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Abstract
Reinforcement learning (RL) may be the key to overcoming previ-

ous insurmountable obstacles, leading to technological and scientific
innovations. One such example where RL could have a sizable impact
is in tokamak control. Tokamaks are one of the most promising devices
for making nuclear fusion into a viable energy source. They operate by
magnetically confining a plasma; however, sustaining the plasma for
long periods of time and at high pressures remains a challenge for the
tokamak control community. RL may be able to learn how to sustain
the plasma, but like many exciting applications of RL, it is infeasible
to collect data on the real device in order to learn a policy.

In this thesis, we explore learning policies using surrogate models
of the environment, and especially using surrogate models that are
learned from an offline data source. To start in Part I, we investigate
the scenario in which one has access to a simulator that can be used
to generate data, but the simulator is too computationally taxing to
use data-hungry deep RL algorithms. We instead suggest a Bayesian
optimization algorithm to learn such a policy. Following this, we pivot
to the setting in which surrogate models of the environment can be
learned with offline data. While these models are much more compu-
tationally cheap, their predictions inevitably contain errors. As such,
both robust policy learning procedures and good uncertainty quantifi-
cation of model errors are crucial for success. To address the former,
in Part II we propose a trajectory stitching algorithm that accounts for
these modeling errors and a policy network architecture that is adaptive,
yet robust. Part III shifts focus onto uncertainty quantification, where
we propose a more intelligent uncertainty sampling procedure and a
neural process architecture for learning uncertainties efficiently. In the
final part, we detail how we learned models to predict plasma evolution,
how we used these models to train a neutral beam controller, and the
results of deploying this controller on the DIII-D tokamak.
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Chapter 1

Introduction

Recent progress has evolved machine learning from a useful tool into something
that is able to create magic. Large language models assist us in finding information,
planning tasks, and writing code [Brown et al., 2020, Jiang et al., 2024, Team et al.,
2023, Touvron et al., 2023]; diffusion models allow us to generate images and videos
through textual prompts [Ramesh et al., 2021]; and neural networks can predict
complex structures like protein structure with unprecedented accuracy [Jumper
et al., 2021]. These achievements point to a future in which machine learning will
enable us to overcome previously insurmountable obstacles that are necessary for
transformative technological and scientific discoveries.

Reinforcement learning (RL) will be a crucial tool in realizing this future. The
goal of RL is to learn a policy which, given the current state of the system, gives an
action (or distribution of actions) to be played in the system. Lately, RL has proven
to be an invaluable tool for reinforcement learning with human feedback (RLHF)
[Ouyang et al., 2022], which is a key step in the training pipeline to make intelligent
AI agents. However, RL (and especially deep RL) also has immense potential
for difficult control tasks. These difficulties may arise from a high-dimensional
observation space, a large number actuators that need to be coordinated, or because
the dynamics of the system cannot be fully modeled. When this is the case, it may
be impossible for an engineer to create a controller, and a data-driven approach may
be the only answer. Indeed, deep RL has already shown remarkable achievements
in video game playing [Vinyals et al., 2019], legged locomotion [Agarwal et al.,
2023], and dexterous manipulation [Zhu et al., 2019].

However, applications of RL with the most impact often have the most difficul-
ties. One of these difficulties comes from the fact that deep RL is data hungry and
collecting data in the real system is bottlenecked due to economic costs, the speed
at which samples can be collected, or safety concerns. Successful applications of
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RL avoid this problem by using surrogate models, often in the form of simulators
[Agarwal et al., 2023, Kaufmann et al., 2023, Degrave et al., 2022]. However, such
simulators need to be simultaneously computationally cheap and accurate. If the
simulator is accurate but expensive, alternative methods for policy learning must be
employed. Using reinforcement learning is even more infeasible when the simulator
is inaccurate. This is especially unfortunate in cases where the dynamics of the
system are unknown, and one of the cases where a data-driven approach like RL
would be most useful.

Alternatively, one could use a database of historical interactions with the system
to learn a policy. This is known as the “offline” RL setting [Levine et al., 2020]
and has garnered much interest from the research community. Crucially, we are
still unable to gather additional information on the real system; all of the data is
collected from previously deployed policies that may be unrelated to the task at
hand. Of particular interest to this thesis is “model-based” offline RL, in which
a surrogate model of the system is learned using historical data 1. The learned
model can be used to generate additional experience leveraged in the policy learning.
Furthermore, depending on the system and the amount of data, this learned model
may be more accurate than a simulator and is almost certainly less computationally
expensive. Learning such a surrogate model has been shown to be valuable [Yu
et al., 2020, Janner et al., 2019b] especially in cases where the collected data is
“undirected,” i.e. the logged data is agnostic to the task we wish to train the policy
for.

Of course, the main challenge in using a learned surrogate model is that there are
bound to be errors between its predictions and the real system. In the online setting,
this issue can be mitigated by limiting the number of steps that can be made with the
model and increasing this amount as more data is collected [Janner et al., 2019b].
In the offline setting, previous approaches turn to adding penalizers based on model
uncertainty to ensure that the policy stays within the support of the training data [Yu
et al., 2020, Kidambi et al., 2020a]. However, there are several factors that make
these approaches difficult to employ in real world offline RL setups. For one thing,
these algorithms rely on tuning the amount of pessimism. This becomes difficult if
one is truly in an offline setting where the policy can only be deployed in the true
environment at test time. Additionally, the benchmark environments considered
in these works are usually deterministic, and it is unclear how uncertainty based
penalizers are affected when aleatoric noise is present in the system. That being said,
there are also aspects of these benchmark tasks that may be harder than some real
world environments. In particular, the dynamics models learned for most benchmark

1note that one could argue the setting in which a simulator is used is also “model-based”; however,
this term is usually reserved when the surrogate model is learned from data
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tasks in the literature are only accurate for a handful of steps. In this thesis, however,
we find that there are real world tasks of interest for which dynamics models can
generate full trajectories accurately.

With these factors in mind, a better offline model-based RL procedure may be
one in which we rely less on pessimism and more on two different factors: sophis-
ticated uncertainty quantification in the dynamics modeling and policy learning
algorithms that produce robust, adaptable policies. To expand on this, if one can
learn a realistic distribution for possible transition functions, one can then learn a
policy that is able to quickly adapt its actions to cater towards any given sampled
transition function. Indeed, there has already been initial work showing that learning
an adaptable policy allows one to reduce the amount of pessimism needed [Chen
et al., 2021b, Ghosh et al., 2022]. However, substantial improvements in both
uncertainty quantification and policy learning procedures are necessary in order to
fully realize this vision.

Towards this end, this thesis explores the algorithmic developments needed to
learn a policy with surrogate models for challenging, realistic decision making tasks.
In particular, we focus on three areas:

1. How do we learn a policy when given access to a simulator which is pro-
hibitively expensive to run deep RL algorithms with?

2. How do we learn robust, adaptable policies for the offline model-based RL
setting?

3. How do we learn sophisticated, well-calibrated uncertainties and how should
we draw samples from these distributions?

The main motivating application for this thesis is tokamak control for nuclear fusion.
In the following section, we give a brief overview of tokamak control before giving
a more thorough overview of this thesis in Section 1.2. For a more thorough review
of tokamaks and their control systems, please refer to Walker et al. [2020].

1.1 A Brief Overview of Nuclear Fusion and Tokamaks

The climate crisis has put an urgency on turning to alternative, green energy sources
to power our society, and nuclear fusion has the potential to make a substantial
impact in this effort. Nuclear fusion is the process in which two light elements (here
we consider Deuterium and Tritium, two isotopes of Hydrogen) are fused together
into a single heavier element (in our case Helium). This reaction results in some
of the mass in the system being converted into energy. Indeed our solar system is
powered by this process, where the pressure due to the immense mass of the sun
causes millions of tons of Hydrogen atoms to fuse together every second.
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Forming a reactor around controlled nuclear fusion reactions would have several
substantial advantages over pre-existing energy sources, such as nuclear fission.
The byproducts of the reaction would not contribute to global warming nor would
they be highly radioactive; the fuel source is readily abundant and can be extracted
from sea water; and there is virtually no risk of a catastrophic meltdown like there
is in nuclear fission. However, creating such a reactor remains a challenge.

While there are several possible approaches to such a reactor, perhaps the most
promising involves a device called a tokamak. This is a toroidal device which
heats the gas inside until is becomes a plasma, and at these extreme temperatures
the atoms are energetic enough to fuse together. This plasma is then magnetically
confined using toroidal field coils. Although there are currently no tokamak reactors,
there are a number of tokamaks that exist (or are being built) which scientists can
run experiments on in order to further develop understanding of nuclear fusion.
Perhaps the most ambitious of these tokamaks currently being built is the ITER
tokamak. This is an international effort in order to prove that tokamaks can produce
net positive energy. The main tokamak of interest for this thesis is the DIII-D
tokamak managed by General Atomics in San Diego, CA.

While it is unclear how many actuators a viable tokamak reactor will have, there
are several actuators on the DIII-D tokamak that can be used to affect the plasma.
On top of the toroidal field coils that shape and confine the plasma, there is an ohmic
coil that acts as a transformer and induces current into the plasma, gas valves which
can increase the density of the plasma, radio frequency actuators can heat and drive
current into the plasma, and neutral beams that inject power and torque into the
plasma by shooting neutrally charged particles into the plasma. Throughout this
thesis we will use different characterizations for the state of the plasma; however,
the most expansive set of information includes both scalar and profile information.
Profile measurements are taken from the core of the plasma out to the wall, and are
a good representation of the plasma assuming ideal MHD conditions.

Creating a system which fully controls a tokamak is inherently a high dimen-
sional problem in which many different actuators need to be coordinated. While the
fusion control community has made significant progress on individual control loops,
coordination amongst these loops remains an open problem of interest [Humphreys
et al., 2015]. On top of this, there are several types of instabilities which may
develop, and these instabilities must be avoided in a successful tokamak reactor.
Deep reinforcement learning could therefore be a valuable tool for tokamak control
since it would allow us to learn neural network policies that can make intelligent,
coordinated decisions quickly.

At the same time, the challenges outlined at the beginning of this chapter apply
to this problem. There are some aspects of the plasma are fairly well modeled,
such as the shape of the plasma. In this case, good feedforward actuator plans
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can be made and paired with several PID controllers for feedback control [Anand
et al., 2017]. In addition, simulators for the plasma’s shape have been successfully
paired with deep reinforcement learning to create controllers for the TCV tokamak
[Degrave et al., 2022, Tracey et al., 2023]. However, other aspects of the plasma,
such as the plasma’s profiles, can only be approximately predicted. This, paired
with their computational expense, makes using these simulators for reinforcement
learning a tough sell.

1.2 Thesis Overview

Part I

The first part of this thesis considers the scenario in which we have access to
a simulator which is computationally expensive, but is accurate enough to be
informative for control. Because of this expense, we must look to alternative policy
learning algorithms other than the ones found in the deep reinforcement learning
literature. In Chapter 2, we therefore take an approach that relies on Bayesian
optimization. The trade off here is that the policy is learned under a myopic
objective. However, this restriction allows us to use an expensive simulator to learn
a mapping from a low dimensional representation of the plasma to a neutral beam
setting.

Part II

The second part of this thesis moves past expensive simulators and explores how to
learn a policy assuming that a surrogate model of the system has been learned from
data. While many offline model-based RL algorithms use actor-critic policy learning
algorithms that are similar to those used in the standard RL setup, in Chapter 3
we explore how the offline dataset and the learned model can be used to construct
a tabular Markov Decision Process (MDP). Given such an MDP, policy learning
becomes easy since one can use policy iteration, which comes with theoretical
guarantees.

In Chapter 4, we move back to using actor-critic algorithms for policy learning;
however, we re-examine the architectural assumptions made by previous algorithms.
In particular, most real world systems are partially observable and require aggregat-
ing information across the history of observations in order to make good, adaptive
decisions. The majority of previous works use recurrent architectures to perform
this aggregation; however, we find that using these architectures makes the policy’s
performance at test-time brittle to errors in the surrogate model. Inspired by the
PID controller, we propose an alternative architecture that combines history using
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integration and differencing. We find that this inductive bias strikes a good balance
between flexibility and robustness to modeling errors for many control tasks of
interest.

Part III

The third part of this thesis shifts from policy learning to uncertainty quantification
(UQ) of the learned dynamics model predictions. UQ plays an essential role for
imagining the possible states the policy’s actions may lead to, estimating which new
data points would be the most valuable to collect, and, of course, for generating
experience that can be used with a policy. Chapter 5 focuses on the last of these
points. In particular, we point out that the majority of sampling schemes used
in model-based RL works results in a non-smooth dynamics function. Doing so,
however, leads to miscalibration over time which can result in undesired behavior
in the learned policies. We propose a simple fix to this sampling scheme that can be
applied on top of pre-existing dynamics models.

Following this, in Chapter 6, we focus on how we can learn more complex
predictive uncertainties that can be conditioned on previous observations. In partic-
ular, we focus on neural processes: a class of neural networks that can meta-learn
uncertainty given a distribution of different functions at training time. However,
these neural processes are data hungry and are often brittle to distribution shift. In
this chapter, we operate under the assumption that often times the only information
needed to form good uncertainty is the distances between data points. Under this
assumption, we form a graph of the data and propose two neural process architec-
tures to operate over such a graph. We empirically show that doing so leads to more
robust and sample efficient neural processes.

Part IV

Lastly, in part 4 of this thesis, we investigate using model-based reinforcement
learning for control on the DIII-D tokamak. In Chapter 7, we summarize the
experiment run on the DIII-D tokamak in which we aimed to learn a controller that
could track the βN and differential rotation quantities in the plasma. In particular,
we outline the process of training a dynamics model from historical data, using
said model to generate experience for a reinforcement learning algorithm, and
deploying the learned controller on the DIII-D tokamak. Following this experiment,
we continued to refine our dynamics models for the plasma, and in Chapter 8, we
outline our improved dynamics models and evaluate how well it can predict full
shots.
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Open Source Code Contributions

To assist in much of the work presented in this thesis, we created a library referred to
as the “Dynamics Toolbox” which contains tools to train dynamics models, evaluate
these dynamics models, and use these models to train policies. In particular, this
library was heavily used for the experiments in Chapters 5, 7, and 8. The inspiration
for creating such a library came from the fact that the majority of previous model-
based RL works (and code bases) use the exact same dynamics model architecture.
In contrast, the Dynamics Toolbox has the flexibility to try many different types
of neural network dynamics models. This library is publicly available and can be
found at https://github.com/IanChar/dynamics-toolbox.
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Part I

Myopic Policy Learning with
Expensive Simulators
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Chapter 2

Offline Contextual Bayesian
Optimization

This chapter is based on Char et al. [2019]:
Char, I., Chung, Y., Neiswanger, W., Kandasamy, K., Nelson, A. O., Boyer,
M., Kolemen, E., & Schneider, J. (2019). Offline contextual bayesian opti-
mization. Advances in Neural Information Processing Systems, 32.

