced through linear constraints: the 3D-tensor Q summed over the second dimension
gives q(x1, y) and summed over the first dimension gives q(x2, y), yielding the final optimization
problem:

arg max
Q,Q̃

KL(Q∣∣Q̃), s.t. Q̃(x1, x2, y) = Q(x1, x2)/∣Y ∣, (3.4)

∑
x2

Q = p(x1, y),∑
x1

Q = p(x2, y),Q ≥ 0, ∑
x1,x2,y

Q = 1. (3.5)

The KL-divergence objective is recognized as convex, allowing the use of conic solvers such as
SCS [451], ECOS [152], and MOSEK [30]. Plugging q∗ into (3.1)-(6.2) yields the desired PID.

Pre-processing via feature binning: In practice, X1 and X2 often take continuous rather
than discrete values. Thus, Q is no longer a finite dimensional polytope. We work around this by
histogramming each Xi, thereby estimating the continuous joint density by discrete distributions
with finite support. To make our discretization as data-independent as possible, we focus on a
prespecified number of fixed-width bins (except for the first and last). For example, it is known
that with a fixed number of samples, making the width of bins arbitrarily small will cause KL
estimates to diverge. It is known that the number of bins should grow sub-linearly with the number
of samples. For example, Rice [510] suggest setting the number of bins to be the cubed-root of
number of samples.
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Figure 3.2: We propose BATCH, a scalable estimator for PID over high-dimensional continuous distribu-
tions. BATCH parameterizes q̃ using a matrix A learned by neural networks such that mutual information
objectives over q̃ can be optimized via gradient-based approaches over minibatches. Marginal constraints
q̃ ∈ ∆p are enforced through a variant of the Sinkhorn-Knopp algorithm on A.

3.2.2 BATCH: Batch-level amortization

We now present BATCH, our next estimator that is suitable for large datasets where Xi is high-
dimensional and continuous (∣Y ∣ remains finite). To estimate PID given a sampled dataset
D = {(x(j)

1 , x
(j)
2 , y(j))} of size n, we propose an end-to-end model parameterizing marginal-

matching joint distributions in ∆p and a training objective whose solution returns approximate
PID values.

Simplified algorithm sketch: Our goal, loosely speaking, is to optimize q̃ ∈ ∆p for objective
(3.1) through an approximation using neural networks instead of exact optimization. We show
an overview in Figure 3.2. To explain our approach, we first describe (1) how we parameterize
q̃ using neural networks such that it can be learned via gradient-based approaches, (2) how we
ensure the marginal constraints q̃ ∈ ∆p through a variant of the Sinkhorn-Knopp algorithm, and
finally (3) how to scale this up over small subsampled batches from large multimodal datasets.

Parameterization using neural networks: The space of joint distributions ∆ is often too
large to explicitly specify. To tackle this, we implicitly parameterize each distribution q̃ ∈ ∆ using
a neural network fφ that takes in batches of modalities X1 ∈ X̃ n

1 ,X2 ∈ X̃ n
2 and the label Y ∈ Yn

before returning a matrix A ∈ Rn×n×∣Y ∣ representing an (unnormalized) joint distribution q̃, i.e., we
want A[i][j][y] = q̃(X1[i],X2[j], y) for each y ∈ Y . In practice, fφ is implemented via a pair of
encoders fφ(1) and fφ(2) that learn modality representations, before an outer product to learn joint
relationships Ay = exp(fφ(1)(X1, y)fφ(2)(X2, y)⊺) for each y, yielding the desired n × n × ∣Y ∣
joint distribution. As a result, optimizing over q̃ can be performed via optimizing over parameters
φ.

Respecting the marginal constraints: How do we make sure the q̃’s learned by the network
satisfies the marginal constraints (i.e., q̃ ∈ ∆p)? We use an unrolled version of Sinkhorn’s
algorithm [127] which projects A onto ∆p by iteratively normalizing A’s rows and columns to
sum to 1 and rescaling to satisfy the marginals p(xi, y). However, p(xi, y) is not easy to estimate
for high-dimensional continuous xi’s. In response, we first expand p(xi, y) into p(y∣xi) and p(xi)
using Bayes’ rule. Since A was constructed by samples xi from the dataset, the rows and columns
of A are already distributed according to p(x1) and p(x2) respectively. This means that it suffices
to approximate p(y∣xi) with unimodal classifiers p̂(y∣xi) parameterized by neural networks and
trained separately, before using Sinkhorn’s algorithm to normalize each row to p̂(y∣x1) and each
column to p̂(y∣x2).
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Figure 3.3: Left to right: (a) Contour plots of the GMM’s density for ∣∣µ∣∣2 = 2.0. Red line denotes the
optimal linear classifier. (b) PID (Cartesian) computed for varying ∠µ with respect to the x axis. (c) PID
(Polar) for varying ∠µ, with U1 and U2 corresponding to unique information from (r, θ). Plots (d)-(f) are
similar to (a)-(c), but repeated for ∣∣µ∣∣2 = 1.0. Legend: 6(R),q(U1),s(U2),u(S), :(Sum). Observe
how PID changes with the change of variable from Cartesian (b and e) to Polar (c and f), as well as how
a change in ∣∣µ∣∣2 can lead to a disproportionate change across PID (b vs e).

Objective: We choose the objective Iq(X1;X2;Y ), which equivalently solves the optimization
problems in the other PID terms [59]. Given matrix A representing q̃(x1, x2, y), the objective
can be computed in closed form through appropriate summation across dimensions in A to
obtain q̃(xi), q̃(x1, x2), q̃(xi∣y), and q̃(x1, x2∣y) and plugging into Iq̃(X1;X2;Y ) = Iq̃(X1;X2) −
Iq̃(X1;X2∣Y ). We maximize Iq̃(X1;X2;Y ) by updating parameters φ via gradient-based methods.
Overall, each gradient step involves computing q̃ = SINKHORNp̂(A), and updating φ to maximize
(3.1) under q̃. Since Sinkhorn’s algorithm is differentiable, gradients can be backpropagated
end-to-end.

Approximation with small subsampled batches: Finally, to scale this up to large multimodal
datasets where the full q̃ may be too large to store, we approximate q̃ with small subsampled
batches: for each gradient iteration t, the network fφ now takes in a batch of m≪ n datapoints
sampled from D and returns A ∈ Rm×m×∣Y ∣ for the subsampled points. We perform Sinkhorn’s
algorithm on A and a gradient step on φ as above, as if Dt was the full dataset (i.e., mini-batch
gradient descent). While it is challenging to obtain full-batch gradients since computing the full
A is intractable, we found our approach to work in practice for large m. Our approach can also
be informally viewed as performing amortized optimization [23] by using φ to implicitly share
information about the full batch using subsampled batches. Upon convergence of φ, we extract
PID by plugging q̃ into (3.1)-(6.2).

Implementation details such as the network architecture of f , approximation of objective
(3.1) via sampling from q̃, and estimation of Iq̃({X1,X2};Y ) from learned q̃ are included in the
full version of the paper [372].

3.3 Evaluation and Applications of PID in Multimodal Learning

We design experiments to (1) understand PID on synthetic data, (2) quantify real-world multimodal
benchmarks, (3) understand the interactions captured by multimodal models, (4) perform model
selection across different model families, and (5) applications on novel real-world tasks.



3.3.1 Validating PID estimates on synthetic data

Our first goal is to evaluate the accuracy of our proposed estimators with respect to the ground truth
(if it can be computed) or human judgment (for cases where the ground truth cannot be readily
obtained). We start with a suite of datasets spanning both synthetic and real-world distributions.

Table 3.1: Results on estimating PID on synthetic bit-
wise datasets. Both our estimators exactly recover the
correct PID values as reported in Bertschinger et al. [59].

Task OR AND XOR
PID R U1 U2 S R U1 U2 S R U1 U2 S
Exact 0.31 0 0 0.5 0.31 0 0 0.5 0 0 0 1
CVX 0.31 0 0 0.5 0.31 0 0 0.5 0 0 0 1
BATCH 0.31 0 0 0.5 0.31 0 0 0.5 0 0 0 1

Synthetic bitwise features: We sample
from a binary bitwise distribution: x1, x2 ∼
{0,1}, y = x1 ∧ x2, y = x1 ∨ x2, y = x1 ⊕ x2,.
Each bitwise operator’s PID can be solved
exactly when the xi’s and labels are discrete
and low-dimensional [59]. Compared to the
ground truth in Bertschinger et al. [59], both
our estimators exactly recover the correct
PID values (Table 3.1).

Gaussian Mixture Models (GMM): Consider a GMM, where X1, X2 ∈ R and the label
Y ∈ {−1,+1}, comprising two equally weighted standard multivariate Gaussians centered at ±µ,
where µ ∈ R2, i.e., Y ∼ Bernoulli(1/2), (X1,X2)∣Y = y ∼ N (y ⋅ µ, I). PID was estimated by
sampling 1e6 points, histogramming them into 50 bins spanning [−5,+5] to give p, and then
applying the CVX estimator. We term this PID-Cartesian. We also compute PID-Polar, which
are PID computed using polar coordinates, (r, θ). We use a variant where the angle θ is given by
the arctangent with principal values [0, π] and the length r ∈ R could be negative. θ specifies a
line (through the origin), and r tells us where along the line the datapoint lies on.

Results: We consider ∣∣µ∣∣2 ∈ {1.0,2.0}, where for each ∣∣µ∣∣2, we vary the angle ∠µ that
µ makes with the horizontal axis. Our computed PID is presented in Figure 3.3. Overall, we
find that the PID matches what we expect from intuition. For Cartesian, unique information
dominates when the angle goes to 0 or π/2 — if centroids share a coordinate, then observing
that coordinate yields no information about y. Conversely, synergy and redundancy peak at π/4.
Interestingly, synergy seems to be independent of ∣∣µ∣∣2. For Polar, redundancy is 0. Furthermore,
θ contains no unique information, since θ shows nothing about y unless we know r (in particular,
its sign). When the angle goes to π/2, almost all information is unique in r. The distinctions
between Cartesian and Polar highlight how different representations of data can exhibit wildly
different PID values, even if total information is the same.

Synthetic generative model: We begin with a set of latent vectors z1, z2, zc ∼ N (0d,Σ2
d), d =

50 representing information unique to X1,X2 and common to both respectively. [z1, zc] is
transformed into high-dimensional x1 using a fixed transformation T1 and likewise [z2, zc] to x2

via T2. The label y is generated as a function of (1) only zc, in which case we expect complete
redundancy, (2) only z1 or z2 which represents complete uniqueness, (3) a combination of z1 and
z2 representing complete synergy, or (4) arbitrary ratios of each of the above with z∗i representing
half of the dimensions from zi and therefore half of each interaction. In total, Table 3.2 shows
the 10 synthetic datasets we generated: 4 specialized datasets DI , I ∈ {R,U1, U2, S} where y only
depends on one interaction, and 6 mixed datasets with varying interaction ratios. We also report
the ground-truth interactions as defined by the label-generating process and the total capturable
information using the bound in Feder and Merhav [172], which relates the accuracy of the best
model on these datasets with the mutual information between the inputs to the label. Since the test



Table 3.2: Estimating PID on synthetic generative model datasets. Both CVX and BATCH measures agree
with each other on relative values and are consistent with ground truth interactions.

Task DR DU1 DU2 DS y = f(z∗1 , z
∗
2 , z

∗
c )

PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
CVX 0.16 0 0 0.05 0 0.16 0 0.05 0 0 0.17 0.05 0.07 0 0.01 0.14 0.04 0.01 0 0.07
BATCH 0.29 0.02 0.02 0 0 0.30 0 0 0 0 0.30 0 0.11 0.02 0.02 0.15 0.06 0.01 0.01 0.06
Truth 0.58 0 0 0 0 0.56 0 0 0 0 0.54 0 0 0 0 0.56 0.13 0 0 0.27

Task y = f(z1, z
∗
2 , z

∗
c ) y = f(z1, z2, z

∗
c ) y = f(z∗1 , z

∗
2 , zc) y = f(z∗2 , z

∗
c ) y = f(z∗2 , zc)

PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
CVX 0.04 0.06 0 0.07 0.07 0 0 0.12 0.1 0 0.01 0.07 0.03 0 0.04 0.05 0.1 0 0.04 0.05
BATCH 0.04 0.09 0 0.06 0.11 0.02 0.02 0.10 0.11 0.02 0.02 0.05 0.07 0 0.06 0 0.19 0 0.06 0
Truth 0 0.25 0 0.25 0.18 0 0 0.36 0.22 0 0 0.22 0.21 0 0.21 0 0.34 0 0.17 0

accuracies for Table 3.2 datasets range from 67-75%, this corresponds to total MI of 0.42 − 0.59
bits.

Results: From Table 3.2, both CVX and BATCH agree in relative PID values, correctly
assigning the predominant interaction type and interactions with minimal presence consistent with
the ground-truth based on data generation. For example, DR has the highest R value, and when
the ratio of z1 increases, U1 increases from 0.01 on y = f(z∗1 , z∗2 , z∗c ) to 0.06 on y = f(z1, z∗2 , z

∗
c ).

We also note some interesting observations due to the random noise in label generation, such as
the non-zero synergy measure of datasets such as DR,DU1 ,DU2 whose labels do not depend on
synergy.

3.3.2 Quantifying real-world multimodal benchmarks
We now apply these estimators to quantify the interactions in real-world multimodal datasets.

Real-world multimodal data setup: We use a large collection of real-world datasets in
MultiBench [367] which test multimodal fusion of different input signals (including images, video,
audio, text, time-series, sets, and tables) for different tasks (predicting humor, sentiment, emotions,
mortality rate, ICD-9 codes, image-captions, human activities, digits, and design interfaces). We
also include experiments on question-answering (Visual Question Answering 2.0 [29, 206] and
CLEVR [289]) which test grounding of language into the visual domain. For the 4 datasets (top
row of Table 3.3) involving images and text where modality features are available and readily
clustered, we apply the CVX estimator on top of discrete clusters. For the remaining 4 datasets
(bottom row of Table 3.3) with video, audio, and medical time-series modalities, clustering is not
easy, so we use the end-to-end BATCH estimator.

Human judgment of interactions: Real-world multimodal datasets do not have reference
PID values, and exact PID computation is impossible due to continuous data. We therefore
use human judgment as a reference. We design a new annotation scheme where we show both
modalities and the label and ask each annotator to annotate the degree of redundancy, uniqueness,
and synergy on a scale of 0-5, alongside their confidence in their answers on a scale of 0-5. We
give 50 datapoints from each dataset (except MIMIC and ENRICO which require specialized
knowledge) to 3 annotators each. We show a sample user interface and annotation procedures
in the full paper [372], and also provide an in-depth study of how humans annotate multimodal



Table 3.3: Estimating PID on real-world MultiBench [367] datasets. Many of the estimated interactions
align well with human judgement as well as unimodal performance.

Task AV-MNIST ENRICO VQA 2.0 CLEVR
PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
CVX 0.10 0.97 0.03 0.08 0.73 0.38 0.53 0.34 0.79 0.87 0 4.92 0.55 0.48 0 5.16
Human 0.57 0.61 0 0 - - - - 0 0 0 6.58 0 0 0 6.19

Task MOSEI UR-FUNNY MUSTARD MIMIC
PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
BATCH 0.26 0.49 0.03 0.04 0.03 0.04 0.01 0.08 0.14 0.01 0.01 0.30 0.05 0.17 0 0.01
Human 0.32 0.20 0.15 0.15 0.04 0.05 0.03 0.04 0.13 0.17 0.04 0.16 - - - -

interactions in a subsequent follow-up work [373].
Results on multimodal fusion: From Table 3.3, we find that different datasets do require

different interactions. Some interesting observations: (1) all pairs of modalities on MUSTARD
sarcasm detection show high synergy values, which aligns with intuition since sarcasm is often
due to a contradiction between what is expressed in language and speech, (2) uniqueness values
are strongly correlated with unimodal performance (e.g., modality 1 in AV-MNIST and MIMIC),
(3) datasets with high synergy do indeed benefit from interaction modeling as also seen in prior
work (e.g., MUSTARD, UR-FUNNY) [83, 225], and (4) conversely datasets with low synergy
are those where unimodal performance is relatively strong (e.g., MIMIC) [367].

Results on QA: We observe very high synergy values as shown in Table 3.3 consistent with
prior work studying how these datasets were balanced (e.g., VQA 2.0 having different images
for the same question such that the answer can only be obtained through synergy) [206] and that
models trained on these datasets require non-additive interactions [235]. CLEVR has a higher
proportion of synergy than VQA 2.0 (83% versus 75%): indeed, CLEVR is a more balanced
dataset where the answer strictly depends on both the question and image with a lower likelihood
of unimodal biases.

Comparisons with human judgment: For human judgment, we cannot ask humans to give
a score in bits, so it is on a completely different scale (0-5 scale). To put them on the same scale,
we normalize the human ratings such that the sum of human interactions is equal to the sum of
PID estimates. The resulting comparisons are in Table 3.3, and we find that the human-annotated
interactions overall align with estimated PID: the highest values are the same for 4 datasets: both
explain highest synergy on VQA and CLEVR, image (U1) being the dominant modality in AV-
MNIST, and language (U1) being the dominant modality in MOSEI. Overall, the Krippendorff’s
alpha for inter-annotator agreement is high (0.72 for R, 0.68 for U1, 0.70 for U2, 0.72 for S) and
the average confidence scores are also high (4.36/5 for R, 4.35/5 for U1, 4.27/5 for U2, 4.46/5
for S), indicating that the human-annotated results are reliable. For the remaining two datasets
(UR-FUNNY and MUSTARD), estimated PID matches the second-highest human-annotated
interaction. We believe this is because there is some annotator subjectivity in interpreting whether
sentiment, humor, and sarcasm are present in language only (U1) or when contextualizing both
language and video (S), resulting in cases of low annotator agreement in U1 and S: −0.14, −0.03
for UR-FUNNY and −0.08, −0.04 for MUSTARD.

Comparisons with other interaction measures: Our framework allows for easy general-



Table 3.4: Average interactions (R/U/S) learned by models alongside their average performance on
interaction-specialized datasets (DR/DU/DS). Synergy is the hardest to capture and redundancy is
relatively easier to capture by existing models.

Model EF ADDITIVE AGREE ALIGN ELEM TENSOR MI MULT LOWER REC AVERAGE

R 0.35 0.48 0.44 0.47 0.27 0.55 0.20 0.40 0.47 0.53 0.41 ± 0.11
Acc(DR) 0.71 0.74 0.73 0.74 0.70 0.75 0.67 0.73 0.74 0.75 0.73 ± 0.02
U 0.29 0.31 0.19 0.44 0.20 0.52 0.18 0.45 0.55 0.55 0.37 ± 0.14
Acc(DU) 0.66 0.55 0.60 0.73 0.66 0.73 0.66 0.72 0.73 0.73 0.68 ± 0.06
S 0.13 0.09 0.08 0.29 0.14 0.33 0.12 0.29 0.31 0.32 0.21 ± 0.10
Acc(DS) 0.56 0.66 0.63 0.72 0.66 0.74 0.65 0.72 0.73 0.74 0.68 ± 0.06

ization to other interaction definitions: we also implemented 3 information theoretic measures
I-min [662], WMS [91], and CI [447]. These results are included in the full paper [372], where we
explain the limitations of these methods as compared to PID, such as over- and under-estimation,
and potential negative estimation [210]. These are critical problems with the application of
information theory for shared I(X1;X2;Y ) and unique information I(X1;Y ∣X2), I(X2;Y ∣X1)
often quoted in the co-training [44, 65] and multi-view learning [563, 605, 608] literature. We
also tried 3 non-info theory measures: Shapley values [395], Integrated gradients (IG) [579], and
CCA [27], which are based on quantifying interactions captured by a multimodal model. Our
work is fundamentally different in that interactions are properties of data before training any
models.

3.3.3 Quantifying multimodal model predictions

We now shift our focus to quantifying multimodal models. Do different multimodal models learn
different interactions? A better understanding of the types of interactions that our current models
struggle to capture can provide new insights into improving these models.

Setup: For each dataset, we train a suite of models on the train set Dtrain and apply it to
the validation set Dval, yielding a predicted dataset Dpred = {(x1, x2, ŷ) ∈ Dval}. Running PID
on Dpred summarizes the interactions that the model captures. We categorize and implement a
comprehensive suite of models (spanning representation fusion at different feature levels, types
of interaction inductive biases, and training objectives) that have been previously motivated to
capture redundant, unique, and synergistic interactions.

Results: We show results in Table 3.4 and highlight the following observations:
General observations: We first observe that model PID values are consistently higher than

dataset PID. The sum of model PID is also a good indicator of test performance, which agrees
with their formal definition since their sum is equal to I({X1,X2};Y ), the total task-relevant
information.

On redundancy: Several methods succeed in capturing redundancy, with an overall average
of R = 0.41 ± 0.11 and accuracy of 73.0 ± 2.0% on redundancy-specialized datasets. Additive,
agreement, and alignment-based methods are particularly strong, and we do expect them to
capture redundant shared information [147, 497]. Methods based on tensor fusion (synergy-
based), including lower-order interactions, and adding reconstruction objectives (unique-based)
also capture redundancy.



Figure 3.4: We find high correla-
tion (ρ = 0.8) between the perfor-
mance drop when Xi is missing and
the model’s Ui value: high Ui coin-
cides with large performance drops
(red), but low Ui can also lead to per-
formance drops. The latter can be
further explained by large S so Xi is
necessary (green).

On uniqueness: Uniqueness is harder to capture than
redundancy, with an average of U = 0.37±0.14. Redundancy-
based methods like additive and agreement do poorly on
uniqueness, while those designed for uniqueness (lower-
order interactions [712] and modality reconstruction objec-
tives [614]) do well, with on average U = 0.55 and 73.0%
accuracy on uniqueness datasets.

On synergy: Synergy is the hardest to capture, with an av-
erage score of only S = 0.21± 0.10. Some of the strong meth-
ods are tensor fusion [182], tensors with lower-order interac-
tions [712], modality reconstruction [614], and multimodal
transformer [681], which achieve around S = 0.30, acc =
73.0%. Additive, agreement, and element-wise interactions
do not seem to capture synergy well.

On robustness: Finally, we also show connections be-
tween PID and model performance in the presence of missing
modalities. We find high correlation (ρ = 0.8) between the
performance drop when Xi is missing and the model’s Ui
value. Inspecting Figure 3.4, we find that the implication only
holds in one direction: high Ui coincides with large perfor-
mance drops (in red), but low Ui can also lead to performance
drops (in green). The latter can be further explained by the presence of large S values: when
Xi is missing, synergy can no longer be learned which affects performance. For the subset of
points when Ui ≤ 0.05, the correlation between S and performance drop is ρ = 0.73 (in contrast,
the correlation for R is ρ = 0.01).

3.3.4 PID agreement and model selection

Figure 3.5: PID agreement α(f,D)

between datasets and models strongly
correlate with model accuracy (ρ =

0.81).

Now that we have quantified datasets and models individu-
ally, the natural next question unifies both: what does the
agreement between dataset and model PID measures tell us
about model performance? We hypothesize that models able
to capture the interactions necessary in a given dataset should
also achieve high performance. Given estimated interactions
on dataset D and model f(D) trained on D, we define the
agreement for each interaction I ∈ {R,U1, U2, S} as:

αI(f,D) = ÎDIf(D), ÎD = ID

∑I′∈{R,U1,U2,S} I
′
D

, (3.6)

which summarizes the quantity of an interaction captured by
a model (If(D)) weighted by its normalized importance in
the dataset (ÎD). The total agreement sums over α(f,D) =
∑I αI(f,D).



Table 3.5: Model selection results on unseen synthetic and real-world datasets. Given a new dataset D,
finding the closest synthetic dataset D′ with similar PID values and recommending the best models on D′

consistently achieves 95% − 100% of the best-performing model on D.

Dataset 5 Synthetic Datasets MIMIC ENRICO UR-FUNNY MOSEI MUSTARD MAPS
% Performance 99.91% 99.78% 100% 98.58% 99.35% 95.15% 100%

Results: Our key finding is that PID agreement scores α(f,D) correlate (ρ = 0.81) with
model accuracy across all 10 synthetic datasets as illustrated in Figure 3.5. This shows that PID
agreement can be a useful proxy for model performance. For the specialized datasets, we find
that the correlation between αI and DI is 0.96 for R, 0.86 for U , and 0.91 for S, and negatively
correlated with other specialized datasets. For mixed datasets with roughly equal ratios of each
interaction, the measures that correlate most with performance are αR (ρ = 0.82) and αS (ρ = 0.89);
datasets with relatively higher redundancy see ρ = 0.89 for αR; those with higher uniqueness have
αU1 and αU2 correlate ρ = 0.92 and ρ = 0.85; those with higher synergy increases the correlation
of αS to ρ = 0.97.

Using these observations, our final experiment is model selection: can we choose the most
appropriate model to tackle the interactions required for a dataset?

Setup: Given a new dataset D, we first compute its difference in normalized PID values with
respect to D′ among our suite of 10 synthetic datasets, s(D,D′) = ∑I∈{R,U1,U2,S} ∣ÎD − ÎD′ ∣, to
rank the dataset D∗ with the most similar interactions, and return the top-3 performing models
on D∗. In other words, we select models that best capture interactions that are of similar nature
and degree as those in D. We emphasize that even though we restrict dataset and model search to
synthetic datasets, we evaluate model selection on real-world datasets and find that it generalizes
to the real world.

Results: We test our selected models on 5 new synthetic datasets with different PID ratios
and 6 real-world datasets, summarizing results in Table 3.5. We find that the top 3 chosen models
achieve 95% − 100% of the best-performing model accuracy, and > 98.5% for all datasets except
95.2% on MUSTARD. For example, UR-FUNNY and MUSTARD have the highest synergy
(S = 0.13, S = 0.3) and indeed transformers and higher-order interactions are helpful (MULT:
65%, MI: 61%, TENSOR: 60%). ENRICO has the highest R = 0.73 and U2 = 0.53, and methods
for redundant and unique interactions perform best (LOWER: 52%, ALIGN: 52%, AGREE: 51%).
MIMIC has the highest U1 = 0.17, and unimodal models are mostly sufficient [367].

3.3.5 Real-world applications

Finally, we apply PID to 3 real-world case studies: pathology, mental health, and robotic
perception.

Case Study 1: Computational pathology. Cancer prognostication is a challenging task
in anatomic pathology that requires integration of whole-slide imaging (WSI) and molecular
features for patient stratification [92, 383, 425]. We use The Cancer Genome Atlas (TCGA),
a large public data consortium of paired WSI, molecular, and survival information [607, 660],
including modalities: (1) pre-extracted histology image features from diagnostic WSIs and (2)
bulk gene mutation status, copy number variation, and RNA-Seq abundance values. We evaluate
on two cancer datasets in TCGA, lower-grade glioma (LGG [440], n = 479) and pancreatic



adenocarcinoma (PAAD [503], n = 209).
Results: In TCGA-LGG, most PID measures were near-zero except U2 = 0.06 for genomic

features, which indicates that genomics is the only modality containing task-relevant information.
This conclusion corroborates with the high performance of unimodal-genomic and multimodal
models in Chen et al. [102], while unimodal-pathology performance was low. In TCGA-PAAD,
the uniqueness in pathology and genomic features was less than synergy (U1 = 0.06, and U2 = 0.08
and S = 0.15), which also match the improvement of using multimodal models that capture
synergy.

Case Study 2: Mental health. Suicide is the second leading cause of death among ado-
lescents [84]. Intensive monitoring of behaviors via adolescents’ frequent use of smartphones
may shed new light on the early risk of suicidal ideations [200, 433], since smartphones provide
rich behavioral markers [366]. We used a dataset, MAPS, of mobile behaviors from high-risk
consenting adolescent populations (approved by IRB). Passive sensing data is collected from each
participant’s smartphone across 6 months. The modalities include (1) text entered by the user
represented as a bag of top 1000 words, (2) keystrokes that record the exact timing and duration
of each typed character, and (3) mobile applications used per day as a bag of 137 apps. Every
morning, users self-report their daily mood, which we discretized into −1,0,+1. In total, MAPS
has 844 samples from 17 participants.

Results: We first experiment with MAPST,K using text and keystroke features. PID measures
show that MAPST,K has high synergy (0.40), some redundancy (0.12), and low uniqueness (0.04).
We found the purely synergistic dataset DS has the most similar interactions and the suggested
models LOWER, REC, and TENSOR that work best on DS were indeed the top 3 best-performing
models on MAPST,K , indicating that model selection is effective. Model selection also retrieves
the best-performing model on MAPST,A using text and app usage features.

Case Study 3: Robotic Perception. MuJoCo PUSH [334] is a contact-rich planar pushing
task in MuJoCo [606], where a 7-DoF Panda Franka robot is pushing a circular puck with its
end-effector in simulation. The dataset consists of 1000 trajectories with 250 steps sampled at
10Hertz. The multimodal inputs are gray-scaled images from an RGB camera, force and binary
contact information from a force/torque sensor, and the 3D position of the robot end-effector. We
estimate the 2D position of the unknown object on a table surface while the robot intermittently
interacts with it.

Results: We find that BATCH predicts U1 = 1.79 as the highest PID value, which aligns
with our observation that image is the best unimodal predictor. Comparing both estimators,
CVX underestimates U1 and R since the high-dimensional time-series modality cannot be easily
described by clusters without losing information. In addition, both estimators predict a low U2

value but attribute high R, implying that a multimodal model with higher-order interactions would
not be much better than unimodal models. Indeed, we observe no difference in performance
between these two.

3.4 Conclusion

Our work aims to quantify the nature and degree of feature interactions by proposing scalable
estimators for redundancy, uniqueness, and synergy suitable for high-dimensional heterogeneous



datasets. Through comprehensive experiments and real-world applications, we demonstrate the
utility of our proposed framework in dataset quantification, model quantification, and model
selection. We are aware of some potential limitations:
1. These estimators only approximate real interactions due to cluster preprocessing or unimodal

models, which naturally introduce optimization and generalization errors. We expect progress
in density estimators, generative models, and unimodal classifiers to address these problems.

2. It is harder to quantify interactions for certain datasets, such as ENRICO which displays all
interactions which makes it difficult to distinguish between R and S or U and S.

3. Finally, there exist challenges in quantifying interactions since the data generation process is
never known for real-world datasets, so we have to resort to human judgment, other automatic
measures, and downstream tasks such as estimating model performance and model selection.
Future work can leverage PID for targeted dataset creation, representation learning optimized

for PID values, and applications of information theory to higher-dimensional data. More broadly,
there are several exciting directions in investigating more applications of multivariate information
theory in modeling feature interactions, predicting multimodal performance, and other tasks
involving feature interactions such as privacy-preserving and fair representation learning from
high-dimensional data [161, 219]. Being able to provide guarantees for fairness and privacy-
preserving learning can be particularly impactful.



Chapter 4

Factorized Learning of Multimodal
Interactions

4.1 Introduction

Using the mathematical foundation of multimodal interactions that we just presented, we now
seek to learn representations from multimodal data that are suitable in capturing each of these
interactions. Learning representations from different modalities is a central paradigm in machine
learning [371]. Today, a popular learning method is to first pre-train general representations
on unlabeled multimodal data before fine-tuning on task-specific labels [72, 370, 371, 390].
These current multimodal pre-training approaches have largely been inherited from prior work
in multi-view learning [103, 453] that exploit a critical assumption of multi-view redundancy:
the property that shared information between modalities is almost exactly what is relevant for
downstream tasks [563, 608, 616]. When this assumption holds, approaches based on contrastive
pre-training to capture shared information [103, 300, 497, 605], followed by fine-tuning to keep
task-relevant shared information [616], have seen successful applications in learning from images
and captions [497], video and audio [31], speech and transcribed text [453], and instructions
and actions [168]. However, our paper studies two fundamental limitations in the application of
contrastive learning (CL) to learn multimodal interactions in real-world settings
1. Low shared information relevant to tasks: There exists a wide range of multimodal tasks

involving small amounts of shared information, such as between cartoon images and figurative
captions (i.e., not literal but metaphoric or idiomatic descriptions of the images [410, 700]). In
these situations, standard multimodal CL will only receive a small percentage of information
from the learned representations and struggle to learn the desired task-relevant information.

2. High unique information relevant to tasks: Many real-world modalities can provide unique
information not present in other modalities. Examples include healthcare with medical sensors
or robotics with force sensors [367, 372]. Standard CL will discard task-relevant unique
information, leading to poor downstream performance.

We refer the reader to Figure 9.1 for a visual depiction and experimental results showing the per-
formance drop of CL in these two settings of low shared information and high unique information.

In light of these limitations, how can we design suitable multimodal learning objectives that
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Figure 4.1: Left: We define S = I(X1;X2;Y ) as task-relevant shared information and U1 = I(X1;Y ∣X2),
U2 = I(X2;Y ∣X1) as task-relevant unique information. Right: On controllable datasets with varying ratios
of S, U1, and U2, standard CL captures S but struggles when there is more U1 and U2. Our FACTORCL
approach maintains best performance, whereas SimCLR [103] and SupCon [300] see performance drops as
unique information increases, and Cross+Self [258, 278, 337, 709] recovers in fully unique settings but
suffers at other ratios.

work beyond multi-view redundancy? In this paper, starting from the first principles in information
theory, we provide formal definitions of shared and unique information via conditional mutual
information and propose an approach, FACTORIZED CONTRASTIVE LEARNING (FACTORCL
for short), to learn these multimodal representations beyond multi-view redundancy using three
key ideas. The first idea is to explicitly factorize shared and unique representations. The second
idea is to capture task-relevant information via maximizing lower bounds on MI and remove
task-irrelevant information via minimizing upper bounds on MI, resulting in representations
with sufficient and necessary information content. Finally, a notion of task relevance without
explicit labels in the self-supervised setting is achieved by leveraging multimodal augmentations.
Experimentally, we evaluate the effectiveness of FACTORCL on a suite of synthetic datasets and
large-scale real-world multimodal benchmarks involving images and figurative language [700],
prediction of human sentiment [710], emotions [717], humor [225], and sarcasm [83], as well
as patient disease and mortality prediction from health indicators and sensor readings [286],
achieving new state-of-the-art performance on six datasets. Overall, we summarize our key
technical contributions here:

1. A new analysis of contrastive learning performance showing that standard multimodal CL fails
to capture task-relevant unique information under low shared or high unique information cases.

2. A new contrastive learning algorithm called FACTORCL:
(a) FACTORCL factorizes task-relevant information into shared and unique information,

expanding contrastive learning to better handle low shared or high unique information.
(b) FACTORCL optimizes shared and unique information separately, by removing task-

irrelevant information via MI upper bounds and capturing task-relevant information via
lower bounds, yielding optimal task-relevant representations.

(c) FACTORCL leverages multimodal augmentations to approximate task-relevant informa-
tion, enabling self-supervised learning from our proposed FACTORCL.