This chapter explores how to use a computationally expensive simulator to
learn a controller via Bayesian optimization. To make this problem feasible, we
make a simplification to the problem: rather than attempt to learn the optimal
policy, we instead aim to learn a policy that is myopically optimal (i.e. in the
context of a Markov Decision Process, a policy that plays actions that maximizes
the reward function at every state). Given this simplification, the approach is to do
an optimization for each state of the plasma of interest ahead of time (hence the term
“offline”). The optima are then stored in a look-up table so that actuator responses
can be made rapidly at test-time. Since the plasma state space is continuous, some
interpolation scheme must be done in order to do this method in practice; however,
this was not explored in this work.

While tokamak control was the motivation for this work, the problem statement
of doing several different optimizations simultaneously in itself is very general and
can be applied to a large class of different problems (see Section 2.1). Therefore
the framing, nomenclature, and notation differs slightly from the rest of this thesis.
What we refer to as a “state” in the rest of the thesis is referred to as a context or a
task in this chapter and is denoted by x, the policy (usually denoted by π) is simply
referred to as a mapping denoted by h, and we aim to maximize a general function
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f instead of a reward function r.

2.1 Introduction

Black-box optimization is the problem in which one tries to find the maximum of an
unknown function using only evaluations for specified inputs. In many interesting
scenarios, there is a collection of unknown, possibly correlated functions (or tasks)
that need to be simultaneously optimized. This problem set up often occurs in
applications where one wants to design an agent that makes an action based on
some contextual information from the environment. During its online execution we
prefer not to run potentially costly or poor performing experimental actions. Also,
because the agent may have to make these decisions at a rapid pace, we do not have
time to compute an expensive experimentation policy. We consider applications
that provide the ability to run offline experiments, either on a surrogate system
or on a simulation. These experiments are used to discover a good action policy
which is then encoded into a fast cache, such as a look-up table. Even though the
experiments are done offline, they are still expensive and we must search the design
space efficiently. The following are examples of this problem:

• Nuclear Fusion A current obstacle in realizing sustained nuclear fusion in
tokamaks is the difficulty in maintaining the plasma’s stability at the required
temperatures and pressures for a prolonged period of time. We consider the
stability of the plasma as an output to optimize, where the input is the controls
for the tokamak. The optimal action depends on the current state of the
plasma, so each plasma state can be regarded as its own task to optimize. We
cannot search for a good control policy during live experiments on the device
because of cost and limited time available on the device as well as the need
to provide a real-time controller that operates in a millisecond scale control
loop. However, we do have a simulation (forward model) that may be used
with Bayesian optimization offline to discover a good controller. Importantly,
the simulator allows one to manually set the current state of the plasma, and
thus prudently selecting states to optimize over becomes an important part of
the problem.

• Database Tuning Consider the problem of tuning the configuration of a
database so as to minimize the latency, the CPU/memory footprint or any
other desired criteria. The performance of a configuration depends critically
on the underlying hardware and the workload [Van Aken et al., 2017]. Since
these variables can change when databases are deployed in production, we
need to simultaneously optimize for these different tasks.
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In each of the above settings, difficulty of the tasks may vary drastically. For
example, in the nuclear fusion application, if the current state of the plasma is
already stable, the stability may be less sensitive to controls, leading to an easy
optimization landscape. On the other hand, when the plasma is in an unstable state,
it may be that only a small set of controls will lead to improved stabilization and
finding them may require many more experiments.

Because experiments are usually expensive, one must be prudent with how
resources are distributed across tasks. In this chapter, we propose a Thompson
sampling approach for adaptively picking the next task and input for evaluation.
This algorithm comes with theoretic guarantees, and we show that it often enjoys a
significant boost in performance when compared to uniformly distributing resources
across tasks. Another important contribution of this chapter is showing the signifi-
cance of model choice in this setting. We argue that when using a single Gaussian
process (GP) to jointly model correlated tasks, the choice of kernel is crucial for
estimating the difficulty of each task. Without reasonable estimates, it is impossible
to optimally distribute resources among tasks. As such, we propose a kernel that is
expressive enough to capture variation in difficulty.

We end this chapter by showing an application of our method to the nuclear
fusion problem. In particular, we optimize tokamak controls for a set of different
plasma states using a tokamak simulator. We observe that our method is able to
identify where best to devote resources, leading to efficient optimization.

2.2 Related Work

As is common in Bayesian optimization, we use a GP prior to guide us in selecting
next evaluations to make. Previously, in the context of active learning and active
sensing, techniques have been made that use GPs to select the most informative
points for evaluation [Pasolli and Melgani, 2011, Seo et al., 2000, Guestrin et al.,
2005]. In contrast, our goal is optimization which is more in line with bandit
methods. Under the bandits setting, Srinivas et al. [2009] use an upper confidence
bound approach with GPs and show that such a strategy results in sublinear cu-
mulative regret. As an alternative to the upper confidence bound approach, Russo
and Van Roy [2014] show that one can achieve sublinear cumulative regret using
a posterior sampling (or Thompson sampling) approach. The method we present
here is also a posterior sampling method, and it falls into the general framework of
myopic posterior sampling described by Kandasamy et al. [2019a].

Our setting is related to online contextual bandits [Krause and Ong, 2011,
Agrawal and Goyal, 2013, Auer, 2002], where each task can be viewed as a different
context. In these earlier works, the agent chooses an action online for a context that
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is chosen by the environment. In our setting, we wish to find the optimal action
offline in advance and can choose the contexts we invest our experimentation effort
on. The model in the work of Krause and Ong [2011] is particularly of interest.
They use a GP to jointly model correlated contexts and propose a general structure
for the joint GP’s kernel. We adopt a similar strategy, however, we observe that
their model fails to capture differences in length-scale between contexts, which we
argue is crucial for the offline contextual Bayesian optimization problem.

A similar contextual optimization problem shows up in reinforcement learning
(RL). While the common RL setup has contexts delivered solely by the environ-
ment, there is some work on actively choosing contexts [Fabisch and Metzen, 2014,
Fabisch et al., 2015]. This work proposes methods for approximating the expected
improvement (EI) in the overall objective. Similarly, the objective can be written in
terms of entropy and experiments may be chosen in terms of its expected improve-
ment [Metzen, 2015, Swersky et al., 2013]. In our empirical study, we compare to
expected improvement for task and action selection.

The works that are most similar to ours is that of Ginsbourger et al. [2014],
Pearce and Branke [2017], and Pearce and Branke [2018]. In particular, the algo-
rithms of Ginsbourger et al. [2014] and Pearce and Branke [2017] are based on
expected improvement (EI), and we show that our posterior sampling algorithm pro-
vides a competitive, theoretically-sound alternative to EI-based methods. Crucially,
in all of these works, experiments are done using a stationary kernel. We claim
that this only works well if the reward structure of each task is similar; otherwise,
methods that try to pick tasks intelligently may end up doing more harm than good.

2.3 Thompson Sampling for Multi-Task Optimization

2.3.1 Preliminaries

For the following, let X be the finite collection of tasks and let A be the compact
set of possible actions. For simplicity, we will assume that the same set of actions is
available for each task, although this assumption is not necessary. Let f : X ×A →
R be the reward function, where f(x, a) is the reward for performing action a in
task x. It is assumed that this reward function is always bounded. Let ĥ : X → A
be our estimated mapping from task to action. Our goal is then to find such an ĥ
which maximizes the following objective:

∑

x∈X
f
(
x, ĥ(x)

)
ω(x) (2.1)

where ω(x) ≥ 0 is some weighting on x that may depend on the probability of
seeing x at evaluation time or the importance of x. At round t of optimization,
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we pick a task xt and an action at to perform a query (xt, at) and observe a noisy
estimate of the function yt = f(xt, at) + εt, where εt ∼ N(0, σ2ε ) and is iid.
Let Dt be the sequence of queried tasks, actions, and rewards up to time t, i.e.
Dt = {(x1, a1, y1, ), . . . , (xt, at, yt)}. Additionally, define ŷt(x) to be the best
reward observed for task x up to time t, ât(x) to be the action made to see this
corresponding reward, and At(x) to be the set of all actions made for task x up to
time t.

In this work, we assume that f is drawn from a Gaussian process prior. A GP is
characterized by its mean function, µ(·) and kernel (or covariance) function σ(·, ·).
Then for any finite set of variables, z1, . . . , zn ∈ X × A, [f(z1), . . . , f(zn)]T ∼
N (m,Σ), where m ∈ Rn,Σ ∈ Rn×n, mi = µ(zi), and Σi,j = σ(zi, zj). It is
important to note that by selecting different kernel functions we make implicit
assumptions about the smoothness of f . A valuable property of the GP is that its
posterior is simple to compute. We denote µt and σt to be the posterior mean and
posterior kernel functions after seeing t evaluations. For more information about
GPs see Rasmussen and Williams [2005].

2.3.2 Multi-Task Thompson Sampling

We now describe our proposed algorithm called Multi-Task Thompson Sampling
(MTS), which is presented in Algorithm 1 for the case in which tasks are correlated.
The algorithm, simply put, is to act optimally with respect to samples drawn from
the posterior. That is, at every round a sample for the reward function is drawn,
and this sample is used as if it was ground truth to identify the task in which the
most improvement can be made. After doing this for T iterations, we return the
estimated mapping ĥ such that ĥ(x) = âT (x) if an evaluation was made for task
x; otherwise, ĥ(x) maps to an a ∈ A drawn uniformly at random. Note that when
tasks are assumed to be independent, Algorithm 1 can be modified by instead using
a separate GP prior for each task and drawing samples for each one at every iteration.
Furthermore, for the noiseless case, note that one can simplify the algorithm by
considering improvement over ŷt(x) instead of maxa∈At(x) f̃(x, a) (we make this
simplification in our experiments).

One benefit of this algorithm is that it comes with theoretic guarantees. For the
following, define a∗t (x) to be the past action played for task x that yields the largest
expected reward. That is,

a∗t (x) :=





argmax
a∈At(x)

f(x, a) At(x) 6= ∅

argmin
a∈A

f(x, a) else
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Algorithm 1 Multi-Task Thompson Sampling (MTS)
Input: capital T , initial capital tinit, mean function µ, kernel function σ.
Do random search on tasks in round-robin fashion until tinit evaluations are
expended.
for t = tinit + 1 to T do

Draw f̃ ∼ GP (µ, σ)|Dt−1.
Set xt = argmax

x∈X

[(
maxa∈A f̃(x, a)−maxa∈At(x) f̃(x, a)

)
ω(x)

]
.

Set at = argmax
a∈A

f̃(xt, a).

Observe yt = f(xt, at).
Update Dt = Dt−1 ∪ {(xt, at, yt)}.

end for
Output: ĥ

Theorem 1. Define the maximum information gain to be γT := maxDT I(DT ; f),
where I(·; ·) is the Shannon mutual information. Assume that X and A are finite.
Then if Algorithm 1 is played for T rounds where tinit = 0,

E
[ ∑

x∈X ω(x) (maxa∈A f(x, a)− f(x, a∗T (x)))∑
x∈X ω(x) (maxa∈A f(x, a)−mina∈A f(x, a))

]
≤ |X |

(
1

T
+

√
|X ||A|γT

2T

)

where the expectation is with respect to the data sequence collected and f .
The proof of this theorem (see Section A.1) uses ideas from Kandasamy et al.

[2019a]. This result gives a bound on the expected normalized total simple regret.
Here, simple regret is the difference between the best reward and the best reward
for a played action (i.e. maxa∈A f(x, a) − f(x, a∗T (x))), and total simple regret
refers to the simple regret summed across all tasks. The

√
|X ||A| factor in the

theorem accounts for the number of actions that can be taken at every step, and the√
γT factor characterizes the complexity of the prior over the tasks. We suspect

that our proof technique may have lead to a somewhat loose bound because there
is an extra dependence of |X |; that being said, we still get that the rate of decrease

is dominated by
√

γT
T , which is the same as the single-task regret rate [Russo and

Van Roy, 2014].
An important implication of this result is that there is no task in which we will

have especially bad results, and when γT = o(T ), the normalized simple regret
converges to 0 in expectation for every task. We note that Srinivas et al. [2009] give
bounds on the maximum information gain for a single GP in a few standard cases.
For example, when dealing with a GP over a d-dimensional compact set using an
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RBF kernel, γ(RBF )
T = O(log(t)d+1). When tasks are independent and multiple

GPs are used, we note that if each GP has an RBF kernel γT ≤ |X |γ(RBF )
T = o(T ).

Also note that this result can be generalized to infinite action spaces via known
techniques [Russo and Van Roy, 2016, Bubeck et al., 2011].

2.3.3 Synthetic Experiments
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Figure 2.1: Synthetic experiments for MTS. Each of the above show average
values and standard error from 10 trials. Where total reward refers to (2.1), the
plots are as follows: (a) total simple regret using a log scale where tasks are
Branin-Hoo, parabaloid, plane, and constant; (b) proportion of queries made to each
task in (a); (c) total simple regret for five copies of the Branin-Hoo function; (d)
total performance for 2D random functions; (e) total performance for 4D random
functions; (f) total performance for 30 correlated functions.

We now present synthetic experiments to demonstrate how MTS can select
both tasks and actions intelligently. We compare our algorithm against querying
task-action pairs at random, the standard Thompson sampling (TS) and expected
improvement (EI) acquisitions where tasks are selected uniformly at random, and
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an EI variant of MTS that we call Multi-Task Expected Improvement (MEI). In MEI,
the greatest expected improvement over the best seen reward is found for each task,
and the task with the greatest increase is picked. We include this baseline since most
approaches we have seen take an EI approach to selecting tasks and are quite similar
to MEI [Ginsbourger et al., 2014, Pearce and Branke, 2017, Swersky et al., 2013].
The following experiments are averaged over 10 trials. We start by evaluating each
task with 5 points drawn uniformly at random. Each task is modeled by a GP with
an RBF kernel, and hyperparameters are tuned for a GP every time an observation
is seen for its corresponding task. For two-dimensional functions, hyperparameters
are tuned according to marginal likelihood, but for greater dimensions, tuning is
done using a blend of marginal likelihood and posterior sampling. This method was
shown to be more robust by Kandasamy et al. [2019b]. Lastly, in every experiment
we assume that ω(x) = 1 for all x ∈ X and that observations are noiseless.

To start, we consider four two-dimensional functions for tasks: the negative
Branin-Hoo function [Branin, 1972], a parabaloid, a plane, and a constant. Not only
does the Branin-Hoo function have a greater scale than the other functions, but it
is also much more complex. Thus, one might imagine that most resources should
be invested in optimizing this function, which is the behavior displayed by MEI.
However, we see that MTS does best by distributing resources more liberally. Even
when all tasks are replaced with five copies of Branin-Hoo, meaning there is no
advantage to distributing resources amongst tasks intelligently, MTS still performs
competitively. The total simple regret for these experiments, is plotted in Figure 2.1.

We also test these methods on 30 randomly generated functions in two and
four dimensions (see Appendix A.2 for details) and on 30 correlated tasks. The
correlated tasks are formed by taking 30 equispaced slices of the Branin function,
resulting in one-dimensional functions. In these experiments, MTS and MEI are
competitive and both enjoy a boost in performance compared to standard EI and
TS. That being said, this performance increase is much more substantial for lower
dimensional tasks. We hypothesize that, as dimension increases, the gains one gets
from choosing tasks in a smart manner diminishes because hyperparameters become
harder to estimate, which in turn makes it hard to gauge the difficulty of a task.

2.4 Modeling Variation in Difficulty

The selection of hyperparameters for the kernel function of a GP is often key to
whether the landscape can be modeled well. Usually these hyperparameters include
length-scale, which determines how correlated points are based on their distance to
each other, and scale, which determines the magnitude of correlation. Intuitively,
these values provide some indication of the optimization landscape’s difficulty. For
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example, larger length-scales imply more smooth functions, which are often easier
to optimize for. From a more theoretical standpoint, the hyperparameters have a
direct effect on the maximum information gain and therefore impact regret bounds
shown by Theorem 1 and Russo and Van Roy [2014].

Therefore, it stands to reason that hyperparameters should vary between tasks
in order to adequately model any difference in difficulty between them. As such, we
propose using a specific form of the Gibbs kernel [Gibbs, 1998]. The Gibbs kernel
is a non-stationary variant of the RBF kernel that allows the length-scale and scale
to vary over the space. Where z, z′ ∈ X ×A, PX = dim(X ) and PA = dim(A),

σ(z, z′) =

PX+PA∏

p=1

[√
2`p(z)`p(z′)

`2p(z) + `2p(z
′)

exp

(
−(zp − z′p)2
`2p(z) + `2p(z

′)

)]
(2.2)

Here, `p is the non-negative length-scale function that characterizes the hyperpa-
rameters for the pth dimension. The above can be separated into the product of
a kernel over the task space and a kernel over the action space, i.e. σ(z, z′) =
σX(x, x′)σA(z, z′) where z = (x, a) and z′ = (x′, a′). To suit our needs, we make
all length-scale functions for σX constant functions so that `i(z) = `i where `i ∈ R
and `i > 0 for all i = 1, . . . , PX . As for σA, we limit the length-scale functions to
only depend on the task-component of z. Altogether,

σ(z, z′) = σX(x, x′)σA(z, z′) (2.3)

=

(
PX∏

i=1

exp

(−(xi − x′i)2
2`2i

))


PA∏

j=1

√
2`j(x)`j(x′)

`2j (x) + `2j (x
′)

exp

(
−(aj − a′j)2
`2j (x) + `2j (x

′)

)


(2.4)

Note that with this modification σX reduces to the RBF kernel. Furthermore, for
any fixed task x ∈ X (i.e. we only consider z = (x, a), z′ = (x, a′)) the entire
kernel reduces to the RBF kernel. As such, we are left with a locally stationary
kernel, where the hyperparameters only vary as the task varies. In the proceeding
section, we suggest a form for the length-scale functions in σA and pair this model
with our posterior sampling methods.

Synthetic Example
For the correlated task experiment in Section 2.3.3, tasks are generally quite

similar, so MTS and MEI can do well when the GP uses an RBF kernel. However,
we now wish to optimize 10 correlated tasks of variable difficulty. To create the
tasks, we take slices from the function visualized in Figure 2.3 (see Section A.3
in Appendix for details). Like many real-world tasks, this function has areas that
make for an interesting optimization problem and others that are quite boring. In
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order to optimize well, we use the kernel presented in (2.3), where the length-scale
function of each action dimension is the soft plus of a quadratic polynomial, and
the coefficients of each polynomial are treated as hyperparameters. We form a
hierarchical probabilistic model by placing Normal priors over each hyperparameter.
Then, for every iteration of our algorithm, we now make decisions according to a
posterior sample drawn from this hierarchical model. In practice, this does a superior
job at modeling each task. To show this, each of the ten tasks were evaluated at
five points. Then, both our suggested model and a stationary model using an RBF
kernel was fit to the data. Figure 2.2 visualizes the difference between the models.
The difference becomes especially clear when looking at tasks that are relatively
flat functions, since the stationary GP estimates there being large peaks. This
can be especially damaging in our case where we select tasks based on possible
performance improvements.
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Figure 2.2: Comparison between stationary and non-stationary GP fit. (a)
shows our proposed model on a hard task, (b) shows a stationary model on the
same hard task, (c) shows our proposed model on an easy task, and (d) shows a
stationary model on the same easy task. Here, the red line shows the true function,
the black line shows the posterior mean, the blue points show evaluations made for
the corresponding task, and the shaded area shows high confidence regions.

In the following, we run optimization using MTS and standard Thompson
sampling where tasks are picked uniformly at random. Moreover, we run these
algorithms using the model described above, using a single GP that jointly models
tasks using an RBF kernel, and using several GPs, each corresponding to a task and
using an RBF kernel (i.e. assume that tasks have no correlation). In all cases, we
use posterior sampling to select hyperparameters. For simplicity, we will append
prefixes to these methods where “I” stands for independent GPs, “S” stands for
stationary GP, and “NS” stands for non-stationary GP. The results in Figure 2.3
show that one can be negatively affected by picking tasks given an ill-suited model.
That is, S-MTS performs worse than both S-TS and I-MTS, showing it is better to
either forego shared information to better model the function or distribute resources
to tasks uniformly. That being said, disregarding both shared information and
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picking tasks intelligently, as in I-TS, results in the worst performance (not pictured
here). Notice that when tasks can be modeled appropriately, distributing resources
according to our algorithm is again beneficial as shown by NS-MTS.
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Figure 2.3: Performance with taska of variable difficulty. (a): Average best
seen rewards summed across all tasks of varying difficulty. Each curve is averaged
over 12 trials, and the shaded region shows the standard error. (b): Surface of the
function used to generate correlated tasks.

2.5 Application to Nuclear Fusion

In this section, we demonstrate how our methods can be used in a novel nuclear
fusion application. Most recent methods for nuclear fusion heat up isotopes of
hydrogen to temperatures of hundreds of millions of degrees. At this point, the
nuclei of two nearby atoms may overcome electrostatic repulsion force between
them to form a single nucleus and release energy in the process. At such high
temperatures, the atoms are in a plasma state, and any instability in the plasma
can give rise to events called ”disruptions”. If this happens, the plasma is lost
rapidly and the nuclear reaction is halted. It is remains an open problem for how the
tokamak controls should be modified to address the varying state of the plasma in
order to sustain the fusion reaction. We tackle this problem by attempting to learn
optimal controls offline via a simulator. In particular, we apply our algorithm to
determine a mapping from plasma state to tokamak neutral beam controls that could
be used as a look-up table during run time. A version of this work that fleshes this
application out in more detail can be found in Chung et al. [2020].
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2.5.1 Tokamak Control Optimization

We consider a collection of 8 independent tasks that represent different plasma
states. An evaluation of an action on a task corresponds to setting the tokamak
beam controls and conducting a simulation on the selected state of the plasma.
These simulations are run on TRANSP, which is a predictive simulator of tokamaks.
The output is a reward measure, which we designate as a weighted sum of plasma
stability and fusion reaction efficiency. We limit the control space to two dimensions:
power coefficient of co-current beams and counter-current beams, each with domain
[0.001, 1.0]. Section A.4 in the Appendix details the physics background and tools
of this experiment.

The performance of MTS was compared against standard Thompson sampling
under the same experimental settings as the two-dimensional synthetic experiments
in Section 2.3.3, except for 2 differences: each trial consists of 125 evaluations, and
we allow up to 20 evaluations to be run in parallel. We rely on parallel optimization
here since each query has high simulation overhead (> 1 hour per simulation exper-
iment). For more details regarding the setup for the fusion simulation experiments,
see Section A.5 in the Appendix.

Over 125 evaluations, we observe that MTS yields better results than TS. Be-
cause the optimization allows up to 20 parallel evaluations to be run, the first few
batches of 20 queries are made with little information. Hence, MTS appears to make
uninformed task choices initially and lags behind TS. However, once MTS accumu-
lates sufficient informed queries, it enjoys a boost in performance, as it concentrates
on the tasks that are predicted to provide most improvement. This is evident in the
increase in performance slope around t = 20 in Figure 2.4 (a). This behavior can
also be seen in the performance and query plots per task in Figure 2.4 (b). Once the
reward has levelled off in a certain task (e.g. Task 4, 5), MTS stops querying the
task and queries other tasks that are predicted to provide improvement, while TS
will still query the task as it chooses tasks randomly. These results are profound as
well as promising, not only from an algorithmic perspective, but also from a physics
perspective. While there have been applications of machine learning techniques in
nuclear fusion, they primarily focus on detecting disruptions and plasma instabilities
[Cannas et al., 2013, Tang et al., 2016, Montes et al., 2019, Kates-Harbeck et al.,
2019]. To the best of our knowledge, our application is one of the first attempts in
conducting offline optimization of plasma stability and discharge.

2.6 Discussion

In this chapter, we have proposed methods for dealing with many optimization
problems that need to be solved simultaneously. We introduced a posterior sampling
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Figure 2.4: Fusion Simulation Experiments. Each of the above show average
values and standard error from 10 trials. (a) shows the total reward summed across
all tasks and (b) reward achieved in each task. Note that curves differ in length for
(b) since different amounts of resources were allocated for each task.

approach that has theoretic guarantees and often has dominant performance when
compared to methods which do not distributed resources intelligently. This Thomp-
son sampling method pairs nicely with our proposed locally stationary model, and
we demonstrated that more sophisticated models are key when functions vary in
difficulty. Finally, we used our algorithm to derive real results for nuclear fusion.
For the future, we hope to broaden the scope of this application by increasing the
plasma states we optimize over and using results to create a closed loop controller.
Additionally, we note that in many applications, one may wish to perform MTS
with parallel evaluations. From Section 2.5.1, it seems that naively making parallel
evaluations without any adjustments may lead to decreased performance. That being
said, it may be straightforward to create a more sophisticated parallel variant of the
algorithm following the work of Groves et al. [2018] and Kandasamy et al. [2018].

Since this work’s publication in 2019, there have been several significant exten-
sions. Of particular note is Li et al. [2022a], which proposes an upper-confidence
bound based algorithm that is able to learn the optimal policy (not just myopically
optimal) and comes with strong theoretical guarantees. Mehta et al. [2023c] then
extended this work to the setting in which comparisons are made rather than labels
and applied this algorithm to reinforcement learning with human feedback Mehta
et al. [2023b]. The majority of these works still rely on standard Gaussian processes
and are therefore restricted to low dimensional spaces. Alternative modeling ap-
proaches, such as neural processes (see Chapter 6), will be crucial to making these
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algorithms applicable to higher dimensional problems.
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Part II

Learning Policies with Imperfect
Surrogate Models
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Chapter 3

BATS: Best Action Trajectory
Stitching

This chapter is based on Char et al. [2022]:
Char, I., Mehta, V., Villaflor, A., Dolan, J. M., & Schneider, J. (2022). Bats:
Best action trajectory stitching. arXiv preprint arXiv:2204.12026.
This work was equal contribution between myself and Viraj Mehta.

We now move on from using expensive simulators to generate data and instead
assume that we have access to a cheaper surrogate model that can assist in learning
a policy. While this work was developed with a model learned from an offline data
source in mind (e.g. a neural network that predicts next states given current states
and actions), this need not be the case. The work in this part aims to address issues
in policy learning when the surrogate model has errors, which may be a factor when
using cheap (non-learned) simulators as well. Indeed, Chapter 4 does not even
mention learning a model.

Assuming a learned dynamics model is used, this work falls into the so-called
offline model-based reinforcement learning setting. Most works in this setting
account for modeling errors by introducing some notion of pessimism [Yu et al.,
2020, Kidambi et al., 2020a, Yu et al., 2021]. These mechanisms penalize the policy
for going into regions or playing actions which the dynamics models have high
uncertainty about. We did not think this mechanism was appropriate for the fusion
application, however, since the dynamics models learned are much more accurate
for relatively long periods of time, and tuning the penalty coefficient is difficult
without access to the real device. Since these methods were developed for the fusion
application in mind, they do not continue the pessimism line of research.
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We explore two different strategies for learning a policy. The first strategy, which
is the subject of this chapter, foregoes deep actor-critic methods and leans more on
an offline dataset. The main idea is to view this offline dataset as a tabular Markov
Decision Process (MDP), add additional transitions in the MDP via planning with
a learned dynamics model, and learn a policy using the policy iteration algorithm.
This sidesteps optimism bias problems that often occur in offline RL by assuming a
good policy can be made by “stitching” together good sub-trajectories.

3.1 Introduction

The goal of Reinforcement Learning (RL) is to learn a policy which makes optimal
actions for a decision making problem or control task. The field of deep RL, in
which one learns neural network models to represent key quantities for decision
making, has recently made great strides [Silver et al., 2016, Mnih et al., 2013, Kober
et al., 2013]. In many deep RL algorithms, this involves learning a neural network
for both the policy and the value function, which estimates the value of states or
state-action-pairs with respect to the current policy. Many promising model-based
methods [Chua et al., 2018a, Janner et al., 2019b] also learn a deep dynamics
function that estimates next states given current states and actions.

In the standard, online setting, the policy is repeatedly deployed in the environ-
ment during training time, which provides a continual stream of on-policy data that
stabilizes the learning procedure. However, the online setting is unreasonable for
applications, since it requires a way to cheaply and safely gather a large number
of on-policy samples. As such, there has been increasing interest in the so-called
offline setting [Levine et al., 2020] in which a policy is learned solely from logged
off-policy data.