4.2 Analysis of Multi-view Contrastive Learning
We begin by formalizing definitions of four types of information: shared, unique, task-relevant,
and task-irrelevant information in multimodal data. To formalize the learning setting, we assume
there exist two modalities expressed as random variables X1 and X2 with outcomes x1 and x2,
and a task with the random variable Y and outcome y. We denote X−i as the other modality where
appropriate.

Shared and unique information: We formalize shared and unique information by decom-
posing the total multimodal information I(X1,X2;Y ) into three conditional mutual information
(MI) terms:

I(X1,X2;Y ) = I(X1;X2;Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S = shared

+ I(X1;Y ∣X2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U1 = uniqueness in X1

+ I(X2;Y ∣X1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U2 = uniqueness in X2

, (4.1)

where I(X1,X2;Y ) = ∫ p(x1, x2, y) log p(x1,x2,y)
p(x1,x2)p(y)

dx1dx2dy is the total MI between the
joint random variable X1,X2 and the task Y , S = I(X1;X2;Y ) = I(X1;X2) − I(X1;X2∣Y ) =
∫ p(x1, x2) log p(x1,x2)

p(x1)p(x2)
dx1dx2−I(X1;X2∣Y ) is the task-relevant shared information, I(X1;X2∣Y ) =

∫ p(x1, x2, y) log p(x1,x2∣y)
p(x1∣y)p(x2∣y)

dx1dx2dy is the task-irrelevant shared information, andU1 = I(X1;Y ∣X2),
U2 = I(X2;Y ∣X1) denote unique task-relevant information.

Limitations of CL: Current approaches for CL maximize mutual information I(X1;X2)
(and subsequently task-relevant shared information I(X1;X2;Y ) during supervised fine-tuning),
without modeling unique information. These methods generally learn a pair of representations
[608, 616],

Z1 = arg max
Z1∶=fθ(X1)

I(Z1;X2), Z2 = arg max
Z2∶=fθ(X2)

I(X1;Z2). (4.2)

For example, Z1 could encode images X1 and Z2 encodes text X2 via maximizing a lower
bound on I(X1;X2) using the NCE objective [453]. The NCE objective falls into a broader
class of contrastive learning methods [103, 107, 229, 300, 497] that model the ratio between
joint densities p(x1, x2) and product of marginal densities p(x1)p(x2) using positive and negative
samples [444, 458, 487, 621, 669] or probabilistic classifiers [430, 617]. It has been shown that
contrastive learning works well under the assumption of multi-view redundancy [39, 240, 563,
604]:
Definition 1. (Multi-view redundancy) ∃ε > 0 such that I(X1;Y ∣X2) ≤ ε and I(X2;Y ∣X1) ≤ ε.

In other words, the task-relevant information in data is mostly shared across both views and the
unique information is at most a small ε. From a representation perspective, Tian et al. [605] further
introduces the assumption that the optimal representation is minimal and sufficient, where all
learned task-relevant information is shared information: I(Z1;Y ∣X2) = I(Z2;Y ∣X1) = 0. While
the multi-view redundancy is certainly true for particular types of multimodal distributions, it
crucially ignores settings that display multi-view non-redundancy and unique information can be
important, such as when health indicators, medical sensors, and robotic visual or force sensors
each provide unique information not present in other modalities [367, 372].
Definition 2. (Multi-view non-redundancy) ∃ε > 0 such that I(X1;Y ∣X2) > ε or I(X2;Y ∣X1) > ε.



Under multi-view non-redundancy, we show that standard CL only receives a weak training
signal since it can only maximize a lower bound on shared information I(X1;X2), and struggles
to learn task-relevant unique information. We formalize this intuition with the following statement:
Theorem 1. (Suboptimality of standard CL) When there is multi-view non-redundancy as in
Definition 2, given optimal representations {Z1, Z2} that satisfy Eq.(4.2 and I(Z1;Y ∣X2) =
I(Z2;Y ∣X1) = 0 [605], we have that

I(Z1, Z2;Y ) = I(X1,X2;Y ) − I(X1;Y ∣X2) − I(X2;Y ∣X1) = I(X1;X2) − I(X1;X2∣Y ) < I(X1,X2;Y ).
(4.3)

Correspondingly, the Bayes error rate Pe(Z1, Z2) ∶= 1 − Ep(z1,z2) [maxy∈Y P (Ŷ = y ∣ z1, z2)] of
contrastive representations {Z1, Z2} for a downstream task Y is given by:

Pe ≤ 1 − exp [I(X1,X2;Y ) − I(X1;Y ∣X2) − I(X2;Y ∣X1) −H(Y )] (4.4)
= 1 − exp [I(X1;X2;Y ) −H(Y )] (4.5)

We include proofs and a detailed discussion of the assumptions in the full paper [374]. Based
on Eq.(4.3), I(Z1, Z2;Y ) decreases with higher task-relevant unique information I(X1;Y ∣X2)
and I(X2;Y ∣X1); we call this the difference I(X1,X2;Y ) − I(Z1, Z2;Y ) the uniqueness gap.
The uniqueness gap measures the loss in task-relevant information between the input and en-
coded representation: as task-relevant unique information grows, the uniqueness gap increases.
In addition, I(Z1, Z2;Y ) also drops with lower I(X1;X2) (i.e., two modalities sharing little
information to begin with), or with higher I(X1;X2∣Y ) (i.e., when the shared information is
mostly task-irrelevant). Similarly, in Eq.(4.5), the Bayes error rate of using {Z1, Z2} for prediction
is directly related to the task-relevant information in {Z1, Z2}: error on the downstream task
increases with higher unique information and lower shared information.

4.3 FACTORIZED CONTRASTIVE LEARNING

We now present a suite of new CL objectives that alleviate the challenges above and work at all
ranges of shared and unique information. At a high level, we aim to learn a set of factorized
representations ZS1 , ZS2 , ZU1 , ZU2 representing task-relevant information in X1 shared with X2,
in X2 shared with X1, unique to X1, and unique to X2 respectively. As common in practice [497,
605], we define neural networks fθ with trainable parameters θ to extract representations from
inputs X1 and X2. Learning these parameters requires optimizing differentiable and scalable
training objectives to capture task-relevant shared and unique information (see overview in
Figure 4.2):

ZS1 = arg max
Z1=fθ(X1)

I(Z1;X2;Y ), ZS2 = arg max
Z2=fθ(X2)

I(Z2;X1;Y ), (4.6)

ZU1 = arg max
Z1=fθ(X1)

I(Z1;Y ∣X2), ZU2 = arg max
Z2=fθ(X2)

I(Z2;Y ∣X1). (4.7)

where I(Z1;X2;Y ) = I(Z1;X2) − I(Z1;X2∣Y ) is the shared information and I(Z2;X1;Y ) =
I(Z2;X2)−I(Z2;X1∣Y ) is the unique information. One important characteristic of our framework



is that when unique information is zero: I(X1;Y ∣X2) = 0 and I(X2;Y ∣X1) = 0, or all shared
information is task-relevant: I(X1;X2;Y ) = I(X1;X2), our framework recovers standard CL
as in Eq.(4.2). However, as we have previously indicated and will show empirically, these
assumptions can easily be violated, and our framework enlarges Eq.(4.2) to cases where unique
information is present.

The learned Zs can then be used as input to a linear classifier and fine-tuned to predict the
label for multimodal classification or retrieval tasks. However, the shared and unique MI terms
above are often intractable in practice. In the next section, we will build up our method step by
step, eventually showing that each term in Eqs.(4.6- 4.7) can be approximated as follows:

S = I(X1;X2;Y ) ≥ INCE(X1;X2) − INCE-CLUB(X1;X2∣X ′
1,X

′
2) (4.8)

Ui = I(Xi;Y ∣X−i) ≥ INCE(Xi;X
′
i) − INCE-CLUB(X1;X2) + INCE(X1;X2∣X ′

1,X
′
2) (4.9)

where INCE and INCE-CLUB are scalable contrastive estimators (Section 4.3.1) and X ′
1,X

′
2 are

suitable data augmentations (Section 4.3.2) on each modality. Overall, these equations can be
interpreted as both positive and negative signals to learn representations for S and U . For shared
information S, the estimator maximizes task-relevant shared information via INCE(X1;X2) while
removing task-irrelevant shared information via a novel upper bound −INCE-CLUB(X1;X2∣X ′

1,X
′
2).

For unique information Ui, we capture task-relevant uniqueness via +INCE(Xi;X ′
i) while non-

unique information is removed via −(INCE-CLUB(X1;X2) − INCE(X1;X2∣X ′
1,X

′
2)). In the follow-

ing sections, we derive this final objective step-by-step: (1) approximating the MI objectives in
S and U with CL estimators, (2) relaxing the dependence on labels Y with self-supervised data
augmentations, finally (3) discussing overall training and implementation details of end-to-end
self-supervised learning.

4.3.1 Supervised FACTORCL with shared and unique information
To capture shared and unique information via an objective function, we will need to maximize
lower bounds for all terms with a positive sign in Eq.(4.8) and (4.9) (I (X1;X2) , I (Xi;Y ) , I (X1;X2∣Y ))
and minimize upper bounds for all terms with a negative sign (I (X1;X2) , I (X1;X2∣Y )). Our
first theorem derives general lower and upper bounds for MI terms as variants of contrastive
estimation:
Theorem 2. (Contrastive estimators for I(X1;X2)) Defining the NCE and NCE-CLUB estima-
tors,

INCE(X1;X2) = Ex1,x+2∼p(x1,x2)
x−2∼p(x2)

[log
exp f(x1, x+2)
∑k exp f(x1, x−2)

] (4.10)

INCE-CLUB(X1;X2) = Ex1,x+2∼p(x1,x2) [f
∗(x1, x

+
2)] −Ex1∼p(x1)

x−2∼p(x2)

[f∗(x1, x
−
2)] (4.11)

where f∗(x1, x2) is the optimal critic from INCE plugged into the ICLUB objective [110]. We
call the proposed plug-in objective Eq.(4.11) INCE-CLUB, and obtain lower and upper bounds on
I(X1;X2):

INCE(X1;X2) ≤ I(X1;X2) ≤ INCE-CLUB(X1;X2). (4.12)



Figure 4.2: FACTORCL: We propose a self-supervised CL method to learn factorized representations
ZS1 , ZS2 , ZU1 , and ZU2 to capture task-relevant information shared in both X1 and X2, unique to X1, and
unique to X2. By starting with information-theoretic first principles of shared and unique information, we
design contrastive estimators to both capture task-relevant and remove task-irrelevant information, where a
notion of task-relevance without explicit labels is afforded by a new definition of multimodal augmentations
X ′

1,X
′
2. Lower bounds are in green and upper bounds are in red.

Proof. The lower bound INCE(X1;X2) ≤ I(X1;X2) follows from Oord et al. [453]: optimizing
the objective leads to an optimal critic [487] f∗ = log p(x1∣x2) + c(x1), with a deterministic
function c(⋅). Plugging optimal critic f∗ into INCE-CLUB(X1;X2) cancels out the c(x1) term and
yields INCE-CLUB(X1;X2) and I(X1;X2) ≤ INCE-CLUB. We include a detailed proof in the full
paper [374].

INCE-CLUB(X1;X2) gives a desired upper bound of I(X1;X2) “for free” while avoiding
separately optimizing lower bound and upper bounds. In Figure 4.3, we show these two bounds
in practice across two Gaussian distributions X1 and X2 with varying amounts of MI I(X1;X2).
We use the second formulation of ICLUB [110], which assumes p(x1∣x2) to be unknown. Our
upper bound is empirically tighter (see Figure 4.3) and comes for “free” via jointly maximizing
the lower bound INCE. These lower and upper bounds can be seen as new contrastive objectives
over positive and negative (x1, x2) pairs, enabling a close integration with existing pre-training
paradigms. Finally, we can similarly obtain bounds for the conditional MI INCE(X1;X2∣Y ) ≤
I(X1;X2∣Y ) ≤ INCE-CLUB(X1;X2∣Y ):

INCE(X1;X2∣Y ) = Ep(y)
⎡⎢⎢⎢⎢⎣
Ex1,x+2∼p(x1,x2∣y)

x−2∼p(x2∣y)

[log
exp f(x1, x+2 , y)
∑k exp f(x1, x−2 , y)

]
⎤⎥⎥⎥⎥⎦

(4.13)

INCE-CLUB(X1;X2∣Y ) = Ep(y) [Ex1,x+2∼p(x1,x2∣y) [f
∗(x1, x

+
2 , y)] −Ex1∼p(x1∣y)

x−2∼p(x2∣y)

[f∗(x1, x
−
2 , y)]]

(4.14)

These two bounds result in conditional CL objectives [397, 612, 618] - they differ critically
from standard CL methods since they capture task-irrelevant shared information that remains
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Figure 4.3: Estimated INCE lower bound [453] and our proposed upper bound INCE-CLUB on sample
distributions with changing mutual information: our upper bound is tighter, more accurate, and more stable
than ICLUB upper bound [110], and also comes for ‘free’ via jointly estimating both lower and upper
bounds simultaneously. We find that as dimension increases, the ICLUB estimator collapses to zero and no
longer tracks true MI.

between X1 and X2 after observing Y . This task-irrelevant shared information is removed
by minimizing its upper bound. Note that f(x1, x2, y) here denotes a different function from
f(x1, x2) in Eq.(4.10), as the general forms are different (taking in x1, x2 versus x1, x2, y).
f(x1, x2, y) can be implemented in different ways, e.g., g([x1, y])Th(x2) where g(), h() are
trainable encoders and [x1, y] denotes concatenation [561].

4.3.2 Self-supervised FACTORCL via multimodal augmentations
The derivations above bring about supervised CL objectives with access to Y [300]. For unsu-
pervised CL [453, 605], we derive similar objectives without access to Y by leveraging semantic
augmentations on each modality. Denote X ′ as some augmentation of X (e.g., rotating, shifting,
or cropping). Under the optimal augmentation assumption from Tian et al. [605] (restated below),
replacing Y with X ′ in our formulations enables learning of task-relevant information without
access to labels:
Definition 3. (Optimal unimodal augmentation) [605] X ′

1 is an optimal unimodal augmentation
for X1 when I(X;X ′) = I(X;Y ), which implies that the only information shared between X
and X ′ is task-relevant with no irrelevant noise.

This assumption is satisfied when all information shared between X and X ′ is task-relevant,
which implies that the augmentation keeps task-relevant information constant while changing
task-irrelevant information. In the case of image classification, task-relevant information is the
object in the picture, while task-irrelevant information is the background. By performing two
separate unimodal augmentations giving X ′

1 and X ′
2, we can substitute contrastive estimators in

Eqs.(4.13) and (4.14), by replacing I(Xi;Y ) terms with I(Xi;X ′
i) and replacing I(X1;X2∣Y )

terms with I(X1;X2∣X ′
1,X

′
2):

INCE(X1;X2∣X
′
1,X

′
2) = Ep(x′1,x′2)

⎡
⎢
⎢
⎢
⎢
⎣

Ex1,x+2∼p(x1,x2∣x′1,x′2)
x−2∼p(x2∣x

′
1,x

′
2)

[log
exp f(x1, x

+
2 , x

′
1, x

′
2)

∑k exp f(x1, x−2 , x
′
1, x

′
2)

]

⎤
⎥
⎥
⎥
⎥
⎦

(4.15)

INCE-CLUB(X1;X2∣X
′
1,X

′
2) = Ep(x′1,x′2)[Ex1,x+2∼p(x1,x2∣x′1,x′2)[f

∗
(x1, x

+
2 , x

′
1, x

′
2)]

−Ex1∼p(x1∣x′1,x′2)
x−2∼p(x2∣x

′
1,x

′
2)

[f∗(x1, x
−
2 , x

′
1, x

′
2)]] (4.16)



The objectives can be seen as conditional contrastive learning on augmentations (X ′
1,X

′
2). Here

again f(x1, x2, x′1, x
′
2) is different from the critics in Eqs.(4.13 because of the different general

forms. We implement f() here as g([x1, x′1])Th([x2, x′2]) where g(), h() are trainable encoders
specific for each modality and [x1, x′1] denotes concatenation. This concatenation is justified
by the CMI estimators in Sordoni et al. [561], who show that concatenating the conditioning
variable with the input in the critic f(x1, x2, x′1, x

′
2) yields a Conditional InfoNCE estimator

(Eq.(4.15)) that is a lower bound for CMI. However, the exact Conditional InfoNCE estimator
learns a different conditional distribution p(x1, x2∣x′1, x′2) for each augmented pair x′1, x

′
2, which

can be prohibitively expensive. We could approximate this by creating multiple augmentations
of a single paired x1, x2. Our code uses one augmented pair x′1, x

′
2 for each x1, x2 but could be

extended to multiple pairs, and we find this simple approach yields consistent CMI lower and
upper bounds that are empirically comparable to existing CMI estimators [430, 561]. We include
full comparisons and implementation details in the full paper [374].

Figure 4.4: Standard vs. unique augmentations
for the figurative language [700] dataset. Af-
ter augmenting text modality X1 independently
(same for both augmentation types), we illus-
trate their differences for image augmentation:
unique augmentation on images should avoid re-
moving information referred to by X1 (the text).
The text mentions that the car is fast so unique
augmentation for images should not remove the
highway pixels of the image which can suggest
the car is fast.

Although we find this method to work well in
practice, a more careful analysis reveals that 2 sepa-
rate unimodal augmentations X ′

1 and X ′
2 each satis-

fying I(Xi;X ′
i) = I(Xi;Y ) do not together satisfy

I(X1;X2∣Y ) = I(X1;X2∣X ′
1,X

′
2) needed for the

substitution in Eqs.(4.15) and (4.16) to hold with
equality. To satisfy this property exactly, we define
optimal multimodal augmentations:
Definition 4. (Optimal multimodal augmentation)
X ′

1 and X ′
2 are optimal multimodal augmenta-

tion for X1 and X2 when I(X1,X2;X ′
1,X

′
2) =

I(X1,X2;Y ), which implies that the only infor-
mation shared between X1,X2 and X ′

1,X
′
2 is task-

relevant with no irrelevant noise.
We satisfy I(X1,X2;X ′

1,X
′
2) = I(X1,X2;Y )

using two steps:

Unimodal aug: X ′
1 s.t. I(X1;X ′

1) = I(X1;Y ),
(4.17)

Unique aug: X ′
2 s.t. I(X2;X ′

2∣X1) = I(X2;Y ∣X1).
(4.18)

We call the second step unique augmentation: after
observing X1, we create augmented X ′

2 from X2 to
keep task-relevant information not already in X1.
To empirically satisfy optimal multimodal augmen-
tations, we avoid augmentations in one modality
that will remove or strongly destroy information
shared with the other modality. For example, in
image captioning, we should avoid image augmen-
tations such as cropping that destroy information



Algorithm 1 Standard multimodal CL.
Require: Multimodal dataset {X1,X2}.

Initialize networks f(⋅).
while not converged do

for sampled batch {x1,x2} do
Estimate INCE(X1;X2) from Eq.
4.10
L = −INCE(X1;X2)
Update f(⋅) to minimize L

end for
end while
return f(⋅)

Algorithm 2 FACTORCL.
Require: Multimodal dataset {X1,X2}.

Initialize networks f(⋅).
while not converged do

for sampled batch {x1,x2} do
x′

1 ← Augment(x1)
x′

2 ← Unique-Augment(x2∣x1)
Plug x′

1 and x′
2 into Eq. 4.15 and 4.16

Estimate S,U1,U2 from Eq. 4.8 and
4.9
L = −(S +U1 +U2)
Update f(⋅) to minimize L

end for
end while
return f(⋅)

from the caption (e.g., cropping object parts referred
to by the caption), and instead, only augment images via flipping or color jittering which retains
all caption information. Figure 4.4 shows an example of unique augmentation that satisfies these
conditions. In our experiments, we will show that our augmentations consistently perform better
than standard augmentations (Table 4.3), suggesting that approximately satisfying Eqs.(4.17)
and (4.18) can be empirically sufficient, which is simple and straightforward to implement on
real-world datasets.

4.3.3 Overall method and implementation

The final algorithm sketch is in Algorithm 2, which we compare against standard CL in Algo-
rithm 1. It can be shown that FACTORCL learns all the task-relevant information from both
modalities:

Theorem 3. (Optimality of FACTORCL) If ZS1 , ZS2 , ZU1 , ZU2 perfectly maximize Eqs.(4.6-4.7)
and the estimations in Eqs.(4.8) and (4.9) are tight, we obtain I(X1,X2;Y ) = I(ZS1 ;ZS2 ;Y ) +
I(ZU1 ;Y ∣ZS2) + I(ZU2 ;Y ∣ZS1), suggesting that FACTORCL learns both shared and unique
task-relevant information.

We include the full proof in the full paper [374]. In practice, while we do not expect perfect
estimation of MI quantities and maximization with respect to MI objectives, we show that our
method still improves empirical performance on several real-world datasets.

Complexity: Compared to heuristic combinations of cross-modal and single-modality CL [258,
278, 337, 534, 646, 688, 709], our approach does not significantly increase complexity: (1) upper
bounds on MI can be estimated “for free” by directly plugging in the optimal critic from INCE, (2)
removal of task-irrelevant information via I(X1;X2∣X ′

1,X
′
2) shares encoders with INCE, and (3)

separate unimodal augmentations perform empirically well.



Table 4.1: We probe whether contrastive representations learned by classic CL methods and FACTORCL
contain shared ws or unique w1,w2 information. FACTORCL captures the most unique information.

Model SimCLR Cross+self SupCon FACTORCL
Representations Z1 Z2 Z1 Z2 Z1 Z2 ZU1 ZU2 ZS1 ZS2

I(Z;w1) 4.45 0.16 4.39 0.14 5.17 0.19 7.83 0.03 6.25 0.04
I(Z;w2) 0.17 3.92 0.13 4.26 0.23 5.17 0.06 7.17 0.05 5.79
I(Z;ws) 12.61 12.06 11.30 11.47 7.48 7.17 9.47 9.89 10.13 9.40

4.4 Experiments
We run comprehensive experiments on a suite of synthetic and large-scale real-world datasets with
varying requirements of shared and unique task-relevant information, comparing our FACTORCL
method to key baselines:
1. SimCLR [103]: the straightforward method of cross-modal (X1,X2) contrastive learning.
2. Cross+Self [258, 278, 337, 534, 688, 709]: captures a range of methods combining cross-

modal (X1,X2) CL with additional unimodal (Xi,X ′
i) CL objectives. This category also

includes other ways of preserving unique information, such as through (variational) autoencoder
reconstructions [646].

3. Cross+Self+Fact [689, 709]: A factorized extension of Cross+Self, which is approximately
done in prior work that adds separate (typically pre-trained) unimodal encoders for each
modality.

4. SupCon [300], which learns I(X1;X2∣Y ) using CL conditioned on Y from labeled data.
We also carefully ablate each component of our method and investigate factors, including training
data size and choice of augmentations. The intermediate ablations that emerge include:
1. FACTORCL-SUP: The supervised CL version which uses labels Y in Eqs.(4.13) and (4.14).
2. FACTORCL-SSL: The fully self-supervised version of our approach replacing Y with multi-

modal augmentations X ′
1 and X ′

2 to approximate the task.
3. OurCL-SUP: FACTORCL-SUP but removing the factorization so only two features Z1 is

optimized for both I(X1;X2;Y ) and I(X1;Y ∣X2), Z2 optimized for both I(X1;X2;Y ) and
I(X2;Y ∣X1).

4. OurCL-SSL: FACTORCL-SSL but also removing the factorization in the self-supervised
setting.

The formulation of each ablation and implementation can be found in the full paper [374].

4.4.1 Controlled experiments on synthetic datasets
Synthetic data generation: We begin by generating data with controllable ratios of task-relevant
shared and unique information. Starting with a set of latent vectors w1,w2,ws ∼ N (0d,Σ2

d), d = 50
representing information unique to X1,X2 and common to both respectively, the concatenated
vector [w1,ws] is transformed into high-dimensional x1 using a fixed transformation T1 and
likewise [w2,ws] to x2 via T2. The label y is generated as a function (with nonlinearity and noise)
of varying ratios of ws, w1, and w2 to represent shared and unique task-relevant information.

Results: In Figure 9.1, we show our main result on synthetic data comparing FACTORCL
with existing CL baselines. FACTORCL consistently maintains the best performance, whereas
SimCLR [103] and SupCon [300] see performance drops as unique information increases.
Cross+Self [258, 278, 337, 709] recovers in fully unique settings (x-axis= 1.0) but suffers at
other ratios.



Representation probing information: We run a probing experiment to compute how well
different contrastive representations capture shared and unique information. In Table 4.1, for
the Zi’s learned by each method, we approximately compute I(Zi;w1), I(Zi;w2), and I(Zi;ws)
with respect to ground truth generative variables ws, w1, and w2. As expected, existing methods
such as SimCLR capture smaller amounts of unique information (roughly 4 bits in I(Zi;w1)
and I(Zi;w2)), focusing instead on learning I(Zi;ws) (12 bits). Cross+self captures slightly
larger I(Zi;w2) = 4.26, and SupCon with labeled data captures up to 5 bits of unique information.
Our FACTORCL approach captures 7 bits of unique information and maintains 10 bits of shared
information, with total information captured higher than the other approaches. Furthermore,
{ZS1 , ZS2} capture more information about ws, ZU1 about w1, and ZU2 about w2, indicating that
factorization in our approach is successful.

4.4.2 Self-supervised learning with low redundancy and high uniqueness
Multimodal fusion datasets: We use a large collection of real-world datasets provided in Multi-
Bench [367], where we expect varying ratios of shared and unique information important for the
task, to compare FACTORCL with other CL baselines:
1. MIMIC [286]: mortality and disease prediction from 36,212 medical records (tabular patient

data and medical time-series sensors from ICU).
2. MOSEI [717]: multimodal sentiment and emotion benchmark with 23,000 monologue videos.
3. MOSI [710]: multimodal sentiment analysis from 2,199 YouTube videos.
4. UR-FUNNY [225]: a dataset of humor detection from more than 16,000 TED talk videos.
5. MUSTARD [83]: a corpus of 690 videos for research in sarcasm detection from TV shows.
6. IRFL [700]: 6,697 matching images and figurative captions (rather than literal captions).
Together, these datasets cover seven different modalities from the healthcare, affective computing,
and multimedia research areas and total more than 84,000 data points. For MIMIC with tabular
and medical sensor inputs, we train self-supervised CL models on top of raw modality inputs.
For IRFL with image and caption inputs, we start with a pretrained CLIP model [497] and
perform continued pre-training to update CLIP weights with our FACTORCL objectives, before
linear classifier testing. For the remaining four video datasets, we train self-supervised CL
models starting from standard pre-extracted text, video, and audio features [367]. Please refer
to the full paper [374] for experimental details. We release our code and models at https:
//github.com/pliang279/FactorCL.

Multimodal fusion results: From Table 4.2, FACTORCL significantly outperforms the base-
lines that do not capture both shared and unique information in both supervised and self-supervised
settings, particularly on MUSTARD (where unique information expresses sarcasm, such as sar-
donic facial expressions or ironic tone of voice), and on MIMIC (with unique health indicators
and sensor readings). In Table 4.3, we also show that FACTORCL substantially improves the
state-of-the-art in classifying images and figurative captions which are not literally descriptive
of the image on IRFL, outperforming zero-shot and fine-tuned CLIP [497] as well as continued
pre-training baselines on top of CLIP.

Modeling ablations: In Table 4.2, we also carefully ablate each component in our method
and indicate either existing baselines or newly-run ablation models.
1. Factorized representations: In comparing FACTORCL-SSL with OurCL-SSL, and also FAC-

https://github.com/pliang279/FactorCL
https://github.com/pliang279/FactorCL


Table 4.2: Results on MultiBench [367] datasets with varying shared and unique information: FACTORCL
achieves strong results vs self-supervised (top 5 rows) and supervised (bottom 3 rows) baselines that do not
have unique representations, factorization, upper-bounds to remove irrelevant information, and multimodal
augmentations.

Model (X1;X2) (Xi;X
′
i) (X1;X2∣Y ) (X′′

2 ) Fact MIMIC MOSEI MOSI UR-FUNNY MUSTARD
SimCLR [103] 3 7 7 7 7 66.67% 71.03% 46.21% 50.09% 53.48%
Cross+Self [646] 3 3 7 7 7 65.20% 71.04% 46.92% 56.52% 53.91%
Cross+Self+Fact [709] 3 3 7 7 3 65.49% 71.07% 52.37% 59.91% 53.91%
OurCL-SSL 3 3 3 3 7 65.22% 71.16% 48.98% 58.79% 53.98%
FACTORCL-SSL 3 3 3 3 3 67.34% 74.88% 52.91% 60.50% 55.80%
SupCon [300] 7 7 3 7 7 67.37% 72.71% 47.23% 50.98% 52.75%
OurCL-SUP 3 3 3 7 7 68.16% 71.15% 65.32% 58.32% 65.05%
FACTORCL-SUP 3 3 3 7 3 76.79% 77.34% 70.69% 63.52% 69.86%

TORCL-SUP with OurCL-SUP, we find that factorization is critical: without it, performance
drops on average 6.1%, with performance drop as high as 8.6% for MIMIC.

2. Information removal via upper bound: By comparing FACTORCL with SimCLR, Cross+Self,
and Cross+Self+Fact, and SupCon that only seek to capture task-relevant information via
contrastive lower bounds on MI, we find that separately modeling the task-relevant information
(to be captured) and task-irrelevant information (to be removed) is helpful. Without remov-
ing task-irrelevant information via the upper-bound objective, performance drops on average
13.6%, with performance drops as high as 23.5% for the MOSI dataset. We also found that
training was more difficult without this objective, which is expected due to overwhelming
superfluous information from the dataset [717].

3. Multimodal augmentations: Finally, we investigate the differences between separate uni-
modal augmentations (FACTORCL-IndAug in Table 4.3) versus a joint multimodal augmen-
tation (FACTORCL-SSL) on the IRFL dataset. We choose this dataset since its images and
captions are the easiest to visualize (see Figure 4.4 for augmentations from both strategies). In
the self-supervised setting, we find that multimodal augmentations achieve 95% performance,
higher than the 92% for separate unimodal augmentations, and both outperform baselines
SimCLR and Cross+Self.

Table 4.3: Continued pre-
training on CLIP with our FAC-
TORCL objectives on classifying
images and figurative language.

Task IRFL
Zero-shot CLIP [497] 89.15%
SimCLR [103] 91.57%
Cross+Self [646, 709] 95.18%
FACTORCL-IndAug 92.77%
FACTORCL-SSL 95.18%
Fine-tuned CLIP [497] 96.39%
SupCon [300] 89.16%
FACTORCL-SUP 98.80%

Ablations on S,U1 and U2: In Table 4.4, we also test FAC-
TORCL when training linear classifiers on top of only shared
{ZS1 , ZS2} and unique ZU1 , ZU2 separately. We call these models
FACTORCL-S, FACTORCL-U1, and FACTORCL-U2. Immedi-
ately, we observe that performance drops as compared to the full
FACTORCL model, indicating that both shared and unique infor-
mation are critical in real-world multimodal tasks. As expected,
the best-performing submodel is the one that captures the region
with the largest amount of task-relevant information: MOSEI
and MOSI are known to include a lot of redundancy and unique
information since language is very important for detecting sen-
timent [717], so FACTORCL-S and FACTORCL-U2 perform best.
For sarcasm detection on MUSTARD, video information is most
important with FACTORCL-U1 performing best (59.4%), and ablation models are also the furthest
away from full multimodal performance (69.9%). This is aligned with intuition where sarcasm



Table 4.4: We ablate using only shared representations {ZS1 , ZS2}, unique representation ZU1 , and ZU2

separately for prediction. Both shared and unique information are critical in real-world multimodal tasks.

Model MIMIC MOSEI MOSI UR-FUNNY MUSTARD
FACTORCL-S 63.77% 77.17% 70.12% 63.42% 57.25%
FACTORCL-U1 55.90% 77.06% 70.11% 62.00% 59.42%
FACTORCL-U2 69.08% 71.01% 52.33% 54.35% 53.62%
FACTORCL-SUP 76.79% 77.34% 70.69% 63.52% 69.86%

is expressed through tone of voice and visual gestures (high U1), as well as from contradictions
between language and video (higher multimodal performance).

4.5 Related Work
Contrastive learning is a successful self-supervised learning paradigm for computer vision [82,
103, 106, 211, 229, 453], natural language [188, 416, 438], speech [42, 453, 527], and multimodal
tasks [15, 285, 497]. Its foundational underpinnings are inspired by work in multiview information
theory [173, 300, 563, 605, 616] studying the shared information between two views and whether
they are necessary or sufficient in predicting the label. Recently, Wang et al. [646] and Kahana and
Hoshen [290] discuss the limitations of assuming multiview redundancy and propose autoencoder
reconstruction or unimodal contrastive learning to retain unique information, which resembles the
Cross+self baselines in our experiments. We refer the reader to Shwartz-Ziv and LeCun [547] for a
comprehensive review on multiview and contrastive learning. Our work also relates to conditional
contrastive learning [112, 397, 618, 696], where positive or negative pairs are supposed to sample
from conditional distributions.

Multimodal contrastive learning aims to align related data from different modalities, typ-
ically provided as positive pairs. This could be done via optimizing a contrastive objective for
inter-modality pairs [15, 17, 285, 497], or both intra- and inter-modality data pairs [258, 278,
303, 337, 709]. Our work also relates to factorized representation learning, which primarily
studies how to capture modality-specific information primarily in each modality and multimodal
information redundant in both modalities [249, 614]. Prior work has used disentangled latent
variable models [57, 238, 249, 614], mixture-of-experts [544], or product-of-experts [668] layer
to explain factors in multimodal data.

Information theory [125, 535] has been used to study several phenomena in multimodal
learning, including co-learning [499, 716] and multi-view learning [261, 616]. Due to its the-
oretical importance, several lower and upper bounds have been proposed for practical estima-
tion [453, 458, 487, 669]. We build on the CLUB upper bound [110] to create a more accurate
and stable bound. Our characterizations of shared and unique information are also related to
partial information decomposition [662], co-information [51, 635], interaction information [412],
and cross-domain disentanglement [269] research.

4.6 Conclusion
This paper studied how standard CL methods suffer when task-relevant information lies in regions
unique to each modality, which is extremely common in real-world applications such as sensor



placement, medical testing, and multimodal interaction. In response, we proposed FACTORCL, a
new method expanding CL techniques through the use of factorized representations, removing
task-irrelevant information via upper bounds on MI, and multimodal data augmentations suitable
for approximating the unobserved task. Based on FACTORCL’s strong performance, there are
several exciting directions in extending these ideas for masked and non-contrastive pre-training.



Chapter 5

Quantifying Multimodal Interactions in
Trained Models

5.1 Introduction
Using our foundation of multimodal interactions, we now present our work in model quantification:
visualizing and understanding the internal modeling of multimodal interactions in trained models.
As multimodal models are increasingly deployed in real-world applications, it has become
increasingly important to quantify and understand their internal mechanics [205, 371, 465] as a
step towards accurately benchmarking their limitations for more reliable deployment [231, 274].
However, modern multimodal models are typically black-box neural networks, such as pretrained
transformers [348, 390], which makes understanding what interactions they learn difficult.

As a step in interpreting multimodal models, this paper introduces an analysis and visualization
method called MULTIVIZ (see Figure 5.1). To tackle the challenges of visualizing model behavior,
we scaffold the problem of interpretability into 4 stages: (1) unimodal importance: identifying the
contributions of each modality towards downstream modeling and prediction, (2) cross-modal
interactions: uncovering the various ways in which different modalities can relate with each
other and the types of new information possibly discovered as a result of these relationships,
(3) multimodal representations: how unimodal and cross-modal interactions are represented in
decision-level features, and (4) multimodal prediction: how decision-level features are composed
to make a prediction for a given task. In addition to including current approaches for unimodal
importance [205, 417, 508] and cross-modal interactions [235, 396], we additionally propose new
methods for interpreting cross-modal interactions, multimodal representations, and prediction to
complete these stages in MULTIVIZ. By viewing multimodal interpretability through the lens
of these 4 stages, MULTIVIZ contributes a modular and human-in-the-loop visualization toolkit
for the community to visualize popular multimodal datasets and models as well as compare with
other interpretation perspectives, and for stakeholders to understand multimodal models in their
research domains.

MULTIVIZ is designed to support many modality inputs while also operating on diverse
modalities, models, tasks, and research areas. Through experiments on 6 real-world multimodal
tasks (spanning fusion, retrieval, and question-answering), 6 modalities, and 8 models, we show
that MULTIVIZ helps users gain a deeper understanding of model behavior as measured via a
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Figure 5.1: Left: We scaffold the problem of multimodal interpretability and propose MULTIVIZ, a
comprehensive analysis method encompassing a set of fine-grained analysis stages: (1) unimodal impor-
tance identifies the contributions of each modality, (2) cross-modal interactions uncover how different
modalities relate with each other and the types of new information possibly discovered as a result of
these relationships, (3) multimodal representations study how unimodal and cross-modal interactions
are represented in decision-level features, and (4) multimodal prediction studies how these features are
composed to make a prediction. Right: We visualize multimodal representations through local and global
analysis. Given an input datapoint, local analysis visualizes the unimodal and cross-modal interactions
that activate a feature. Global analysis informs the user of similar datapoints that also maximally activate
that feature, and is useful in assigning human-interpretable concepts to features by looking at similarly
activated input regions (e.g., the concept of color).

proxy task of model simulation. We further demonstrate that MULTIVIZ helps human users assign
interpretable language concepts to previously uninterpretable features and perform error analysis
on model misclassifications. Finally, using takeaways from error analysis, we present a case
study of human-in-the-loop model debugging. Overall, MULTIVIZ provides a practical toolkit for
interpreting multimodal models for human understanding and debugging. MULTIVIZ datasets,
models, and code are at https://github.com/pliang279/MultiViz.

5.2 MULTIVIZ: Visualizing & Understanding Multimodal Models
This section presents MULTIVIZ, our proposed analysis framework for analyzing the behavior
of multimodal models. As a general setup, we assume multimodal datasets take the form
D = {(x1,x2, y)ni=1} = {(x(1)

1 , x
(2)
1 , ..., x

(1)
2 , x

(2)
2 , ..., y)ni=1}, with boldface x denoting the entire

modality, each x1, x2 indicating modality atoms (i.e., fine-grained sub-parts of modalities that
we would like to analyze, such as individual words in a sentence, object regions in an image,
or time-steps in time-series data), and y denoting the label. These datasets enable us to train a
multimodal model ŷ = f(x1,x2; θ) which we are interested in visualizing.

Modern parameterizations of multimodal models f are typically black-box neural networks,
such as multimodal transformers [232, 613] and pretrained models [348, 390]. How can we
visualize and understand the internal modeling of multimodal information and interactions in these
models? Having an accurate understanding of their decision-making process would enable us to
benchmark their opportunities and limitations for more reliable real-world deployment. However,
interpreting f is difficult. In many multimodal problems, it is useful to first scaffold the problem

https://github.com/pliang279/MultiViz
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Figure 5.2: Examples of cross-modal interactions discovered by our proposed second-order gradient
approach: first taking a gradient of model f with respect to an input word (e.g., x1 = birds), before taking a
second-order gradient with respect to all image pixels (highlighted in green) or bounding boxes (in red
boxes) x2 indeed results in all birds in the image being highlighted.

of interpreting f into several intermediate stages from low-level unimodal inputs to high-level
predictions, spanning unimodal importance, cross-modal interactions, multimodal representations,
and multimodal prediction. Each of these stages provides complementary information on the
decision-making process (see Figure 5.1). We now describe each step in detail and propose
methods to analyze each step.

5.2.1 Unimodal importance (U)
Unimodal importance aims to understand the contributions of each modality towards modeling
and prediction. It builds upon ideas of gradients [40, 165, 548] and feature attributions (e.g.,
LIME [508], Shapley values [417]). We implement unimodal feature attribution methods as a
module UNI(fθ, y,x) taking in a trained model fθ, an output/feature y which analysis is performed
with respect to, and the modality of interest x. UNI returns importance weights across atoms x of
modality x.

5.2.2 Cross-modal interactions (C)
Cross-modal interactions describe various ways in which atoms from different modalities can
relate with each other and the types of new information possibly discovered as a result of these
relationships. Recent work [235, 396] has formalized a definition of cross-modal interactions by
building upon literature in statistical non-additive interactions:

Definition 1 (Statistical Non-Additive Interaction [180, 562, 619, 620]). A function f learns a
feature interaction I between 2 unimodal atoms x1 and x2 if and only if f cannot be decomposed
into a sum of unimodal subfunctions g1, g2 such that f(x1, x2) = g1(x1) + g2(x2).

This definition of non-additive interactions is general enough to include different ways that
interactions can happen, including multiplicative interactions from complementary views of the
data (i.e., an interaction term x1Wx2 [283]), or cooperative interactions from equivalent views
(i.e., an interaction term majority(f(x1), f(x2)) [146]). Using this definition, MULTIVIZ first
includes two recently proposed methods for understanding cross-modal interactions: EMAP [235]
decomposes f(x1, x2) = g1(x1)+g2(x2)+g12(x1, x2) into strictly unimodal representations g1, g2,
and cross-modal representation g12 = f − Ex1(f) − Ex2(f) + Ex1,x2(f) to quantify the degree
of global cross-modal interactions across an entire dataset. DIME [396] further extends EMAP



using feature visualization on each disentangled representation locally (per datapoint). However,
these approaches require approximating expectations over modality subsets, which may not scale
beyond 2 modalities. To fill this gap, we propose an efficient approach for visualizing these
cross-modal interactions by observing that the following gradient definition directly follows from
Definition 1:

Definition 2 (Gradient definition of statistical non-additive interaction). A function f exhibits

non-additive interactions among 2 unimodal atoms x1 and x2 if Ex1,x2 [
∂2f(x1,x2)
∂x1∂x2

]
2
> 0.

Taking a second-order gradient of f zeros out the unimodal terms g1(x1) and g2(x2) and
isolates the interaction g12(x1, x2). Theoretically, second-order gradients are necessary and
sufficient to recover cross-modal interactions: purely additive models will have strictly 0 second-

order gradients so Ex1,x2 [
∂2f(x1,x2)
∂x1∂x2

]
2
= 0, and any non-linear interaction term g12(x1, x2)

has non-zero second-order gradients since g cannot be a constant or unimodal function, so

Ex1,x2 [
∂2f(x1,x2)
∂x1∂x2

]
2
> 0.

Definition 2 inspires us to extend first-order gradient and perturbation-based approaches [221,
508, 701] to the second order. Our implementation first computes a gradient of f with respect
to a modality atom which the user is interested in querying cross-modal interactions for (e.g.,
x1 = birds), which results in a vector ∇1 = ∂f

∂x1
of the same dimension as x1 (i.e., token embedding

dimension). We aggregate the vector components of ∇1 via summation to produce a single scalar
∥∇1∥, before taking a second-order gradient with respect to all atoms of the second modality

x2 ∈ x2 (e.g., all image pixels), which results in a vector ∇12 = [ ∂2f

∂x1∂x
(1)
2

, ..., ∂2f

∂x1∂x
(∣x2 ∣)
2

] of the

same dimension as x2 (i.e., total number of pixels). Each scalar entry in ∇12 highlights atoms x2

that have non-linear interactions with the original atom x1, and we choose the x2’s with the largest
magnitude of interactions with x1 (i.e., which highlights the birds in the image, see Figure 5.2 for
examples on real datasets). We implement a general module CM(fθ, y, x1,x2) for cross-modal
visualizations, taking in a trained model fθ, an output/feature y, the first modality’s atom of
interest x1, and the entire second modality of interest x2, before returning importance weights
across atoms x2 of modality x2.

5.2.3 Multimodal representations
Given these highlighted unimodal and cross-modal interactions at the input level, the next stage
aims to understand how these interactions are represented at the feature representation level.
Specifically, given a trained multimodal model f , define the matrix Mz ∈ RN×d as the penultimate
layer of f representing (uninterpretable) deep feature representations implicitly containing infor-
mation from both unimodal and cross-modal interactions. For the ith datapoint, z =Mz(i) collects
a set of individual feature representations z1, z2, ..., zd ∈ R. We aim to interpret these feature
representations through both local and global analysis (see Figure 5.1 (right) for an example):

Local representation analysis (R`) informs the user on parts of the original datapoint that
activate feature zj . To do so, we run unimodal and cross-modal visualization methods with respect
to feature zj (i.e., UNI(fθ, zj,x), CM(fθ, zj, x1,x2)) in order to explain the input unimodal and
cross-modal interactions represented in feature zj . Local analysis is useful in explaining model
predictions on the original datapoint by studying the input regions activating feature zj .
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Figure 5.3: MULTIVIZ provides an interactive visualization API across multimodal datasets and models.
The overview page shows general unimodal importance, cross-modal interactions, and prediction weights,
while the features page enables local and global analysis of specific user-selected features.

Global representation analysis (Rg) provides the user with the top k datapoints Dk(zj) =
{(x1,x2, y)ki=(1)} that also maximally activate feature zj . By further unimodal and cross-modal
visualizations on datapoints in Dk(zj), global analysis is especially useful in helping humans
assign interpretable language concepts to each feature by looking at similarly activated input
regions across datapoints (e.g., the concept of color in Figure 5.1, right). Global analysis can also
help to find related datapoints the model also struggles with for error analysis.

5.2.4 Multimodal prediction (P)
Finally, the prediction step takes the set of feature representations z1, z2, ..., zd and composes them
to form higher-level abstract concepts suitable for a task. We approximate the prediction process
with a linear combination of penultimate layer features by integrating a sparse linear prediction
model with neural network features [666]. Given the penultimate layer Mz ∈ RN×d, we fit a linear
model E (Y ∣X = x) =M⊺

z β (bias β0 omitted for simplicity) and solve for sparsity using:

β̂ = arg min
β

1

2N
∥M⊺

z β − y∥2
2 + λ1∥β∥1 + λ2∥β∥2

2. (5.1)

The resulting understanding starts from the set of learned weights with the highest non-zero co-
efficients βtop = {β(1), β(2), ...} and corresponding ranked features ztop = {z(1), z(2), ...}. βtop tells
the user how features ztop are composed to make a prediction, and ztop can then be visualized with
respect to unimodal and cross-modal interactions using the representation stage (Section 5.2.3).

5.2.5 Putting everything together
We summarize these proposed approaches for understanding each step of the multimodal process
and show the overall MULTIVIZ user interface in Figure 5.3. This interactive API enables users to
choose multimodal datasets and models and be presented with a set of visualizations at each stage,
with an overview page for general unimodal importance, cross-modal interactions, and prediction
weights, as well as a feature page for local and global analysis of user-selected features (see full
paper [375] for details).



Table 5.1: MULTIVIZ enables fine-grained analysis across 6 datasets spanning 3 research areas, 6 input
modalities (`: language, i: image, v: video, a: audio, t: time-series, ta: tabular), and 8 models.

Area Dataset Model Modalities # Samples Prediction task

Fusion
CMU-MOSEI MULT {`, v, a}→ y 22,777 sentiment, emotions

MM-IMDB LRTF {`, i}→ y 25,959 movie genre classification
MIMIC LF {t, ta}→ y 36,212 mortality, ICD-9 codes

Retrieval FLICKR-30K VILT `↔ i 158,000 image-caption retrieval
FLICKR-30K CLIP `↔ i 158,000 image-caption retrieval

QA
CLEVR CNN-LSTM-SA {i, `}→ y 853,554 QA
CLEVR MDETR {i, `}→ y 853,554 QA
VQA 2.0 LXMERT {i, `}→ y 1,100,000 QA

5.3 Experiments
Our experiments are designed to verify the usefulness and complementarity of the 4 MULTIVIZ

stages. We start with a model simulation experiment to test the utility of each stage towards
overall model understanding (Section 5.3.1). We then dive deeper into the individual stages
by testing how well MULTIVIZ enables representation interpretation (Section 5.3.2) and error
analysis (Section 5.3.3), before presenting a case study of model debugging from error analysis
insights (Section 5.3.4). We showcase the following selected experiments and defer results on
other datasets to the full paper [375].

Setup: We use a large suite of datasets from MultiBench [367] which span real-world
fusion [32, 287, 717], retrieval [485], and QA [206, 289] tasks. For each dataset, we test a corre-
sponding state-of-the-art model: MULT [613], LRTF [388], LF [46], VILT [307], CLIP [497],
CNN-LSTM-SA [289], MDETR [292], and LXMERT [588]. These cover models both pre-
trained and trained from scratch. We summarize all 6 datasets and 8 models tested in Table 5.1,
and provide more details in the full paper [375].

5.3.1 Model simulation
We first design a model simulation experiment to determine if MULTIVIZ helps users of multi-
modal models gain a deeper understanding of model behavior. If MULTIVIZ indeed generates
human-understandable explanations, humans should be able to accurately simulate model pre-
dictions given these explanations only, as measured by correctness with respect to actual model
predictions and annotator agreement (Krippendorff’s alpha [316]). To investigate the utility of
each stage in MULTIVIZ, we design a human study to see how accurately 21 humans users (3
users for each of the following 7 local ablation settings) can simulate model predictions:

(1) U: Users are only shown the unimodal importance (U) of each modality towards label y.
(2) U + C: Users are also shown cross-modal interactions (C) highlighted towards label y.
(3) U + C + R`: Users are also shown local analysis (R`) of unimodal and cross-modal

interactions of top features ztop = {z(1), z(2), ...} maximally activating label y.
(4) U + C + R` + Rg: Users are additionally shown global analysis (Rg) through similar

datapoints that also maximally activate top features ztop for label y.
(5) MULTIVIZ (U + C + R` + Rg + P): The entire MULTIVIZ method by further in-

cluding visualizations of the final prediction (P) stage: sorting top ranked feature neurons



Table 5.2: Model simulation: We tasked 15 humans users (3 users for each of the following local ablation
settings) to simulate model predictions based on visualized evidences from MULTIVIZ. Human annotators
who have access to all stages visualized in MULTIVIZ are able to accurately and consistently simulate
model predictions (regardless of whether the model made the correct prediction) with high accuracy and
annotator agreement, representing a step towards model understanding.

Research area QA Fusion Fusion
Dataset VQA 2.0 MM-IMDB CMU-MOSEI
Model LXMERT LRTF MULT
Metric Correctness Agreement Correctness Agreement Correctness Agreement
U 55.0 ± 0.0 0.39 50.0 ± 13.2 0.34 71.7 ± 17.6 0.39
U + C 65.0 ± 5.0 0.50 53.7 ± 7.6 0.51 76.7 ± 10.4 0.45
U + C + R` 61.7 ± 7.6 0.57 56.7 ± 7.6 0.59 78.3 ± 2.9 0.42
U + C + R` + Rg 71.7 ± 15.3 0.61 61.7 ± 7.6 0.43 100.0 ± 0.0 1.00
MULTIVIZ 81.7 ± 2.9 0.86 65.0 ± 5.0 0.60 100.0 ± 0.0 1.00

ztop = {z(1), z(2), ...} with respect to their coefficients βtop = {β(1), β(2), ...} and showing these
coefficients to the user.

Using 20 datapoints per setting, these experiments with 15 users on 3 datasets and 3 models
involve 35 total hours of users interacting with MULTIVIZ, which is a significantly larger-scale
study of model simulation compared to prior work [7, 396, 654].

Quantitative results: We show these results in Table 5.2 and find that having access to
all stages in MULTIVIZ leads to significantly highest accuracy of model simulation on VQA
2.0, along with lowest variance and most consistent agreement between annotators. On fusion
tasks with MM-IMDB and CMU-MOSEI, we also find that including each visualization stage
consistently leads to higher correctness and agreement, despite the fact that fusion models may
not require cross-modal interactions to solve the task [235]. More importantly, humans are able to
simulate model predictions, regardless of whether the model made the correct prediction or not.

To test additional intermediate ablations, we conducted user studies on (6) R` + P (local
analysis on final-layer features along with their prediction weights) and (7) Rg + P (global
analysis on final-layer features along with their prediction weights), to ablate the effect of overall
analysis (U and C) and feature analysis (R` or Rg in isolation). R` + P results in an accuracy
of 51.7 ± 12.6 with 0.40 agreement, while Rg + P gives 71.7 ± 7.6 with 0.53 agreement. Indeed,
these underperform as compared to including overall analysis (U and C) and feature analysis (R`

+ Rg).
Finally, we also scaled to 100 datapoints on VQA 2.0, representing upwards of 10 hours of

user interaction (for the full MULTIVIZ setting), and obtain an overall correctness of 80%, reliably
within the range of model simulation using 20 points (81.7 ± 2.9). Therefore, the sample size of
20 points that makes all experiments feasible is still a reliable sample.

We also conducted qualitative interviews to determine what users found useful in MULTIVIZ:
(1) Users reported that they found local and global representation analysis particularly useful:

global analysis with other datapoints that also maximally activate feature representations were
important for identifying similar concepts and assigning them to multimodal features.

(2) Between Overview (U + C) and Feature (R` + Rg + P) visualizations, users found Feature
visualizations more useful in 31.7%, 61.7%, and 80.0% of the time under settings (3), (4), and (5)
respectively, and found Overview more useful in the remaining points. This means that for each



Table 5.3: Left: Across 15 human users (5 users for each of the following 3 settings), we find that users
are able to consistently assign concepts to previously uninterpretable multimodal features using both local
and global representation analysis. Right: Across 10 human users (5 users for each of the following 2
settings), we find that users are also able to categorize model errors into one of 3 stages they occur in when
given full MULTIVIZ visualizations.

Research area QA
Dataset VQA 2.0
Model LXMERT
Metric Confidence Agree.
R` 1.74 ± 0.52 0.18
R` + Rg (no viz) 3.67 ± 0.45 0.60
R` + Rg 4.50 ± 0.43 0.69

Research area QA QA
Dataset CLEVR VQA 2.0
Model CNN-LSTM-SA LXMERT
Metric Confidence Agree. Confidence Agree.
No viz 2.72 ± 0.15 0.05 2.15 ± 0.70 0.14
MULTIVIZ 4.12 ± 0.45 0.67 4.21 ± 0.62 0.60
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Figure 5.4: Examples of human-annotated concepts using MULTIVIZ on feature representations. We find
that the features separately capture image-only, language-only, and multimodal concepts.

stage, there exists a significant fraction of data points where that stage is most needed.
(3) While it may be possible to determine the prediction of the model with a subset of stages,

having more stages that confirm the same prediction makes them a lot more confident about their
prediction, which is quantitatively substantiated by the higher accuracy, lower variance, and higher
agreement in human predictions. We also include additional experiments in the full paper [375].

5.3.2 Representation interpretation
We now take a deeper look to check that MULTIVIZ generates accurate explanations of multimodal
representations. Using local and global representation visualizations, can humans consistently
assign interpretable concepts in natural language to previously uninterpretable features? We
study this question by tasking 15 human users (5 users for each of the following 3 settings) to
assign concepts to each feature z when given access to visualizations of (1) R` (local analysis
of unimodal and cross-modal interactions in z), (2) R` + Rg (no viz) (including global analysis
through similar datapoints that also maximally activate feature z), and (3) R` + Rg (adding
highlighted unimodal and cross-modal interactions of global datapoints). Using 20 datapoints per
setting, these experiments with 15 users involve roughly 10 total hours of users interacting with
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Figure 5.5: Examples of human-annotated error analysis using MULTIVIZ on multimodal models. Using
all stages provided in MULTIVIZ enables fine-grained classification of model errors (e.g., errors in unimodal
processing, cross-modal interactions, and predictions) for targeted debugging.

MULTIVIZ.
Quantitative results: Since there are no ground-truth labels for feature concepts, we rely on

annotator confidence (1-5 scale) and annotator agreement [316] as a proxy for accuracy. From
Table 5.3 (left), we find that having access to both local and global visualizations are crucial
towards interpreting multimodal features, as measured by higher confidence with low variance in
confidence, as well as higher agreement among users.

Qualitative interviews: We show examples of human-assigned concepts in Figure 5.4. Note
that the 3 images in each box of Figure 5.4 (even without feature highlighting) does constitute a
visualization generated by MULTIVIZ, as they belong to data instances that maximize the value
of the feature neuron (i.e. Rg in stage 3 multimodal representations). Without MULTIVIZ, it
would not be possible to perform feature interpretation without combing through the entire dataset.
Participants also noted that feature visualizations make the decision a lot more confident if its
highlights match the concept. Taking as example Figure 5.4 top left, the visualizations serve to
highlight what the model’s feature neuron is learning (i.e., highlighting the person holding sports
equipment), rather than what category of datapoint it is. If the visualization was different, such as
highlighting the ground, then users would have to conclude that the feature neuron is capturing
‘outdoor ground’ rather than ‘sports equipment’. Similarly, for text highlights (Figure 5.4 top
right), without using MULTIVIZ to highlight ‘counter’, ‘countertop’, and ‘wall’, along with the
image crossmodal interactions corresponding to these entities, one would not be able to deduce
that the feature asks about material - it could also represent ‘what’ questions, or ‘household
objects’, and so on. Therefore, these conclusions can only be reliably deduced with all MultiViz
stages.

5.3.3 Error analysis
We examine a case study of error analysis on trained models. We task 10 human users (5 users for
each of the following 2 settings) to use MULTIVIZ and highlight the errors that a model exhibits



What color are the plastic bins?
Predicted: orange. Correct: blue

What color is the cone?
Predicted: blue. Correct: orange
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Figure 5.6: A case study on model debugging: we task 3 human users to use MULTIVIZ visualizations
and highlight the errors that a pretrained LXMERT model fine-tuned on VQA 2.0 exhibits, and find 2
penultimate-layer neurons highlighting the model’s failure to identify color (especially blue). Targeted
localization of the error to this specific stage (prediction) and representation concept (blue) via MULTIVIZ

enabled us to identify a bug in the popular Hugging Face LXMERT repository.

by categorizing these errors into one of 3 stages: failures in (1) unimodal perception, (2) capturing
cross-modal interaction, and (3) prediction with perceived unimodal and cross-modal information.
Again, we rely on annotator confidence (1-5 scale) and agreement due to lack of ground-truth error
categorization, and compare (1) MULTIVIZ with (2) No viz, a baseline that does not provide any
model visualizations to the user. Using 20 datapoints per setting, these experiments with 10 users
on 2 datasets and 2 models involve roughly 15 total hours of users interacting with MULTIVIZ.
From Table 5.3 (right), we find that MULTIVIZ enables humans to consistently categorize model
errors into one of 3 stages. We show examples that human annotators classified into unimodal
perception, cross-modal interaction, and prediction errors in Figure 5.5.

5.3.4 A case study in model debugging
Following error analysis, we take a deeper investigation into one of the errors on a pretrained
LXMERT model fine-tuned on VQA 2.0. Specifically, we first found the top 5 penultimate-layer
neurons that are most activated on erroneous datapoints. Inspecting these neurons carefully
through MULTIVIZ local and global representation analysis, human annotators found that 2 of
the 5 neurons were consistently related to questions asking about color, which highlighted the
model’s failure to identify color correctly (especially blue). The model has an accuracy of only
5.5% amongst all blue-related points (i.e., either have blue as correct answer or predicted answer),
and these failures account for 8.8% of all model errors. We show examples of such datapoints
and their MULTIVIZ visualizations in Figure 5.6. Observe that the model is often able to capture
unimodal and cross-modal interactions perfectly, but fails to identify color at prediction.

Curious as to the source of this error, we looked deeper into the source code for the entire
pipeline of LXMERT, including that of its image encoder, Faster R-CNN [506]1. We in fact
uncovered a bug in data preprocessing for Faster R-CNN in the popular Hugging Face repository
that swapped the image data storage format from RGB to BGR formats responsible for these
errors. This presents a concrete use case of MULTIVIZ: through visualizing each stage, we

1we used the popular Hugging Face implementation at https://huggingface.co/unc-nlp/
lxmert-vqa-uncased

https://huggingface.co/unc-nlp/lxmert-vqa-uncased
https://huggingface.co/unc-nlp/lxmert-vqa-uncased


were able to (1) isolate the source of the bug (at prediction and not unimodal perception or
cross-modal interactions), and (2) use representation analysis to localize the bug to the specific
color concept. In our full paper [375], we further detail our initial attempt at tackling this error by
using MULTIVIZ analysis to select additional targeted datapoints in an active learning scenario,
which proved to be much more effective (higher improvement with fewer data) as compared to
baselines that add data randomly or via uncertainty sampling [344], which may be of independent
interest.

5.3.5 Additional experiments and takeaways messages
New models: We included results on VILT [307], CLIP [497], and MDETR [292] in the full
paper [375], showing that MULTIVIZ is a general approach that can be quickly applied to new
models. We also study the correlation between performance and cross-modal interactions across
several older and recent models, and find that the ability to capture cross-modal alignment, as
judged by MULTIVIZ, correlates strongly with final task performance.

Sanity checks: In our full paper [375], we show that MULTIVIZ passes the data randomization
and model randomization sanity checks for interpretation approaches [6].

Intermediate-layer features: Finally, we show that MULTIVIZ can be extended to visualize
any intermediate layer, not just the final layer of multimodal models. We showcase a few examples
of R` and Rg on intermediate-layer neurons and discuss several tradeoffs: while they reveal new
visualization opportunities, they run the risk of overwhelming the user with the number of images
they have to see multiplied by dL (d: dimension of each layer, L: number of layers).

5.4 Related Work
Interpretable ML aims to further our understanding and trust of ML models, enable model debug-
ging, and use these insights for joint decision-making between stakeholders and AI [104, 198].
Interpretable ML is a critical area of research straddling machine learning [6], language [597],
vision [548], and HCI [117]. We categorize related work in interpreting multimodal models into:

Unimodal importance: Several approaches have focused on building interpretable compo-
nents for unimodal importance through soft [465] and hard attention mechanisms [101]. When
aiming to explain black-box multimodal models, related work rely primarily on gradient-based
visualizations [40, 165, 548] and feature attributions (e.g., LIME [508], Shapley values [417]) to
highlight regions of the image which the model attends to.

Cross-modal interactions: Recent work investigates the activation patterns of pretrained
transformers [79, 349], performs diagnostic experiments through specially curated inputs [177,
320, 463, 601], or trains auxiliary explanation modules [293, 465]. Particularly related to our
work is EMAP [235] for disentangling the effects of unimodal (additive) contributions from
cross-modal interactions in multimodal tasks, as well as M2Lens [654], an interactive visual
analytics system to visualize multimodal models for sentiment analysis through both unimodal
and cross-modal contributions.

Multimodal representation and prediction: Existing approaches have used language syntax
(e.g., the question in VQA) for compositionality into higher-level features [22, 26, 632]. Similarly,



logical statements have been integrated with neural networks for interpretable logical reason-
ing [203, 586]. However, these are typically restricted to certain modalities or tasks. Finally,
visualizations have also uncovered several biases in models and datasets (e.g., unimodal biases in
VQA questions [24, 75] or gender biases in image captioning [231]). We believe that MULTIVIZ

will enable the identification of biases across a wider range of modalities and tasks.

5.5 Conclusion
This paper proposes MULTIVIZ for analyzing and visualizing multimodal models. MULTIVIZ

scaffolds the interpretation problem into unimodal importance, cross-modal interactions, multi-
modal representations, and multimodal prediction, before providing existing and newly proposed
analysis tools in each stage. MULTIVIZ is designed to be modular (encompassing existing anal-
ysis tools and encouraging research towards understudied stages), general (supporting diverse
modalities, models, and tasks), and human-in-the-loop (providing a visualization tool for human
model interpretation, error analysis, and debugging), qualities which we strive to upkeep by
ensuring its public access and regular updates from community feedback.



Chapter 6

Estimating Multimodal Performance and
Modality Selection

6.1 Introduction
To conclude the first part of this thesis, we provide a guideline for researchers to decide which
modalities to collect that will lead to improved multimodal performance [376]. Specifically, we
study how to quantify interactions in a semi-supervised setting where there is only unlabeled
multimodal data DM = {(x1, x2)} and some labeled unimodal data Di = {(xi, y)} collected
separately for each modality. This multimodal semi-supervised paradigm is reminiscent of
many real-world settings with separate unimodal datasets like visual recognition [140] and text
classification [642], as well as naturally co-occurring multimodal data (e.g., news images and
captions or video and audio), but when labeling them is time-consuming [247, 250] or impossible
due to partially observed modalities [370] or privacy concerns [90]. We want to understand how
the modalities can share, exchange, and create information to inform practitioners whether it is
worth collecting multimodal data and trying multimodal models [283, 372, 712].

Using a precise information-theoretic definition of interactions [59], our key contributions
are the derivations of lower and upper bounds to quantify multimodal interactions in this semi-
supervised setting with only Di and DM . We propose two lower bounds: the first relates in-
teractions with the amount of shared information between modalities, and the second is based
on the disagreement of classifiers trained separately on each modality. Finally, we propose an
upper bound through connections to approximate algorithms for min-entropy couplings [118]. To
validate our bounds, we experiment on both synthetic and large real-world datasets with varying
amounts of interactions. In addition, these theoretical results naturally yield new guarantees
regarding the performance of multimodal models. By analyzing the relationship between inter-
action estimates and downstream task performance assuming optimal multimodal classifiers are
trained on labeled multimodal data, we can closely predict multimodal model performance, before
even training the model itself. These performance estimates also help develop new guidelines for
deciding when to collect additional modality data and select the appropriate multimodal fusion
models. We believe these results shed light on the intriguing connections between multimodal
interactions, modality disagreement, and model performance, and release our code and models at
https://github.com/pliang279/PID.
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6.2 Related Work and Technical Background

6.2.1 Semi-supervised multimodal learning
Let Xi and Y be finite sample spaces for features and labels. Define ∆ to be the set of joint
distributions over (X1,X2,Y). We are concerned with features X1,X2 (with support Xi) and
labels Y (with support Y) drawn from some distribution p ∈ ∆. We denote the probability
mass function by p(x1, x2, y), where omitted parameters imply marginalization. Many real-
world applications such as multimedia and healthcare naturally exhibit multimodal data (e.g.,
images and captions, video and audio, multimodal medical readings) which are difficult to
label [370, 497, 551, 703, 721]. As such, rather than the full distribution from p, we only have
partial datasets:
• Labeled unimodal data D1 = {(x1, y) ∶ X1 × Y}, D2 = {(x2, y) ∶ X2 × Y}.
• Unlabeled multimodal data DM = {(x1, x2) ∶ X1 ×X2}.
D1, D2 and DM follow the pairwise marginals p(x1, y), p(x2, y) and p(x1, x2). We define
∆p1,2 = {q ∈ ∆ ∶ q(xi, y) = p(xi, y) ∀y ∈ Y, xi ∈ Xi, i ∈ [2]} as the set of joint distributions
which agree with the labeled unimodal data D1 and D2, and ∆p1,2,12 = {r ∈ ∆ ∶ r(x1, x2) =
p(x1, x2), r(xi, y) = p(xi, y)} as the set of joint distributions which agree with all D1,D2 and
DM .

6.2.2 Multimodal interactions and information theory
The study of multimodal interactions aims to quantify the information shared between both
modalities, in each modality alone, and how modalities can combine to form new information
not present in either modality, eventually using these insights to design machine learning models
to capture interactions from large-scale multimodal datasets [371]. Existing literature has pri-
marily studied the interactions captured by trained models, such as using Shapley values [272]
and Integrated gradients [375, 579, 619] to measure the importance a model assigns to each
modality, or approximating trained models with additive or non-additive functions to determine
what functions are best suited to capture interactions [180, 235, 562]. However, these measure
interactions captured by a trained model - our work is fundamentally different in that interactions
are properties of data. Quantifying the interactions in data, independent of trained models, allows
us to characterize datasets, predict model performance, and perform model selection, prior to
choosing and training a model altogether. Prior work in understanding data interactions to design
multimodal models is often driven by intuition, such as using contrastive learning [486, 497, 608],
correlation analysis [27], and agreement [147] for shared information (e.g., images and descriptive
captions), or using tensors and multiplicative interactions [283, 712] for higher-order interactions
(e.g., in expressions of sarcasm from speech and gestures).

To fill the gap in data quantification, information theory has emerged as a theoretical foun-
dation since it naturally formalizes information and its sharing as statistical properties of data
distributions. Information theory studies the information that one random variable (X1) provides
about another (X2), as quantified by Shannon’s mutual information (MI) and conditional MI:

I(X1;X2) = ∫ p(x1, x2) log
p(x1, x2)
p(x1)p(x2)

dx, I(X1;X2∣Y ) = ∫ p(x1, x2, y) log
p(x1, x2∣y)

p(x1∣y)p(x2∣y)
dxdy.



I(X1;X2) measures the amount of information (in bits) obtained about X1 by observing X2, and
by extension, I(X1;X2∣Y ) is the expected value of MI given the value of a third (e.g., task Y ).

To generalize information theory for multimodal interactions, Partial information decomposi-
tion (PID) [662] decomposes the total information that two modalities X1,X2 provide about a
task Y into 4 quantities: Ip({X1,X2};Y ) = R + U1 + U2 + S, where Ip({X1,X2};Y ) is the MI
between the joint random variable (X1,X2) and Y . These 4 quantities are: redundancy R for the
task-relevant information shared between X1 and X2, uniqueness U1 and U2 for the information
present in only X1 or X2 respectively, and synergy S for the emergence of new information only
when both X1 and X2 are present [59, 210]:
Definition 5. (Multimodal interactions) Given X1, X2, and a target Y , we define their redundant
(R), unique (U1 and U2), and synergistic (S) interactions as:

R = max
q∈∆p1,2

Iq(X1;X2;Y ), U1 = min
q∈∆p1,2

Iq(X1;Y ∣X2), U2 = min
q∈∆p1,2

Iq(X2;Y ∣X1), (6.1)

S = Ip({X1,X2};Y ) − min
q∈∆p1,2

Iq({X1,X2};Y ), (6.2)

where the notation Ip(⋅) and Iq(⋅) disambiguates mutual information (MI) under p and q respec-
tively.