However, the offline setting comes with its own problems. Simply applying
deep reinforcement learning algorithms designed for the online setting will often
cause exploding value estimates because of distribution mismatch and recursive
updates [Kumar et al., 2019]. In model-based methods, the combination of small
initial errors and test-time distribution shift often leads to rapidly accumulating
model error. While distribution shift and model exploitation are potential issues
in online RL, these problems are more severe in the offline setting, as the agent
cannot collect additional experience to rectify compounding errors in estimation
or planning. To address these problems, offline RL algorithms add constraints to
encourage the agent to only operate in the support of the data by either constraining
the policy Wu et al. [2019], Kumar et al. [2019] or penalizing uncertain state-actions
Yu et al. [2020], Kidambi et al. [2020b], Kumar et al. [2020], Yu et al. [2021].

Rather than trying to implicitly constrain the agent to stay in the support of the
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data, in this work we explore what happens if we plan over the logged data directly.
In particular, we create a tabular MDP by planning short trajectories between states
in the dataset, and then we do exact value iteration on this MDP. Unlike other
model-based methods which are limited to short imagined trajectories, trajectories
from our MDP are mostly comprised of real transitions from the dataset and can
therefore be rolled out for much longer with confidence. As such, we argue that
our algorithm is able to better reason about the dataset as a whole. In this work, we
show that re-imagining the offline dataset in this way allows for the following:

• By coupling together long trajectories with exact value iteration, our algorithm
is able to better estimate the resulting policy’s value. We prove that under the
correct distance metrics our algorithm can be used to form upper and lower
bounds for the value function. We demonstrate empirically that this aligns
well with the value of a policy behavior cloned on these trajectories.

• By performing full rollouts in our tabular MDP, we are able to approximate
our optimal policy’s occupancy distribution. We show how many algorithms
that uniformly constrain the learned policy to actions on the dataset struggle
with “undirected” datasets (i.e., data collected without a specific reward
function in mind) and demonstrate that our algorithm avoids this problem by
filtering out data unrelated to the task.

3.2 Preliminaries

In this work, we assume the environment can be represented as a deterministic,
infinite horizon MDP M = 〈S,A, γ, T, r, ρ〉, where S is the state space, A is the
action space, γ ∈ (0, 1) is the discount factor, T : S × A → S is the transition
function, r : S ×A → R is the reward function, and ρ is the initial state distribution.
We refer to an MDP as tabular if it has a finite state and action space. While we
assume that the true environment in question has every action available to be played
at every state (i.e. T (s, a) is well-defined ∀s ∈ S, a ∈ A), later in this work we
also consider MDPs that have only a subset of actions for each state. When this is
the case, we denote As ⊂ A to be the actions available to be played at state s ∈ S.
Such MDPs are defined as M = 〈S, {As}s∈S , γ, T, r, ρ〉.

In reinforcement learning, we attempt to learn a stochastic policy π(a|s) : S →
P (A), where P (A) is the set of all distributions over A. We desire our learned pol-
icy to maximize the expected discounted sum of rewards, Eπ,ρ

[∑∞
t=0 γ

tr(st, at)
]

, where st = T (st−1, at−1), at ∼ π(·|st), and s0 ∼ ρ. To facilitate the opti-
mization of this quantity, we can define an optimal state-action value function
Q∗ : S × A → R that satisfies the following recurrence relation known as the
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Bellman Equation:

Q∗(s, a) = r(s, a) + γmax
a′

Q∗(T (s, a), a′) (3.1)

Then, we can reformulate policy optimization as trying to solve π(s) = arg max
a

Q∗(s, a),

∀s ∈ S, where we can estimate Q∗ by iteratively performing the bellman update
to Qk+1(s, a)← r(s, a) + γmax

a′
Qk(T (s, a), a′). In tabular MDPs, the Q-function

and its updates can be written and performed exactly. Thus, this procedure –
known as value iteration – will eventually converge, i.e. Qk(s, a) → Q∗(s, a),
∀(s, a) ∈ S × A as k → ∞. However, in general MDPs where there is a possi-
bly infinite number of states or actions, we must rely on function approximation
and finite samples to instead perform approximate value iteration, which is not
guaranteed to converge. For notational convenience, we denote the value of a
state as V ∗(s) = maxaQ

∗(s, a). Policy π’s occupancy distribution is defined as
µπ(s) ∝ ∑∞i=0 γ

ip(si = s), where si = T (si−1, ai−1), ai−1 ∼ π(·|si−1), and
p(s0) ≡ ρ. We denote the value function for π as V π; that is, V π(s) is the expected,
cumulative discounted sum of rewards from playing policy π starting from state s.
When it is not clear from context, we denote V π

M as the value for the function π,
specifically over MDP M .

In offline reinforcement learning, one assumes access to a fixed set of envi-
ronment interactions. In this work, we assume that we have access to a dataset,
D =

⋃
j∈[N ]{(sji, aji, s′ji, rji)}

tj
i=1, which is comprised of N trajectories of possi-

bly varying lengths, tj . For the remainder of Section 3.2, we use sji, s′ji, aji, rji to
represent the current state, next state, action played, and reward received for the ith

timestep of the jth trajectory. Also note that, if i < tj , then sj(i+1) = s′ji.
Structures over the Offline Data. Given a dataset, D, collected in MDP

M = 〈S,A, γ, T, r, ρ〉, one can construct a tabular MDP that incorporates only
the states and actions observed in the dataset. We denote this MDP as M0 =

〈S0, {As0}s∈S0 , γ, T0, r0, ρ0〉, where S = ∪j∈[N ],i∈[tj ]

(
{sji} ∪ {s′ji}

)
,As0 = {aji|∀j ∈

[N ], ∀i ∈ [tj ] s.t. sji = s}, T0(s, a) = T (s, a), r0(s, a) = r(s, a), and ρ0 is a dis-
crete uniform distribution over {sj0}Mj=1.

It will often be beneficial to describe the offline dataset from a graphical per-
spective. A graph, G := (V,E), is fully characterized by its vertex set, V , and its
edge set, E. We note that the notation for the vertex set is overloaded with the value
function, but the difference is often clear from context. For any MDP, we can define
a corresponding graph that has a vertex set which is the same as the MDP’s state
space and an edge set which matches the MDP’s transition function. For example,
the graph corresponding to M0, G0 = (V0, E0), has vertex set, V0 = S0, and edge
set, E0 = {(s, T0(s, a))|s ∈ S0, a ∈ As0}. Specific to this paper, we also consider
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the undirected, neighbor graph, Gε, which has the same vertex set, but has edge set
such that {s, s′} is an edge iff ‖s− s′‖ ≤ ε for a specified norm and ε > 0.

Bisimulation Metric. In this work, we use the on-policy bisimulation distance
from Castro [2019], which also gives a sampling-based algorithm for approximating
such a metric. We denote this as dπ∼(·, ·). A key result about this metric is the
following:
Theorem 2 (Theorem 3 from Castro [2019]). Given states s, t ∈ S in an MDP, M ,
and a policy, π,

|V π(s)− V π(t)| ≤ dπ∼(s, t).

In other words, dπ∼(·, ·) is a metric over states for which the value function is
1-Lipschitz continuous. We discuss bisimulation further in Appendix B.2.

3.3 Method

The MDP, M0, as described in Section 3.2, has several desirable properties. First,
it is tabular, so one can easily apply value iteration to find the optimal policy.
Second, policies defined over M0 will be conservative since policies can only
choose actions that appear in the dataset. Unfortunately, M0 is so conservative that
it is uninteresting since there is little to no choice in what actions can be made at
each state. We must make additions in order to create a more interesting MDP to
optimize. Our solution is to create transitions via planning: an operation we call
stitching.

3.3.1 The Stitching Operation

Broadly speaking, the so-called stitching operation simply adds a transition (or
sequence of transitions) from one pre-existing state in an MDP to another pre-
existing state via planning in a learned model. To flesh this operation out, suppose
that, for a tabular MDP, M̂ = 〈Ŝ, {Âs}s∈Ŝ , γ, T̂ , r̂, ρ0〉, we would like to add the
ability to transition from s ∈ Ŝ to s′ ∈ Ŝ . Here, M̂ is either M0, or M0 with some
additional states, actions, and transitions included. Using a learned dynamics model,
T̃ , as a proxy to the the true dynamics, T , we can find actions that transition from s
to s′ via planning, i.e. we can solve the following optimization problem:

argmin
a0,...,ak−1∈A

∥∥s′ − sk
∥∥ where sj = T̃ (sj−1, aj−1), ∀j = 1, . . . , k and s0 = s

(3.2)
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MDP Edge

Neighbor Edge

Planning

Figure 3.1: A diagram of the stitching procedure in BATS. The blue edges come
from the directed graph, Gi, the yellow edge comes from the neighbor graph, Gε,
and dashed gray edges are the planned actions. Here, the (s, s′) state pair is a viable
candidate to try to stitch with k = 4 actions because there are 4 blue edges and one
yellow edge forming a path from s to s′. This would be considered a successful
stitch since s4 is within δ of s′.

where k is the number of actions allowed and A is the set of actions available in the
environment. We choose to optimize this objective with the Cross Entropy Method
(CEM), as used in Chua et al. [2018a]. For a specified tolerance, δ ∈ R, we consider
it possible to transition from s to s′ if there exists a solution such that ‖s′ − sk‖ < δ.
If the tolerance cannot be achieved, we leave M̂ unchanged. Otherwise, we set
Ŝ = Ŝ ∪ {si}, Âsi = Âsi ∪ {ai} for i = 0, . . . , k − 1, where Âsi = ∅ if si−1 /∈ Ŝ .
If i < k − 1, we set , T̂ (si, ai) = si+1, and otherwise set T̂ (sk−1, ak−1) = s′.
Lastly, r̂(si, ai) = r̃(si, ai)− cd(sk, s

′) for i = 0, . . . , k − 1, where r̃ is a learned
estimate of the reward function, c is a penalty coefficient, and d is an appropriate
distance metric. The addition of the penalty term encourages policies to choose
transitions that occur in the dataset over the possibly erroneous ones that are added
via stitching. Choosing d to be a bisimulation distance has theoretical ramifications
which we will discuss in Section 3.4.

3.3.2 The BATS Algorithm

Given unlimited compute, the ideal algorithm would be to attempt to stitch all
pairs of states in the graph and then perform value iteration on the resulting tabular
MDP. However this is not often feasible, which is where our algorithm, Best Action
Trajectory Stitching (BATS), comes into play. BATS is an iterative algorithm where,
for each i = 0, 1, . . . , n − 1, we perform value iteration for MDP, Mi, to find
optimal policy πi, we narrow the pool of candidate stitches to those that are both
feasible and impactful, and lastly we run the stitching procedure over Mi and set
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the results as Mi+1. We will now discuss the heuristics for identifying feasible and
impactful stitches. The full algorithm is written out concretely in Appendix B.1.

Identifying Feasible Stitches. We first establish a notion of feasible stitches.
We operate on the following heuristic: if there exists a sequence of actions that lead
to s′ from s, there is likely a similar sequence of actions that lead to s′ starting at a
state neighboring s. Concretely, for iteration i, we only consider stitching a state,
s, to another state, s′, if there exists a path from s to s′ that uses at most K edges
from graph Gi (i.e. the graph corresponding to Mi) and exactly one edge from the
nearest neighbor graph Gε (this is visualized in Figure 3.1). If we find that k edges
from Gi are used in the path from s to s′, we limit the planning procedure in the
stitching operation to optimize for k actions. To introduce more conservatism, we
also only consider s′ ∈ S0; that is, we do not consider stitching to any “imagined”
states that may be the result of previous stitching. This constraint enforces the agent
to stay in distribution.

Identifying Impactful Stitches. To help identify impactful stitches during
iteration i, we focus on making stitches that maximizes Es∼µπi+1

[
V
πi+1

Mi+1
(s)
]
. To

do this heuristically, we first sample s1, . . . , sm from µπi and find all feasible
destinations each sample could stitch to. Let s be one such sample, and let s′ be
a feasible destination state. Suppose there is a path connecting these states that
uses exactly k edges from Gi and one edge from Gε. Let s′k be the state that πi
transitions to after acting k times in Mi. Then, we consider (s, s′) to be a candidate
stitch if V πi(s′) > V πi(s′k). In other words, if it is believed that s′ can be reached
from s in k transitions, then the stitch between s and s′ only deserves our attention
if s′ is more valuable than the state that πi currently transitions to in k steps.

After running the BATS algorithm for n iterations, we are left with an optimal
policy, πn for the stitched, tabular MDP, Mn; however, this policy cannot be
deployed on the true, continuous MDP, M , since the domain of πn is only a subset
of S. To remedy this, we collect a large number of trajectories using πn in Mn to
generate a dataset of state-action tuples to train a parametric policy with behavioral
cloning. However, we note that alternative policy learning algorithms could be used
to make a policy well-defined over S.

Hyperparameters. Our algorithm has a number of hyperparameters of interest.
Dynamics model training, metric learning, behavior cloning, and CEM all have
parameters which trade off computation and performance. However, these are
well-known methods which operate independently and for which hyperparameter se-
lection is a relatively well-understood problem. The BATS algorithm itself requires
a tolerance for value iteration, ε for the neighbors graph, δ for planning tolerance, m
for the number of samples from occupancy distribution per iteration, K for the max
number of actions in a stitch, and n for the number of iterations. We further discuss
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how we determined hyperparameters for our experiments in the Appendix B.4.1.

3.4 Analyzing BATS with Bisimulation Distance

Assumptions Let M0 be a tabular MDP formed from an offline dataset collected
in M , as previously formulated. We can extend π to the domain S by behavior
cloning; that is, by finding the member of a parameterized policy class which has
minimum training error regularized with weight norm. For a slight simplification
of our analysis, we assume that the hypothesis class is rich enough that it can
interpolate the training set; that is, it can reach zero behavior cloning error for all
s ∈ Ŝ. We often refer to both a policy and its extension as π.

We also assume that on a finite MDP an optimal policy can be found efficiently,
and that the learned dynamics model, T̃ , is accurate for short transitions in the
support of the data. Although in practice, we will learn the reward function, in this
analysis we also assume the reward function, r, is known. Lastly, we assume that
we are able to learn an embedding, φπ : S → Z, such that the L2 norm in the latent
space, Z, is the on-policy bisimulation metric. That is, we can learn a φπ such that
if ||φπ(s)− φπ(s′)|| < ε then |V π(s)− V π(s′)| < ε.