I(X1;X2;Y ) = I(X1;X2) − I(X1;X2∣Y ) is a multivariate extension of information the-
ory [51, 412]. Most importantly, R, U1, and U2 can be computed exactly using convex pro-
gramming over distributions q ∈ ∆p1,2 with access only to the marginals p(x1, y) and p(x2, y)
by solving a convex optimization problem with linear marginal-matching constraints q∗ =
arg maxq∈∆p1,2

Hq(Y ∣X1,X2) [59, 372]. This gives us an elegant interpretation that we need
only labeled unimodal data in each feature from D1 and D2 to estimate redundant and unique
interactions. Unfortunately, S is impossible to compute via equation (6.2) when we do not have
access to the full joint distribution p, since the first term Ip({X1,X2};Y ) is unknown.

It is worth noting that other valid information-theoretic definitions of multimodal interactions
also exist, but are known to suffer from issues regarding over- and under-estimation, and may
even be negative; these are critical problems with the application of information theory for
shared I(X1;X2;Y ) and unique information I(X1;Y ∣X2), I(X2;Y ∣X1) often quoted in the
co-training [44, 65] and multi-view learning [563, 605, 608, 616] literature. We refer the reader
to Griffith and Koch [210] for a full discussion. We choose the one in Definition 5 above since it
fulfills several desirable properties, but our results can be extended to other definitions as well.

6.3 Estimating Semi-supervised Multimodal Interactions

Our goal is to estimate multimodal interactions R, U1, U2, and S assuming access to only semi-
supervised multimodal data D1, D2, and DM . Our first insight is that while S cannot be computed
exactly, R, U1, and U2 can be computed from equation 6.1 with access to only semi-supervised
data. Therefore, studying the relationships between S and other multimodal interactions is key to
its estimation. Using these relationships, we will then derive lower and upper bounds for synergy
in the form S ≤ S ≤ S. Crucially, S and S depend only on D1, D2, and DM .



6.3.1 Understanding relationships between interactions
We start by identifying two important relationships, between S and R, and between S and U .

Synergy and redundancy Our first relationship stems from the case when two modalities
contain shared information about the task. In studying these situations, a driving force for
estimating S is the amount of shared information I(X1;X2) between modalities, with the intuition
that more shared information naturally leads to redundancy which gives less opportunity for new
synergistic interactions. Mathematically, we formalize this by relating S to R,

S = R − Ip(X1;X2;Y ) = R − Ip(X1;X2) + Ip(X1;X2∣Y ). (6.3)

implying that synergy exists when there is high redundancy and low (or even negative) three-way
MI Ip(X1;X2;Y ). By comparing the difference in X1,X2 dependence with and without the task
(i.e., Ip(X1;X2) vs Ip(X1;X2∣Y )), 2 cases naturally emerge (see left side of Figure 6.1):
1. S >R: When both modalities do not share a lot of information as measured by low I(X1;X2),

but conditioning on Y increases their dependence: I(X1;X2∣Y ) > I(X1;X2), then there is
synergy between modalities when combining them for task Y . This setting is reminiscent of
common cause structures. Examples of these distributions in the real world are multimodal
question answering, where the image and question are less dependent (some questions like
‘what is the color of the car’ or ‘how many people are there’ can be asked for many images),
but the answer (e.g., ‘blue car’) connects the two modalities, resulting in dependence given the
label. As expected, S = 4.92,R = 0.79 for the VQA 2.0 dataset [206].

2. R > S: Both modalities share a lot of information but conditioning on Y reduces their de-
pendence: I(X1;X2) > I(X1;X2∣Y ), which results in more redundant than synergistic in-
formation. This setting is reminiscent of common effect structures. A real-world example is
in detecting sentiment from multimodal videos, where text and video are highly dependent
since they are emitted by the same speaker, but the sentiment label explains away some of the
dependencies between both modalities. Indeed, for multimodal sentiment analysis from text,
video, and audio of monologue videos on MOSEI [717], R = 0.26 and S = 0.04.

Synergy and uniqueness The second relationship arises when two modalities contain disagree-
ing information about the task, and synergy arises due to this disagreement in information. To
illustrate this, suppose y1 = arg maxy p(y∣x1) is the most likely prediction from the first modal-
ity, y2 = arg maxy p(y∣x2) for the second modality, and y = arg maxy p(y∣x1, x2) is the true
multimodal prediction. There are again 2 cases (see right side of Figure 6.1):
1. U > S: Multimodal prediction y = arg maxy p(y∣x1, x2) is the same as one of the unimodal

predictions (e.g., y = y2), in which case unique information in modality 2 leads to the outcome
and there is no synergy. A real-world dataset is MIMIC involving mortality and disease
prediction from tabular patient data and time-series medical sensors [286] which primarily
shows unique information in the tabular modality. The disagreement on MIMIC is high at 0.13,
but since disagreement is due to a lot of unique information, there is less synergy S = 0.01.

2. S >U: Multimodal prediction y is different from both y1 and y2, then both modalities inter-
act synergistically to give rise to a final outcome different from both disagreeing unimodal
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Figure 6.1: We study the relationships between (left) synergy and redundancy as a result of the task Y
either increasing or decreasing the shared information betweenX1 andX2 (i.e., common cause structures as
opposed to redundancy in common effect), as well as (right) synergy and uniqueness due to the disagreement
between unimodal predictors resulting in a new prediction y ≠ y1 ≠ y2 (rather than uniqueness where
y = y2 ≠ y1).

predictions. This type of joint distribution is indicative of real-world expressions of sarcasm
from language and speech - the presence of sarcasm is typically detected due to a contradiction
between what is expressed in language and speech, as we observe from the experiments on
MUSTARD [83] where S = 0.44 and disagreement = 0.12 are both large.

6.3.2 Lower and upper bounds on synergy
Given these relationships between synergy and other interactions, we now derive bounds on S.
We present two lower bounds SR and SU, which are based on redundancy and uniqueness, as well
as an upper bound S. We also describe the computational complexity for computing each bound.

Remark on high dimensional, continuous modalities. Our theoretical results are concerned with
finite spaces for features and labels. However, this may be restrictive when working with real-world
datasets (e.g., images, video, text) which are often continuous and/or high-dimensional. In such
situations, we preprocess by performing discretization of each modality via clustering to estimate
p(x1, y), p(x2, y), p(x1, x2), each with a small, finite support. These are subsequently used for
the computation of SR, SU and S. Discretization is a common way to approximate information
theoretic quantities like mutual information [130, 372] and for learning representations over
high-dimensional modalities [453].

Lower bound using redundancy Our first lower bound uses the relationship between synergy,
redundancy, and dependence in equation 6.3. In semi-supervised settings, we can compute R
exactly from p(x1, y), p(x2, y), as well as the shared information I(X1;X2) from p(x1, x2). How-
ever, Ip(X1;X2∣Y ) cannot be computed without access to the full distribution p. In Theorem 4,
we obtain a lower bound on Ip(X1;X2∣Y ), resulting in a lower bound SR for synergy.
Theorem 4. (Lower-bound on synergy via redundancy) We relate S to modality dependence

SR = R − Ip(X1;X2) + min
r∈∆p1,2,12

Ir(X1;X2∣Y ) ≤ S (6.4)

We include a proof in the full paper [376]. This bound compares S to R via the difference of
their dependence Ip(X1;X2) and their dependence given the task Ip(X1;X2∣Y ). Since the full
distribution p is not available to compute Ip(X1;X2∣Y ), we prove a lower bound using conditional
MI computed with respect to a set of auxiliary distributions r ∈ ∆p1,2,12 that are close to p, as



measured by matching both unimodal marginals r(xi, y) = p(xi, y) and modality marginals
r(x1, x2) = p(x1, x2). If conditioning on the task increases the dependence and Ir(X1;X2∣Y ) is
large relative to Ip(X1;X2) then we obtain a larger value of SR, otherwise if conditioning on the
task decreases the dependence and Ir(X1;X2∣Y ) is small relative to Ip(X1;X2) then we obtain a
smaller value of SR.

Computational complexity. R and minr∈∆p1,2,12
Ir(X1;X2∣Y ) are convex optimization prob-

lems solvable in polynomial time with off-the-shelf solvers. Ip(X1;X2) can be computed directly.

Lower bound using uniqueness Our second bound formalizes the relationship between dis-
agreement, uniqueness, and synergy. The key insight is that while labeled multimodal data is
unavailable, the output of unimodal classifiers may be compared against each other. Consider
unimodal classifiers fi ∶ Xi → Y and multimodal classifiers fM ∶ X1 ×X2 → Y . Define modality
disagreement as:
Definition 6. (Modality disagreement) Given X1, X2, and a target Y , as well as unimodal
classifiers f1 and f2, we define modality disagreement as α(f1, f2) = Ep(x1,x2)[d(f1, f2)] where
d ∶ Y × Y → R≥0 is a distance function in label space scoring the disagreement of f1 and f2’s
predictions.

Connecting modality disagreement and synergy via Theorem 5 yields a lower bound SU:
Theorem 5. (Lower-bound on synergy via uniqueness, informal) We can relate synergy S and
uniqueness U to modality disagreement α(f1, f2) of optimal unimodal classifiers f1, f2 as follows:

SU = α(f1, f2) ⋅ c −max(U1, U2) ≤ S (6.5)

for some constant c depending on the label dimension ∣Y ∣ and choice of label distance function d.
Theorem 5 implies that if there is substantial disagreement α(f1, f2) between unimodal

classifiers, it must be due to the presence of unique or synergistic information. If uniqueness is
small, then disagreement must be accounted for by synergy, thereby yielding a lower bound SU.
Note that the optimality of unimodal classifiers is important: poorly trained unimodal classifiers
could show high disagreement but would be uninformative about true interactions. We include the
formal version of the theorem based on Bayes’ optimality and a proof in the full paper [376].

Computational complexity. Lower bound SU can also be computed efficiently by estimating
p(y∣x1) and p(y∣x2) over modality clusters or training unimodal classifiers fθ(y∣x1) and fθ(y∣x2).
U1 and U2 can be computed using a convex solver in polynomial time.

Hence, the relationships between S, R, and U yield two lower bounds SR and SU. Note that
these bounds always hold, so we could take S = max{SR, SU}.

Upper bound on synergy By definition, S = Ip({X1,X2};Y ) − R − U1 − U2. However,
Ip({X1,X2};Y ) cannot be computed exactly without the full distribution p. Using the same
idea as lower bound 1, we upper bound synergy by considering the worst-case maximum
Ir({X1,X2};Y ) computed over a set of auxiliary distributions r ∈ ∆p1,2,12 that match both



unimodal marginals r(xi, y) = p(xi, y) and modality marginals r(x1, x2) = p(x1, x2):

max
r∈∆p1,2,12

Ir({X1,X2};Y ) = max
r∈∆p1,2,12

{Hr(X1,X2) +Hr(Y ) −Hr(X1,X2, Y )} (6.6)

=Hp(X1,X2) +Hp(Y ) − min
r∈∆p1,2,12

Hr(X1,X2, Y ), (6.7)

where the second line follows from the definition of ∆p1,2,12 . While the first two terms are easy to
compute, the third may be difficult, as shown in the following theorem:
Theorem 6. Solving r∗ = arg minr∈∆p1,2,12

Hr(X1,X2, Y ) is NP-hard, even for a fixed ∣Y ∣ ≥ 4.
Theorem 6 suggests we cannot tractably find a joint distribution which tightly upper bounds

synergy when the feature spaces are large. Fortunately, a relaxation of r ∈ ∆p1,2,12 to r ∈ ∆p12,y ,
where r(x1, x2) = p(x1, x2) and r(y) = p(y), recovers the classic min-entropy coupling problem
over (X1,X2) and Y , which is still NP-hard but admits good approximations [118, 119, 123, 309].
Our final upper bound S is:
Theorem 7. (Upper-bound on synergy)

S ≤Hp(X1,X2) +Hp(Y ) − min
r∈∆p12,y

Hr(X1,X2, Y ) −R −U1 −U2 = S (6.8)

Proofs of Theorem 6, 7, and detailed approximation algorithms for min-entropy couplings are
included in the full paper [376].

Computational complexity. The upper bound S can be computed efficiently since solving the
variant of the min-entropy problem in Theorem 7 admits approximations that can be computed
in time O(k log k) where k = max(∣X1∣, ∣X2∣). All other entropy and R,U1, U2 terms are easy to
compute (or have been computed via convex optimization from the lower bounds).

Practically, calculating all three bounds is extremely simple, with just a few lines of code. The
computation takes < 1 minute and < 180 MB memory space on average for our large datasets
(1,000-20,000 datapoints), more efficient than training even the smallest multimodal prediction
model which takes at least 3x time and 15x memory. As a result, these bounds scale to large and
high-dimensional multimodal datasets found in the real world, which we verify in the following
experiments.

6.4 Experiments
We design comprehensive experiments to validate these estimated bounds and relationships
between different multimodal interactions. Using these results, we describe applications in
estimating optimal multimodal performance before training the model itself, which can be used to
guide data collection and select appropriate multimodal models for various tasks.

6.4.1 Verifying interaction estimation in semi-supervised learning
Synthetic bitwise datasets Let X1 = X2 = Y = {0,1}. We generate joint distributions ∆ by
sampling 100,000 vectors from the 8-dim probability simplex and assigning them to p(x1, x2, y).



Figure 6.2: Our two lower
bounds SR and SU track actual
synergy S from below, and the
upper bound S tracks S from
above. We find that SR, SU tend
to approximate S better than S.

Large real-world multimodal datasets We use a collection of
10 real-world datasets from MultiBench [367] which add up to a
size of more than 700,000 datapoints.
1. MOSI: 2,199 videos for sentiment analysis [710],
2. MOSEI: 23,000 videos for sentiment and emotion analy-

sis [717],
3. MUSTARD: 690 videos for sarcasm detection [83],
4. UR-FUNNY: a dataset of humor detection from 16,000 TED

talk videos [225],
5. MIMIC: 36,212 examples predicting patient mortality and

diseases from tabular patient data and medical sensors [286],
6. ENRICO: 1,460 examples classifying mobile user interfaces

and screenshots [340].
7. IRFL: 6,697 images and figurative captions (e.g, ‘the car is

as fast as a cheetah’ describing an image with a fast car in
it) [700].

8. NYCaps: 1,820 New York Yimes cartoon images and humor-
ous captions describing these images [236].

9. VQA: 614,000 questions and answers about natural images [29].
10. ScienceQA: 21,000 questions and answers about science prob-

lems with scientific diagrams [392].
These high-dimensional and continuous modalities require approximating disagreement and

mutual information: we train unimodal classifiers f̂θ(y∣x1) and f̂θ(y∣x2) to estimate disagreement,
and we cluster modality features to approximate continuous modalities by discrete distributions
with finite support to compute the lower and upper bounds. We summarize the following regarding
the validity of each bound:

1. Overall trends For the 100,000 bitwise distributions, we compute S, the true value of
synergy assuming oracle knowledge of the full multimodal distribution, and compute SR − S,
SU − S, and S − S for each point. Plotting these points as a histogram in Figure 6.2, we find that
the two lower bounds track synergy from below (SR − S and SU − S approaching 0 from below),
and the upper bound tracks synergy from above (S −S approaching 0 from above). The two lower
bounds are quite tight, as we see that for many points SR − S and SU − S are approaching close to
0, with an average gap of 0.18. SU seems to be tighter empirically than SR: for half the points,
SU is within 0.14 and SR is within 0.2 of S. For the upper bound, there is an average gap of 0.62.
However, it performs especially well on high synergy data: when S > 0.6, the average gap is 0.24,
with more than half of the points within 0.25 of S.

On real-world MultiBench datasets, we show the estimated bounds and actual S computed
assuming knowledge of full p in Table 6.1. The lower and upper bounds track true S: as estimated
SR and SU increases from MOSEI to UR-FUNNY to MOSI to MUSTARD, true S also
increases. For datasets like MIMIC with disagreement but high uniqueness, SU can be negative,
but we can rely on SR to give a tight estimate on low synergy. Unfortunately, our bounds do not
track synergy well on ENRICO. We believe this is because ENRICO displays all interactions:



Table 6.1: We compute lower bounds SR, SU, and upper bound S in semi-supervised multimodal settings
and compare them to S assuming knowledge of the full joint distribution p. The bounds always hold and
track S well on MOSEI, UR-FUNNY, MOSI, and MUSTARD: true S increases as estimated SR and
SU increases.

MOSEI UR-FUNNY MOSI MUSTARD MIMIC ENRICO NYCAPS IRFL VQA SCIENCEQA
S 0.97 0.97 0.92 0.79 0.41 2.09 0.68 0.01 0.97 1.67
S 0.03 0.18 0.24 0.44 0.02 1.02 0.09 0 0.05 0.16
SR 0 0 0.01 0.04 0 0.01 0 0 0 0.01
SU 0.01 0.01 0.03 0.11 −0.12 −0.55 −0.03 −0.01 0 0

Table 6.2: Four representative examples: (a) disagreement XOR has high disagreement and high synergy,
(b) agreement XOR has no disagreement and high synergy, (c) y = x1 has high disagreement and uniqueness
but no synergy, and (d) y = x1 = x2 has high agreement and redundancy but no synergy.

x1 x2 y p
0 0 0 0
0 0 1 0.05
0 1 0 0.03
0 1 1 0.28
1 0 0 0.53
1 0 1 0.03
1 1 0 0.01
1 1 1 0.06

(a) Disagreement XOR

x1 x2 y p
0 0 0 0.25
0 1 1 0.25
1 0 1 0.25
1 1 0 0.25

(b) Agreement XOR

x1 x2 y p
0 0 0 0.25
0 1 0 0.25
1 0 1 0.25
1 1 1 0.25

(c) y = x1

x1 x2 y p
0 0 0 0.5
1 1 1 0.5

(d) y = x1 = x2

R = 0.73, U1 = 0.38, U2 = 0.53, S = 0.34, which makes it difficult to distinguish between R and
S using SR or U and S using SU since no interaction dominates over others, and S is also quite
loose. Given these general observations, we now carefully analyze the relationships between
redundancy, uniqueness, and synergy.

2. Guidelines We provide a guideline to decide whether a lower or upper bound on synergy can
be considered ‘close enough’. It is close enough if the maximum interaction can be consistently
estimated - often the exact value of synergy is not the most important (e.g, whether S is 0.5 or
0.6) but rather synergy relative to other interactions (e.g., if we estimate S ∈ [0.2,0.5], and exactly
compute R = U1 = U2 = 0.1, then we know for sure that S is the most important interaction and
can collect data or design models based on that). We find that our bounds accurately identify the
same highest interaction on all 10 real-world datasets as the true synergy does. Furthermore, we
observed that the estimated synergy correlates very well with true synergy: as high as 1.05 on
ENRICO (true S = 1.02) and as low as 0.21 on MIMIC (true S = 0.02).

3. The relationship between S and R In Table 6.2b we show the classic AGREEMENT XOR
distribution where X1 and X2 are independent, but Y = 1 sets X1 ≠ X2 to increase their depen-
dence. I(X1;X2;Y ) is negative, and SR = 1 ≤ 1 = S is tight. On the other hand, Table 6.2d is
an extreme example where the probability mass is distributed uniformly only when y = x1 = x2

and 0 elsewhere. As a result, X1 is always equal to X2 (perfect dependence), and yet Y perfectly



Table 6.3: Estimated lower, upper, and average bounds on optimal multimodal performance in comparison
with the actual best unimodal model, the best simple fusion model, and the best complex fusion model.
Our performance estimates closely predict actual model performance, despite being computed only on
semi-supervised data and never training the model itself.

MOSEI UR-FUNNY MOSI MUSTARD MIMIC ENRICO
Estimated upper bound 1.07 1.21 1.29 1.63 1.27 0.88
Best complex multimodal 0.88 0.77 0.86 0.79 0.92 0.51
Best simple multimodal 0.85 0.76 0.84 0.74 0.92 0.49
Best unimodal 0.82 0.74 0.83 0.74 0.92 0.47
Estimated lower bound 0.52 0.58 0.62 0.78 0.76 0.48
Estimated average 0.80 0.90 0.96 1.21 1.02 0.68

explains away the dependence between X1 and X2 so I(X1;X2∣Y ) = 0: SR = 0 ≤ 0 = S. A
real-world example is multimodal sentiment analysis from text, video, and audio on MOSEI,
R = 0.26 and S = 0.03, and as expected the lower bound is small SR = 0 ≤ 0.03 = S (Table 6.1).

4. The relationship between S and U In Table 6.2a we show an example called DISAGREE-
MENT XOR. There is maximum disagreement between p(y∣x1) and p(y∣x2): the likelihood for y is
high when y is the opposite bit as x1, but reversed for x2. Given both x1 and x2: y takes a ‘disagree-
ment’ XOR of the individual marginals, i.e. p(y∣x1, x2) = arg maxy p(y∣x1) XOR arg maxy p(y∣x2),
which indicates synergy (note that an exact XOR would imply perfect agreement and high syn-
ergy). The actual disagreement is 0.15, S is 0.16, and U is 0.02, indicating a very strong lower
bound SU = 0.14 ≤ 0.16 = S. A real-world equivalent dataset is MUSTARD, where the presence
of sarcasm is often due to a contradiction between what is expressed in language and speech,
so disagreement α = 0.12 is the highest out of all the video datasets, giving a lower bound
SU = 0.11 ≤ 0.44 = S.

The lower bound is low when all disagreement is explained by uniqueness (e.g., y = x1,
Table 6.2c), which results in SU = 0 ≤ 0 = S (α and U cancel each other out). A real-world
equivalent is MIMIC: from Table 6.1, disagreement is high α = 0.13 due to unique information
U1 = 0.25, so the lower bound informs us about the lack of synergy SU = −0.12 ≤ 0.02 = S. Finally,
the lower bound is loose when there is synergy without disagreement, such as AGREEMENT

XOR (y = x1 XOR x2, Table 6.2b) where the marginals p(y∣xi) are both uniform, but there is
full synergy: SU = 0 ≤ 1 = S. Real-world datasets include UR-FUNNY where there is low
disagreement in predicting humor α = 0.03, and relatively high synergy S = 0.18, which results in
a loose lower bound SU = 0.01 ≤ 0.18 = S.

5. On upper bounds for synergy The upper bound for MUSTARD is close to real synergy,
S = 0.79 ≥ 0.44 = S. On MIMIC, the upper bound is the lowest S = 0.41, matching the lowest
S = 0.02. Some of the other examples in Table 6.1 show weaker bounds. This could be because (i)
there exists high synergy distributions that match Di and DM , but these are rare in the real world,
or (ii) our approximation used in Theorem 7 is loose. We leave these as directions for future work.

Additional results In the full paper [376], we also study the effect of imperfect unimodal
predictors and disagreement measurements on our derived bounds, by perturbing the label by



various noise levels (from no noise to very noisy) and examining the changes in estimated upper
and lower bounds. We found these bounds are quite robust to label noise, still giving close trends
of S. We also include more discussions studying the relationships between various interactions,
and how the relationship between disagreement and synergy can inspire new self-supervised
learning methods.

6.4.2 Implications towards performance, data collection, model selection
Now that we have validated the accuracy of these bounds, we apply them to estimate multimodal
performance in semi-supervised settings. This serves as a strong signal for deciding (1) whether
to collect paired and labeled data from a second modality, and (2) what type of multimodal fusion
method should be used. To estimate performance given D1, D2, and DM , we first compute our
lower and upper bounds S and S. Combined with the exact computation of R and U , we obtain
the total information Ip({X1,X2};Y ), and combine a result from Feder and Merhav [172] with
Fano’s inequality [170] to yield tight bounds of performance as a function of total information.
Theorem 8. Let Pacc(f∗M) = Ep [1 [f∗M(x1, x2) = y]] denote the accuracy of the Bayes’ optimal
multimodal model f∗M (i.e., Pacc(f∗M) ≥ Pacc(f ′M) for all f ′M ∈ FM ). We have that

2Ip({X1,X2};Y )−H(Y ) ≤ Pacc(f∗M) ≤ Ip({X1,X2};Y ) + 1

log ∣Y ∣ , (6.9)

and we can plug in R +U1, U2 +S ≤ Ip({X1,X2};Y ) ≤ R +U1, U2 +S to obtain lower P acc(f∗M)
and upper P acc(f∗M) bounds on optimal multimodal performance.

We show the proof in the full paper [376]. Finally, we summarize estimated multimodal
performance as the average P̂M = (P acc(f∗M)+P acc(f∗M))/2. A high P̂M suggests the presence of
important joint information from both modalities (not present in each) which could boost accuracy,
so it is worthwhile to collect the full distribution p and explore multimodal fusion.

Setup For each MultiBench dataset, we implement a suite of unimodal and multimodel models
spanning simple and complex fusion. Unimodal models are trained and evaluated separately
on each modality. Simple fusion includes ensembling by taking an additive or majority vote
between unimodal models [228]. Complex fusion is designed to learn higher-order interactions
as exemplified by bilinear pooling [182], multiplicative interactions [283], tensor fusion [712],
and cross-modal self-attention [613]. See our full paper [376] for models and training details. We
include unimodal, simple and complex multimodal performance, as well as estimated lower and
upper bounds on performance in Table 6.3.

RQ1: Estimating multimodal fusion performance How well could my multimodal model
perform? We find that estimating interactions enables us to closely predict multimodal model
performance, before even training a model. For example, on MOSEI, we estimate the performance
to be 52% based on the lower bound and 107% based on the upper bound, for an average of 80%
which is very close to true model performance ranging from 82% for the best unimodal model, and
85% − 88% for various multimodal model. Estimated performances for ENRICO, UR-FUNNY,
and MOSI are 68%, 90%, 96%, which track true performances 51%, 77%, 86%.
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Figure 6.3: Datasets with higher estimated multimodal perfor-
mance P̂M tend to show improvements from unimodal to mul-
timodal (left) and from simple to complex multimodal fusion
(right).

RQ2: Data collection Should I
collect multimodal data? We com-
pare estimated performance P̂M with
the actual difference between uni-
modal and best multimodal perfor-
mance in Figure 6.3 (left). Higher
estimated P̂M correlates with a larger
gain from unimodal to multimodal
(correlation ρ = 0.21 and rises to 0.53
if ignoring the outlier in MIMIC).
MUSTARD and ENRICO show
the most opportunity for multimodal
modeling. Therefore, a rough guide-
line is that if the estimated multimodal performance based on semi-supervised data is higher, then
collecting the full labeled multimodal data is worth it.

RQ3: Model selection What model should I choose for multimodal fusion? We note strong
relationships between estimated performance and the performance of different fusion methods.
From Table 6.3, synergistic datasets like MUSTARD and ENRICO show best multimodal
performance only slightly above our estimated lower bound, indicating that there is a lot of
room for improvement in better fusion methods. Indeed, more complex fusion methods such as
multimodal transformer designed to capture synergy is the best on MUSTARD which matches
its high synergy (72% accuracy). For datasets with less synergy like MOSEI and MIMIC, the
best multimodal performance is much higher than the estimated lower bound, indicating that
existing fusion methods may already be quite optimal. Indeed, simpler fusion methods such as
feature alignment, designed to capture redudnancy, are the best on MOSEI which matches its
high redundancy (80% accuracy).

Figure 6.3 (right) shows a visual comparison, where plotting the performance gap between
complex and simple fusion methods against estimated performance P̂M shows a correlation
coefficient of 0.77. We again observe positive trends between higher estimated performance and
improvements with complex fusion, with large gains on MUSTARD and ENRICO. We expect
new methods to further improve the state-of-the-art on these datasets due to their generally high
interaction values and low multimodal performance relative to estimated lower bound P acc(f∗M).
Therefore, a rough guideline is that if the estimated multimodal performance based on semi-
supervised data is higher, then there is more potential for improvement by trying more complex
multimodal fusion strategies.

6.5 Conclusion and Broader Impacts
We proposed estimators of multimodal interactions when observing only labeled unimodal data
and some unlabeled multimodal data, a general semi-supervised setting that encompasses many
real-world constraints involving partially observable modalities, limited labels, and privacy con-
cerns. Our key results draw new connections between multimodal interactions, the disagreement



of unimodal classifiers, and min-entropy couplings, which yield new insights for estimating multi-
modal model performance, data analysis, and model selection. We are aware of some potential
limitations:
1. These estimators only approximate real interactions due to cluster preprocessing or unimodal

models, which naturally introduce optimization and generalization errors. We expect progress
in density estimators, generative models, and unimodal classifiers to address these problems.

2. It is harder to quantify interactions for certain datasets, such as ENRICO which displays all
interactions which makes it difficult to distinguish between R and S or U and S.

3. Finally, there exist challenges in quantifying interactions since the data generation process is
never known for real-world datasets, so we have to resort to human judgment, other automatic
measures, and downstream tasks such as estimating model performance and model selection.
Future work should investigate more applications of multivariate information theory in design-

ing self-supervised models, predicting multimodal performance, and other tasks involving feature
interactions such as privacy-preserving and fair representation learning from high-dimensional
data [161, 219]. Being able to provide guarantees for fairness and privacy-preserving learning,
especially for semi-supervised pretraining datasets, can be particularly impactful.



Chapter 7

MultiBench: Large-scale Resources for
Multisensory Learning

7.1 Introduction

Current multimodal research has led to impressive advances in benchmarking and modeling
for specific domains such as language and vision [11, 360, 381, 502]. However, other domains,
modalities, and tasks are relatively understudied. The future will lie in multisensory foundation
models that are grounded in the world: being able to simultaneously process a large number of
modalities beyond language, to vision, audio [11, 360, 381, 502], and leveraging advances in
sensing technologies such as cellphones [366], wearable devices [218], autonomous vehicles [697],
healthcare technologies [287], and robots [53, 304] that give a wealth of sensor data about the
world.

MULTIBENCH: In order to accelerate research in building general-purpose multimodal
foundation models, this chapter describes MULTIBENCH (Figure 7.1), a systematic and unified
large-scale benchmark that brings us closer to the requirements of real-world multimodal appli-
cations. MULTIBENCH is designed to comprehensively evaluate generalization across domains
and modalities. To that end, MULTIBENCH contains a diverse set of 28 datasets spanning 14
modalities and testing for more than 30 prediction tasks across 6 distinct research areas and 5
technical challenges of multimodal machine learning. These research areas include important
tasks understudied from a multimodal learning perspective, such as healthcare, finance, and HCI.
Building upon extensive data-collection efforts by domain experts, we worked with them to adapt
datasets that reflect real-world relevance, present unique challenges to multimodal learning, and
enable opportunities in algorithm design and evaluation.

Together, MULTIBENCH unifies efforts across separate research areas in multimodal learning
to enable quick and accurate benchmarking across a wide range of datasets and metrics. To help
the community accurately compare performance and ensure reproducibility, MULTIBENCH in-
cludes an end-to-end pipeline including data preprocessing, dataset splits, multimodal algorithms,
evaluation metrics, and cross-validation protocols. This includes an implementation of 20 core
multimodal approaches spanning innovations in fusion paradigms, optimization objectives, and
training approaches in a standard public toolkit called MULTIZOO. We perform a systematic eval-
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Figure 7.1: MULTIBENCH contains a diverse set of 28 datasets spanning 14 modalities and testing for
more than 30 prediction tasks across 6 distinct research areas and 5 technical challenges of multimodal
machine learning, thereby enabling standardized, reliable, and reproducible large-scale benchmarking of
multimodal models. To reflect real-world requirements, MULTIBENCH is designed to holistically evaluate
generalization performance across domains and modalities.

uation and show that directly applying these methods can improve the state-of-the-art performance
on 9 out of the 15 datasets. Therefore, MULTIBENCH presents a step towards unifying disjoint
efforts in multimodal research and paves a way towards a deeper understanding of multimodal
models. Most importantly, our public zoo of multimodal benchmarks and models will ensure ease
of use, accessibility, and reproducibility. Finally, we outline our plans to ensure the continual
availability, maintenance, and expansion of MULTIBENCH, including using it as a theme for
future workshops and competitions and to support the multimodal learning courses taught around
the world.

7.2 MULTIBENCH: The Multiscale Multimodal Benchmark

Background: We define a modality as a single particular mode in which a signal is expressed
or experienced. Multiple modalities then refer to a combination of multiple heterogeneous sig-
nals [46]. The first version of MULTIBENCH focuses on benchmarking algorithms for multimodal
fusion, where the main challenge is to join information from two or more modalities to perform
a prediction (e.g., classification, regression). Classic examples for multimodal fusion include
audio-visual speech recognition where visual lip motion is fused with speech signals to predict
spoken words [160]. Multimodal fusion can be contrasted with multimodal translation where the
goal is to generate a new and different modality [640], grounding and question answering where
one modality is used to query information in another (e.g., visual question answering [11]), and
unsupervised or self-supervised multimodal representation learning [390, 571]. We plan future
versions of MULTIBENCH to study these important topics in multimodal research.

Each of the following 15 datasets in MULTIBENCH contributes a unique perspective to the
various technical challenges in multimodal learning involving learning and aligning complemen-



Table 7.1: MULTIBENCH provides a comprehensive suite of 28 multimodal datasets to benchmark current
and proposed approaches in multimodal machine learning. It covers a diverse range of technical challenges,
research areas, dataset sizes, input modalities (in the form of a: audio, e: embodied environment, f : force
sensor, g: graph, i: image `: language, o: optical flow, p: proprioception sensor, π: policy/action, q:
question (for question-answering tasks), s: set, t: time-series, ta: tabular, v: video), and prediction tasks.
We provide a standardized data loader for datasets in MULTIBENCH, along with a set of state-of-the-art
multimodal models.

Challenge Research Area Size Dataset Modalities # Samples Prediction task

Fusion

Affect

S MUSTARD [83] {`, v, a}→ y 690 sarcasm
M CMU-MOSI [710] {`, v, a}→ y 2,199 sentiment
L UR-FUNNY [225] {`, v, a}→ y 16,514 humor
L CMU-MOSEI [717] {`, v, a}→ y 22,777 sentiment, emotions

Healthcare L MIMIC [287] {t, ta}→ y 36,212 mortality, ICD-9 codes
L MIMIC-CXR [288] {`, i}→ y 377,110 mortality, ICD-9 codes

Robotics M MUJOCO PUSH [334] {i, f, p}→ y 37,990 object pose
L VISION&TOUCH [335] {i, f, p}→ y 147,000 contact, robot pose

Finance
M STOCKS-F&B {t × 18}→ y 5,218 stock price, volatility
M STOCKS-HEALTH {t × 63}→ y 5,218 stock price, volatility
M STOCKS-TECH {t × 100}→ y 5,218 stock price, volatility

HCI S ENRICO [340] {i, s}→ y 1,460 design interface

Multimedia

M HATEFUL MEMES [301] {`, i}→ y 10,000 hate speech
M MM-IMDB [32] {`, i}→ y 25,959 movie genre
M AV-MNIST [638] {i, a}→ y 70,000 digit
L KINETICS400 [296] {v, a, o}→ y 306,245 human action

Question
Answering

Affect M SOCIAL IQ [715] {v, a, `, q}→ y 7,500 QA

Multimedia L CLEVR [289] {i, q}→ y 853,554 QA
L VQA 2.0 [206] {i, q}→ y 1,100,000 QA

Retrieval Multimedia

S CIFAR-ESC [369] i↔ a 2,080 image-audio retrieval
M CLOTHO [156] a↔ ` 24,905 audio-caption retrieval
M YUMMLY-28K [421] i↔ ` 27,638 image-caption retrieval
L FLICKR-30K [485] i↔ ` 158,000 image-caption retrieval

RL Simulation L RTFM [733] {e, `→ π} - multimodal RL

Co-learning
Affect M CMU-MOSI → SST [716] {`, v, a}→ ` 11,855 video → text

L CMU-MOSEI → SST [716] {`, v, a}→ ` 11,855 video → text

Multimedia M GLOVE → CIFAR10 [553] {i, `}→ i 60,000 text → image
L Visual Genome [317, 409] {i, g}→ i 100,000 knowledge graph→ image
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Figure 7.2: MULTIBENCH provides a standardized machine learning pipeline across data processing, data
loading, multimodal models, evaluation metrics, and a public leaderboard to encourage future research
in multimodal representation learning. MULTIBENCH aims to present a milestone in unifying disjoint
efforts in multimodal machine learning research and paves the way towards a better understanding of the
capabilities and limitations of multimodal models, all the while ensuring ease of use, accessibility, and
reproducibility.

tary information, scalability to a large number of modalities, and robustness to realistic real-world
imperfections.

MULTIBENCH provides a standardized machine learning pipeline that starts from data loading
to running multimodal models, providing evaluation metrics, and a public leaderboard to encourage
future research in multimodal representation learning (see Figure 7.2). Table 7.1 shows an
overview of these datasets. We provide a brief overview of the research areas, modalities, and
tasks for each of these datasets.

7.2.1 Research areas
Affective computing studies the perception of human affective states (emotions, sentiment, and
personalities) from our display of multimodal signals spanning language (spoken words), visual
(facial expressions, gestures), and acoustic (prosody, speech tone) [483]. It has impacts towards
building emotionally intelligent computers, human behavior analysis, and AI-assisted education.

Healthcare: Modern medical decision-making often involves integrating complementary
information and signals from several sources such as lab tests, imaging reports, and patient-doctor
conversations. Multimodal models can help doctors make sense of high-dimensional data and
assist them in the diagnosis process [21].

Robotics: Modern robot systems are equipped with multiple sensors to aid in their decision-
making. Some systems also have a large number of heterogeneous sensors deployed in the real
world with realistic noise and imperfections. These present scalability and robustness challenges
for multimodal machine learning.

Finance: The field of machine learning for finance studies the use of algorithms to make
better automatic trading decisions through historical data, news and document understanding,
social media analytics, and other multimodal signals. This field presents challenges in time-
series analysis on high-frequency multimodal signals, a dynamic and large number of possible
modalities, as well as robustness and compute efficiency for real-world deployment.

Human Computer Interaction (HCI) studies the design of computer technology and inter-
active interfaces between humans and computers [151]. Many real-world human-centric problems
involve multimodal inputs such as language, visual, and audio interfaces. Designing multimodal
models that actively interact with humans further necessitates guarantees on their fairness and
robustness in real-world scenarios.



Multimedia: A significant body of research in multimodal learning has been fueled by
the large availability of multimedia data (language, image, video, and audio) on the internet.
Multimedia research is exemplified by the research tasks of media description, multimodal
question answering, and cross-modal retrieval.

Simulated environments: Finally, simulated interactive environments such as Atari games [52],
Minecraft [216], and NetHack [323] present scalable opportunities for research in reinforcement
learning while also enabling rich programming of multimodal environments involving text [394],
audio [135], and video [88]. By way of their flexible design, these environments can often
provide richer interactions between text and embodied environments, more difficult planning and
exploration challenges, and procedurally generated tasks of increasing difficulty.

7.2.2 Fusion datasets
In multimodal fusion, the main challenge is to join information from two or more modalities to
perform a prediction. Classic examples include audio-visual speech recognition where visual lip
motion is fused with speech signals to predict spoken words [160]. Information coming from
different modalities have varying predictive power by themselves and also when complemented by
each other (i.e., higher-order interactions). In order to capture higher-order interactions, there is
also a need to identify the relations between granular units from two or more different modalities
(i.e., alignment). When dealing with temporal data, it also requires capturing possible long-
range dependencies across time (i.e., temporal alignment). MULTIBENCH contains the following
datasets for multimodal fusion spanning several research areas:

Affective computing: MULTIBENCH contains 4 datasets involving fusing language, video,
and audio time-series data to predict sentiment (CMU-MOSI [710]), emotions (CMU-MOSEI [717]),
humor (UR-FUNNY [225]), and sarcasm (MUSTARD [83]). Complementary information may
occurs at different moments, requiring models to address the multimodal challenges of grounding
and alignment.

Healthcare: MULTIBENCH includes the large-scale MIMIC dataset [287] which records ICU
patient data including time-series data measured every hour and other demographic variables (e.g.,
age, gender, ethnicity in the form of tabular numerical data). These are used to predict the disease
ICD-9 code and mortality rate. MIMIC poses unique challenges in integrating time-varying and
static modalities, reinforcing the need of aligning multimodal information at correct granularities.
Extending MIMIC, we also include the MIMIC-CXR [288] datasets of de-identified publicly
available chest radiographs and free-text reports

Robotics: We include MUJOCO PUSH [334] and VISION&TOUCH [335] which record the
manipulation of simulated and real robotic arms equipped with visual (RGB and depth), force,
and proprioception sensors. In MUJOCO PUSH, the goal is to predict the pose of the object being
pushed by the robot end-effector. In VISION&TOUCH, the goal is to predict action-conditional
learning objectives that capture forward dynamics of contact prediction and robot end-effector
pose. Robustness is important due to the risk of real-world sensor failures [336].

Finance: We gathered historical stock data from the internet to create our own dataset for
financial time-series prediction across 3 groups of correlated stocks: STOCKS-F&B, STOCKS-
HEALTH, and STOCKS-TECH. Within each group, the previous stock prices of a set of stocks are
used as multimodal time-series inputs to predict the price and volatility of a related stock (e.g.,



using Apple, Google, and Microsoft data to predict future Microsoft prices). Multimodal stock
prediction [520] presents scalability issues due to a large number of modalities (18/63/100 vs 2/3
in most datasets), as well as robustness challenges arising from real-world data with an inherently
low signal-to-noise ratio.

HCI: We use the ENRICO (Enhanced Rico) dataset [137, 340] of Android app screens (con-
sisting of an image as well as a set of apps and their locations) categorized by their design motifs
and collected for data-driven design applications such as design search, user interface (UI) layout
generation, UI code generation, and user interaction modeling.

Multimedia: MULTIBENCH includes 4 popular large-scale multimedia datasets with varying
sizes and levels of difficulty: (1) the hateful memes challenge [301] as a core challenge in
multimedia to ensure safer learning from ubiquitous text and images from the internet, (2) AV-
MNIST [638] is assembled from images of handwritten digits [332] and audio samples of spoken
digits [341], (3) MM-IMDB [32] uses movie titles, metadata, and movie posters to perform
multi-label classification of movie genres, and (4) KINETICS [296] contains video, audio, and
optical flow of 306,245 video clips annotated for 400 human actions.

7.2.3 Question answering datasets
Within the domain of language and vision, there has been growing interest in language-based
question answering (i.e., “query” modality) of entities in the visual, video, or embodied domain
(i.e., “queried” modality). Datasets such as Visual Question Answering [11], Social IQ [715],
and Embodied Question Answering [131] have been proposed to benchmark the performance of
multimodal models in these settings. A core challenge lies in aligning words asked in the question
with entities in the queried modalities, which typically take the form of visual entities in images or
videos (i.e., alignment). MULTIBENCH contains the following datasets for multimodal question
answering spanning several research areas:

Affective computing: SOCIAL IQ [715] is an unconstrained benchmark specifically designed
to train and evaluate socially intelligent AI through a rich source of open-ended questions and
answers. It contains 1,250 videos of natural social situations, 7,500 questions and 52,500 correct
and incorrect answers

Multimedia: CLEVR [289] is a diagnostic dataset for studying the ability of VQA systems
to perform visual reasoning. It contains 100,000 rendered images and about 853,000 unique
automatically generated questions that test visual reasoning abilities such as counting, comparing,
logical reasoning, and storing information in memory. VQA 2.0 [206] is a balanced version
of the popular VQA [11] dataset by collecting complementary images such that every question
is associated with not just a single image, but rather a pair of similar images that result in two
different answers to the question. The reduces the occurrence of spurious correlations in the
dataset and enables training of more robust models.

7.2.4 Retrieval datasets
Another area of great interest lies in cross-modal retrieval [369, 732], where the goal is to retrieve
semantically similar data from a new modality using a modality as a query (e.g., given a phrase,
retrieve the closest image describing that phrase). The core challenge is to perform alignment



of representations across both modalities. MULTIBENCH contains the following datasets for
multimodal retrieval and grounding:

Multimedia: CIFAR-ESC [369] is an image-audio retrieval dataset constructed by combining
CIFAR-100, CIFAR-10 [319], and ESC-50 [484] into 17 shared classes using concept ontologies
from WordNet [420]. CLOTHO [156] is a dataset for audio captioning with 4981 audio samples
of 15 to 30 seconds duration and 24,905 captions of 8 to 20 words length. YUMMLY-28K [421]
contains parallel text descriptions and images of recipes with 27,638 recipes in total. Each recipe
contains one recipe image, the ingredients, the cuisine and the course information. FLICKR-
30K [485] contains 32,000 images collected from Flickr, together with 5 reference sentences
provided by human annotators enabling the tasks of text-to-image reference resolution, localizing
textual entity mentions in an image, and bidirectional image-caption retrieval.

7.2.5 Reinforcement learning environments
Learning from multiple modalities in an interactive setting is an area of interest towards building
more intelligent embodied agents that can perceive the visual world, language instructions,
auditory feedback, and other sensor modalities [394]. Recent work has also explored audio as a
modality in an agent’s multisensory interaction with the world [135]. These multimodal problems
are fundamentally different from those that are concerned with prediction tasks. Alongside
the core challenges in learning complementary information and aligning entities in language
instructions to those in the visual environment, there also lies the core challenge of learning
actionable representations that link to the set of actions that can be taken and their associated long-
term rewards [394]. MULTIBENCH contains the following datasets for multimodal reinforcement
learning in both real-world and simulated environments:

Simulated environments: We choose the RTFM [733] (Reading to Fight Monsters) simu-
lated text and visual environment. RTFM requires an agent to jointly reason over a language goal,
a document that specifies environment dynamics, and environment observations. It can also be
procedurally generated for increasing difficult interactions between environment dynamics and
natural language. RTFM is also part of the larger SILG benchmark [734] of 5 similar diverse
grounded language learning environments under a common interface, so it enables generalization
to these other environments as well.

7.2.6 Co-learning datasets
Co-learning aims to transfer knowledge between modalities and their representations. Exemplified
by algorithms of fine-tuning, co-training, and contrastive learning, how can knowledge learned
from an additional secondary modality (e.g., predicted labels or representation) help a compu-
tational model trained on a primary modality? This challenge is particularly relevant when the
primary modality has limited resources such as lack of annotated data, noisy input, and unreliable
labels.

Affective computing: In affective computing, we investigate transferring information from
CMU-MOSI to SST, as well as the larger CMU-MOSEI to SST [716]. The former 2 are
multimodal (language + vision + audio) datasets annotated for sentiment, while SST is a language-
only sentiment analysis dataset.
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Figure 7.3: MULTIZOO provides a standardized implementation of a suite of multimodal methods in a mod-
ular fashion to enable accessibility for new researchers, compositionality of approaches, and reproducibility
of results.

Multimedia: In multimedia, we transfer information from GLOVE word embeddings for
CIFAR10 image classification [553]. We also transfer information from knowledge graphs to
image classification by providing the Visual Genome dataset [317, 409].

7.3 Evaluation protocol
MULTIBENCH provides standardized evaluation using metrics designed for each dataset, ranging
from MSE and MAE for regression to accuracy, micro & macro F1-score, and AUPRC for
classification on each dataset. To assess for generalization, we compute the variance of a particular
model’s performance across all datasets in MULTIBENCH on which it is tested. We split these
results on multiple datasets into in-domain datasets and out-domain datasets. In-domain datasets
refer to model performance on datasets that it was initially proposed and tested on, while out-
domain datasets refer to model performance on the remaining datasets. Comparing out-domain vs
in-domain performance, as well as variance in performance across datasets as a whole, allow us to
summarize the generalization statistics of each multimodal model.

7.4 MULTIZOO: A Zoo of Multimodal Algorithms
To complement MULTIBENCH, we release a comprehensive toolkit, MULTIZOO, as starter code
for multimodal algorithms which implements 20 methods spanning different methodological
innovations in (1) data preprocessing, (2) fusion paradigms, (3) optimization objectives, and (4)
training procedures (see Figure 7.3). To introduce these algorithms, we use the simple setting with
2 modalities for notational convenience. We use x1,x2 for input modalities, z1,z2 for unimodal
representations, zmm for the multimodal representation, and ŷ for the predicted label.

7.4.1 Data preprocessing
Temporal alignment [101] has been shown to help tackle the multimodal alignment problem for
time-series data. This approach assumes a temporal granularity of the modalities (e.g., at the level



of words for text) and aligns information from the remaining modalities to the same granularity.
We call this approach WORDALIGN [101] for temporal data where text is one of the modalities.

7.4.2 Fusion paradigms
Early and late fusion have been the de-facto first-approach when tackling new multimodal
problems. Early fusion performs concatenation at the input data level before using a suitable
prediction model (i.e., zmm = [x1,x2]) and late fusion applies suitable unimodal models to each
modality to obtain their feature representations, concatenates these features, and defines a classifier
to the label (i.e., zmm = [z1,z2]) [46]. MULTIZOO includes their implementations denoted as EF
and LF respectively.

Tensors are specifically designed to tackle the multimodal complementarity challenge by
explicitly capturing higher-order interactions across modalities [712]. Given unimodal repre-

sentations z1,z2, a multimodal tensor representation is defined as zmm = [z1

1
] ⊗ [z2

1
] where ⊗

denotes an outer product. However, computing tensor products is expensive since their dimension
scales exponentially with the number of modalities. Several efficient variants have been proposed
to approximate expensive full tensor products with cheaper variants while maintaining perfor-
mance [245, 364, 388]. MULTIZOO includes Tensor Fusion (TF) [712] as well as approximate
Low-rank Tensor Fusion (LRTF) [388]. As future work, we also plan to include more expressive
higher-order tensor fusion methods [245].

Multiplicative Interactions (MI) further generalize tensor products to include learnable
parameters that capture the interactions between streams of information [284]. In its most general
form, MI defines a bilinear product zmm = z1Wz2 + z⊺1U +Vz2 + b where W,U,Z, and b are
trainable parameters. By appropriately constraining the rank and structure of these parameters, MI
recovers HyperNetworks [217] (unconstrained parameters resulting in a matrix output), Feature-
wise linear modulation (FiLM) [476, 733] (diagonal parameters resulting in vector output), and
Sigmoid units [133] (scalar parameters resulting in scalar output). MULTIZOO includes all 3 as
MI-MATRIX, MI-VECTOR, and MI-SCALAR respectively.

We also referred to the implementation of Feature-wise linear modulation (FiLM) [476]
and added it as a module in MULTIBENCH, which we call FILM. While MI-VECTOR (i.e.,
diagonal parameters in a MI layer which results in a vector output) corresponds to the most basic
implementation of FILM, the original FILM layer uses multiple non-linear layers instead of a
single linear transformation in MI-VECTOR which has been shown to improve performance [476].

Multimodal gated units are prevalent in learning combinations of two representations that
dynamically change for every input [88, 651, 680]. Its general form can be written as zmm =
z1⊙h(z2), where h represents a function with sigmoid activation and ⊙ denotes the element-wise
product. The output h(z2) is commonly referred to as “attention weights” learned from z2 used to
attend on z1. We implement the Query-Key-Value mechanism as NL GATE as proposed in [651].
This attention mechanism is conceptually similar to the MI-VECTOR case above but recent work
has explored more expressive forms of h such as using a Query-Key-Value mechanism [651] or
several fully-connected layers [88] rather than a linear transformation in MI-VECTOR.

Multimodal transformers are useful in tackling the challenge of multimodal alignment
and complementarity. Transformer models [631] have been shown to be useful for temporal



multimodal data by automatically aligning and capturing complementary features at different
time-steps [613, 694]. We include the Multimodal Transformer (MULT) [613] which uses a
Crossmodal Transformer block that uses z1 to attend to z2 (and vice-versa), before concatenating
both representations to obtain zmm = [z1→2,z2→1] = [CM(z1,z2),CM(z2,z1)].

To extend this to 3 modalities, the crossmodal transformer block is repeated across all 3 sets of
modality pairs (i.e., zmm = [z1→2,z2→1,z1→3,z3→1,z2→3,z3→2]). While this is still computationally
feasible for 3 modalities such as the language, video, and audio datasets that MULT was originally
designed for, this quickly becomes intractable for problems involving more than 3 modalities. To
adapt MULT for the financial prediction task involving more than 10 modalities, we cluster all
modalities into 3 groups based on similarities in their data and perform early fusion on the data
within each cluster before applying MULT only on the 3 clusters of modalities. While MULT is a
strong model based on performance, it poses scalability issues that should be the subject of future
work (i.e., since the number of cross-modal attention blocks grows quadratically with the number
of modalities).

Architecture search: Finally, instead of hand-designing multimodal architectures, several ap-
proaches define a set of atomic neural operations (e.g., linear transformation, activation, attention,
etc.) and use architecture search to automatically learn the best order of these operations for a
given multimodal task [478, 682]. We focus on the more general approach, MFAS [478], designed
for language and vision datasets. While this approach is categorized under innovations in model
architecture (since it primarily targets better architectures for multimodal fusion), its code in the
MULTIZOO toolkit is implemented under training structures, since architecture search requires an
outer loop to learn model architectures over multiple inner supervised learning loops that train an
individual model architecture. Therefore, we are unable to integrate MFAS directly with the basic
supervised learning training loops like we do for the other fusion paradigms described above.

7.4.3 Optimization objectives
In addition to the standard supervised losses (e.g., cross entropy for classification, MSE/MAE for
regression), several proposed methods have proposed new objective functions based on:

Prediction-level alignment: There has been extensive research in defining objective functions
to tackle the challenge of multimodal alignment: capturing a representation space where seman-
tically similar concepts from different modalities are close together. While primarily useful for
cross-modal retrieval [369, 732], recent work has also shown its utility in learning representations
for prediction [39, 126, 335, 604]. These alignment objectives have been applied at both prediction
and feature levels. In the former, we implement Canonical Correlation Analysis (CCA) [27, 650],
which computes LCCA = corr (g1(z1), g2(z2)) where g1, g2 are auxiliary classifiers mapping each
unimodal representation to the label. This method corresponds to prediction-level alignment since
they aim to learn representations of each modality that agree on the label, as measured by the
correlation of label predictions made by each modality across a batch of samples. We refer to
the paper that most closely implements CCA-based alignment for multimodal data (specifically
directly testing on the CMU-MOSI dataset) [578].

Feature-level alignment: In the latter, contrastive learning has emerged as a popular approach
that brings similar concepts close in feature space and different concepts far away [126, 335,
604]. MULTIZOO includes REFNET [517] which includes a self-supervised contrastive loss



Algorithm 3 PyTorch code integrating MULTIBENCH datasets and MULTIZOO models.
from datasets.get_data import get_dataloader
from unimodals.common_models import ResNet, Transformer
from fusions.common_fusions import MultInteractions
from training_structures.gradient_blend import train, test

# loading Multimodal IMDB dataset
traindata, validdata, testdata = get_dataloader(’multimodal_imdb’)
out_channels = 3
# defining ResNet and Transformer unimodal encoders
encoders = [ResNet(in_channels=1, out_channels, layers=5),

Transformer(in_channels=1, out_channels, layers=3)]
# defining a Multiplicative Interactions fusion layer
fusion = MultInteractions([out_channels*8, out_channels*32], out_channels*32, ’matrix’)
classifier = MLP(out_channels*32, 100, labels=23)
# training using Gradient Blend algorithm
model = train(encoders, fusion, classifier, traindata, validdata,

epochs=100, optimtype=torch.optim.SGD, lr=0.01, weight_decay=0.0001)
# testing
performance, complexity, robustness = test(model, testdata)

between unimodal representations z1,z2 and the multimodal representation zmm, i.e., Lcontrast =
1 − cos(zmm, g1(z1)) + 1 − cos(zmm, g2(z2)) where g1, g2 is an auxiliary layer mapping each
modality’s representation into the joint multimodal space. The intuition here is that the unimodal
representations z1,z2 and the multimodal representation zmm should be aligned in the multimodal
feature space as measured by cosine similarity. While the original REFNET method does not use
negative samples, closely related work in multi-view contrastive learning has extended this idea to
use negative samples which is more closely in line with recent work in contrastive learning [604].

Reconstruction objectives: Methods based on generative-discriminative models (e.g., VAEs)
include an objective to reconstruct the input (or some part of the input) [335, 614]. These have
been shown to better preserve task-relevant information learned in the representation, especially
in settings with sparse supervised signals such as robotics [335] and long videos [614]. We
include the Multimodal Factorized Model (MFM) [614] which is a general approach that learns
a representation zmm that can reconstruct input data x1,x2 while also predicting the label. The
multimodal representation is a concatenation of factorized representations z1, z2, ..., zM , and zy.

Since MFM optimizes a variational lower-bound to the log likelihood, the overall objective
consists of 3 terms - generative, discriminative, and prior regularization:

min
fi,fmm,gi,gy

EPx1∶M,yEf1(z1∣x1)⋯EfM (zM ∣xM )Efmm(zy ∣x1∶M )

[
M

∑
i=1

∥xi, gi(zi,zy)∥2 + ` (y, gy(zy))] + λMMD(Qz, Pz),
(7.1)

where fi’s are encoders from each modality to representations, fmm is a multimodal encoder to the
joint representation zy, gi’s are decoders from latent representations back into input data, and gy is
a classification head to the label. The final MMD term is a regularizer to bring the representations
close to a unit Gaussian prior. The multimodal encoder fmm in MFM can be instantiated with
any multimodal model (e.g., learning zy via tensors and adding a term to reconstruct input data).
We use the public implementation in https://github.com/pliang279/factorized,
which uses a temporal attention model as fmm for multimodal time-series data. For the remaining
experiments we replace fmm with a simple late fusion but also run some experiments with
multimodal methods that are state-of-the-art in each domain.

Improving robustness: These approaches modify the objective function to account for ro-
bustness to noisy [364] or missing [336, 398, 482] modalities. MULTIZOO includes MCTN [482]

https://github.com/pliang279/factorized


which uses cycle-consistent translation to predict the noisy/missing modality from present ones.
The key insight is that a joint representation between modalities x1 and x2 can be learned by using
x1 to predict x2, in a vein similar to machine translation or image/text style transfer. MCTN
defines a cyclic translation path x1 → zmm → x̂2 → zmm → x̂1 and adds additional reconstruction
losses Lrec = ∥x1 − x̂1∥2 + ∥x2 − x̂2∥2 on top of the supervised learning loss. The representations
zmm learned via translation are then used to predict the label. Surprisingly, the model needs to
take in only x1 at test time and is therefore robust to all levels of noise or missingness in x2.

7.4.4 Training procedures
Improving generalization: Recent work has found that directly training a multimodal model
with all modalities using supervised learning is sub-optimal since different modalities overfit
and generalize at different rates. MULTIZOO includes an approach to solve this, called Gradient
Blending (GRADBLEND), that computes generalization statistics for each modality to determine
their weights during multimodal fusion [651]. We also include a similar work, Regularization
by Maximizing Functional Entropies (RMFE), which uses functional entropy to balance the
contribution of each modality to the classification result [191].

7.4.5 Putting everything together
In Algorithm 3, we show a sample code snippet in Python that loads a dataset from MULTIBENCH,
defines the unimodal and multimodal architectures, optimization objective, and training proce-
dures, before running the evaluation protocol. Our MULTIZOO toolkit is easy to use and trains
entire multimodal models in less than 10 lines of code. By standardizing the implementation
of each module and disentangling the individual effects of models, optimizations, and training,
MULTIZOO ensures both accessibility and reproducibility of its algorithms.

7.5 Experiments and Discussion
Setup: Using MULTIBENCH, we load each of the datasets and test the multimodal approaches in
MULTIZOO. We only vary the contributed method of interest and keep all other possibly con-
founding factors constant (i.e., using the exact same training loop when testing a new multimodal
fusion paradigm), a practice unfortunately not consistent in previous work. Our code is available
at https://github.com/pliang279/MultiBench. MULTIBENCH allows for careful
analysis of multimodal models and we summarize the main take-away messages below.

7.5.1 Benefits of standardization
From Table 7.2, simply applying methods in a research different area achieves state-of-the-art
performance on 9 out of the 15 fusion tasks. We find that this is especially true for domains and
modalities that have been relatively less studied in multimodal research (i.e., healthcare, finance,
HCI). Performance gains can be obtained using multimodal methods outside of that research area.
Therefore, this motivates the benefits of standardizing and unifying areas of research in multimodal

https://github.com/pliang279/MultiBench


Table 7.2: Standardizing methods and datasets enables quick application of methods from different
research areas which achieves stronger performance on 9/15 datasets in MULTIBENCH, especially in
healthcare, HCI, robotics, and finance. In-domain refers to the best performance across methods previously
proposed on that dataset and out-domain shows best performance across remaining methods. ↑ indicates
metrics where higher is better (Acc, AUPRC), ↓ indicates lower is better (MSE).

Dataset MUSTARD ↑ CMU-MOSI ↑ UR-FUNNY ↑ CMU-MOSEI ↑ MIMIC ↑
Unimodal 68.6 ± 0.4 74.2 ± 0.5 58.3 ± 0.2 78.8 ± 1.5 76.7 ± 0.3
In-domain 66.3 ± 0.3 83.0 ± 0.1 62.9 ± 0.2 82.1 ± 0.5 77.9 ± 0.3
Out-domain 71.8 ± 0.3 75.5 ± 0.5 66.7 ± 0.3 78.1 ± 0.3 78.2 ± 0.2
Improvement 4.7% - 6.0% - 0.4%

Dataset MUJOCO PUSH ↓ V&T EE ↓ STOCKS-F&B ↓ STOCKS-HEALTH ↓ STOCKS-TECH ↓

Unimodal 0.334 ± 0.034 0.202 ± 0.022 1.856 ± 0.093 0.541 ± 0.010 0.125 ± 0.004
In-domain 0.290 ± 0.018 0.258 ± 0.011 1.856 ± 0.093 0.541 ± 0.010 0.125 ± 0.004
Out-domain 0.402 ± 0.026 0.185 ± 0.011 1.820 ± 0.138 0.526 ± 0.017 0.120 ± 0.008
Improvement - 8.4% 1.9% 2.8% 4.0%

Dataset ENRICO ↑ MM-IMDB ↑ AV-MNIST ↑ KINETICS-S ↑ KINETICS-L ↑
Unimodal 47.0 ± 1.6 45.6 ± 4.5 65.1 ± 0.2 56.5 72.6
In-domain 47.0 ± 1.6 49.8 ± 1.7 72.8 ± 0.2 56.1 74.7
Out-domain 51.0 ± 1.4 50.2 ± 0.9 72.3 ± 0.2 23.7 71.7
Improvement 8.5% 0.8% - - -

machine learning. We believe that the ever-expanding diversity of datasets in MULTIBENCH can
greatly accelerate research in multimodal learning.

7.5.2 Generalization across domains and modalities
MULTIBENCH offers an opportunity to analyze algorithmic developments across a large suite of
modalities, domains, and tasks. We illustrate these observations through 2 summary plots of the
generalization performance of multimodal models. Firstly, in Figure 7.4, we plot the performance
of each multimodal method across all datasets that it is tested on, using the color red to indicate
performance on datasets that it was initially proposed and tested on (which we label as in-domain),
and blue to indicate its performance on the remaining datasets (which we label as out-domain).
Secondly, in Figure 7.5, we color-code the performance on each dataset depending on which
research area the dataset belongs to (one of the 6 research areas covered in MULTIBENCH).

We summarize several observations regarding generalization across modalities and tasks:
1. Many multimodal methods still do not generalize across domains and datasets. For exam-

ples, MFAS [478] works well on domains it was designed for (AV-MNIST and MM-IMDB

in the multimedia domain), but does not generalize to other domains such as healthcare
(MIMIC). Similarly, the method designed for robustness, MCTN [482], does not gener-
alize to datasets within the affective computing domain (UR-FUNNY and MUSTARD).
Finally, GRADBLEND [651], an approach specifically designed to improve generalization
in multimodal learning and tested on video and audio datasets (e.g., Kinetics), does not
perform well on other datasets. Therefore, there still does not exist a one-size-fits-all model,
especially on understudied modalities and tasks.
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Figure 7.4: Relative performance of each model across in-domain (red dots) and out-domain datasets (blue
dots). In-domain refers to the performance on datasets that the method was previously proposed for and
out-domain shows performance on the remaining datasets. We find that many methods show strongest
performance on in-domain datasets which drop when tested on different domains, modalities, and tasks.
In general, we also observe high variance in the performance of multimodal methods across datasets in
MULTIBENCH, which suggest open questions in building more generalizable models.
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Figure 7.5: Relative performance of each model across different domains. We find that the performance of
multimodal models varies significantly across datasets spanning different research areas and modalities.
Similarly, the best-performing methods on each domain are also different. Therefore, there still does not
exist a one-size-fits-all model, especially for understudied modalities and tasks.



2. From Figure 7.4, we find that many methods show their strongest performance on in-domain
datasets, and their performance drops when tested on different domains, modalities, and
tasks. Some interesting observations are that MULT performs extremely well on the affect
recognition datasets it was designed for but struggles on other multimodal time-series in the
finance and robotics domains. On the other hand, MFM shows an impressive performance
in generalizing to new domains, although its in-domain performance has been exceeded by
several other methods.

3. From Figure 7.4, we also observe high variance in the performance of multimodal methods
across datasets in MULTIBENCH, which suggest open questions in building more gen-
eralizable models. We find that LF is quite stable and always achieves above-average
performance.

4. There are methods that are surprisingly generalizable across datasets. These are typically
general modality-agnostic methods such as LF. While simple, it is a strong method that
balances simplicity, performance, and low complexity. However, it does not achieve the
best performance on any dataset, which suggests that it is a good starting point but perhaps
not the best eventual method.

5. From Figure 7.5, we find that performance also varies significantly across research areas.
6. Several methods such as MFAS and CCA are designed for only 2 modalities (usually

image and text), and TF and MI do not scale efficiently beyond 2/3 modalities. Therefore,
we were unable to directly adapt these approaches to other datasets. We encourage the
community to generalize these approaches across datasets and modalities on MULTIBENCH.

7.5.3 Tradeoffs between modalities
How far can we go with unimodal methods? Surprisingly far! From Table 7.2, we observe that
decent performance can be obtained with the best performing modality. Further improvement via
multimodal models may come at the expense of around 2 − 3× the parameters.

7.6 Related Work
We review related work on standardizing datasets and methods in multimodal learning.

Comparisons with related benchmarks: To the best of our knowledge, MULTIBENCH is
the first multimodal benchmark with such a large number of datasets, modalities, and tasks. Most
previous multimodal benchmarks have focused on a single research area such as within affective
computing [199], human multimodal language [360], language and vision-based question answer-
ing [174, 536], text classification with external multimodal information [212], and multimodal
learning for education [227]. MULTIBENCH is specifically designed to go beyond the commonly
studied language, vision, and audio modalities to encourage the research community to explore
relatively understudied modalities (e.g., tabular data, time-series, sensors, graph and set data) and
build general multimodal methods that can handle a diverse set of modalities.

Our work is also inspired by recent progress in better evaluation benchmarks for a suite of
important tasks in ML such as language representation learning [642, 643], long-range sequence
modeling [595], multilingual representation learning [251], graph representation learning [256],



and robustness to distribution shift [312]. These well-crafted benchmarks have accelerated
progress in new algorithms, evaluation, and analysis in their respective research areas.

Standardizing multimodal learning: There have also been several attempts to build a single
model that works well on a suite of multimodal tasks [348, 390, 571]. However, these are limited
to the language and vision space, and multimodal training is highly tailored for text and images.
Transformer architectures have emerged as a popular choice due to their suitability for both
language and image data [108, 253] and a recent public toolkit was released for incorporating
multimodal data on top of text-based Transformers for prediction tasks [212]. By going beyond
Transformers and text data, MULTIBENCH opens the door to important research questions involv-
ing a much more diverse set of modalities and tasks while holistically evaluating performance,
complexity, and robustness.

Analysis of multimodal representations: Recent work has carefully analyzed and challenged
long-standing assumptions in multimodal learning. They have shown that certain models do not
actually learn cross-modal interactions but rather rely on ensembles of unimodal statistics [235]
and that certain datasets and models are biased to the most dominant modality [75, 206], sometimes
ignoring others completely [10]. These observations are currently only conducted on specific
datasets and models without testing their generalization to others, a shortcoming we hope to solve
using MULTIBENCH which enables scalable analysis over modalities, tasks, and models.

7.7 Conclusion
Limitations: While MULTIBENCH can help to accelerate research in multimodal ML, we are
aware of the following possible limitations:

1. Tradeoffs between generality and specificity: While it is desirable to build models that work
across modalities and tasks, there is undoubtedly merit in building modality and task-specific
models that can often utilize domain knowledge to improve performance and interpretability (e.g.,
see neuro-symbolic VQA [632], or syntax models for the language modality [120]). By easing
access to data, models, and evaluation, we hope that MULTIBENCH will challenge researchers to
design interpretable models leveraging domain knowledge for many multimodal tasks. It remains
an open question to define “interpretability” for other modalities beyond image and text, a question
we hope MULTIBENCH will drive research in.