Sandwich Bound on Value Consider the collection of ` tuples {(bj , cj , aj)}`j=1,

where bj , cj ∈ S0, aj ∈ A, and aj /∈ Abj0 for all j ∈ [`]. Then define M− as the
MDP derived by starting from M0 and, for each j ∈ [`], setting Abj0 = {aj} ∪ Abj0 ,
T0(bj , aj) = cj , and r0(bj , aj) = r(bj , aj) − γεj , where εj > 0 is some notion
of penalty. In other words, M− is the result of making ` stitches in M0 where
K = 1. There exists a policy π− which is the optimal policy on M− and extends by
behavior cloning to S . Similarly, we can construct MDP M+ in the exact same way
as M−, but by setting reward to r̂(bj , aj) = r(bj , aj) + γεj for each j ∈ [`]. In this
setting we can bound the value of π− in the true MDP on either side by its value
attained in the finite MDPs just defined. We formalize this notion in the following
Theorem.
Theorem 3. For j ∈ [`], let each penalty term, εj , be such that ||φπ−(T (bi, ai))−
φπ
−

(ci)|| < εj .
Then

∀s ∈ S0, V π−

M−(s) ≤ V π−
M (s) ≤ V π−

M+(s).

In other words, under the correct assumptions, we can construct a pessimistic
and optimistic MDP. The value of policy π− in the pessimistic and optimistic MDP
will bound the true value of this policy from below and above, respectively. We
give the proof in Appendix B.3 and a short sketch here: The value function can be
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Figure 3.2: Mountain Car Example. The plots show example actions, associated
trajectories, the value function lower bound, and residuals for the standard dynamics
model and the bisimulation metric.

written as V π−
M (s) =

∑
si
γir(si, π(si)), which can be lower and upper-bounded

using Theorem 2 for every transition in the expansion which does not exist in the
dataset. This is accomplished by taking into account a pessimistic planning error of
the dynamics model. Although Theorem 3 is for the case where we limit stitches to
have at most one action, it is likely easy to extend this result to more actions.

There are 3 major implications of the theorem. First, if the behavior cloning,
dynamics model, and bisimulation assumptions hold, the value function estimates
must be accurate. Second, reasoning by contraposition gives that if the value
function estimates are bad, it is due to errors in these components. As such, one
should recompute the edge penalties as the policy changes by fine-tuning the
bisimulation metric. Third, if the current lower bound is higher than a previous
upper bound on the value, the policy is guaranteed to have improved.

We formalize the third fact in the following corollary. Starting with the setup
from before, let M ′− and M ′+ be tabular MDPs constructed using the alternative
sequence of tuples {(b′j , c′j , a′j)}`

′
j=1. Let ε′j be the penalty term used in formulating

these MDPs, and let π′− be the optimal policy for M ′−.
Corollary 1. Let εj and ε′j satisfy the assumptions of Theorem 3 for mappings φπ

−

and φπ
′−

, respectively. If for some s ∈ S0, V π−

M+(s) < V π′−

M ′−(s), then V π−
M (s) <

V π′−
M (s).

This corollary is a natural consequence of Theorem 3 and implies the policy π̂−

is better at state s than π−. If this holds on average for s ∼ ρ, then we can conclude
that π̂− is the better policy.

3.5 Illustrative Example: Mountain Car
As an initial test of the algorithm and analysis, we trained BATS on a small dataset
consisting mostly of random actions along with 5 expert trajectories on a continuous
mountain car environment. Behavior cloning fails on this dataset, but running BATS
and subsequently behavior cloning trajectories from the stitched MDP solves the
problem, reliably getting returns of 95 (90 is considered solved). In Figure 3.2, we
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show how this happens. Starting at the left, the actions are in general concomitant
with a good mountain car policy but with occasional spikes. The spikes result from
the planning step in BATS, which has the objective solely to reach the next intended
state as accurately as possible. Although the large control inputs are costly in this
problem, they are only intermittently added and in general result in a policy that
solves the problem.

The second panel makes clear how BATS leverages real transitions to produce
realistic, trustworthy trajectories. To show this, we show a stitched trajectory (blue)
that was originally (gold) unable to reach the goal. Replaying the actions from this
trajectory in the real environment, we find that the trajectory closely matches what
happens in the environment (green). However, replaying the same actions in our
learned dynamics model results in horrendous error before 100 timesteps (pink).
This demonstrates how our method can produce more effective novel long-term
trajectories than purely relying on rolling out a learned model.

The third panel shows the error in the graph value function estimates over
a sampling of states from the graph from the true returns experienced both by
executing the actions associated with the edges taken in the graph and by executing
a policy cloned from the graph. We also train a bisimulation model following work
from Zhang et al. [2020], Castro [2019] and execute BATS according to this metric
(see Appendix B.4.2). We find that doing this results in the value function estimates
that are quite accurate. One interesting feature is that on the left side, there are
actually states where the cloned policy does better than the graph policy. We believe
this is likely due to the cloned policy smoothing out some of the control spikes output
by the planning process and using less control input. This panel admits a natural
decomposition of the errors in BATS. The small errors in executing the bisimulation
graph policy (green) show that the dynamics model training and bisimulation metric
is likely working here, while the additional errors induced by the corresponding
cloned policy (red) show that here, the behavior cloning process induces a slight
additional error. We also note that the value function errors are much smaller when
the bisimulation metric is used (red / green) than when the Euclidean metric is used
(blue / orange), providing empirical evidence for its theoretical benefits. Finally, on
the right we see a very sensible looking value function plot, where values are higher
as the policy winds its way out of the valley.

3.6 Related Work

Offline Reinforcement Learning In the past two years, there has been substantial
interest in offline reinforcement learning and many algorithms have been developed
to address the problem. In order to mitigate the issues of distribution shift and
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model exploitation, recent prior work in offline RL have explored incorporating
many different types of conservatism in the optimization process. These approaches
can be broadly grouped based on the type of conservatism they incorporate.

The first set of approaches use actor-critic methods [Wu et al., 2019, Kumar
et al., 2019, Wang et al., 2020, Nair et al., 2020a], but incorporate policy constraints
to limit the difference between the learned policy and the behavioral policy that
collected the data in order to mitigate distribution shift during the Bellman updates
and at test time. The second set of approaches use model-based RL [Yu et al.,
2020, Kidambi et al., 2020b], but leverage uncertainty-aware dynamics models to
perform Model-Based Policy Optimization (MBPO) [Janner et al., 2019b] while
deterring the policy from taking action with high model uncertainty. The third set
of approaches add conservatism directly to the Q-function [Kumar et al., 2020, Yu
et al., 2021] in order to optimize a lower-bound on the true value function and avoid
extrapolating optimistically. Finally, an alternate approach attempts to filter out
the best available transitions in the data for behavior cloning by learning an upper
bound on the value function Chen et al. [2020].

Graphical Methods in Reinforcement Learning There have been recent prior
works which leverage finite MDPs and their graphical representations in order to
estimate value functions. The simplest take the highest-returning actions from a
particular state [Blundell et al., 2016] or leverage differentiable memory to give a
weighted combination of recent experiences [Pritzel et al., 2017]. Marklund et al.
[2020] gives a method of Exact then Approximate Dynamic Programming. The
method quantizes the state space into variable-sized bins and treats the quantized
MDP as finite. They solve this MDP via Value Iteration and then use these values
to warm-start DDQN [Van Hasselt et al., 2016]. This method is close to ours, but
assumes discrete action space, quantizes the state space, and does not leverage a
dynamics model.

Another method, DeepAveragers [Shrestha et al., 2021], constructs a finite
MDP from the dataset and extends the optimal value function via kNN. Their
theoretical analysis relies on assumptions on the Lipschitzness of Bellman backups
that directly affects the value of a cost hyperparameter, while we use the properties
of the bisimulation metric to guarantee our bounds. It also only works on problems
with discrete actions and doesn’t add to the dataset in any way.

Other methods, like Zhu et al. [2020], Hu et al. [2021], use episodic memory
techniques to organize the replay buffer, using averaging techniques and implicit
planning to generalize from the replay buffer. However, they cannot plan novel
actions to explicitly connect the dataset and are not designed with the offline setting
in mind.
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3.7 Experiments

BRAC-v COMBO Stitched Trajectory BATS+BC
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Figure 3.3: Trajectories in maze2d-medium. The two leftmost plots show the top
baselines on this task. While BRAC-v is able to make it to the goal, it is apparent that
the constraints imposed make it sub-optimal as it makes several loops throughout
the trajectory. While COMBO is able to efficiently navigate to the goal, it too is
unable to remain in the goal region.

Task BATS+BC (Ours) BC SAC BRAC-v BEAR CQL COMBO

umaze 141.8 ± 4.4 3.8 88.2 -16.0 3.4 5.7 76.2 ± 0.5
medium 133.6 ± 11.6 30.3 26.1 33.8 29.0 5.0 74.8 ± 35.2

large 107.7 ± 22.0 5.0 -1.9 40.6 4.6 12.5 150.3 ± 22.0

Table 3.1: D4RL Maze 2D. The above shows undiscounted returns for each algo-
rithm with the higest average bolded. For algorithms that we ran, we include the
standard error. Results are averaged over three seeds, except for BATS+BC which
was averaged over three seeds on each of the three graphs.

In this section we explore BATS experimentally. By planning in the approximate
MDP, BATS can identify high-value sequences of actions. Unlike other state-of-the-
art offline RL algorithms, BATS can also reason about which regions of the state
space are important for the task at hand. We find that this is crucial for “undirected”
datasets (i.e., datasets in which the data were collected without a specific reward
function in mind).

In the following experiments we first use BATS to find a good policy in the
approximate, finite MDP, and then learn a policy for the true, continuous MDP
by behavior cloning on optimal trajectories from the approximate MDP. We also
assume that we have access to the start state distribution, and we use this to go
through the data and label additional states as start states, since many datasets have
few starts. Once BATS is complete, data is collected by unrolling trajectories with
the optimal policy. Because we find that not all logged trajectories were stitched to
good regions of state space, we filter out any trajectory that does not meet a required
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value threshold. Then, a neural network policy that outputs the mean and variance
of a normal distribution is learned on the collected data.

To implement the algorithm, we rely on the graph-tool library. We used compute
provided by XSEDE [Towns et al., 2014] to run BATS three times for each task. In
order to save on compute, we execute the BATS algorithm with no penalty and with
relaxed hyperparameters. After, we perform simple grid search of hyperparameters
by relabelling and deleting stitched transitions and re-running value iteration on
the resulting MDP. For the penalty term, we use L2 distance scaled by a constant
hyperparameter. For more details on this procedure see Appendix B.4.1.

For baselines, we compare to methods reported in D4RL: off-policy SAC
Haarnoja et al. [2018a], CQL Kumar et al. [2020], BRAC Wu et al. [2019], BEAR
Kumar et al. [2019]. Since D4RL does not report any model-based methods, we
compare against the COMBO algorithm, which alters the CQL algorithm to include
short model rollouts. We used our own implementation of COMBO, which we
find gets comparable results to the results reported (see Appendix B.4.3 for details).
Final results can be seen in Table 3.1.

2D Maze Environments. We evaluate our procedure on D4RL’s maze2d
environments. While the baseline algorithms we compare against produce amazing
results on the Mujoco control tasks, they struggle to match the performance of an
expert policy on these relatively simple maze environments. We assert that a key
reason for this is that the dataset is undirected. For each of the maze tasks, the
dataset was collected by a PD controller that randomly wandered through the mazes.
This presents a problem for algorithms which try to constrain the learned policy
to be close to the behavioral policy, since there may be many instances where the
behavioral policy performs an action that is in direct opposition to a specified goal.
We see this concretely in the maze case, where most of the baseline policies are able
to find their way to the goal, but start moving away from the goal once it is reached
(see Figure 3.3). This happens because the policies are trained on a significant
amount of data where the behavioral policy leaves the goal, but there are few to no
data where the behavioral policy remains stationary in the goal. Even COMBO,
which leverages a learned dynamics model, is unable to stay in the goal cell for the
umaze and medium maze tasks.

BATS addresses this problem directly by filtering out any data that are unim-
portant for the task at hand. Training solely on the data seen by the optimal agent
in the approximate MDP ensures that the policy for the continuous MDP is never
trained on any disastrous actions or any data that are too far out of the policy’s state
distribution. At the same time, BATS can use the learned dynamics model to reason
about how to stay stationary within the goal cell, as shown by Figure 3.3.
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3.8 Conclusion
In this work, we presented an algorithm which eschews learning a deep value
function by instead maintaining a finite MDP of transitions from the dataset and
augmenting it with transitions planned using a learned model. The algorithm’s
performance is promising on low-dimensional tasks with theoretical support for its
value function estimates. While stitching is hard on higher-dimensional tasks, we
believe this work can be improved by incorporating low dimensional representation
learning. Ideally this representation should be related to the bisimulation metric.
Although we achieved promising results using the model architecture as described
in Zhang et al. [2020] on mountain car, we were unable to leverage the same model
in our other experiments. We hope that new developments in learning bisimulation
metrics will unlock additional potential in BATS. We also hope to formalize the
equivalent algorithm for when transitions are stochastic, and we hope that this
extension will help the algorithm generalize to more complex problems.

Another challenge of this approach is the computational and memory footprint
incurred by constructing MDP. This is especially true as the dataset becomes large
and diverse, which is the situation we would hope to do best in with a learning
based method for control. In hindsight, although the core ideas behind BATS
are good, I do not think that the implementation of these ideas as presented in
this chapter will lead to breakthroughs in offline RL. Instead, future work should
instead rely upon function approximators that thrive with high amounts of data.
For example, generative models have recently shown great progress in offline RL
[Janner et al., 2022, 2021, Chen et al., 2021a], and interesting research into how
trajectory stitching can better these approaches has already begun [Wu et al., 2024]
As mentioned in Wu et al. [2024], the ideas at the core of BATS may be of use in
these future research directions.
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Chapter 4

PID-Inspired Inductive Biases for
Deep Reinforcement Learning in
Partially Observable Control
Tasks

This chapter is based on Char and Schneider [2023]:
Char, I., & Schneider, J. (2024). PID-Inspired Inductive Biases for Deep
Reinforcement Learning in Partially Observable Control Tasks. Advances in
Neural Information Processing Systems, 36.

In contrast to the previous chapter, in this chapter we will embrace deep actor-
critic methods but instead call into question choices in neural network architectures
when faced with a Partially Observable MDP (POMDP). In particular, we find that
common architectures that accumulate information over the history of observations
are brittle to errors in the surrogate model.