2. Scale of datasets, models, and metrics: We plan for MULTIBENCH to be a continuously-
growing community effort with regular maintenance and expansion. While MULTIBENCH

currently does not include several important research areas outside of multimodal fusion (e.g.,
question answering [11, 223], retrieval [732], grounding [121], and reinforcement learning [394]),
and is also limited by the models and metrics it supports, we have plans to expand MULTIBENCH

towards a wider scale of datasets, models, and metrics.
Projected expansions of MULTIBENCH: In this subsection, we describe concrete ongoing

and future work towards expanding MULTIBENCH:
1. Other multimodal research problems: We are genuinely committed to building a community

around these resources and continue improving it over time. While we chose to focus on
multimodal fusion by design for this first version to have a more coherent way to standardize
and evaluate methods across datasets, we acknowledge the breadth of multimodal learning and



are looking forward to expanding it in other directions in collaboration with domain experts. We
have already included 2 datasets in captioning (and more generally for non-language outputs,
retrieval): (1) Yummly-28K of paired videos and text descriptions of food recipes [421], and (2)
Clotho dataset for audio-captioning [156] as well as a language-guided RL environment Read to
Fight Monsters (RTFM) [733] and are also working towards more datasets in QA, retrieval, and
multimodal RL.

To help in scalable expansion, we plan for an open call to the community for suggestions
and feedback about domains, datasets, and metrics. As a step in this direction, we have concrete
plans to use MULTIBENCH as a theme for future workshops and competitions (building on
top of the multimodal workshops we have been organizing at NAACL 2021, ACL 2020, and
ACL 2019, and in multimodal learning courses (starting with the course taught annually at
CMU). Since MULTIBENCH is public and will be regularly maintained, the existing benchmark,
code, evaluation, and experimental protocols can greatly accelerate any dataset and modeling
innovations added in the future. In our public GitHub, we have included a section on contributing
through task proposals or additions of datasets and algorithms. The authors will regularly monitor
new proposals through this channel.

2. New evaluation metrics: We also plan to include evaluation for distribution shift, uncer-
tainty estimation, tests for fairness and social biases, as well as labels/metrics for interpretable
multimodal learning. In the latter, we plan to include the EMAP score [235] as an interpretability
metric assessing whether cross-modal interactions improve performance.

3. Multimodal transfer learning and co-learning: Can training data in one dataset help
learning on other datasets? MULTIBENCH enables easy experimentation of such research ques-
tions: our initial experiments on transfer learning found that pre-training on larger datasets in
the same domain can improve performance on smaller datasets when fine-tuned on a smaller
dataset: performance on the smaller CMU-MOSI dataset improved from 75.2 to 75.8 using the
same late fusion model with transfer learning from the larger UR-FUNNY and CMU-MOSEI
datasets. Furthermore, recent work has shown that multimodal training can help improve unimodal
performance as well [553, 675, 716]. While previous experiments were on a small scale and
limited to a single domain, we plan to expand significantly on this phenomenon (multimodal
co-learning) in future versions of MULTIBENCH.

4. Multitask learning across modalities: Multitask learning across multimodal tasks with a
shared set of input modalities is a promising direction that can enable statistical strength sharing
across datasets and efficiency in training a single model. Using MULTIBENCH, we also ran an extra
experiment on multi-dataset multitask learning. We used the 4 datasets in the affective computing
domain and trained a single model across all 4 of them with adjustable input embedding layers
if the input features were different and separate classification heads for each dataset’s task. We
found promising initial results with performance on the largest CMU-MOSEI dataset improving
from 79.2 to 80.9 for a late fusion model and from 82.1 to 82.9 using a multimodal transformer
model, although performance on the smaller CMU-MOSI dataset decreased from 75.2 to 70.8.
We believe that these potential future studies in multitask and transfer learning are strengths of
MULTIBENCH since it shows the potential of interesting experiments and usage.

In conclusion, we present MULTIBENCH, a large-scale benchmark unifying previously dis-
joint efforts in multimodal research with a focus on ease of use, accessibility, and reproducibility,
thereby paving the way towards a deeper understanding of multimodal models. Through its

http://multicomp.cs.cmu.edu/naacl2021multimodalworkshop
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unprecedented range of research areas, datasets, modalities, tasks, and evaluation metrics, MULTI-
BENCH highlights several future directions in building more generalizable, lightweight, and robust
multimodal models.



Chapter 8

Neural Architectures for Multisensory
Foundation Models

8.1 Introduction

To build general multisensory foundation models that work across the diverse modalities and
tasks in MULTIBENCH, this chapter of the thesis presents two architectures that are broadly
generalizable across diverse modalities. The large number of heterogeneous modalities creates
challenges in building multisensory foundation models. For example, the healthcare domain
typically collects tabular data and high-frequency sensors [287], and it remains an open question
how to best combine large language models with tabular data and sensors [546]. To tackle the
heterogeneity across many different modalities, we treat modalities in their most general form
as sequences of elements, and study how to learn interactions between multiple elements across
modalities. As motivated in the first part of the thesis, these local interactions between two
elements can be redundant, unique, and synergistic: redundancy quantifies information shared
between modalities, uniqueness quantifies the information present in only one of the modalities,
and synergy quantifies the emergence of new information not previously present in either modality.

Treating modalities as sequences of elements now introduces a new challenge due to asyn-
chrony in time: for example, the simultaneous co-occurrence between a smile and a positive word,
or the delayed occurrence of laughter after the end of a sentence. Modeling these interactions lie
at the heart of analyzing human communication, audio-video data, sensor fusion, and medical
modalities. We now present two approaches to learn interactions from heterogeneous modality el-
ements across sequences: the cross-modal attention [101, 359] and multimodal transformer [613]
architectures.

The first architecture is called RECURRENT MULTISTAGE FUSION NETWORK, or RMFN
for short. This method automatically decomposes the multimodal fusion problem into multiple
recursive stages across the sequence. At each stage, a subset of multimodal signals is highlighted
and fused with previous fusion representations (see Figure 9.1). This divide-and-conquer approach
decreases the burden on each fusion stage, allowing each stage to be performed in a more
specialized and effective way. This is in contrast with conventional fusion approaches which
usually model interactions over multimodal sequences altogether in one iteration (e.g., early or late
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Figure 8.1: An illustrative example for Recurrent Multistage Fusion. At each recursive stage, a subset of
multimodal signals is highlighted and then fused with previous fusion representations. The first fusion stage
selects the neutral word and frowning behaviors which create an intermediate representation reflecting
negative emotion when fused together. The second stage selects the loud voice behavior which is locally
interpreted as emphasis before being fused with previous stages into a strongly negative representation.
Finally, the third stage selects the shrugging and speech elongation behaviors that reflect ambivalence and
when fused with previous stages is interpreted as a representation for the disappointed emotion.

fusion [45]). In RMFN, multimodal interactions are modeled by integrating our new multistage
fusion process with a system of recurrent neural networks. Overall, RMFN recursively models all
forms of redundant, unique, and synergistic multimodal interactions across the sequence and is
differentiable end-to-end.

The second architecture we propose is the MULTIMODAL TRANSFORMER (MULT), an end-to-
end model that extends the standard Transformer network [631] to learn representations directly
from unaligned multimodal sequences. At the heart of MULT is the crossmodal attention module,
which learns multimodal interactions between all elements in the first modality with all elements in
the second modality. As a result, all multimodal interactions across the entire sequence are learned
simultaneously, and can be parallelized efficiently over GPUs as compared to the first recurrent
fusion approach. This makes MULT extremely scalable and effective, especially in settings where
modality elements are asynchronous and where obtaining alignment information is difficult (e.g.,
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Figure 8.2: Example video clip from movie reviews. [Top]: Illustration of word-level alignment where
video and audio features are averaged across the time interval of each spoken word. [Bottom] Illustration
of crossmodal attention weights between text (“spectacle”) and vision/audio.

by forced word-aligning before training [482, 717], see Figure 8.2 for a comparison).
We evaluate RMFN and MULT on three different tasks related to human multimodal lan-

guage: sentiment analysis, emotion recognition, and speaker traits recognition across three public
multimodal datasets. RMFN achieves state-of-the-art performance in all three tasks. Through a
comprehensive set of ablation experiments and visualizations, we demonstrate the advantages of
explicitly defining multiple recursive stages for multimodal fusion.

8.2 Related Work

Previous approaches in human multimodal language modeling can be categorized as follows:
Non-temporal Models: These models simplify the problem by using feature-summarizing

temporal observations [490]. Each modality is represented by averaging temporal information
through time, as shown for language-based sentiment analysis [105, 273] and multimodal sen-
timent analysis [2, 427, 449, 711]. Conventional supervised learning methods are utilized to
discover intra-modal and cross-modal interactions without specific model design [488, 645]. These
approaches have trouble modeling long sequences since the average statistics do not properly
capture the temporal intra-modal and cross-modal dynamics [677].

Multimodal Temporal Graphical Models: The application of graphical models in sequence
modeling has been an important research problem. Hidden Markov Models (HMMs) [50],
Conditional Random Fields (CRFs) [324], and Hidden Conditional Random Fields (HCRFs) [494]
were shown to work well on modeling sequential data from the language [264, 400, 422] and
acoustic [707] modalities. These temporal graphical models have also been extended for modeling
multimodal data. Several methods have been proposed including multi-view HCRFs where the
potentials of the HCRF are designed to model data from multiple views [559], multi-layered CRFs



with latent variables to learn hidden spatio-temporal dynamics from multi-view data [559], and
multi-view Hierarchical Sequence Summarization models that recursively build up hierarchical
representations [560].

Multimodal Temporal Neural Networks: More recently, with the advent of deep learning,
Recurrent Neural Networks [164, 279] have been used extensively for language and speech based
sequence modeling [557, 742], sentiment analysis [78, 153, 202, 554], and emotion recogni-
tion [58, 220, 326]. Long-short Term Memory (LSTM) networks [242] have also been extended
for multimodal settings [501] and by learning binary gating mechanisms to remove noisy modal-
ities [101]. Recently, more advanced models were proposed to model both intra-modal and
cross-modal interactions. These use Bayesian ranking algorithms [234] to model both person-
independent and person-dependent features [361], generative-discriminative objectives to learn
either joint [481] or factorized multimodal representations [614], external memory mechanisms
to synchronize multimodal data [713], or low-rank tensors to approximate expensive tensor prod-
ucts [388]. All these methods assume that cross-modal interactions should be discovered all at
once rather than across multiple stages, where each stage solves a simpler fusion problem. Our
empirical evaluations show the advantages of the multistage fusion approach.

Transformer Network: The Transformer network [631] was first introduced for neural
machine translation, where the encoder and decoder side each leverages a self-attention [382,
464, 631] transformer. After each layer of self-attention, the encoder and decoder are connected
by an additional decoder sublayer where the decoder attends to each element of the source text
for each element of the target text. In addition to translation, transformer networks have also
been successfully applied to other tasks, including language modeling [41, 129], semantic role
labeling [568], word sense disambiguation [590], learning sentence representations [144], and
video activity recognition [652].

8.3 RECURRENT MULTISTAGE FUSION NETWORK

We first describe the RECURRENT MULTISTAGE FUSION NETWORK (RMFN for short) for multi-
modal language analysis (Figure 9.2). Given a set of modalities {l(anguage), v(isual), a(coustic)},
the signal from each modality m ∈ {l, v, a} is represented as a temporal sequence Xm =
{xm1 ,xm2 ,xm3 ,⋯,xmT }, where xmt is the input at time t. Each sequence Xm is modeled with an
intra-modal recurrent neural network (see subsection 8.3.3 for details). At time t, each intra-modal
recurrent network will output a unimodal representation hmt . The Multistage Fusion Process uses
a recursive approach to fuse all unimodal representations hmt into a cross-modal representation zt
which is then fed back into each intra-modal recurrent network.

8.3.1 Multistage fusion process
The Multistage Fusion Process (MFP) is a modular neural approach that performs multistage
fusion to model cross-modal interactions. Multistage fusion is a divide-and-conquer approach
which decreases the burden on each stage of multimodal fusion, allowing each stage to be per-
formed in a more specialized and effective way. The MFP has three main modules: HIGHLIGHT,
FUSE and SUMMARIZE.
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t ,h

a
t . At each stage, the HIGHLIGHT

module identifies a subset of multimodal signals and the FUSE module performs local fusion before
integration with previous fusion representations. The SUMMARIZE module translates the representation at
the final stage into a cross-modal representation zt to be fed back into the intra-modal recurrent networks.

Two modules are repeated at each stage: HIGHLIGHT and FUSE. The HIGHLIGHT module
identifies a subset of multimodal signals from [hlt,hvt ,hat ] that will be used for that stage of
fusion. The FUSE module then performs two subtasks simultaneously: a local fusion of the
highlighted features and integration with representations from previous stages. Both HIGHLIGHT
and FUSE modules are realized using memory-based neural networks which enable coherence
between stages and storage of previously modeled cross-modal interactions. As a final step, the
SUMMARIZE module takes the multimodal representation of the final stage and translates it into a
cross-modal representation zt.

Figure 9.1 shows an illustrative example for multistage fusion. The HIGHLIGHT module se-
lects “neutral words” and “frowning” expression for the first stage. The local and integrated fusion
at this stage creates a representation reflecting negative emotion. For stage 2, the HIGHLIGHT
module identifies the acoustic feature “loud voice”. The local fusion at this stage interprets it
as an expression of emphasis and is fused with the previous fusion results to represent a strong
negative emotion. Finally, the highlighted features of “shrug” and “speech elongation” are selected
and are locally interpreted as “ambivalence”. The integration with previous stages then gives a
representation closer to “disappointed”.

8.3.2 Module descriptions

In this section, we present the details of the three multistage fusion modules: HIGHLIGHT,
FUSE and SUMMARIZE. Multistage fusion begins with the concatenation of intra-modal network
outputs ht = ⊕m∈M hmt . We use superscript [k] to denote the indices of each stage k = 1,⋯,K
during K total stages of multistage fusion. Let Θ denote the neural network parameters across all
modules.

HIGHLIGHT: At each stage k, a subset of the multimodal signals represented in ht will be



automatically highlighted for fusion. Formally, this module is defined by the process function fH :

a
[k]
t = fH(ht ; a

[1∶k−1]
t ,Θ) (8.1)

where at stage k, a[k]
t is a set of attention weights which are inferred based on the previously

assigned attention weights a[1∶k−1]
t . As a result, the highlights at a specific stage k will be dependent

on previous highlights. To fully encapsulate these dependencies, the attention assignment process
is performed in a recurrent manner using a LSTM which we call the HIGHLIGHT LSTM. The
initial HIGHLIGHT LSTM memory at stage 0, cHIGHLIGHT[0]t , is initialized using a networkM
that maps ht into LSTM memory space:

c
HIGHLIGHT[0]
t =M(ht ; Θ) (8.2)

This allows the memory mechanism of the HIGHLIGHT LSTM to dynamically adjust to the
intra-modal representations ht. The output of the HIGHLIGHT LSTM h

HIGHLIGHT[k]
t is softmax

activated to produce attention weights a[k]
t at every stage k of the multistage fusion process:

a
[k]
t j =

exp (hHIGHLIGHT[k]
t j)

∑∣h
HIGHLIGHT[k]
t ∣

d=1 exp (hHIGHLIGHT[k]
t d)

(8.3)

and a
[k]
t is fed as input into the HIGHLIGHT LSTM at stage k + 1. Therefore, the HIGHLIGHT

LSTM functions as a decoder LSTM [115, 581] in order to capture the dependencies on previous
attention assignments. Highlighting is performed by element-wise multiplying the attention
weights a[k]

t with the concatenated intra-modal representations ht:

h̃
[k]
t = ht ⊙ a

[k]
t (8.4)

where ⊙ denotes the Hadamard product and h̃
[k]
t are the attended multimodal signals that will be

used for the fusion at stage k.
FUSE: The highlighted multimodal signals are simultaneously fused in a local fusion and then

integrated with fusion representations from previous stages. Formally, this module is defined by
the process function fF :

s
[k]
t = fF (h̃[k]

t ; s
[1∶k−1]
t ,Θ) (8.5)

where s
[k]
t denotes the integrated fusion representations at stage k. We employ a FUSE LSTM to

simultaneously perform the local fusion and the integration with previous fusion representations.
The FUSE LSTM input gate enables a local fusion while the FUSE LSTM forget and output
gates enable integration with previous fusion results. The initial FUSE LSTM memory at stage 0,
c
FUSE[0]
t , is initialized using random orthogonal matrices [33, 330].
SUMMARIZE: After completingK recursive stages of HIGHLIGHT and FUSE, the SUMMARIZE

operation generates a cross-modal representation using all final fusion representations s[1∶K]

t . For-
mally, this operation is defined as:

zt = S(s[1∶K]

t ; Θ) (8.6)

where zt is the final output of the multistage fusion process and represents all cross-modal
interactions discovered at time t. The summarized cross-modal representation is then fed into the
intra-modal recurrent networks as described in the subsection 8.3.3.



8.3.3 System of long short-term hybrid memories
To integrate the cross-modal representations zt with the temporal intra-modal representations,
we employ a system of Long Short-term Hybrid Memories (LSTHMs) [714]. The LSTHM
extends the LSTM formulation to include the cross-modal representation zt in a hybrid memory
component:

imt+1 = σ(W
m
i xmt+1 +Um

i hmt +Vm
i zt + bmi ) (8.7)

fmt+1 = σ(W
m
f xmt+1 +Um

f hmt +Vm
f zt + bmf ) (8.8)

omt+1 = σ(W
m
o xmt+1 +Um

o hmt +Vm
o zt + bmo ) (8.9)

c̄mt+1 =Wm
c̄ xmt+1 +Um

c̄ hmt +Vm
c̄ zt + bmc̄ (8.10)

cmt+1 = fmt ⊙ cmt + imt ⊙ tanh(c̄mt+1) (8.11)
hmt+1 = omt+1 ⊙ tanh(c

m
t+1) (8.12)

where σ is the (hard-)sigmoid activation function, tanh is the tangent hyperbolic activation
function, ⊙ denotes the Hadamard product. i, f and o are the input, forget and output gates
respectively. c̄mt+1 is the proposed update to the hybrid memory cmt at time t + 1 and hmt is the
time distributed output of each modality. The cross-modal representation zt is modeled by the
Multistage Fusion Process as discussed in subsection 8.3.2. The hybrid memory cmt contains both
intra-modal interactions from individual modalities xmt as well as the cross-modal interactions
captured in zt.

8.3.4 Optimization
The multimodal prediction task is performed using a final representation E which integrate (1)
the last outputs from the LSTHMs and (2) the last cross-modal representation zT . Formally, E is
defined as:

E = (⊕
m∈M

hmT )⊕zT (8.13)

where ⊕ denotes vector concatenation. E can then be used as a multimodal representation
for supervised or unsupervised analysis of multimodal language. It summarizes all modeled
intra-modal and cross-modal representations from the multimodal sequences. RMFN is differen-
tiable end-to-end which allows the network parameters Θ to be learned using gradient descent
approaches.

8.4 MULTIMODAL TRANSFORMER

We next describe our second proposed architecture, the MULTIMODAL TRANSFORMER (MULT)
(Figure 9.6) for modeling unaligned multimodal language sequences. At the high level, MULT
merges multimodal time-series via a feed-forward fusion process from multiple directional
pairwise crossmodal transformers. Specifically, each crossmodal transformer (introduced in
Section 8.4.2) serves to repeatedly reinforce a target modality with the low-level features from
another source modality by learning the attention across the two modalities’ features. A MULT
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Figure 8.4: Overall architecture for MULT on modalities (L,V,A). The crossmodal transformers, which
suggests latent crossmodal adaptations, are the core components of MULT for multimodal fusion.

architecture hence models all pairs of modalities with such crossmodal transformers, followed by
sequence models (e.g., self-attention transformer) that predicts using the fused features.

The core of our proposed model is crossmodal attention module, which we first introduce in
Section 8.4.1. Then, in Section 8.4.2 and 8.4.3, we present in details the various ingredients of the
MULT architecture (see Figure 9.6) and discuss the difference between crossmodal attention and
classical multimodal alignment.

8.4.1 Crossmodal attention
We consider two modalities α and β, with two (potentially non-aligned) sequences from each of
them denoted Xα ∈ RTα×dα and Xβ ∈ RTβ×dβ , respectively. For the rest of the paper, T(⋅) and d(⋅)
are used to represent sequence length and feature dimension, respectively. Inspired by the decoder
transformer in NMT [631] that translates one language to another, we hypothesize a good way to
fuse crossmodal information is providing a latent adaptation across modalities; i.e., β to α. Note
that the modalities consider in our paper may span very different domains such as facial attributes
and spoken words.

We define the Querys as Qα =XαWQα , Keys as Kβ =XβWKβ , and Values as Vβ =XβWVβ ,
where WQα ∈ Rdα×dk ,WKβ ∈ Rdβ×dk and WVβ ∈ Rdβ×dv are weights. The latent adaptation from β
to α is presented as the crossmodal attention Yα ∶= CMβ→α(Xα,XB) ∈ RTα×dv :

Yα = CMβ→α(Xα,Xβ)

= softmax(
QαK

⊺
β√

dk
)Vβ

= softmax
⎛
⎝
XαWQαW

⊺
Kβ
X⊺
β√

dk

⎞
⎠
XβWVβ .

(8.14)

Note that Yα has the same length as Qα (i.e., Tα), but is meanwhile represented in the feature
space of Vβ . Specifically, the scaled (by

√
dk) softmax in Equation (8.14) computes a score matrix
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softmax (⋅) ∈ RTα×Tβ , whose (i, j)-th entry measures the attention given by the i-th time step of
modality α to the j-th time step of modality β. Hence, the i-th time step of Yα is a weighted
summary of Vβ , with the weight determined by i-th row in softmax(⋅). We call Equation eq (8.14)
a single-head crossmodal attention, which is illustrated in Figure 8.5a.

Following prior works on transformers [100, 129, 144, 631], we add a residual connection
to the crossmodal attention computation. Then, another positionwise feed-forward sublayer is
injected to complete a crossmodal attention block (see Figure 8.5b). Each crossmodal attention
block adapts directly from the low-level feature sequence (i.e., Z[0]

β in Figure 8.5b) and does not
rely on self-attention, which makes it different from the NMT encoder-decoder architecture [540,
631] (i.e., taking intermediate-level features). We argue that performing adaptation from low-level
feature benefits our model to preserve the low-level information for each modality.

8.4.2 Overall architecture

Three major modalities are typically involved in multimodal language sequences: language (L),
video (V ), and audio (A) modalities. We denote with X{L,V,A} ∈ RT{L,V,A}×d{L,V,A} the input feature
sequences (and the dimensions thereof) from these 3 modalities. With these notations, in this
subsection, we describe in greater details the components of Multimodal Transformer and how
crossmodal attention modules are applied.

Temporal Convolutions. To ensure that each element of the input sequences has sufficient
awareness of its neighborhood elements, we pass the input sequences through a 1D temporal
convolutional layer:

X̂{L,V,A} = Conv1D(X{L,V,A}, k{L,V,A}) ∈ RT{L,V,A}×d (8.15)



where k{L,V,A} are the sizes of the convolutional kernels for modalities {L,V,A}, and d is a
common dimension. The convolved sequences are expected to contain the local structure of
the sequence, which is important since the sequences are collected at different sampling rates.
Moreover, since the temporal convolutions project the features of different modalities to the same
dimension d, the dot-products are admittable in the crossmodal attention module.

Positional Embedding. To enable the sequences to carry temporal information, following prior
work [631], we augment positional embedding (PE) to X̂{L,V,A}:

Z
[0]

{L,V,A}
= X̂{L,V,A} + PE(T{L,V,A}, d) (8.16)

where PE(T{L,V,A}, d) ∈ RT{L,V,A}×d computes the (fixed) embeddings for each position index, and
Z

[0]

{L,V,A}
are the resulting low-level position-aware features for different modalities. We leave

more details of the positional embedding to the full paper [613].

Crossmodal Transformers. Based on the crossmodal attention blocks, we design the cross-
modal transformer that enables one modality for receiving information from another modality. In
the following, we use the example for passing vision (V ) information to language (L), which is
denoted by “V → L”. We fix all the dimensions (d{α,β,k,v}) for each crossmodal attention block as
d.

Each crossmodal transformer consists of D layers of crossmodal attention blocks (see Figure
8.5b). Formally, a crossmodal transformer computes feed-forwardly for i = 1, . . . ,D layers:

Z
[0]
V→L = Z

[0]
L

Ẑ
[i]
V→L = CM[i],mul

V→L (LN(Z[i−1]
V→L),LN(Z[0]

V )) + LN(Z[i−1]
V→L)

Z
[i]
V→L = fθ[i]V→L(LN(Ẑ[i]

V→L)) + LN(Ẑ[i]
V→L)

(8.17)

where fθ is a positionwise feed-forward sublayer parametrized by θ, and CM[i],mul
V→L means a multi-

head (see prior work [631] for more details) version of CMV→L at layer i (note: d should be
divisible by the number of heads). LN means layer normalization [38].

In this process, each modality keeps updating its sequence via low-level external information
from the multi-head crossmodal attention module. At every level of the crossmodal attention
block, the low-level signals from source modality are transformed to a different set of Key/Value
pairs to interact with the target modality. Empirically, we find that the crossmodal transformer
learns to correlate meaningful elements across modalities. The eventual MULT is based on
modeling every pair of crossmodal interactions. Therefore, with 3 modalities (i.e., L,V,A) in
consideration, we have 6 crossmodal transformers in total (see Figure 9.6).

Self-Attention Transformers and Prediction. As a final step, we concatenate the outputs from
the crossmodal transformers that share the same target modality to yield Z{L,V,A} ∈ RT{L,V,A}×2d.
For example, ZL = [Z[D]

V→L;Z
[D]

A→L]. Each of them is then passed through a sequence model to
collect temporal information to make predictions. We choose the self-attention transformer [631].
Eventually, the last elements of the sequences models are extracted to pass through fully-connected
layers to make predictions.
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8.4.3 Discussion about attention & alignment
When modeling unaligned multimodal language sequences, MULT relies on crossmodal attention
blocks to merge signals across modalities. While the multimodal sequences were (manually)
aligned to the same length in prior works before training [359, 482, 614, 655, 717], we note that
MULT looks at the non-alignment issue through a completely different lens. Specifically, for
MULT, the correlations between elements of multiple modalities are purely based on attention. In
other words, MULT does not handle modality non-alignment by (simply) aligning them; instead,
the crossmodal attention encourages the model to directly attend to elements in other modalities
where strong signals or relevant information is present. As a result, MULT can capture long-range
crossmodal contingencies in a way that conventional alignment could not easily reveal. Classical
crossmodal alignment, on the other hand, can be expressed as a special (step diagonal) crossmodal
attention matrix (i.e., monotonic attention [704]). We illustrate their differences in Figure 8.6.

8.5 Experimental Setup
To evaluate the performance and generalization of RMFN and MULT, three domains of human
multimodal language were selected: multimodal sentiment analysis, emotion recognition, and
speaker traits recognition. Our goal is to compare MULT with prior competitive approaches on
both word-aligned (by word, which almost all prior works employ) and unaligned (which is more
challenging, and which MULT is generically designed for) multimodal language sequences.

8.5.1 Datasets
All datasets consist of monologue videos. The speaker’s intentions are conveyed through three
modalities: language, visual and acoustic.

Multimodal Sentiment Analysis involves analyzing speaker sentiment based on video con-
tent. Multimodal sentiment analysis extends conventional language-based sentiment analysis
to a multimodal setup where both verbal and non-verbal signals contribute to the expression of
sentiment. We use CMU-MOSI [711] which consists of 2199 opinion segments from online
videos each annotated with sentiment in the range [-3,3].



Multimodal Emotion Recognition involves identifying speaker emotions based on both
verbal and nonverbal behaviors. We perform experiments on the IEMOCAP dataset [74] which
consists of 7318 segments of recorded dyadic dialogues annotated for the presence of human
emotions happiness, sadness, anger and neutral.

Multimodal Speaker Traits Recognition involves recognizing speaker traits based on multi-
modal communicative behaviors. POM [467] contains 903 movie review videos each annotated
for 12 speaker traits: confident (con), passionate (pas), voice pleasant (voi), credible (cre), vivid
(viv), expertise (exp), reserved (res), trusting (tru), relaxed (rel), thorough (tho), nervous (ner),
persuasive (per) and humorous (hum).

Each task consists of a word-aligned (processed in the same way as in prior works) and an
unaligned version. For both versions, the multimodal features are extracted from the textual
(GloVe word embeddings [475]), visual (Facet [270]), and acoustic (COVAREP [136]) data
modalities. A more detailed introduction to the features is included in the full paper [359].

For the word-aligned version, following [482, 614, 713], we first use P2FA [707] to obtain the
aligned timesteps (segmented w.r.t. words) for audio and vision streams, and we then perform
averaging on the audio and vision features within these time ranges. All sequences in the word-
aligned case have length 50. The process remains the same across all the datasets. On the other
hand, for the unaligned version, we keep the original audio and visual features as extracted,
without any word-segmented alignment or manual subsampling. As a result, the lengths of each
modality vary significantly, where audio and vision sequences may contain up to > 1,000 time
steps. We elaborate on the three tasks below.

8.5.2 Multimodal features and alignment
GloVe word embeddings [475], Facet [270] and COVAREP [136] are extracted for the language,
visual and acoustic modalities respectively 1. Forced alignment is performed using P2FA [707] to
obtain the exact utterance times of each word. We obtain the aligned video and audio features
by computing the expectation of their modality feature values over each word utterance time
interval [614].

8.5.3 Baseline models
We compare to the following models for multimodal machine learning: MFN [713] synchronizes
multimodal sequences using a multi-view gated memory. It is the current state of the art on CMU-
MOSI and POM. MARN [714] models intra-modal and cross-modal interactions using multiple
attention coefficients and hybrid LSTM memory components. GME-LSTM(A) [101] learns binary
gating mechanisms to remove noisy modalities that are contradictory or redundant for prediction.
TFN [712] models unimodal, bimodal and trimodal interactions using tensor products. BC-LSTM
[490] performs context-dependent sentiment analysis and emotion recognition, currently state
of the art on IEMOCAP. EF-LSTM concatenates the multimodal inputs and uses that as input
to a single LSTM [241]. We also implement the Stacked, (EF-SLSTM) [208] Bidirectional
(EF-BLSTM) [528] and Stacked Bidirectional (EF-SBLSTM) LSTMs.

1Details on feature extraction are in supplementary.



Table 8.1: Results for multimodal sentiment analysis on CMU-MOSI with aligned and non-aligned
multimodal sequences. h means higher is better and ` means lower is better. EF stands for early fusion, and
LF stands for late fusion.

Metric Acc7 ↑ Acc2 ↑ F1 ↑ MAE ↓ Corr ↑

(Word Aligned) CMU-MOSI Sentiment
EF-LSTM 33.7 75.3 75.2 1.023 0.608
LF-LSTM 35.3 76.8 76.7 1.015 0.625

RMFN [359] 38.3 78.4 78.0 0.922 0.681
MFM [614] 36.2 78.1 78.1 0.951 0.662

RAVEN [655] 33.2 78.0 76.6 0.915 0.691
MCTN [482] 35.6 79.3 79.1 0.909 0.676

MulT (ours) 40.0 83.0 82.8 0.871 0.698
(Unaligned) CMU-MOSI Sentiment

CTC [209] + EF-LSTM 31.0 73.6 74.5 1.078 0.542
LF-LSTM 33.7 77.6 77.8 0.988 0.624

CTC + MCTN [482] 32.7 75.9 76.4 0.991 0.613
CTC + RAVEN [655] 31.7 72.7 73.1 1.076 0.544

MulT (ours) 39.1 81.1 81.0 0.889 0.686

Table 8.2: Results for multimodal sentiment analysis on (relatively large scale) CMU-MOSEI with aligned
and non-aligned multimodal sequences.

Metric Acc7 ↑ Acc2 ↑ F1 ↑ MAE ↓ Corr ↑

(Word Aligned) CMU-MOSEI Sentiment
EF-LSTM 47.4 78.2 77.9 0.642 0.616
LF-LSTM 48.8 80.6 80.6 0.619 0.659

Graph-MFN [717] 45.0 76.9 77.0 0.71 0.54
RAVEN [655] 50.0 79.1 79.5 0.614 0.662
MCTN [482] 49.6 79.8 80.6 0.609 0.670

MulT (ours) 51.8 82.5 82.3 0.580 0.703
(Unaligned) CMU-MOSEI Sentiment

CTC [209] + EF-LSTM 46.3 76.1 75.9 0.680 0.585
LF-LSTM 48.8 77.5 78.2 0.624 0.656

CTC + RAVEN [655] 45.5 75.4 75.7 0.664 0.599
CTC + MCTN [482] 48.2 79.3 79.7 0.631 0.645

MulT (ours) 50.7 81.6 81.6 0.591 0.694

8.5.4 Evaluation metrics

For classification, we report accuracy Ac where c denotes the number of classes and F1 score. For
regression, we report Mean Absolute Error MAE and Pearson’s correlation r. For MAE lower
values indicate stronger performance. For all remaining metrics, higher values indicate stronger
performance.



Table 8.3: Results for multimodal emotions analysis on IEMOCAP with aligned and non-aligned multi-
modal sequences.

Task Happy Sad Angry Neutral
Metric Acc2 ↑ F1↑ Acc2 ↑ F1 ↑ Acc2 ↑ F1 ↑ Acc2 ↑ F1 ↑

(Word Aligned) IEMOCAP Emotions
EF-LSTM 86.0 84.2 80.2 80.5 85.2 84.5 67.8 67.1
LF-LSTM 85.1 86.3 78.9 81.7 84.7 83.0 67.1 67.6

RMFN [359] 87.5 85.8 83.8 82.9 85.1 84.6 69.5 69.1
MFM [614] 90.2 85.8 88.4 86.1 87.5 86.7 72.1 68.1

RAVEN [655] 87.3 85.8 83.4 83.1 87.3 86.7 69.7 69.3
MCTN [482] 84.9 83.1 80.5 79.6 79.7 80.4 62.3 57.0

MulT (ours) 90.7 88.6 86.7 86.0 87.4 87.0 72.4 70.7
(Unaligned) IEMOCAP Emotions

CTC [209] + EF-LSTM 76.2 75.7 70.2 70.5 72.7 67.1 58.1 57.4
LF-LSTM 72.5 71.8 72.9 70.4 68.6 67.9 59.6 56.2

CTC + RAVEN [655] 77.0 76.8 67.6 65.6 65.0 64.1 62.0 59.5
CTC + MCTN [482] 80.5 77.5 72.0 71.7 64.9 65.6 49.4 49.3

MulT (ours) 84.8 81.9 77.7 74.1 73.9 70.2 62.5 59.7

Table 8.4: Results for personality trait recognition on POM. Best results are highlighted in bold and
∆SOTA shows improvement over previous SOTA. Symbols denote baseline model which achieves the
reported performance: MFN: ⋆, MARN: §, BC-LSTM: ●, TFN: †, MV-LSTM: #, EF-LSTM: ♭, RF: ♡,
SVM: ×. The MFP outperforms the current SOTA across all evaluation metrics except the ∆SOTA entries
highlighted in gray. Improvements are highlighted in green.

Dataset POM Speaker Personality Traits
Task Con Pas Voi Cre Viv Exp Res Rel Tho Ner Per Hum
Metric Acc7 ↑ Acc7 ↑ Acc7 ↑ Acc7 ↑ Acc7 ↑ Acc7 ↑ Acc5 ↑ Acc5 ↑ Acc5 ↑ Acc5 ↑ Acc7 ↑ Acc6 ↑
EF-LSTM 25.1 30.5 34.0 36.9 29.6 32.5 31.0 48.3 42.4 44.8 25.6 39.4
MV-LSTM 25.6 28.6 28.1 25.6 32.5 29.6 33.0 50.7 37.9 42.4 26.1 38.9
BC-LSTM 26.6 26.6 31.0 27.6 36.5 30.5 33.0 47.3 45.8 36.0 27.1 36.5
TFN 24.1 31.0 31.5 24.6 25.6 27.6 30.5 35.5 33.0 42.4 27.6 33.0
MFN 34.5 35.5 37.4 34.5 36.9 36.0 38.4 53.2 47.3 47.8 34.0 47.3
RMFN (ours) 37.4 38.4 37.4 37.4 38.9 38.9 39.4 53.7 48.3 48.3 35.0 46.8

8.6 Results and Discussion

8.6.1 Overall performance on multimodal language

Word-Aligned Experiments. We first evaluate RMFN and MULT on the word-aligned se-
quences— the “home turf” of prior approaches modeling human multimodal language [482, 541,
614, 655]. The upper part of the Table 8.1, 8.2, 8.3, and 8.4 show the results of our proposed
approaches and previous baselines on the word-aligned task. With similar model sizes (around
200K parameters), MULT outperforms the other competitive approaches on different metrics on
all tasks, with the exception of the “sad” class results on IEMOCAP. We also observe that RMFN
does not improve results on IEMOCAP neutral emotion and the model outperforming RMFN is a
memory-based fusion baseline [713]. We believe that this is because neutral expressions are quite
idiosyncratic. Some people may always look angry given their facial configuration (e.g., natural
eyebrow raises of actor Jack Nicholson). In these situations, it becomes useful to compare the
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that due to temporal convolution, each textual/visual feature contains the representation of nearby elements.

current image with a memorized or aggregated representation of the speaker’s face. Our proposed
multistage fusion approach can easily be extended to memory-based fusion methods.

Unaligned Experiments. Next, we evaluate MULT on the same set of datasets in the unaligned
setting. Note that MULT can be directly applied to unaligned multimodal stream, while the
baseline models (except for LF-LSTM) require the need of additional alignment module (e.g.,
CTC module).

The results are shown in the bottom part of Table 8.1, 8.2, and 8.3. On the three benchmark
datasets, MULT improves upon the prior methods (some with CTC) by 10%-15% on most
attributes. Empirically, we find that MULT converges faster to better results at training when
compared to other competitive approaches (see Figure 8.7). In addition, while we note that
in general there is a performance drop on all models when we shift from the word-aligned
to unaligned multimodal time-series, the impact MULT takes is much smaller than the other
approaches. We hypothesize such performance drop occurs because the asynchronous (and much



Table 8.5: Effect of varying the number of stages on CMU-MOSI sentiment analysis performance.
Multistage fusion improves performance as compared to single stage fusion.

Dataset CMU-MOSI
Task Sentiment
Metric A2 ↑ F1 ↑ A7 ↑ MAE ↓ Corr ↑
RMFN-R1 75.5 75.5 35.1 0.997 0.653
RMFN-R2 76.4 76.4 34.5 0.967 0.642
RMFN-R3 78.4 78.0 38.3 0.922 0.681
RMFN-R4 76.0 76.0 36.0 0.999 0.640
RMFN-R5 75.5 75.5 30.9 1.009 0.617
RMFN-R6 70.4 70.5 30.8 1.109 0.560
RMFN 78.4 78.0 38.3 0.922 0.681

Table 8.6: Comparison studies of RMFN on CMU-MOSI. Modeling cross-modal interactions using
multistage fusion and attention weights are crucial in multimodal language analysis.

Dataset CMU-MOSI
Task Sentiment
Metric A2 ↑ F1 ↑ A7 ↑ MAE ↓ Corr ↑
MARN 77.1 77.0 34.7 0.968 0.625
RMFN (no MFP) 76.5 76.5 30.8 0.998 0.582
RMFN (no HIGHLIGHT) 77.9 77.9 35.9 0.952 0.666
RMFN 78.4 78.0 38.3 0.922 0.681

longer) data streams introduce more difficulty in recognizing important features and computing
the appropriate attention.

8.6.2 Deeper analysis of RMFN

Ablation studies: To achieve a deeper understanding of the multistage fusion process, we study
five research questions. (Q1): whether modeling cross-modal interactions across multiple stages
is beneficial. (Q2): the effect of the number of stages K during multistage fusion on performance.
(Q3): the comparison between multistage and independent modeling of cross-modal interactions.
(Q4): whether modeling cross-modal interactions are helpful. (Q5): whether attention weights
from the HIGHLIGHT module are required for modeling cross-modal interactions.

Q1: To study the effectiveness of the multistage fusion process, we test the baseline RMFN-R1
which performs fusion in only one stage instead of across multiple stages. This model makes the
strong assumption that all cross-modal interactions can be modeled during only one stage. From
Table 8.5, RMFN-R1 underperforms as compared to RMFN which performs multistage fusion.

Q2: We test baselines RMFN-RK which perform K stages of fusion. From Table 8.5, we
observe that increasing the number of stages K increases the model’s capability to model cross-
modal interactions up to a certain point (K = 3) in our experiments. Further increases led to
decreases in performance and we hypothesize this is due to overfitting on the dataset.

Q3: To compare multistage against independent modeling of cross-modal interactions, we
pay close attention to the performance comparison with respect to MARN which models multiple
cross-modal interactions all at once (see Table 8.6). RMFN shows improved performance,
indicating that multistage fusion is both effective and efficient for human multimodal language
modeling.
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process and across time of the multimodal sequence. We observe that the attention weights are diverse
and evolve across stages and time. In these three examples, the red boxes emphasize specific moments of
interest. (a) Synchronized interactions: the positive word “fun” and the acoustic behaviors of emphasis
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(t = 3) help to disambiguate the language modality. (c) Bimodal interactions: the interactions between the
language and acoustic modalities are highlighted by alternating stages of fusion (t = 4 ∶ 7).

Q4: RMFN (no MFP) represents a system of LSTHMs without the integration of zt from
the MFP to model cross-modal interactions. From Table 8.6, RMFN (no MFP) is outperformed
by RMFN, confirming that modeling cross-modal interactions is crucial in analyzing human
multimodal language.

Q5: RMFN (no HIGHLIGHT) removes the HIGHLIGHT module from MFP during multi-
stage fusion. From Table 8.6, RMFN (no HIGHLIGHT) underperforms, indicating that highlight-
ing multimodal representations using attention weights are important for modeling cross-modal
interactions.

Visualizations of learned fusion patterns: Using an attention assignment mechanism during
the HIGHLIGHT process gives more interpretability to the model since it allows us to visualize
the attended multimodal signals at each stage and time step (see Figure 8.9). Using RMFN trained
on the CMU-MOSI dataset, we plot the attention weights across the multistage fusion process for
three videos in CMU-MOSI. Based on these visualizations we first draw the following general
observations on multistage fusion:

Across stages: Attention weights change their behaviors across the multiple stages of fusion.
Some features are highlighted by earlier stages while other features are used in later stages. This
supports our hypothesis that RMFN learns to specialize in different stages of the fusion process.

Across time: Attention weights vary over time and adapt to the multimodal inputs. We
observe that the attention weights are similar if the input contains no new information. As soon as
new multimodal information comes in, the highlighting mechanism in RMFN adapts to these
new inputs.



Priors: Based on the distribution of attention weights, we observe that the language and
acoustic modalities seem the most commonly highlighted. This represents a prior over the
expression of sentiment in human multimodal language and is closely related to the strong
connections between language and speech in human communication [322].

Inactivity: Some attention coefficients are not active (always orange) throughout time. We
hypothesize that these corresponding dimensions carry only intra-modal dynamics and are not
involved in the formation of cross-modal interactions.

In addition to the general observations above, Figure 8.9 shows three examples where multi-
stage fusion learns cross-modal representations across three different scenarios.

Synchronized Interactions: In Figure 8.9(a), the language features are highlighted corre-
sponding to the utterance of the word “fun” that is highly indicative of sentiment (t = 5). This
sudden change is also accompanied by a synchronized highlighting of the acoustic features. We
also notice that the highlighting of the acoustic features lasts longer across the 3 stages since it
may take multiple stages to interpret all the new acoustic behaviors (elongated tone of voice and
phonological emphasis).

Asynchronous Trimodal Interactions: In Figure 8.9(b), the language modality displays
ambiguous sentiment: “delivers a lot of intensity” can be inferred as both positive or negative.
We observe that the circled attention units in the visual and acoustic features correspond to the
asynchronous presence of a smile (t = 2 ∶ 5) and phonological emphasis (t = 3) respectively. These
nonverbal behaviors resolve ambiguity in language and result in an overall display of positive
sentiment. We further note the coupling of attention weights that highlight the language, visual
and acoustic features across stages (t = 3 ∶ 5), further emphasizing the coordination of all three
modalities during multistage fusion despite their asynchronous occurrences.

Bimodal Interactions: In Figure 8.9(c), the language modality is better interpreted in the
context of acoustic behaviors. The disappointed tone and soft voice provide the nonverbal
information useful for sentiment inference. This example highlights the bimodal interactions
(t = 4 ∶ 7) in alternating stages: the acoustic features are highlighted more in earlier stages while
the language features are highlighted increasingly in later stages.

8.6.3 Deeper analysis of MULT

Ablation studies: To further study the influence of the individual components in MULT, we
perform comprehensive ablation analysis using the unaligned version of CMU-MOSEI. The
results are shown in Table 8.7.

First, we consider the performance for only using unimodal transformers (i.e., language, audio
or vision only). We find that the language transformer outperforms the other two by a large
margin. For example, for the Acch2 metric, the model improves from 65.6 to 77.4 when comparing
audio only to language only unimodal transformer. This fact aligns with the observations in prior
work [482], where the authors found that a good language network could already achieve good
performance at inference time.

Second, we consider 1) a late-fusion transformer that feature-wise concatenates the last ele-
ments of three self-attention transformers; and 2) an early-fusion self-attention transformer that
takes in a temporal concatenation of three asynchronous sequences [X̂L, X̂V , X̂A] ∈ R(TL+TV +TA)×dq



Table 8.7: An ablation study on the benefit of MulT’s crossmodal transformers using CMU-MOSEI).

(Unaligned) CMU-MOSEI
Description Sentiment

Acch7 Acch2 F1h MAE` Corrh

Unimodal Transformers

Language only 46.5 77.4 78.2 0.653 0.631
Audio only 41.4 65.6 68.8 0.764 0.310
Vision only 43.5 66.4 69.3 0.759 0.343

Late Fusion by using Multiple Unimodal Transformers

LF-Transformer 47.9 78.6 78.5 0.636 0.658

Temporally Concatenated Early Fusion Transformer

EF-Transformer 47.8 78.9 78.8 0.648 0.647

Multimodal Transfomers

Only [V,A→ L] (ours) 50.5 80.1 80.4 0.605 0.670
Only [L,A→ V ] (ours) 48.2 79.7 80.2 0.611 0.651
Only [L,V → A] (ours) 47.5 79.2 79.7 0.620 0.648

MulT mixing intermediate-
level features (ours) 50.3 80.5 80.6 0.602 0.674

MulT (ours) 50.7 81.6 81.6 0.591 0.691

(see Section 8.4.2). Empirically, we find that both EF- and LF-Transformer (which fuse multi-
modal signals) outperform unimodal transformers.

Finally, we study the importance of individual crossmodal transformers according to the target
modalities (i.e., using [V,A → L], [L,A → V ], or [L,V → A] network). As shown in Table
8.7, we find crossmodal attention modules consistently improve over the late- and early-fusion
transformer models in most metrics on unaligned CMU-MOSEI. In particular, among the three
crossmodal transformers, the one where language(L) is the target modality works best. We also
additionally study the effect of adapting intermediate-level instead of the low-level features from
source modality in crossmodal attention blocks (similar to the NMT encoder-decoder architecture
but without self-attention; see Section 8.4.1). While MULT leveraging intermediate-level features
still outperform models in other ablative settings, we empirically find adapting from low-level
features works best. The ablations suggest that crossmodal attention concretely benefits MULT
with better representation learning.

Qualitative analysis of learned cross-modal attention: To understand how crossmodal
attention works while modeling unaligned multimodal data, we empirically inspect what kind of
signals MULT picks up by visualizing the attention activations. Figure 8.8 shows an example of a
section of the crossmodal attention matrix on layer 3 of the V → L network of MULT (the original
matrix has dimension TL × TV ; the figure shows the attention corresponding to approximately
a 6-sec short window of that matrix). We find that crossmodal attention has learned to attend
to meaningful signals across the two modalities. For example, stronger attention is given to
the intersection of words that tend to suggest emotions (e.g., “movie”, “disappointing”) and
drastic facial expression changes in the video (start and end of the above vision sequence). This
observation advocates one of the aforementioned advantage of MULT over conventional alignment
(see Section 8.4.3): crossmodal attention enables MULT to directly capture potentially long-range
signals, including those off-diagonals on the attention matrix.



8.7 Conclusion
This chapter proposed the RECURRENT MULTISTAGE FUSION NETWORK (RMFN) and Mul-
timodal Transformer (MULT) architectures or analyzing human multimodal language. RMFN
which recursively decomposes the multimodal fusion problem into multiple stages, each focused
on learning interactions from a subset of attended multimodal signals. MULT uses the crossmodal
attention module to learn multimodal interactions between all elements in the first modality with
all elements in the second modality. As a result, all multimodal interactions across the entire
sequence are learned simultaneously, and can be parallelized efficiently over GPUs.

Both methods show strong results on multiple datasets with multimodal temporal data (e.g.,
human communication), displaying capabilities to capture long-range multimodal interactions,
handling unaligned multimodal data, and learning redundant, unique, and synergistic interactions.



Chapter 9

Training High-modality Foundation Models

9.1 Introduction

Sarcasm
& humor

Robotic
manipulation

Design
interface

Disease
codes

Image-text 
retrieval

Video
category

Human
emotions

Language Image SpeechVideoAudio Sensors Proprioception Time-series Set Table

1. Which modalities are different and should be separately processed?

2. Which modality pairs interact differently and should be separately fused?

Figure 9.1: Heterogeneity quantification: Efficiently learning
from many modalities requires measuring (1) modality hetero-
geneity: which modalities are different and should be separately
processed, and (2) interaction heterogeneity: which modality
pairs interact differently and should be separately fused. HIGH-
MMT uses these measurements to dynamically group parame-
ters balancing performance and efficiency.

Finally, using MULTIBENCH, we
scale multimodal transformers to the
high-modality setting where there are
a large number of modalities partially
observed for different tasks [370].
While there have been impressive
advances in modeling language, vi-
sion, and audio [11, 502], advances
in sensing technologies have resulted
in many real-world platforms such
as cellphones, smart devices, self-
driving cars, healthcare technologies,
and robots now integrating a much
larger number of sensors such as
time-series, proprioception, sets, ta-
bles, and high-frequency sensors [53,
179, 335, 340, 366, 697]. This new
setting of high-modality learning in-
volves learning representations over
many diverse modality inputs. As more modalities are introduced, adding new model param-
eters for every new modality or task [283, 390, 613] becomes prohibitively expensive and not
scalable [371]. A critical technical challenge for efficient high-modality learning, therefore, is
heterogeneity quantification: how can we measure which modalities encode similar information
and similar interactions in order to permit parameter sharing with previous modalities (see Fig-
ure 9.1)? For example, how can one determine whether the same modality encoder can be shared
when processing language and speech, or that the same fusion network can be shared when fusing
human speech and gestures as well as robot visual and force sensors?

In this paper, we propose a principled approach for heterogeneity quantification via modality
information transfer, an approach that measures the amount of transferable information from one
modality to another. Our first proposed metric, (1) modality heterogeneity studies how similar
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2 modalities {X1,X2} are by measuring how much usable information can be transferred from
X1 to X2, and our second metric, (2) interaction heterogeneity studies how similarly 2 modality
pairs {X1,X2},{X3,X4} interact by measuring how much usable interaction information can be
transferred from {X1,X2} to {X3,X4}. We show the importance of these 2 proposed metrics
in high-modality scenarios as a way to automatically prioritize the fusion of modalities that
contain unique information or unique interactions, and otherwise sharing parameters across
similar modalities displaying similar information or interactions.

Operationalizing these ideas on a suite of 10 modalities, 15 prediction tasks, and 5 research
areas, we show how to train a single model, HIGHMMT, that (1) improves the tradeoff between
performance and efficiency over task-specific state-of-the-art models [283, 367], and general
multimodal models with full parameter sharing [15, 253, 276, 505], (2) enables cross-modal
transfer by pretraining on source tasks before transferring to new target modalities and tasks, and
(3) is especially beneficial for low-resource scenarios (less training data and partially-observable
modalities). Beyond these empirical results, we believe that our insights on quantifying het-
erogeneity and information sharing in multimodal models are independently useful for future
work.

9.2 HIGH-MODALITY MULTIMODAL TRANSFORMER
In this section, we describe our overall approach for high-modality representation learning
(see Figure 9.2). In §9.2.1, we formalize modality and interaction heterogeneity to understand
whether modalities should be processed similarly or differently. Using these insights, §9.2.2
describes our proposed HIGHMMT model with dynamic parameter sharing based on heterogeneity
measurements.

9.2.1 Measuring heterogeneity via modality information transfer
We begin our motivation by formalizing two important sources of heterogeneity in multimodal
tasks. Firstly, modality heterogeneity occurs because the information present in different modalities
often shows diverse qualities, structures, and representations. Secondly, interaction heterogeneity
occurs because different modalities interact differently to give rise to new information when
used for task inference. Formalizing and measuring these two sources of heterogeneity results in
actionable insights for building multimodal models: measuring modality heterogeneity enables us
to answer: should I use the same unimodal model to encode X1 and X2? Measuring interaction
heterogeneity enables us to answer: should I use the same fusion model to fuse {X1,X2} and
{X3,X4}? We will formalize heterogeneity via modality transfer, an approach that measures the
amount of transferable information from one modality to another.

Estimating modality heterogeneity via unimodal information transfer. We propose to
measure heterogeneity between modalities X1 and X2 via unimodal transfer. Given a task Y
defined over X1 and X2, how well does an unimodal model trained on the task (X1;Y ) transfer to
(X2;Y )? We choose model transfer as our focus of heterogeneity since it is captured at the level
of features extracted via representation learning, rather than at the data-level. Even though the
input data may be very different (e.g., images from different cameras or paraphrased sentences),
effective feature extractors may be able to learn similar representations from them. Furthermore,
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Figure 9.2: HIGHMMT workflow: (1) We estimate modality and interaction heterogeneity via modality
transfer to determine which modalities should be processed and fused differently. (2) Using the inferred
heterogeneity, we determine the optimal grouping of parameters balancing both total performance and
parameter efficiency, which (3) informs our design of a heterogeneity-aware model with dynamic parameter
sharing across many modalities and tasks. HIGHMMT enables statistical strength sharing, efficiency, and
generalization to new modalities and tasks.

it directly models task-relevance: the degree of heterogeneity depends on the end task, which
enables using these heterogeneity measures subsequently for end-task optimization.

We formalize unimodal transfer as the difference in performance between unimodal models
trained on X1 before transfer to X2, versus those trained directly on X2. Specifically, we represent
an unimodal model using modality X2 with parameters θ as ŷ = f(y∣x2; θ). For a suitably chosen
loss function `(ŷ, y), define the loss of a model as Ep(x2,y)`(f(y∣x2; θ), y) which measures the
expected error over the joint distribution p(x2, y). To measure transfer, we train 2 models to
obtain an approximation of task performance: the first randomly initialized and trained on the
target task giving loss L∗2 ,

L∗2 = min
θ

Ep(x2,y)`(f(y∣x2; θ), y), (9.1)

and the second using initialization from model parameters θ1 trained on the source task (X1;Y )
before fine-training on the target task giving loss L∗1→2.

θ1 = arg min
θ

Ep(x1,y)`(f(y∣x1; θ), y), (9.2)

L∗1→2 = min
θ

Ep(x2,y)`(f(y∣x2; θ ← θ1), y), (9.3)

where θ ← θ1 denotes parameter initialization with θ1. Intuitively, L∗2 measures the (baseline)
task-relevant information in X2, while L∗1→2 measures the task-relevant information transferable
from X1 to X2. The differences between these 2 losses,

T (X1 →X2;Y ) = L∗1→2 −L∗2, (9.4)

therefore measures the difficulty of transferring a model trained on the source task (X1;Y ) to a
target task (X2;Y ). Note that computing T (X1 →X2;Y ) only requires the training or fine-tuning
of 2 models across the source and target modalities, which is efficient. In practice, the expectations



over p(x1, y) and p(x2, y) are approximated using empirical samples from the training set (for
model fine-tuning) and validation dataset (for final evaluation of performance).

What are some properties of T (X1 →X2;Y )? For very different modalities X1 and X2, we
typically expect a source task (X1, Y ) to contain less usable information for a target task (X2;Y ),
which would imply that L∗1→2 ≥ L∗2 and therefore T (X1 → X2;Y ) ≥ 0 (i.e., positive distance).
This is consistent with work demonstrating negative transfer across different modalities [367,
369, 623, 657]. Under these scenarios, the larger the positive magnitude of T (X1 → X2;Y ),
the more different modalities X1 and X2 are in the context of task Y (more difficult to transfer).
However, there can also be cases of zero or even positive transfer (i.e., T (X1 →X2;Y ) ≤ 0), even
in the surprising case of very different modalities [391]. These cases reinforce the benefits of
feature-based approaches to measure heterogeneity: while the raw modalities themselves seem
very different, they can still be processed by similar models resulting in positive transfer, and
should be assigned a difference of 0. Our final heterogeneity measure d(X1;X2) aggregates the
non-negative value (to account for positive transfer) of transfer difficulty statistics across both
transfer directions X1 →X2 and X2 →X1:

d(X1;X2) = T (X1 →X2;Y )≥0 + T (X2 →X1;Y )≥0. (9.5)

where x≥0 = max(x,0). Under certain assumptions on the modalities and tasks, our modality
heterogeneity measure d(X1;X2) is a metric: it satisfies non-negativity: d(X1;X2) ≥ 0, with
d(X1;X2) = 0 when X1 = X2, and symmetry: d(X1;X2) = d(X2;X1), positivity, X1 ≠ X2

implies that d(X1;X2) > 0, and a relaxed version of the triangle inequality: d(X1;X3) ≤
d(X1;X2)+d(X2;X3). However, in the most general case, there may be settings where positivity
and the triangle inequality are not satisfied since the exact dynamics of transfer learning is still
not well understood for general deep networks: positive transfer can happen (which would imply
cases of X1 ≠X2 but d(X1;X2) = 0), and in practice, the relaxed triangle inequality is satisfied
96% of the time from a real heterogeneity matrix in Figure 9.5.

Estimating interaction heterogeneity via crossmodal information transfer. We are also
interested in interaction heterogeneity: specifically, how differently should I fuse modalities
{X1,X2} versus {X3,X4}? We therefore extend to crossmodal transfer by comparing the dif-
ference in performance between a multimodal model pretrained on (X1,X2;Y ) before transfer
to (X3,X4;Y ), versus those trained directly on the target task (X3,X4;Y ). In other words, we
measure the difference in loss between

θ12 = arg min
θ

Ep(x1,x2,y)`(f(y∣x1, x2; θ), y), (9.6)

L∗12→34 = min
θ

Ep(x3,x4,y)`(f(y∣x3, x4; θ ← θ12), y), (9.7)

and direct training

L∗34 = min
θ

Ep(x3,x4,y)`(f(y∣x3, x4; θ), y), (9.8)

to obtain T (X1,X2 →X3,X4;Y ) = L∗12→34 −L∗34. The distance d(X1,X2;X3,X4) after aggrega-
tion over tasks and transfer directions estimates the interaction heterogeneity between {X1,X2}
and {X3,X4}.



Modality and interaction heterogeneity matrix. Finally, we construct a modality het-
erogeneity matrix MU(i, j) = d(Xi;Xj) and an interaction heterogeneity matrix (technically
4D-tensor) MC(i, j, k, `) = d(Xi,Xj;Xk,X`). Determining parameter groupings to balance
both total performance and parameter efficiency can be solved via agglomerative hierarchical
clustering where modalities are nodes and heterogeneity measurements are edges. The number
of clusters k is treated as a hyperparameter dependent on the parameter budget (see clustering
examples in §9.3.1). Clustering on the modality heterogeneity matrix MU results in a grouping
of modalities based on similarity (e.g., U1 = {X1,X2,X4},U2 = {X3},U3 = {X5}), and likewise
for the crossmodal matrix MC (e.g., C1 = {{X1,X2},{X1,X3},{X4,X5}},C2 = {{X2,X3},C3 =
{{X4,X6},{X5,X6}}, and so on.

Computational complexity. In a high-modality setting, suppose we are given a suite of modal-
ities and tasks of the form {(X1,X2, Y1), (X1,X3,X4, Y2), ...} and so on, where there are a total of
M unique modality and task pairs {(X1, Y1), (X2, Y1), (X1, Y2), (X3, Y2), (X4, Y2), ...}. In prac-
tice, the number of unique (pairwise) interaction and task pairs {(X1,X2, Y1), (X1,X3, Y2), ...}
is also O(M), since the maximum number of modalities jointly observed for a task is never above
a constant (at most 4 in all real-world datasets, and often 2 or 3). As an example in Figure 9.5,
our experiments involve M = 10 modality and task pairs (across 4 tasks defined on 2,2,3 and 3
modalities respectively), and 8 = (2

2
) + (2

2
) + (3

2
) + (3

2
) interaction and task pairs.

The modality heterogeneity matrix for M unique modality and task pairs has M(M − 1)/2
unique entries after removing the upper triangular portion due to symmetry and diagonal entries
since d(Xi,Xi) = 0. Computing these M(M − 1)/2 entries exactly requires one to first train M
unimodal models (to estimate the M L∗m terms) before fine-tuning M(M − 1) transfer models (to
estimate the M(M − 1) L∗m→n terms), for a total of M2 pre-trained and fine-tuned models. The
interaction heterogeneity matrix also requires O(M2) models for exact computation. However,
we find that a key approximation can be made in practice: the heterogeneity matrices are highly
structured due to distances approximately satisfying the triangle inequality, which implies that
we do not need to compute all entries and instead rely on low-rank reconstruction from partial
entries in practice. In our experiments, even using a low-rank approximation of r = 3 is sufficient
to approximate the entire matrix. This suggests that we do not need to exhaustively measure
unimodal and interaction transfer between all modality pairs to enjoy the benefits of our proposed
approach. Instead, running a random sample of O(M) pairs of heterogeneity values, and imputing
the rest of the heterogeneity matrix, is sufficient in practice. Please see an example heterogeneity
quantification for real-world datasets in §9.3.1.

9.2.2 Capturing heterogeneity and homogeneity in HIGHMMT
Using these insights, we now describe our architecture for a general model HIGHMMT suitable
for high-modality representation across many modalities and tasks (see Figure 9.3). Training the
HIGHMMT model consists of 2 main steps (see Figure 9.4): (1) homogeneous pre-training of a
fully shared model across all modalities, before (2) heterogeneity-aware fine-tuning to respect
modality and interaction heterogeneity.

Homogeneous pre-training. We first design a homogeneous multimodal model fully shared
across all modalities and tasks with the following key components (see Figure 9.3)

1. Standardized input sequence: We first standardize modalities as a sequence of embeddings,
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Figure 9.3: HIGHMMT architecture: Given arbitrary modalities, (1) the inputs are standardized into a
sequence and padded, (2) modality embeddings and positional encodings are added to the input sequence,
(3) a single shared unimodal Perceiver encoder is applied to all modalities to learn modality-agnostic
representations, (4) each pair of unimodal representations is fed through a shared multimodal cross-attention
layer to learn multimodal representations, and finally (5) all outputs are concatenated, batch-normalized,
and fed into task-specific classification heads.

as is already done for sequential data such as text, audio, and time series, and recently adapted for
image patches too [154]. For tables, sets, and graphs we treat each element in the table/set/graph
as an element in the sequence. The end result is a standardized input data Xm of dimension
tm × dm, where tm is a modality and task-specific input sequence length, and dm is a modality and
task-specific input dimension.

2. Modality-specific embedding and positional encoding. For each distinct modality m ∈M
(which may appear across multiple tasks), we define a one-hot modality embedding em ∈ R∣M ∣,
where ∣M ∣ is the total number of distinct modalities, to identify common modalities across
different tasks for information sharing. We also introduce Fourier feature positional encodings
pm ∈ Rtm×dpm , where dpm is the positional encoding dimension, to capture positional information
across each modality. For multimodal tasks where a common dimension is shared across time
(e.g., videos/time series), we apply a common positional encoding to capture the common time
dimension (i.e., the first image frame occurs at the same time as the first word and first audio
segment). Finally, the processed modality m is given by concatenating Xm =Xm⊕em⊕pm⊕0m
(i.e., the input sequence, modality embedding, positional encodings and zero-padding) into a
standard dimension tm × dall. dall = maxm∈M(dm + ∣M ∣ + dpm) where dm is the channel size of
modality m, dpm is the positional encoding size of modality m, and ∣M ∣ is the modality encoding
size (i.e., the total number of involved modalities).

3. Shared unimodal networks. Now that we have standardized all modalities into a common
format, we design a general unimodal encoder with parameters U via a Transformer-based
Perceiver block [276]. Our model recursively trains a latent array Zm of shape dLN × dLS (where
dLN is the sequence length/number of latent vectors and dLS is the latent dimension) that is
random initialized as Z(0)

m . For each layer L starting with a previously-computed representation
Z

(L−1)
m , we first perform cross-attention from the processed input (Xm of shape tm×dall) to Z(L−1)

m

obtaining an intermediate representation Z̃(L)
m , before self-attention and feed-forward layers on



Z̃
(L)
m resulting in a new representation Z(L)

m for input to the next layer:

Z̃
(L)
m = CROSS ATTENTION(Z(L−1)

m ,Xm) = softmax(QcK⊺
c√

dLS
)Vc = softmax

⎛
⎝
Z

(L−1)
m WQcW

⊺
Vc
X⊺
m√

dLS

⎞
⎠
XmWVc ,

(9.9)

Z
(L)
m = SELF ATTENTION(Z̃(L)

m ) = softmax(QsK⊺
s√

dLS
)Vs = softmax

⎛
⎝
Z̃

(L)
m WQsW

⊺
Vs
Z̃

(L)⊺
m√

dLS

⎞
⎠
Z̃

(L)
m WVs ,

(9.10)

with trainable cross-attention parameters WQc ∈ RdLS×dLS ,WKc ∈ Rdall×dLS ,WVc ∈ Rdall×dLS and
self-attention parameters WQs ∈ RdLS×dLS ,WKs ∈ RdLS×dLS ,WVs ∈ RdLS×dLS . Repeating cross-
and self-attention between the latent vector and the input modality summarizes the relationships
between modality elements into the latent vector, resulting in a final unimodal representation
Zm ∈ RdLN×dLS . Summarizing all information into a common dLN × dLS latent array regardless of
the input shape tm × dall results in total runtime only linear with respect to the size of tm and dall
which scales to high-modality scenarios.

4. Shared crossmodal networks. To learn multimodal representations, we use a shared
Crossmodal Transformer block with parameters C [390, 613]. Given 2 unimodal representations
Z1 and Z2 of common shape dLN × dLS learned from unimodal Perceiver encoders, a Crossmodal
Transformer (CT) block uses crossmodal self-attention by setting the input layer query Q = Z1

and keys and values K,V = Z2 to learn attention from Z2 to Z1, and a separate block to capture
the attention in the opposite direction.

Z2→1 = CROSS ATTENTION(Z1, Z2) = softmax(Q1K
⊺
2√

dk
)V2 = softmax(

Z1WQ1W
⊺
V2
Z⊺

2√
dk

)Z2WV2 ,

(9.11)

and vice-versa for Z1→2, with parameters WQ1 ,WQ2 ∈ RdLS×dk ,WK1 ,WK2 ∈ RdLS×dk ,WV1 ,WV2 ∈
RdLS×dk . This step enables one modality’s elements to discover bidirectional interactions with
another, resulting in a final multimodal representation Zmm = [Z1→2, Z2→1] of shape dLS ×2dk. For
each layer, we first perform cross-attention followed by self-attention and feed-forward functions.
For tasks with more than 2 modalities, a Crossmodal Transformer block is applied for each pair of
modalities before concatenating all representations.

5. Task-specific classifier and multitask pre-training. Finally, on top of Zmm, we use a separate
linear classification layer per task. To enable information sharing across modalities and tasks,
homogeneous pre-training is performed across a diverse set of datasets in a multitask manner by
optimizing a weighted sum of losses over tasks. The result is a single set of shared unimodal
parameters U∗ that encodes all modalities, and a single set of shared crossmodal parameters C∗

that captures all pairwise interactions between modality pairs, along with all modality-specific
embeddings E∗ and task-specific classifiers T∗.

Heterogeneity-aware fine-tuning. Finally, we account for heterogeneity by grouping uni-
modal parameters based on modalities that we know to be similar from §9.2.1 (e.g., setting
U1 = {U1, U2},U2 = {U3},U3 = {U4, U5, U6}), and likewise for the crossmodal parameters (e.g.,



1. Homogeneous Pre-training 2. Heterogeneity-aware Fine-tuning

Figure 9.4: HIGHMMT training involves 2 steps: (1) homogeneous pre-training of a fully shared model
across all modalities, before (2) heterogeneity-aware fine-tuning of modality and interaction parameters in
different groups to respect modality and interaction heterogeneity respectively.

Table 9.1: We investigate a multitask setup to evaluate the performance of HIGHMMT across different
modality inputs and prediction objectives. The total size of datasets involved in our experiments exceeds
370,000 and covers diverse modalities, tasks, and research areas.

Datasets Modalities Size Prediction task Research Area
ENRICO {image, set} 1,460 design interface HCI
UR-FUNNY {text,video, audio} 16,514 humor Affective Computing
MOSEI {text,video, audio} 22,777 sentiment, emotions Affective Computing
MIMIC {time-series, table} 36,212 mortality, ICD-9 codes Healthcare
PUSH {image, force,proprioception, control} 37,990 object pose Robotics
AV-MNIST {image, audio} 70,000 digit Multimedia
V&T {image, force,proprioception,depth} 147,000 contact, robot pose Robotics

C1 = {C12,C13,C14},C2 = {C23,C15},C3 = {C24, ...}). From Figure 9.4, these parameter groups
are first initialized with the homogeneous model U∗ and C∗ before separate fine-tuning, which
results in final parameters U∗ → {U∗

1,U∗
2, ...} and C∗ → {C∗

1,C∗
2, ...}. The modality embeddings

E∗ and task classifiers T∗ are jointly fine-tuned as well. Fine-tuning is also performed in a
multitask manner by optimizing a weighted sum of supervised losses across all modalities and
tasks.