This can be catastrophic for an application such as tokamak control where we
know that there are likely key features of the plasma that are not observed. Even
in the unlikely case that the true environment is fully-observable, the surrogate
model used to train the model offline is usually a POMDP. This is because a good
offline training scheme will randomize system parameters if using a simulator (i.e.
domain randomization) or have a distribution of possible dynamics functions if the
surrogate model is learned (i.e. a learned predictive distribution). This is discussed
further in Section 4.4. A policy trained with this perspective in mind should be able
to leverage the variability seen during offline training to adapt to what it observes
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online (see Chen et al. [2021b], Ghosh et al. [2022]). It is therefore vital to explore
which neural network architectures can combine information over observations yet
remain robust.

4.1 Introduction
Deep reinforcement learning (RL) holds great potential for solving complex tasks
through data alone, and there have already been exciting applications of RL in video
game playing [Vinyals et al., 2019], language model tuning [OpenAI, 2023], and
robotic control [Agarwal et al., 2023]. Despite these successes, there still remain
significant challenges in controlling real-world systems that stand in the way of
realizing RL’s full potential [Dulac-Arnold et al., 2021]. One major hurdle is the
issue of partial observability, resulting in a Partially Observable Markov Decision
Process (POMDP). In this case, the true state of the system is unknown and the
policy must leverage its history of observations. Another hurdle stems from the fact
that policies are often trained in an imperfect simulator, which is likely different
from the true environment. Combining these two challenges necessitates striking
a balance between extracting useful information from the history and avoiding
overfitting to modelling error. Therefore, introducing the right inductive biases to
the training procedure is crucial.

The use of recurrent network architectures in deep RL for POMDPs was one of
the initial proposed solutions [Heess et al., 2015] and remains a prominent approach
for control tasks [Meng et al., 2021, Yang and Nguyen, 2021, Ni et al., 2022].
Theses architectures are certainly flexible; however, it is unclear whether they are
the best choice for control tasks, especially since they were originally designed with
other applications in mind such as natural language processing.

In contrast with deep RL methods, the Proportional-Integral-Derivative (PID)
controller remains a cornerstone of modern control systems despite its simplicity
and the fact it is over 100 years old [Alpi, 2019, Minorsky, 1922]. PID controllers
are single-input single-output (SISO) feedback controllers designed for tracking
problems, where the goal is to maintain a signal at a given reference value. The
controller adjusts a single actuator based on the weighted sum of three terms: the
current error between the signal and its reference, the integral of this error over
time, and the temporal derivative of this error. PID controllers are far simpler
than recurrent architectures and yet are still able to perform well in SISO tracking
problems despite having no model for the system’s dynamics. We assert that PID’s
success teaches us that in many cases only two operations are needed for successful
control: summing and differencing.

To investigate this assertion, we conduct experiments on a variety of SISO and
multi-input multi-output (MIMO) tracking problems using the same featurizations
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as a PID controller to encode history. We find that this encoding often achieves
superior performance and is significantly more resilient to changes in the dynamics
during test time. The biggest shortcoming with this method, however, is that it
can only be used for tracking problems. As such, we propose an architecture that
is built on the same principles as the PID controller, but is general enough to be
applied to arbitrary control problems. Not only does this architecture exhibit similar
robustness benefits, but policies trained with it achieve an average of 1.7x better
performance than previous state-of-the-art methods on a suite of locomotion control
tasks.

4.2 Preliminaries
The MDP and POMDP We define the discrete time, infinite horizon Markov De-
cision Process (MDP) to be the tuple (S,A, r, T, T0, γ), where S is the state space,
A is the action space, r : S×A×S → R is the reward function, T : S×A → ∆(S)
is the transition function, T0 ⊂ ∆(S) is the initial state distribution, and γ is
the discount factor. We use ∆(S) to denote the space of distributions over S.
Importantly, the Markov property holds for the transition function, i.e. the dis-
tribution over a next state s′ depends only on the current state, s, and current
action, a. Knowing previous states and actions does not provide any more infor-
mation. The objective is to learn a policy π : S → ∆(A) that maximizes the
objective J(π) = E

[∑∞
t=0 γ

tr(st, at, st+1)
]
, where s0 ∼ T0, at ∼ π(st), and

st+1 ∼ T (st, at). When learning a policy, it is often key to learn a corresponding
value function, Qπ : S × A → R, which outputs the expected discounted returns
after playing action a at state s and then following π afterwards.

In a Partially Observable Markov Decision Process (POMDP), the observations
that the policy receives are not the true states of the process. In control this may hap-
pen for a variety of reasons such as noisy observations made by sensors, but in this
work we specifically focus on the case where aspects of the state space remain un-
measured. In any case, the POMDP is defined as the tuple (S,A, r, T, T0,Ω,O, γ),
where Ω is the space of possible observations,O : S×A → ∆(Ω) is the conditional
distribution of seeing an observation, and the rest of the elements of the tuple remain
the same as before. The objective remains the same as the MDP, but now the policy
and value functions are not allowed access to the state.

Crucially, the Markov property does not hold for observations in the POMDP.
That is, where o1:t+1 := o1, o2, . . . , ot+1 are observations seen at times 1 through
t+ 1, o1:t−1 6⊥ ot+1|ot, at. A naive solution to this problem is to instead have the
policy take in the history of the episode so far. Of course, it is usually infeasible to
learn a policy that takes in the entire history for long episodes since the space of
possible histories grows exponentially with the length of the episode. Instead, one
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can encode the information into a more compact representation. In particular, one
can use an encoder φ which outputs an encoding zt = φ(o1:t, a1:t−1, r1:t−1) (note
that encoders need not always take in the actions and rewards). Then, the policy and
Q-value functions are augmented to take in (ot, zt) and (ot, at, zt), respectively.

Tracking Problems and PID Controllers. We first focus on the tracking problem,
in which there are a set of signals that we wish to maintain at given reference
values. For example, in espresso machines the temperature of the boiler (i.e. the
signal) must be maintained at a constant reference temperature, and a controller
is used to vary the boiler’s on-off time so the temperature is maintained at that
value [Marzocco, 2015]. Casting tracking problems as discrete time POMDPs,
we let ot =

(
x
(1)
t , . . . , x

(M)
t , σ

(1)
t , . . . , σ

(M)
t

)
be the observation at time t, where

x
(i)
t and σ(i)t are the ith signal and corresponding reference value, respectively.

The reward at time t is simply the negative error summed across dimensions, i.e.
−∑M

m=1

∣∣∣x(m)
t − σ(m)

t

∣∣∣.
When dealing with a single-input single-output (SISO) system (with one signal

and one actuator that influences the signal), one often uses a Proportional-Integral-
Derivative (PID) controller: a feedback controller that is often paired with feedfor-
ward control. This controller requires no knowledge of the dynamics, and simply
sets the action via a linear combination of three terms: the error (P), the integral of
the error (I), and the derivative of the error (D). When comparing other architectures
to the PID controller, we will use orange colored text and blue colored text to
highlight similarities between the I and D terms, respectively. Concretely, the policy
corresponding to a discrete-time PID controller is defined as

πPID(ot) = KP (x
(1)
t − σ

(1)
t ) +KI

t∑

i=1

(x
(1)
i − σ

(1)
i )dt+KD

(
x
(1)
t − σ

(1)
t

)
−
(
x
(1)
t−1 − σ

(1)
t−1

)

dt

(4.1)

where KP , KI , and KD are scalar values known as gains that must be tuned. PID
controllers are designed for SISO control problems, but many real-world systems
are multi-input multi-output (MIMO). In the case of MIMO tracking problems,
where there are M signals with M corresponding actuators, one can control the
system with M separate PID controllers. However, this assumes there is a clear
breakdown of which actuator influences which signal. Additionally, there are often
interactions between the different signals, which the PID controllers do not account
for. Beyond tracking problems, it is less clear how to use PID controllers without
substantial engineering efforts.
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4.3 Methodology
To motivate the following, consider the task of controlling a tokamak: a toroidal
device that magnetically confines plasma and is used for nuclear fusion. Nuclear
fusion holds the promise of providing an energy source with few drawbacks and
an abundant fuel source. As such, there has recently been a surge of interest in
applying machine learning [Abbate et al., 2021, Char et al., 2019], and especially
RL [Char et al., 2023a, Mehta et al., 2022, Degrave et al., 2022, Wakatsuki et al.,
2021, Seo et al., 2021, 2022, Mehta et al., 2021b], for tokamak control. However,
applying deep RL has the same problems as mentioned earlier; the state is partially
observable since there are aspects of the plasma’s state that cannot be measured
in real time, and the policy must be trained before-hand on an imperfect simulator
since operation of the actual device is extremely expensive.

How should one choose a historical encoder with these challenges in mind?
Previous works [Ni et al., 2022, Melo, 2022] suggest using Long Short Term
Memory (LSTM) [Hochreiter and Schmidhuber, 1997], Gated Recurrent Units [Cho
et al., 2014b], or transformers [Vaswani et al., 2017]. These architectures have
been shown to be powerful tools in natural language processing, where there exist
complicated relationships between words and how they are positioned with respect to
each other. However, do the same complex temporal relationships exist in something
like tokamak control? The fact that PID controllers have been successfully applied
for feedback control on tokamaks suggests this may not be the case [Walker et al.,
2000, Hahn et al., 2016]. In reality, the extra flexibility of these architectures may
become a hindrance when deployed on the physical device if they overfit to quirks
in the simulator.

In this section, we present two historical encoders that we believe have good
inductive biases for control. They are inspired by the PID controller in that they only
sum and difference in order to combine information throughout time. Following
this, in Section 4.5, we empirically show the benefits of these encoders on a number
of control tasks including tokamak control.

The PID Encoder. Under the framework of a policy that uses a history encoder,
the standard PID controller (4.1) is simply a linear policy with an encoder that
outputs the tracking error, the integral of the tracking error, and the derivative of the
tracking error. This notion can be extended to MIMO problems and arbitrary policy
classes, resulting in the PID-Encoder (PIDE). Given input o1:t, this encoder outputs
a 3M dimensional vector consisting of (x

(m)
t − σ(m)

t ),
∑t

i=1(x
(m)
i − σ(m)

i )dt, and(
x
(m)
t −σ(m)

t

)
−
(
x
(m)
t−1−σ

(m)
t−1

)
dt ∀m = 1, . . . ,M . For SISO problems, policies with

this encoder have access to the same information as a PID controller. However,
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for MIMO problems the policy has access to all the information that each PID
controller, acting in isolation, would have. Ideally a sophisticated policy would
coordinate each actuator setting well.

Figure 4.1: Architecture for
GPIDE. The diagram shows how
one encoding, zt, is formed. Each of
the gray, rounded boxes corresponds
to one of the heads that makes up
GPIDE. Each green box shows a
function to be learned from data, and
the orange box shows the weighted
summation of all previous vectors,
vh1:t. We write the difference in ob-
servations in blue text to highlight
the part of GPIDE that relates to a
PID controller’s D term. Note that
qh1:t and kh1:t only play a role in this
process if head h uses attention; as
such, we write these terms in gray
text.

The Generalized PID Encoder. A shortcoming of PIDE is that it is only appli-
cable to tracking problems since it operates over tracking error explicitly. A more
general encoder should instead accumulate information over arbitrary features of
each observation. With this in mind, we introduce the Generalized-PID-Encoder
(GPIDE).

GPIDE consists of a number of “heads”, each accumulating information about
the history in a different manner. When there are H heads, GPIDE forms history
encoding, zt, through the following:

vhi = fhθ (concatenate(oi−1, ai−1, ri−1, oi − oi−1)) ∀i ∈ {1, . . . , t}, h ∈ {1 . . . , H}
wht = `h(vh1:t) ∀h ∈ {1 . . . , H}
zt = gθ(concatenate(w1

t , w
2
t , . . . , w

h
t ))

Here, GPIDE is parameterized by θ. For head h, fhθ is a linear projection of
the previous observation, action, reward, and difference between the current and
previous observation to RD, and `h is a weighted summation of these projections.
gθ is a decoder which combines all of the information from the heads. A diagram of
this process is shown in Figure 4.1. Note that θ is trained along with the policy and
Q networks end-to-end with a gradient based optimizer.
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Notice that the key aspects of the PID controller are present here. The difference
in observations is explicitly taken before the linear projection fhθ . We found that this
simple method works best for representing differences when the observations are
scalar descriptions of the state (e.g. joint positions). Although we do not consider
image observations in this work, we imagine a similar technique could be done
by taking the differences in image encodings. Like the integral term of the PID,
`h also accumulates information over time. In the following, we consider several
possibilities for `h, and we will refer to these different choices as “head types”
throughout this work. We omit the superscript h below for notational convenience.

Summation. Most in line with PID, the projections can be summed, i.e.
`(v1:t) =

∑t
i=1 vi.

Exponential Smoothing. In order to weight recent observations more heavily,
exponential smoothing can be used. That is, `(v1:t) = (1−α)t−1v1 +

∑t
i=2 α(1−

α)t−ivi, where 0 ≤ α ≤ 1 is the smoothing parameter. Unlike summation, this
head type cannot accumulate information in the same way because it is a convex
combination.

Attention. Instead of hard-coding a weighted summation of the projections, this
weighting can be learned through attention [Vaswani et al., 2017]. Attention is one
of the key components of transformers because of its ability to learn relationships
between tokens. To implement this, two additional linear functions should be learned
that project concatenate(oi−1, ai−1, ri−1, oi − oi−1) to RD. These new projections
are referred to as they key and query vectors, denoted as ki and qi respectively. The
softmax between their inner products is then used to form the weighting scheme for
v1:t. We can rewrite the first two steps of GPIDE for a head that uses attention as

vi, ki, qi = fθ(concatenate(oi−1, ai−1, ri−1, oi − oi−1)) ∀i ∈ {1, . . . , t}

w1:t = `(q1:t, k1:t, v1:t) = softmax
(
q1:tk

T
1:t√
D

)
v1:t

Here, q1:t, k1:t, and v1:t are treated as t×D dimensional matrices. Since it results in
a convex combination, attention has the capacity to reproduce exponential smoothing
but not summation.

To anchor the GPIDE architecture back to the PID controller, we note that the
P, I, and D terms can be formed exactly. At a high level, this is achieved when fhθ
simply subtracts the target from the state measurement and when using summation
and exponential smoothing heads with α = 1. We write down the specific instance
of GPIDE that results in these terms in Appendix C.1.1. While it is trivial for
GPIDE to reconstruct the P, I, and D terms, it is less clear how an LSTM or GRU
would achieve this, especially because of the I term. At the same time, GPIDE is
much more flexible than the PID-representation since altering fhθ results in different
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representations at each time step and altering the type of head results in different
temporal relationships.

4.4 Related Work
A control task may be partially observable for a myriad of reasons including un-
measured state variables [Han et al., 2019, Yang and Nguyen, 2021, Heess et al.,
2015], sensor noise[Meng et al., 2021], and unmeasured system parameters [Yu
et al., 2017, Packer et al., 2018]. When there are unmeasured system parameters,
this is usually framed as a meta-reinforcement learning (MetaRL) [Wang et al.,
2016] problem. This is a specific subclass of POMDPs where there is a collection
of MDPs, and each episode, an MDP is sampled from this collection. Although
these works do consider system parameters varying between episodes, the primary
focus of the experiments usually tends to be on the multi-task setting (i.e. different
reward functions instead of transition functions) [Zintgraf et al., 2019, Dorfman
et al., 2020, Rakelly et al., 2019]. We consider not only differing system parameters
but also the presence of unmeasured state variables; therefore, the class of POMDPs
considered in this paper is broader than the one studied in MetaRL.

Using recurrent networks has long been an approach for tackling POMDPs
[Heess et al., 2015], and is still a common way to do so in a wide variety of settings
[Duan et al., 2016, Wang et al., 2016, Vinyals et al., 2019, Ni et al., 2022, Meng
et al., 2021, Yang and Nguyen, 2021, Team et al., 2021, Caccia et al., 2022, Agarwal
et al., 2023]. Moreover implementations are publicly available both for on-policy
[Liang et al., 2017, Hill et al., 2018] and off-policy [Ni et al., 2022, Yang and
Nguyen, 2021, Caccia et al., 2022] algorithms, making it an easy pick for those
wanting a quick solution. Some works [Igl et al., 2018, Zintgraf et al., 2019, Han
et al., 2019, Dorfman et al., 2020, Akuzawa et al., 2021] use recurrent networks to
estimate the belief state [Kaelbling et al., 1998], which is a distribution over the
agent’s true state. However, Ni et al. [2022] recently showed that well-implemented,
recurrent versions of SAC [Haarnoja et al., 2018b] and TD3 [Fujimoto et al., 2018]
perform competitively with many of these specialized algorithms. In either case, we
believe works that estimate the belief state are not in conflict with our own since
their architectures can be modified to use GPIDE instead of a recurrent unit.

Beyond recurrent networks, there has been a surge of interest in applying
transformers to reinforcement learning [Li et al., 2023]. However, we were unable
to find many instances of transformers being used as history encoders in the online
setting, perhaps because of their difficulty to train. Parisotto et al. [2020] introduced
a new architecture to remedy these difficulties; however, Melo [2022] applied
transformers to MetaRL and asserted that careful weight initialization is the only
thing needed for stability in training. We note that GPIDE with only attention
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heads is similar to a single multi-headed self-attention block that appears in many
transformer architectures; however, we show that attention is the least important
type of head in GPIDE and often hurts performance (see Section 4.5.3).

Perhaps closest to our proposed architecture is PEARL [Rakelly et al., 2019],
which does a multiplicative combination of Gaussian distributions corresponding to
each state-action-reward tuple. However, their algorithm is designed for the MetaRL
setting specifically. Additionally, we note that the idea of summations and averaging
has been shown to be powerful in prior works. Specifically, Oliva et al. [2017]
introduced the Statistical Recurrent Unit, an alternative architecture to LSTMs and
GRUs that leverages moving averages and performs competitively across several
supervised learning tasks.

There are many facets of RL where improvements can be made to robustness,
and many works focus on altering the training procedure. They use techniques such
as optimizing the policy’s worst-case performance [Rajeswaran et al., 2016, Jiang
et al., 2021] or using variational information bottlenecking (VIB) [Alemi et al., 2016]
to limit the information used by the policy [Lu et al., 2020, Igl et al., 2019, Eysenbach
et al., 2021]. In contrast, our work specifically focuses on how architecture choices
of history encoders affect robustness, but we note our developments can be used in
conjunctions with these other directions, possibly resulting in improved robustness.
We perform additional experiments that consider VIB in Appendix C.6.1.

Lastly, we note that there is a plethora of work interested in the intersection of
reinforcement learning and PID control [Jesawada et al., 2022, Guan and Yamamoto,
2021, Lawrence et al., 2020, Fujii et al., 2021, Wang et al., 2021a, Carlucho et al.,
2020]. These works focus on using reinforcement learning to tune the coefficients
of PID controllers (often in MIMO settings). We view these as important works on
how to improve PID control using reinforcement learning; however, we view our
own work as how to improve deep reinforcement learning by leveraging ideas from
PID control.

4.5 Experiments
In this section, we experimentally compare PIDE and GPIDE against recurrent and
transformer encoders. In particular, we explore the following questions:

• How does the performance of a policy using PIDE or GPIDE do on tracking
problems? In addition, how well can policies adapt to different system
parameters and how robust to modelling error are they on these problems?
(Section 4.5.1)

• Going beyond tracking problems, how well does GPIDE perform on higher
dimensional locomotion control tasks (Section 4.5.2)
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• How important is each type of head in GPIDE? (Section 4.5.3)
For the following tracking problems we use the Soft Actor Critic (SAC) [Haarnoja
et al., 2018b] algorithm with each of the different methods for encoding observation
history. Following Ni et al. [2022], we make two separate instantiations of the en-
coders for the policy and value networks, respectively. Since the tracking problems
are relatively simple, we use a small policy network consisting of 1 hidden layer
with 24 units; however, we found that we still needed to use a relatively large Q
network consisting of 2 hidden layers with 256 units each to solve the problems. All
hyperparameters remain fixed across baselines and tracking tasks; only the history
encoders change.

For the recurrent encoder, we use a GRU and follow the implementation of
Ni et al. [2022] closely. Our transformer encoder closely resembles the GPT2
architecture [Radford et al., 2019], and it also includes positional encodings for the
observation history. For GPIDE, we use H = 6 heads: one summation head, two
attention heads, and three exponential smoothing heads (with α = 0.25, 0.5, 1.0).
This choice was not optimized, but rather was picked so that all types of heads
were included and so that GPIDE has roughly the same amount of parameters as
our GRU baseline. As a reference point for these RL methods, we also evaluate
the performance of a tuned PID controller. Not only do PID controllers have an
incredibly small number of parameters compared to the other RL-based controllers,
but the training procedure is also much more straightforward since it can be posed
as a black-box optimization over the returns. While there exists many sophisticated
extensions of the PID controller (especially in MIMO systems [Boyd et al., 2016]),
we only consider the vanilla PID controller since we believe it serves as a good
reference point. All methods are built on top of the rlkit library [Pong and Nair,
2018–]. More details about implementations, hyperparameters, and computation can
be found in Appendices C.2, C.3, and C.4, respectively. We also include additional
experiments regarding variational information bottlenecking (VIB) and lookback
size ablations in Appendices C.6.1 and C.6.2. Implementations can be found at
https://github.com/IanChar/GPIDE.

4.5.1 Tracking Problems
In this subsection we consider a number of tracking problems. For each environment,
the observation consists of the current signals, the reference values, and additional
information about the last action made. Unless stated otherwise, the reward is as
described in Section 4.2. More information about environments can be found in
Appendix C.5. To make a fair comparison against PID controls, we choose to only
encode the history of observations. For evaluation, we use 100 fixed settings of
the environment (each setting consists of targets and system parameters). To avoid
overfitting to these 100 settings, we used a separate set of 100 settings and averaged

50

https://github.com/IanChar/GPIDE


over 3 seeds when developing our methods. We evaluate policies throughout training,
but report the average over the last 10% of evaluations as the final returns. We
allow each policy to collect one million environment transitions, and all scores are
averaged over 5 seeds. Lastly, each table shows scores formed by scaling the returns
by the best and worst average returns across all methods in a particular variant of
the environment, where scores of 0 and 100 correspond to the worst and best returns
respectively.

Mass Spring Damper Tracking The first tracking task is the control of a classic
1D toy physics system in which there is a mass attached to a wall by a spring and
damper. The goal is then to apply a force to the mass in order to move it to a
given reference location. There are three system parameters to consider here: the
mass, spring constant, and damping factor. We also consider the substantially more
difficult problem in which there are two masses sandwiched between two walls, and
the masses are connected to the walls and each other by springs and dampers (see
Appendix C.5.1 for a diagram of this). Overall there are eight system parameters
(three spring constants, three damping factors, and two masses) and two actuators (a
force applied to each mass). We refer to the first problem as Mass-Spring-Damper
(MSD) and the second problem as Double-Mass-Spring-Damper (DMSD).

Additionally, we test how adaptive these policies are by changing system param-
eters in a MetaRL-type fashion (i.e. for each episode we randomly select system
parameters and then fix them for the rest of the episode). Similar to Packer et al.
[2018], we train the policies on three versions of the environment: one with no
variation in system parameters, one with a small amount of variation, and one with a
large amount of variation. We evaluate all policies on the version of the environment
with large system parameter variation to test generalization capabilities.

Table 4.1 shows the scores achieved for each of the settings. While GRU and
transformers seem to do a good job at encoding history for the MSD environment,
both are significantly worse on the more complex DMSD task when compared to
our proposed encoders. This is true especially for GRU, which performs worse
than two independent PID controllers for every configuration. Additionally, while it
seems that GRU can generalize to large amounts of variation in system parameters
when a small amount is present, it fails horribly when trained on fixed system
parameters. On the other hand, transformers are able to generalize surprisingly
well when trained on both fixed system parameters and with small variation. We
hypothesize the autoregressive nature of GRU may make it particularly susceptible
to overfitting. Comparing PIDE and GPIDE, we see that PIDE tends to shine in the
straightforward cases where there is little change in system parameters, whereas
GPIDE is able to adapt when there is a large variation in parameters since it has
additional capacity.
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Environment (Train/Test) PID Controller GRU Transformer PIDE GPIDE

MSD Fixed/Fixed 0.00± 3.96 83.73± 3.48 85.79± 1.98 100.00 ± 0.66 83.72± 2.86
MSD Small/Small 0.00± 5.58 100.00 ± 1.59 73.27± 4.98 75.51± 1.31 80.21± 8.59
MSD Fixed/Large 36.58± 2.86 0.00± 3.42 53.70 ± 1.71 34.92± 0.93 29.55± 2.32
MSD Small/Large 43.52± 2.82 87.63 ± 2.28 81.44± 0.82 53.21± 1.31 68.03± 4.43
MSD Large/Large 45.60± 1.71 100.00 ± 0.61 92.60± 1.49 69.88± 0.69 93.03± 1.27

Average 25.14 74.27 77.36 66.70 70.91

DMSD Fixed/Fixed 24.33± 3.97 0.00± 8.69 22.05± 3.58 100.00 ± 1.08 76.23± 6.26
DMSD Small/Small 16.17± 3.09 0.00± 7.79 43.74± 3.70 100.00 ± 0.94 86.74± 3.94
DMSD Fixed/Large 63.59± 2.91 0.00± 2.28 59.84± 1.13 78.77 ± 1.16 63.89± 2.16
DMSD Small/Large 70.35± 1.44 39.26± 2.37 73.81± 1.60 88.52± 0.83 89.66 ± 1.33
DMSD Large/Large 78.77± 1.97 52.01± 2.01 84.45± 1.41 86.90± 0.18 100.00 ± 0.91

Average 50.64 18.25 56.78 90.84 83.30

Total Average 37.89 46.26 67.07 78.77 77.11

Table 4.1: Mass Spring Damper Task Results. The scores presented are averaged over
five seeds and we show the standard error for each score.
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Figure 4.2: Average Returns for Navigation Environments. The curves show the average
over five seeds and the shaded region shows the standard error. For this plot, we allowed for
5x the normal amount budget to allow all methods to converge. We omit the PID controllers
from this plot since it gets substantially worse returns.

Navigation Environment To emulate the setting where the policy is trained
on an imperfect simulator, we consider an environment in which the agent is
tasked with moving itself across a surface to a specified 2D target as quickly
and efficiently as possible. At every point in time, the agent can apply some
force to move itself, but a penalty term proportional to the magnitude of the force
is subtracted from the reward. Suppose that we have access to a simulator of
the environment that is perfect except for the fact that it does not model fric-
tion between the agent and the surface. We refer to this simulator and the real
environment as the “No Friction“ and “Friction” environment, respectively. In
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both environments, the mass of the agent is treated as a system parameter that is
sampled for each episode; however, the Friction environment has a larger range
of masses and also randomly samples the coefficient of friction each episode.

Figure 4.3: Illustration of DIII-D
from Above. [Char et al., 2023a]
Each beamline in the figure con-
tains two independent beams (yel-
low boxes). The plasma is rotat-
ing counter-clockwise and the two
beams in the bottom left of the figure
are oriented in the counter-current di-
rection, allowing power and torque
to be decoupled. This figure gives a
rough idea of beam positioning but
is not physically accurate.

Figure 4.2 shows the average returns
recorded during training for both navigation en-
vironments and when the policies trained in No
Friction are evaluated in Friction. A table of fi-
nal scores can be found in Appendix C.7.3. One
can see that GPIDE not only achieves the best
returns in the environments it was trained in, but
is also robust when going from the frictionless
environment to the one with friction. On the
other hand, PIDE has less capacity and there-
fore cannot achieve the same results; however,
it is immediately more robust than the other
methods, although it begins to overfit over time.
It is also clear that using GRU is less sample
efficient and less robust to changes in the test
environment.

Tokamak Control For our last tracking exper-
iment we return to tokamak control. In particu-
lar, we focus on the DIII-D tokamak, a device
operated by General Atomics in San Diego, Cal-
ifornia. We aim to control two quantities: βN ,

Environment (Train/Test) PID Controller GRU Transformer PIDE GPIDE

βN -Track Sim/Sim 40.69± 0.32 100.00 ± 0.20 97.56± 0.19 0.00± 1.05 98.33± 0.41
βN -Track Sim/Real 89.15 ± 0.99 40.96± 5.45 40.05± 11.91 0.00± 21.04 55.21± 4.44
βN -Track Real/Real 98.45± 0.77 98.24± 0.38 98.74± 0.29 100.00 ± 0.23 99.30± 0.64

Average 76.10 79.73 78.79 33.33 84.28

βN -Rot-Track Sim/Sim 0.00± 0.83 99.06± 0.22 96.22± 0.94 67.98± 0.50 100.00 ± 0.29
βN -Rot-Track Sim/Real 83.71 ± 2.64 39.76± 5.84 33.31± 0.69 0.00± 8.89 51.00± 1.92
βN -Rot-Track Real/Real 92.02± 0.84 98.34± 0.52 96.32± 0.31 98.21± 0.23 100.00 ± 0.46

Average 58.58 79.05 75.28 55.40 83.67

Total Average 67.34 79.39 77.03 44.36 83.97

Table 4.2: Tokamak Control Task Results. The scores presented are averaged over five
seeds and we show the standard error for each score.
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the normalized ratio between plasma and mag-
netic pressure, and rotation, i.e. how fast the plasma is spinning around the toroid.
These are important quantities to track because βN serves as an approximate eco-
nomic indicator and rotation control of the plasma has been suggested to be key for
stability [Bardoczi et al., 2021, Tobias et al., 2016, Buttery et al., 2008, Reimerdes
et al., 2007, Politzer et al., 2008]. The policy has control over the eight neutral
beams [Grierson et al., 2021], which are able to inject power and torque by blasting
neutrally charged particles into the plasma. Importantly, two of the eight beams
can be oriented in the opposite direction from the others, which decouples the total
combined power and torque to some extent (see Figure 4.3).