9.3 Experiments
Setup: In this section, we design experiments to analyze the multitask, transfer, and generaliza-
tion capabilities of HIGHMMT. We use a large collection of multimodal datasets provided in
MultiBench [367] spanning 10 modalities, 15 prediction tasks, and 5 research areas. We trained 3
multitask models across combinations of these datasets (see Table 9.1 for details). Overall, the
total size of datasets involved in our experiments exceeds 370,000 and covers diverse modalities
such as images, video, audio, text, time-series, robotics sensors, sets, and tables, prediction tasks
spanning the image-caption matching, robot pose, object pose, robot contact, design interfaces,
digits, humor, sentiment, emotions, mortality rate, and ICD-9 codes from the research areas of
affective computing, healthcare, multimedia, robotics, and HCI.
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Figure 9.5: Modality and interaction heterogeneity matrices color coded by distances, with green showing
smaller distances and dark red larger distances. We find clear task outliers (AV-MNIST has high difficulty
transferring to others), and that there is generally more interaction heterogeneity than unimodal heterogene-
ity. Otherwise, the same modality and modality pairs across different tasks are generally similar to each
other.

9.3.1 Heterogeneity measurements and parameter groups

We begin with a study of the heterogeneity matrices in Figure 9.5 and the resulting parameter
groups.

Modality heterogeneity: We first notice that the modalities from AV-MNIST only transfer
well to each other and has high difficulty transferring to other modalities from the other datasets.
The same modality across different tasks is generally similar to each other (e.g., text between
UR-FUNNY and MOSEI, audio between UR-FUNNY and MOSEI). The text modality in
UR-FUNNY seems to be close to most other modalities, and likewise for the tabular modality in
MIMIC. It is also worth noting that the video and audio modalities are not the most informative
in MOSEI, and predictions are dominated by language [712], which may explain their general
homogeneity with respect to other modalities.

Interaction heterogeneity: There is generally more interaction heterogeneity than unimodal,
implying that the interactions between modality pairs tend to be more unique. Again, we notice
the general poor transfer from the modality pair (image+audio) in AV-MNIST to other pairs,
and the general strong transfer from (audio+text) in UR-FUNNY to the rest, which shows a
relationship between modality and interaction heterogeneity. We also find that the same modality
pairs (video+text) and (video+audio) shows crossmodal similarity across both datasets they appear
in: MOSEI and UR-FUNNY. Finally, while the triplet of crossmodal pairs in MOSEI are quite
different from each other, those in UR-FUNNY are more similar.

Using these measurements, we show the final groups of parameters obtained after clustering
the matrices for different values of k. As an example, for ∣U∣ = 3, ∣C∣ = 3, k = 6, the groups are
U1 = {AV-MNIST image, AV-MNIST audio}, U2 = {MIMIC table, MOSEI video, MOSEI
audio}, U3 = {MIMIC timeseries, MOSEI text, UR-FUNNY text, UR-FUNNY video, UR-



FUNNY audio}, and C1 = {AV-MNIST image+audio}, C2 = {MOSEI video+audio}, and C3 =
{MIMIC table+timeseries, MOSEI video+text, MOSEI audio+text, UR-FUNNY video+text,
UR-FUNNY video+audio, UR-FUNNY audio+text}.

Finally, we observe the low-rank nature of the heterogeneity matrices due to symmetry and
approximate triangle inequality, such that even using a low-rank approximation of r = 3 is
sufficient to approximate the entire matrix. This suggests that we do not need to exhaustively
measure unimodal and interaction transfer between all modality pairs to enjoy the benefits of our
proposed approach.

9.3.2 Qualitative results

We now present our results on the multitask, transfer, and generalization capabilities of HIGHMMT
using performance and efficiency metrics. Henceforth, we will refer to the following models:

(1) HIGHMMT share none refers to individual copies of HIGHMMT models, one for each
task.

(2) HIGHMMT share all refers to one single HIGHMMT model fully shared across all
modalities and tasks.

(3) HIGHMMT refers to the full heterogeneity-aware HIGHMMT model across all modalities
and tasks with learned parameter groupings based on heterogeneity measurements.

5

Pareto front

HighMMT share none
HighMMT share all
HighMMT (heterogeneity-aware)

10!.# 10$.% 10$.# 10&.% 10&.#

All task-specific model 
combinations (>10,000)

Figure 9.6: Overall tradeoff. HIGHMMT
pushes forward the Pareto front of perfor-
mance and efficiency as compared to all possi-
ble (> 105) combinations of task-specific mod-
els across multiple datasets [367]. The x-axis
denotes (inverted) total parameters and y-axis
denotes performance scaled to a 0 − 1 range
before averaging across datasets.

Multitask performance and efficiency. In Fig-
ure 9.6, we summarize the overall tradeoff be-
tween performance and efficiency using existing task-
specific models and variants of HIGHMMT. The
blue dots represent all possible combinations of task-
specific models across multiple datasets (summarized
in MultiBench [367], > 105 total combinations) with
their overall performance (scaled to a 0 − 1 range be-
fore averaging across datasets) and overall efficiency
(inverted total number of parameters). The red dots
represent the state-of-the-art Pareto front: points that
are not strictly dominated in both performance and
efficiency. In light green, separate single-task HIGH-
MMT models (share none) already improve param-
eter efficiency as compared to standard Multimodal
Transformers [390, 613]. In dark green is HIGH-
MMT (share all) trained in a homogeneous multitask
manner (i.e., with full parameter sharing across uni-
modal and multimodal layers within and across tasks),
which further pushes forward the Pareto front by im-
proving both performance and efficiency. Finally, in
orange, HIGHMMT with heterogeneity-aware fine-
tuning achieves significantly better tradeoffs between performance and efficiency, with efficiency
and consistently high performance across multiple modalities and tasks.



Table 9.2: Tuning the number of parameter groups results in controlled tradeoffs between parameters and
performance.

Clusters Performance ↑ Params (M) ↓
2 (share all) 68.4 ± 0.4 1.07
4 68.8 ± 0.5 1.24
6 70.1 ± 0.2 2.47
7 71.0 ± 0.1 3.11
9 71.2 ± 0.2 4.23

Table 9.3: Cross-modal few-shot transfer to new modalities and tasks. We train multitask HIGHMMT
on 1/2/3 datasets and find that it generalizes few-shot to new modalities and tasks on the 4th dataset, with
improved performance over single-task training on the 4th dataset. Cross-modal transfer improves with
more pretraining tasks and works best on the smallest target tasks (UR-FUNNY).

# Source tasks Target task
UR-FUNNY MOSEI MIMIC AV-MNIST

0 (no transfer) 63.1 ± 0.5 79.0 ± 0.5 67.7 ± 0.6 70.3 ± 0.4
1 63.5 ± 0.5 79.2 ± 0.3 67.9 ± 0.5 70.5 ± 0.4
2 64.0 ± 0.7 79.3 ± 0.5 68.0 ± 0.8 70.5 ± 0.4
3 64.7 ± 0.4 79.6 ± 0.6 68.4 ± 0.6 70.6 ± 0.4

The suite of HIGHMMT models is obtained by tuning k, the total number of unimodal and
crossmodal parameter groups (i.e., the number of clusters when clustering heterogeneity matrices).
k can be seen as a hyper-parameter depending on the computational budget, with smaller k
implying more parameter sharing on lower budgets and vice-versa. In Table 9.2, we show the
effect of k on average performance and total parameters. We test k in the range {2,4,6,7,9}, with
∣U∣ = 1, ∣C∣ = 1, ∣U∣ = 3, ∣C∣ = 1, ∣U∣ = 3, ∣C∣ = 3, ∣U∣ = 3, ∣C∣ = 4, and ∣U∣ = 4, ∣C∣ = 5 respectively
where ∣U∣, ∣C∣ denote the number of unimodal and crossmodal parameter groups. We see a
controllable tradeoff: starting with a fully shared model and increasing the number of parameter
groups, we also see steadily improving performance approaching task-specific state-of-the-art
models. Overall, optimizing for performance results in a model as strong as current state-of-the-art
models while using 8× fewer total parameters. Optimizing for efficiency results in a model that
reaches within 96% of current state-of-the-art performance but using 30× fewer total parameters
(mean and deviation over 10 runs).

Positive transfer to new modalities and tasks. HIGHMMT also offers opportunities to study
whether we can transfer knowledge between completely different modalities and tasks. Starting
with the collection of 4 datasets in the order MOSEI, AV-MNIST, MIMIC, and UR-FUNNY
ranked by largest dataset size (total of datapoints and memory storage per datapoint), we pre-train
a fully-shared HIGHMMT model on 1/2/3 of the 4 tasks before fine-tuning on the fourth task
only (e.g., train on MOSEI and transfer to UR-FUNNY, on MOSEI+AV-MNIST then transfer
to UR-FUNNY, and on MOSEI+AV-MNIST+MIMIC then transfer to UR-FUNNY, and
likewise for transfer to the other 3 datasets.

From Table 9.3, we found that on all four combinations of multitask pretraining and fine-
tuning, weights learned from other multimodal tasks generalize well to new modalities and
tasks, improving performance over single target-task training (mean and standard deviation
over 10 runs). When we increase the number of pretraining datasets, we observe a consistent



Table 9.4: HIGHMMT achieves strong performance on overall performance and efficiency (mean and
deviation over 10 runs), sometimes even beating (shown in bold) the task-specific state-of-the-art, especially
on the relatively understudied modalities (time-series, robotics sensors, and sets) from the robotics (PUSH,
V&T) HCI (ENRICO), and healthcare (MIMIC) research areas, while using 10× fewer parameters due
to parameter sharing and multitask learning. SOTA captures the max performance and parameters of more
than 20 task-specific multimodal models: [1] GRADBLEND [651], [2] LF-LSTM [148], [3] LF [184], [4]
MULT [613], [5] MFAS [478], [6] MFM [686], and [7] LRTF [723].

Model ENRICO ↑ PUSH ↓ V&T ↑ UR-FUNNY ↑ MOSEI ↑ MIMIC ↑ AV-MNIST ↑
SOTA 51.0 ± 1.4[1] 0.290 ± 0.1[2] 93.6 ± 0.1[3] 66.7 ± 0.3[4] 82.1 ± 0.5[4] 68.9 ± 0.5[6,7] 72.8 ± 0.2[5]
HIGHMMT 52.7 ± 0.6 0.277 ± 0.1 96.3 ± 0.2 66.2 ± 0.4 80.2 ± 0.2 68.2 ± 0.3 71.1 ± 0.2

Model Params (M) ↓
SOTA 32.3
HIGHMMT 3.01

improvement in fine-tuned target task performance. There is an inverse correlation between target
task size and performance improvement: the smallest dataset, UR-FUNNY, benefited the most
(+2.4%) from transfer learning from 0 to 3 multitask datasets. This implies that our multimodal
pretraining-fine-tuning paradigm is useful for low-resource target modalities and tasks.

Finally, we compare transfer learning performance across different levels of partial observ-
ability. While one would expect the transfer to MIMIC to be the hardest due to its modality set
{time-series, table} being completely disjoint from the remaining 3 datasets, we still observe a
+0.8% gain as compared to single-task training. Therefore, HIGHMMT can generalize to new
modalities and tasks. Unsurprisingly, for datasets with more overlap (e.g., UR-FUNNY with
complete overlap in {text,video, audio} with respect to pretraining), we find larger improvements
using transfer learning over single-task models (+2.4%).

Comparison with task-specific state-of-the-art. In Table 9.4, we compare multitask perfor-
mance and efficiency with task-specific state-of-the-art models. We achieve performance within
the range of published models (and usually close to the individual task-specific state-of-the-art) in
MultiBench, which tallies more than 20 recent multimodal models in each task’s literature [367].
In fact, HIGHMMT even sets new state-of-the-art results on several datasets, especially on the
relatively understudied modalities (time-series, force and proprioception sensors, and sets) from
the robotics (PUSH, V&T) and HCI (ENRICO) research areas. On top of strong performance,
the main benefit lies in using fewer total parameters as compared to separate task-specific models
- more than 10× reduction. Since this reduction grows with the number of tasks, our approach is
scalable to high-modality scenarios.

Partial-observability. Observe HIGHMMT performance on partially-observable modality
subsets (i.e., target task involving modalities not present in the other tasks): from Table 9.4, we find
that the model performs well on the MIMIC dataset despite its modality set {time-series, table}
being completely disjoint from the remaining 3 datasets - we obtain similar performance across
both multitask and single-task models (68.2 ± 0.3% vs 68.9 ± 0.5%). We find that HIGHMMT
multitask also works on ENRICO dataset in HCI (52.7±0.6% multitask vs 51.0±1.4% single-task)
despite it having completely disjoint modality inputs.

Multitask fusion and retrieval. We perform multitask training over multimodal fusion in



Table 9.5: We conduct in-depth ablation studies and find strong evidence for (1) having separate unimodal
and interaction layers, (2) determining parameter sharing via feature transfer, and (3) homogeneous pre-
training before heterogeneity-aware fine-tuning into parameter groups (mean and standard deviation over
10 runs).

Model UR-FUNNY ↑ MOSEI ↑ MIMIC ↑ AV-MNIST ↑ Ave ↑
Full model HIGHMMT 66.2 ± 0.4 80.2 ± 0.2 68.2 ± 0.3 71.1 ± 0.2 71.4 ± 0.3

Architecture
ablations

- w/o embeddings 63.0 ± 1.2 79.0 ± 0.7 67.1 ± 1.2 70.3 ± 0.7 69.8 ± 0.3
- w/o unimodal 57.9 ± 0.3 61.9 ± 2.1 63.0 ± 0.9 59.5 ± 1.4 60.6 ± 0.7
- w/o crossmodal [505] 63.8 ± 1.0 79.5 ± 0.5 67.9 ± 0.4 70.4 ± 0.5 70.4 ± 0.5

Param sharing
ablations

- share none [367] 63.7 ± 0.7 79.4 ± 0.4 67.7 ± 0.7 70.4 ± 0.1 70.2 ± 0.3
- share unimodal [505] 62.5 ± 1.3 79.0 ± 1.1 63.4 ± 1.4 70.1 ± 0.7 68.8 ± 0.8
- share crossmodal [15] 63.0 ± 1.1 79.5 ± 0.3 64.3 ± 0.3 70.1 ± 0.9 69.2 ± 0.3
- share all [551] 63.1 ± 0.7 79.2 ± 0.3 63.7 ± 1.6 68.6 ± 0.6 68.7 ± 0.5
- random difference 62.9 ± 0.9 79.5 ± 0.6 67.6 ± 0.3 70.4 ± 0.2 70.1 ± 0.3
- feature difference [575] 64.0 ± 1.0 79.4 ± 0.3 67.9 ± 0.3 70.1 ± 0.4 70.4 ± 0.2

Training ablations - w/o homogeneous pretraining 61.2 ± 0.1 78.5 ± 0.1 64.8 ± 0.1 71.1 ± 0.2 69.9 ± 0.1

AV-MNIST and retrieval in CIFAR-ESC. While fusion emphasizes information integration,
retrieval focuses on aligning corresponding elements expressed through different views of the
data [371]. Even across these vastly different prediction tasks, we find that multitask training
(60.5% retrieval accuracy) improves upon single-task training (58.8%). Not only have the uni-
modal networks simultaneously processed different modalities, but the crossmodal network has
captured correspondences useful for both fusion and retrieval.

9.3.3 Ablation studies
In this subsection, we carefully ablate the model architectures, parameter sharing, and training
decisions.

Architectural ablations. We first analyze each architectural component of HIGHMMT: (1)
w/o embeddings removes the only modality-specific component in the model - the modality
embeddings. We set embeddings for all modalities to be the same to test whether a modality-
specific component is necessary to capture heterogeneity across input data sources, (2) w/o
unimodal removes the unimodal encoder and directly applies the cross-attention layer, and w/o
crossmodal replaces the crossmodal layer with a concatenation of unimodal features and a
linear classification layer. The latter resembles the most direct multimodal extension of existing
work in shared unimodal encoders like Perceiver [276], MultiModel [291], ViT-BERT [353] or
PolyViT [378]. From Table 9.5, removing any of the 3 components in HIGHMMT results in
worse performance. The unimodal encoder is particularly important.

Param sharing ablations. We further ablate with respect to possible parameter sharing
settings in HIGHMMT: (1) share none uses separate unimodal and multimodal layers reminiscent
of typical single-task multimodal transformers [232, 390, 613], (2-3) share unimodal (crossmodal)
only shares the unimodal (crossmodal) layer during multitask training, (4) share all shares all
parameters without accounting for possible heterogeneity [505], (5) random difference determines
k parameter groups randomly rather than via heterogeneity measurements, (6) feature difference
uses feature-level divergences on jointly trained unimodal encoders (i.e., ∥U(X1) − U(X2)∥2

2)
rather than transfer performance to measure heterogeneity as is commonly done in transfer



learning and domain adaptation [132, 575]. From Table 9.5, our proposed heterogeneity-aware
parameter grouping results in the best overall performance as compared to fully shared, fully
separate, or parameter grouping informed by other heterogeneity measures such as random or
feature distance.

Training ablations. Finally, we explore w/o homogeneous pretraining: directly learning a
model with parameter groups as selected by our approach as opposed to performing homogeneous
pre-training before fine-tuning them into parameter groups. From Table 9.5, we find that this
ablation underperforms - training parameter groups from scratch overfits to smaller datasets which
hurts overall performance.

9.3.4 Understanding homogeneity and heterogeneity in HIGHMMT
We now take a deeper empirical analysis to better understand HIGHMMT, through parameter
overlap and interference experiments.

Parameter overlap. Starting with a trained multitask HIGHMMT, we use a gradient-based
method [221] to determine how much each parameter is involved in a specific task. For each
task T and parameter θ ∈ Θ in multitask model MΘ, we compute the involvement IT (θ) =
E(x,y)∈T ∣∇θMΘ(y∣x)∣ where MΘ(y∣x) is the predicted probability of correct target y by MΘ given
x as input. In other words, this measures the absolute gradient with respect to θ when predicting
y given x in task T . A higher absolute gradient implies “activated” neurons and vice-versa
for gradients closer to 0. This enables us to compute the extent a parameter θ is involved for
each task. The number of tasks a given parameter θ is involved in can then be approximated by
thresholding and summing up n(θ) = ∑T (1{IT (θ) > εmax(I1(θ), I2(θ), I3(θ), I4(θ)}) which
returns an integer from 1 to 4. We chose a threshold ε such that parameters are classified as active
about half the time on average, which occurs at ε = 0.2.

Table 9.6: We find evidence of significant param-
eter overlap across unimodal encoders: > 92% of
neurons are involved in at least 3 of the 4 tasks, while
the multimodal layers are more task-specific: only
10% of neurons are involved in 3 or 4 tasks.

Component Number of involved tasks
1 2 3 4

Unimodal layers 2.8% 5.1% 61.1% 31.1%
Crossmodal layers 48.8% 39.7% 9.9% 1.6%

Since we are interested in the level of pa-
rameter overlap in the shared unimodal encoder
and multimodal layer, we set θ as these 2 mod-
ules and report results in Table 9.6. There is
evidence of significant parameter overlap across
unimodal encoders: more than 92% of neurons
are involved in at least 3 of the 4 tasks. On the
other hand, there is not nearly as much param-
eter overlap in the multimodal layer: only 10%
of neurons are involved in 3 or 4 tasks. Hence,
it seems like the unimodal encoders learn task-
agnostic representations, but the subsequent multimodal layers (closer to task-specific classifiers)
capture more task-specific information. This also reinforces our observation in §9.3.1 that there is
generally more interaction heterogeneity than modality heterogeneity, which suggests using fewer
unimodal parameter groups and more crossmodal parameter groups.

Parameter interference. Another empirical proof for parameter sharing in multitask models
is the phenomenon of parameter interference: to what extent do parameters interfere with each
other across tasks? We perform an experiment to investigate parameter interference: we pick one
task and flip the labels in its training set, train the multitask model on the modified training set,



Table 9.7: Parameter interference: we observe different performance drops on each task (columns) after
training on one task with flipped labels (rows). Training the shared unimodal encoders causes the most
harm, which implies that unimodal encoders contain more shared neurons sensitive to task changes. Red
for drops greater than 20%, yellow for drops between 10 and 20%, and green for drops below 10%.

(a) Training entire model
Flipped task UR-FUNNY MOSEI MIMIC AV-MNIST
UR-FUNNY −24.6 −8.83 −10.6 −57.7
MOSEI −4.07 −59.7 −20.3 −53.2
MIMIC −3.59 −5.83 −33.1 −37.5
AV-MNIST −3.50 −1.23 −4.87 −68.9

(b) Only training unimodal encoder
Flipped task UR-FUNNY MOSEI MIMIC AV-MNIST
UR-FUNNY −23.8 −10.1 −12.8 −58.4
MOSEI −5.77 −57.6 −21.1 −52.7
MIMIC −3.03 −3.54 −35.0 −56.3
AV-MNIST −2.94 −7.82 −53.6 −69.3

(c) Only training multimodal layer
Flipped task UR-FUNNY MOSEI MIMIC AV-MNIST
UR-FUNNY −25.2 −8.34 −2.67 −8.16
MOSEI 0.47 −59.6 −19.8 −8.19
MIMIC 0.19 −0.76 −35.2 −4.87
AV-MNIST −1.61 −1.48 −2.23 −69.1

and see how the incorrectly labeled task affects performance on other tasks. This experiment
provides evidence of information sharing: if the multitask model does not share information (i.e.,
the model learns independent subspaces for each task), then one would not observe negative
interference from one noisy dataset. We study negative interference under 3 configurations of
training (a) the whole model; (b) only the unimodal encoder, and (c) only the multimodal layer on
the flipped training set.

From Table 9.7, certain tasks are more affected by negative interference (e.g., AV-MNIST),
while some tasks are not influenced as much (e.g., UR-FUNNY). Again, this reflects our hetero-
geneity measurements in §9.3.1, where AV-MNIST displays high heterogeneity. Furthermore,
performance drops due to training the unimodal encoders are the most significant, which corrobo-
rates with our parameter overlap and heterogeneity analysis that unimodal encoders contain more
entangled parameters which are more sensitive to task changes. On the other hand, multimodal
layers contain more disentangled parameters, which results in higher heterogeneity measurements
and needs more separate parameter groups.

9.4 Related Work
Multimodal Transformers have emerged as strong models for representation learning. Building
upon the Transformer [631], multimodal extensions use either full self-attention over modalities
concatenated across the sequence dimension [108, 348, 571, 576] or a cross-modal attention
layer [390, 588, 613], and are useful for sequential data by automatically aligning and capturing
complementary features at different time-steps [337, 613, 694]. Self-supervised multimodal
pretraining has emerged as an effective way to train these architectures, with the aim of learning



representations from large-scale unlabeled multimodal data before transferring to downstream
tasks via fine-tuning [348, 390, 571]. These pretraining objectives typically consist of unimodal
masked prediction, crossmodal masked prediction, and multimodal alignment prediction [232].

Unified encoder for unimodal learning. Several works such as Perceiver [275, 276], Multi-
Model [291], ViT-BERT [353], and PolyViT [378] have explored the possibility of using the same
architecture for different inputs on unimodal tasks (i.e., language, image, video, or audio-only).
The Transformer architecture has emerged as a popular choice due to its suitability for serialized
inputs such as text [144], images [154], video [576], and time-series data [379], a phenomenon
further observed by Lu et al. [391] where a single Transformer pretrained on text transfers to
sequence modeling and image classification. While these serve as building blocks in our model,
our focus is on a general-purpose multimodal model for multitask and transfer learning across
different subsets of modalities rather than unimodal tasks.

Multimodal multitask and transfer learning. There have also been several attempts to
build a single model that works well on a suite of multimodal tasks [113, 348, 390, 505, 571]. For
example, UniT [253], VLBERT [571], ViLBERT [390], and VL-T5 [113] are all unifying models
for vision-and-language tasks. VATT [15] jointly trains a shared model on video, audio, and
text data to perform audio-only, video-only, and image-text retrieval tasks. FLAVA [551] found
that pretraining a shared model with unpaired images, unpaired text, and image-text pairs results
in strong performance on image-only, text-only, and image-text multimodal tasks, while Reed
et al. [505] scales up a single Transformer model for image, text, and decision-making tasks.
However, all of these train a single model for all tasks, without investigating how heterogeneity
can necessitate partial parameter sharing. On the transfer side, while more research has focused
on transfer within the same modality with external information [158, 553, 675, 716], Liang et al.
[369] is the only work that studies transfer to completely new modalities. However, they require
paired data collection and modality-specific modeling. Our work goes beyond the commonly
studied language, vision, and audio modalities to relatively understudied ones (e.g., tabular data,
time-series, sensors, graphs, and set data). Furthermore, we show the possibility of generalizing
to new modality subsets. Finally, our work also complements studies of transfer learning in a
single modality [566, 673, 718], where insights from task heterogeneity have informed multitask
approaches, as well as multisensor fusion in various domains such as healthcare [429] and
robotics [584, 591].

9.5 Conclusion
We propose an information transfer approach for estimating modality and interaction heterogeneity,
a key component towards automatically determining which modalities should be processed and
fused jointly for efficient representation learning in high-modality scenarios. Our resulting model,
HIGHMMT dynamically determines the optimal parameter groupings balancing total performance
and parameter efficiency, simultaneously achieves strong results on modalities (text, image, video,
audio, time-series, sensors, tables, and sets) and tasks from different research areas, and transfers
to new modalities and tasks during fine-tuning. We release our code and benchmarks which we
hope will present a unified platform for subsequent analysis.



Chapter 10

Conclusion

In this thesis, we advanced the foundations of multimodal machine learning by highlighting
its key principles and core challenges. In the bulk of the thesis, we outlined our progress
towards understanding the foundations of multimodal interactions and new modeling methods for
generalizable representation learning across many input modalities and tasks. This concluding
chapter provides a summary of the main contributions, discusses potential limitations, and outlines
future research directions in multimodal artificial intelligence.

10.1 Summary of Thesis Contributions

Multimodal artificial intelligence is one of the most exciting subareas of artificial intelligence
research today, and has the potential to make major impacts in autonomous agents with digital,
physical, and social capabilities. This thesis aims to pave a foundation for multimodal artificial
intelligence so that future students and researchers are able to better understand the breadth and
depth of multimodal research today, are equipped with the scientific fundamentals required to
perform cutting-edge research in this field, and are up-to-date with practical methods for machine
learning from real-world multimodal datasets.

To summarize the contributions of this thesis, we began (in Section 2) by outlining the
theoretical and computational foundations of multimodal machine learning by synthesizing a
broad range of theoretical frameworks and application domains from both historical and recent
perspectives. This foundation involves three key principles of modality heterogeneity, connections,
and interactions often present in multimodal problems which brings unique challenges to machine
learning, which we outline through a taxonomy of six core challenges: representation, alignment,
reasoning, generation, transference, and quantification. This taxonomy enables researchers to
navigate the breadth of recent technical achievements and enables us to identify key open problems
for future research.

In this first major part of this thesis, we build a foundation for multimodal interactions: the
basic principle of how modalities combine to give rise to new information for a task. Section 3
presented an information-theoretic framework formalizing how modalities interact with each other
to give rise to new information for a task, which can be decomposed into redundancy, uniqueness,
and synergy [372]. Using this theoretical framework, we proposed two practical estimators to
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quantify the interactions in real-world datasets. Quantifying the types of interactions a multimodal
task requires enables researchers to understand their data and choose the right model to learn
interactions in a principled way. Using this foundation of multimodal interactions, we design
new self-supervised approaches to learn these interactions [374] (Section 4), visualization tools
for practitioners to analyze whether their model has succeeded in learning [375] (Section 5), and
new guidelines for practitioners to decide which modality to collect for maximum increase in
performance [376] (Section 6).

In the second major part of this thesis, we design practical multimodal foundation models
that generalize over many modalities and tasks, which presents a step toward grounding large
language models to real-world sensory modalities such as videos, physical sensors, and medi-
cal data. Section 7 introduced MULTIBENCH, a unified large-scale benchmark across a wide
range of modalities, tasks, and research areas enabling research towards multimodal foundation
models [367]. Section 8 presented the cross-modal attention [101, 359] and multimodal trans-
formers [613] architectures that are suitable for learning the interactions across many elements
in modality sequences such as text, videos, time-series, and sensors. Finally, Section 9 showed
how we can scale these architectures on MULTIBENCH to create general-purpose multimodal
multitask models across a variety of tasks, including collaborating with practitioners to apply
these models for real-world impact on affective computing, mental health, and cancer prognosis.

Together, our contributions deliver fundamental methodological and practical insights in
multimodal learning, presenting approaches that are principled and explainable to practitioners
while also capturing the benefits of scale across many modalities and tasks. Some of the work
done during the PhD but not included in this thesis also paves a way towards improving the
robustness, safety, and efficiency of multimodal models for real-world deployment.

10.2 Limitations and Future Directions
Finally, we conclude this thesis by identifying the following future research challenges in multi-
modal artificial intelligence:

Representation: Learning multimodal representations is the cornerstone of multimodal
machine learning. There has been substantial progress towards increasingly expressive and
performant multimodal representations. However, there remain key challenges in their theoretical
understanding and generalization beyond image and text.

Theoretical and empirical frameworks: How can we formally define the three core principles
of heterogeneity, connections, and interactions? Can we quantify their presence in multimodal
datasets and models, and understand whether current multimodal representation learning methods
are suitable for learning different interactions? Answering these fundamental questions will lead
to a better understanding of the capabilities and limitations of current multimodal representations,
and inspire the development of new methods in a principled manner.

Beyond additive and multiplicative cross-modal interactions: While recent work has been
successful at modeling multiplicative interactions of increasing order, how can we capture causal,
logical, and temporal connections and interactions? What is the right type of data and domain
knowledge necessary to model these relationships? Modeling these interactions in a principled
manner could lead to systems that are more robust, compositional, and explainable than those



based fully on neural networks.
Tabular, sensors, and time-series: Existing work has shown success in learning image, text,

and audio-visual representations. However, tabular and time-series data are prevalent in many real-
world applications such as healthcare and autonomous vehicles. How can we learn multimodal
interactions between the best encoders for tabular and sensor data, which may not be based on
deep learning (e.g., decision trees, time-series analysis), and neural network representations that
are state-of-the-art for the text and image modalities?

Brain and multimodal perception. There are many core insights regarding multimodal pro-
cessing to be gained from human cognition, including the brain’s multimodal properties [314]
and mental imagery [435]. How does the human brain represent different modalities, how is
multisensory integration performed, and how can these insights inform multimodal learning?
In the other direction, what are opportunities in processing high-resolution brain signals such
as fMRI and MEG/EEG, and how can multimodal learning help in the future analysis of data
collected in neuroscience?

Alignment: There remain important challenges in aligning modality elements when these
elements are extremely fine-grained in nature and exhibit long-range patterns across time.

Memory and long-term interactions. Many current multimodal benchmarks only have a
short temporal dimension, which has limited the demand for models that can accurately process
long-range sequences and learn long-range interactions. Capturing long-term interactions presents
challenges since it is difficult to semantically relate information when they occur very far apart in
time or space and raises complexity issues. How can we design models (perhaps with memory
mechanisms) to ensure that these long-term cross-modal interactions are captured?

Reasoning: Today’s multimodal systems, especially those based on deep learning or large
language models, are still not capable of robust and complex reasoning. We outline two challenges
in compositional and interactive reasoning.

Multimodal compositionality. How can we understand the reasoning process of trained models,
especially regarding how they combine information from modality elements? This challenge of
compositional generalization is difficult since many compositions of elements are typically not
present during training, and the possible number of compositions increases exponentially with
the number of elements [601]. How can we best test for compositionality, and what reasoning
approaches can enable compositional generalization?

Multimodal embodiment and interaction. Most of today’s multimodal systems are trained to
make predictions without the capability to take actions in the world. The next generation of these
systems will be those that can plan actions, imagine the effect these actions will have on the world,
and choose the right sequence of actions over a long period of time to solve complex tasks. We
have begun to build these interactive multimodal agents for the virtual world, such as processing
multimedia web data to help humans with web tasks like online shopping, travel bookings, and
content management. Building multisensory robotic systems that can actions in the real world,
while respecting safety and robustness, is another long-term future direction.

Generation: The incredible advances of generative AI have inspired many future directions
in generating multimedia content.

Multimodal creation. Synchronized creation of realistic video, text, and audio remains a
challenge. These systems can be applied for entertainment, such as generating music videos,
virtual avatar characters, virtual humans, and more. It is also likely that better multimodal



generative models of the world can serve as world models to train planning and sequential
decision making agents.

Real-world ethical concerns. However, the recent success in generation has brought ethical
concerns regarding their use. For example, large-scale pretrained language models can generate
text denigrating to particular social groups [542], toxic speech [193], and sensitive pretraining
data [81]. Future work should study how these risks are potentially amplified or reduced when the
dataset is multimodal, and whether there are ethical issues specific to multimodal generation.

Transference: Advances in foundation models have also enabled increasingly general-purpose
models that can transfer information and knowledge across a wide range of modalities and tasks.
This opens up new directions in high-modality learning.

High-modality learning aims to learn representations from an especially large number of het-
erogeneous data sources, which is a common feature of many real-world multimodal systems such
as self-driving cars and IoT [263]. More modalities introduce more dimensions of heterogeneity,
incur complexity challenges in unimodal and multimodal processing, and require dealing with
non-parallel data (i.e., not all modalities are present at the same time).

Quantification: Finally, we highlight several important lines of future work in quantifying
and understanding key design decisions in the multimodal learning process.

Modality utility, tradeoffs, and selection. How can we formalize why modalities can be useful
or potentially harmful for a task? There are also challenges in quantifying modality and social
biases and robustness to imperfect, noisy, and out-of-distribution modalities. Future work should
come up with formal guidelines to compare these tradeoffs and select the optimal set of modalities
balancing performance with these other potential concerns, which can help practitioners decide
the right modalities to work with.

Explainability and interpretability. Before models can be safely used by real-world stakehold-
ers in domains such as medicine, autonomous systems, and user interfaces, we need to understand
how to interpret their inner workings. How can we evaluate whether these phenomena are accu-
rately interpreted? These challenges are exacerbated for relatively understudied modalities beyond
language and vision, where the modalities themselves are not easy to visualize. Finally, how
can we tailor these explanations, possibly in a human-in-the-loop manner, to inform real-world
decision-making?

In conclusion, we believe that this thesis can lay the theoretical and practical foundations for
multimodal machine learning and inspire future work towards these open problems.
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