To emulate the sim-to-real training experience, we create a simulator based
on the equations described in Boyer et al. [2019] and Scoville et al. [2007]. This
simulator has two major shortcomings: it assumes that certain states of the plasma
(e.g. its shape) are fixed for entire episodes, and it assumes that there are no
events that cause loss of confinement of the plasma. We make up for part of the
former by randomly sampling plasma states each episode. The approximate “real”
environment addresses these shortcomings by using a data-driven simulator. This
approach to simulating has been shown to be relatively accurate [Char et al., 2023a,
Seo et al., 2021, 2022, Abbate et al., 2021], and we use an adapted version of the
simulator appearing in Char et al. [2023a] for our work. This simulator accounts for
a greater set of the plasma’s state, and the additional information is rich enough that
loss of confinement events play a role in the dynamics.

We consider two versions of this task: the first is a SISO task where total power
is controlled to achieve a βN target, and the second is a MIMO task where total
power and torque is controlled to achieve βN and rotation targets. The results for
both of these tasks are shown in Table 4.2. Most of the RL techniques are able to do
well if tested in the same environment they were trained in; the exception of this
is PIDE, which curiously is unable to perform well in the simulator environment.
While no reinforcement learning method matches the robustness of a PID controller,
policies trained with GPIDE fare significantly better.

4.5.2 PyBullet Locomotion Tasks
Moving past tracking problems, we evaluate GPIDE on the PyBullet [Coumans
and Bai, 2016–2021] benchmark proposed by Han et al. [2019] and adapted in
Ni et al. [2022]. The benchmark has four robots: halfcheetah, hopper, walker,
and ant. For each of these, either the current position information or velocity
information is hidden from the agent. Except for GPIDE and transformer encoder,
we use all of the performance traces given by Ni et al. [2022]. In addition to SAC,
they also train using PPO [Schulman et al., 2017], A2C [Mnih et al., 2016], TD3
Fujimoto et al. [2018], and VRM [Han et al., 2019], a variational method that uses
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Environment PPO-GRU TD3-GRU VRM SAC-Transformer SAC-GPIDE

HalfCheetah-P 27.09± 7.85 85.80 ± 5.15 −107.00± 1.39 37.00± 9.97 82.63± 3.46
Hopper-P 49.00± 5.22 84.63± 8.33 3.53± 1.63 59.54± 19.64 93.27 ± 13.56
Walker-P 1.67± 4.39 29.08± 9.67 −3.89± 1.25 24.89± 14.80 96.61 ± 1.60
Ant-P 39.48± 3.74 −36.36± 3.35 −36.39± 0.17 −10.57± 2.34 66.66 ± 2.94
HalfCheetah-V 19.68± 11.71 59.03 ± 2.88 −80.49± 2.97 −41.31± 26.15 20.39± 29.60
Hopper-V 13.86± 4.80 57.43± 8.63 10.08± 3.51 0.28± 8.49 90.98 ± 4.28
Walker-V 8.12± 5.43 −4.63± 1.30 −1.80± 0.70 −8.21± 1.31 36.90 ± 16.59
Ant-V 1.43± 3.26 17.03± 6.55 −13.41± 0.12 0.81± 1.31 18.03 ± 5.10

Average 20.04 36.50 -28.67 7.80 63.18

Table 4.3: PyBullet Task Results. Each score is averaged over four seeds and we report
the standard errors. Unlike before, we scale the returns by the returns of an oracle policy
(i.e. one which sees position and velocity) and a policy which does not encode any history.
For the environment names, “P” and “V” denote only position or only velocity in the
observation, resepctively.

recurrent units to estimate the belief state. We reproduce as much of the training
and evaluation procedure as possible, including using the same hyperparameters in
the SAC algorithm and giving the history encoders access to actions and rewards.
For more information see Appendix C.3.2. Table 4.3 shows the performance of
GPIDE along with a subset of best performing methods (more results can be found
in Appendix C.7.5). These results make it clear that GPIDE is powerful in arbitrary
control tasks besides tracking since the average score achieved across all tasks is a
73% improvement over TD3-GRU, which we believe is the previous state-of-the-art
for this benchmark at the time of this work.

Moreover, GPIDE dominates performance for every robot except HalfChee-
tah. The only setting where GPIDE achieves significantly worse performance is
HalfCheetah-V. This setting seemed to cause stability issues in some seeds, lowering
the average score. We believe that these stability issues stem from the attention
heads, and we found that removing these heads fixed stability issues and resulted in
a competitive average score (see Appendix C.7.5).

MSD DMSD Navigation βN Track βN -Rot Track PyBullet

ES +2.69% -11.14% -0.11% +2.57% +0.29% +5.81%
ES + Sum -8.33% +5.49% -1.65% +4.22% +0.76% +11.00%
Attention -0.36% -54.95% -3.91% -8.85% -7.55% -39.44%

Table 4.4: GPIDE Ablation Percent Difference for Average Scores. All final scores can
be found in Appendix C.7.
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4.5.3 GPIDE Ablations
To investigate the role of each type of head, we reran all experiments with three
variants of GPIDE: one with six exponential smoothing heads (ES), one with five
exponential smoothing heads and one summation head (ES + Sum), and one with
six attention heads (see Appendix C.3.3 for details). We choose these three con-
figurations specifically to better understand the roles that attention and summation
play.
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Figure 4.4: Averaged Attention Schemes
for MSD-Small and HalfCheetah-P. Each y-
position on the grid corresponds to an amount
of history being recorded, and each x-position
corresponds to a time point in that history. As
such, each of the left-most points are the old-
est observation in the history, and the diago-
nals correspond to the most recent observation.
The darker the blue, the greater the weight that
is assigned to that time point.

Table 4.4 shows the differences in
the average scores for each environ-
ment. The first notable takeaway is that
having summation is often important
in some of the more complex environ-
ments. The other takeaway is that much
of the heavy lifting is being done by the
exponential smoothing. GPIDE fares
far worse when only having attention
heads, especially in DMSD and the Py-
Bullet environments.

We visualize some of the attention
schemes learned by GPIDE for MSD
with small variation and HalfChee-
tah (Figure 4.4). While the attention
scheme learned for MSD could poten-
tially be useful since it recalls informa-
tion from near the beginning of the episode when the most movement is happening,
it appears that the attention scheme for HalfCheetah is simply a poor reproduction
of exponential smoothing, making it redundant and suboptimal. In fact, we found
this phenomenon to be true across all attention heads and PyBullet tasks. We believe
that the periodicity that appears here is due to the oscillatory nature of the problem
and lack of positional encoding (although we found including positional encoding
degrades performance).

4.6 Discussion
In this work, we introduced the PIDE and GPIDE history encoders to be used for
reinforcement learning in partially observable control tasks. Although both are far
simpler than prior methods of encoding, they often result in powerful yet robust
controllers. We hope that this work inspires the research community to think about
how pre-existing control methods can inform architecture choices.
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Limitations There are many different ways a control task may be partially observ-
able, and we do not believe that our proposed methods are solutions to all of them.
For example, we do not think GPIDE is necessarily suited for tasks where the agent
needs to remember events (e.g. picking up a key to unlock a door).

As with any bias, the PID-inspired biases that we propose in this work come at
the cost of flexibility. For the experiments considered in this work, this trade off is
beneficial and results in better policies. However, it is unclear whether this trade off
is always worth making. It is possible that in higher dimensional environments or
environments with more complex dynamics that having more flexibility is preferable
to our proposed architecture.

Lastly, some tasks may require the policy to act on images as observations. We
are optimistic that PIDE and GPIDE are still useful architectures in this setting, but
we speculate that this is contingent on training an image encoder that is well-suited
for these architectures, and we leave this research direction for future work.
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Part III

Uncertainty Quantification in
Dynamics Modeling
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Chapter 5

Correlated Trajectory Uncertainty
for Adaptive Sequential Decision
Making

This chapter is based on Char et al. [2023b]:
Char, I., Chung, Y., Shah, R., Neiswanger, W., & Schneider, J. (2023,
December). Correlated Trajectory Uncertainty for Adaptive Sequential
Decision Making. In NeurIPS 2023 Workshop on Adaptive Experimental
Design and Active Learning in the Real World.
This work was equal contribution between myself and Youngseog Chung.

A large focus in Chapter 4, was training a policy over a distribution of different
transition functions. This often took the form of having a distribution over possible
system parameters and sampling parameters for each episode. However, in the
offline model-based RL case, this could also take the form of sampling a possible
transition function from a predictive distribution. Such a distribution would ideally
reflect the epistemic uncertainty of the model (i.e. the uncertainty stemming from
a lack of data) and cover the true dynamics function. Thus, ensuring that a good
uncertainty distribution has been learned and properly sampling from the distribution
is of utmost importance.

In this chapter, we start with the observation that, while the uncertainty learned
in prior model-based reinforcement learning works is reasonably calibrated, the
sampling methods used result in non-smooth transition functions. This is a problem
not only because we expect the true transition function to be smooth, but we also
find that this can cause miscalibration over time. To remedy this, this chapter
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discusses a simple post-hoc method that can be used to sample smooth functions
from the uncertainty distribution.

5.1 Introduction

One of the great challenges with decision making tasks on real world systems is the
fact that data is sparse and acquiring additional data is expensive. In these cases, it
is often crucial to make a model of the environment to assist in making decisions.
At the same time, limited data means that learned models are erroneous, making
it just as important to equip the model with good predictive uncertainties. In the
context of learning sequential decision making policies, these uncertainties can
prove useful for informing which data to collect for the greatest improvement in
policy performance [Mehta et al., 2021b, 2022] or helping the policy identify and
avoid regions of state and action space that are uncertain during test time [Yu et al.,
2020]. Additionally, assuming that realistic samples of the environment can be
drawn, an adaptable policy can be trained that attempts to make optimal decisions
for any given possible instance of the environment [Ghosh et al., 2022, Chen et al.,
2021b].

In this work, we examine the so-called “probabilistic neural network” (PNN)
model that is ubiquitous for learning a transition function in model-based reinforce-
ment learning (MBRL) works. We argue that while PNN models may have good
marginal uncertainties, they form a distribution of non-smooth transition functions.
Not only are these function samples unrealistic and may hamper adaptability, but
we also assert that this leads to poor uncertainty estimates when predicting multiple
step trajectories. To address this, we propose a simple sampling method that can be
implemented on top of pre-existing models. We evaluate our sampling technique
on a number of control environments, including a realistic nuclear fusion task. Not
only do smooth transition function samples produce more calibrated uncertainties,
but they also lead to better downstream performance for an adaptive policy.

5.2 Method

Preliminaries. In this work, we focus on finding optimal policies for infinite-
horizon Markov Decision Processes (MDPs). We define the following MDP,M :=
(S,A, r, T, T0, γ). S is the set of states; A is the set of actions that can be played
at any state; r : S ×A× S → R is the reward function over current state, action,
and next state; T : S × A → S is the transition function; T0 ⊂ ∆(S) is the
initial state distribution; and γ is the discount factor. ∆(S) and ∆(A) denotes the
class of probability distributions over the state and action space, respectively, and
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we assume that S ⊂ RD. Also, in this work we constrain the transition function
to be deterministic. Our goal is to learn a policy function, π : S → ∆(A) that
maximizes the objective J(π) = E

[∑∞
t=1 γ

t−1r(st, at, st+1)
]
, where at ∼ π(st),

st+1 = T (st, at), and the expectation is over randomness in initial state and policy
actions. We focus on deep reinforcement learning algorithms in which π is a neural
network.

One difficulty that arises with deep reinforcement learning methods is the large
number of samples needed to learn a good policy. Model-based reinforcement
learning (MBRL) methods alleviates this by also learning a model of the environ-
ment, T̂ . One can then reduce the number of samples needed from the true MDP
by supplementing the data with fictitious samples generated using T̂ and π. For
notational convenience, let X := S ×A be the space of concatenated state-action
pairs. A trajectory in the MDP of length H can then be written as (x1, x2, . . . , xH),
where xt := (st, at) ∈ X , st = T (xt−1), at ∼ π(st), and s1 ∼ T0. Instead of
learning the transition to the next state xt → st+1, in practice one usually learns
the state delta: xt → st+1 − st, such that the learned model fθ : X → ∆(RD)
can predict the next state as T̂ (xt) = st + fθ(xt), where θ is the parameters of
the model. One can then use the learned model to “rollout” a fictitious trajectory
(x̂1, x̂2, . . . , x̂H), where x̂t = (ŝt, ât), ŝt ∼ T̂ (x̂t−1), ât ∼ π(ŝt), and ŝ1 ∼ T0.
As a last piece of notational convenience, we use superscripts to denote particular
dimensions of vectors. For example, s(d)t is the dth dimension of st and f (d)θ (x) is
the dth dimension of the model’s output.

5.2.1 The “Probabilistic Neural Network”

4 2 0 2 4

4

3

2

1

0

1

SPNN Sample
PNN Sample
Predicted Mean
Predicted 95% CI

Figure 5.1: A visual example of
function samples. The vanilla PNN
sample can be seen in orange and
a sample from our proposed SPNN
method can be seen in blue. Cru-
cially both samples stem from the
same mean and standard deviation
predictions.

One of the first works to emphasize the impor-
tance of uncertainty in MBRL was Chua et al.
[2018b]. To model the transition function, this
work proposes using an ensemble of so-called
“probabilistic neural networks” (PNN), which
are models that output predictive distributions
instead of point predictions. In particular, they
propose learning a PNN that outputs a mean
vector and diagonal covariance matrix which pa-
rameterize a multivariate Gaussian distribution.
In the context of our work, when fθ is such a
PNN, we write fθ(x) = (µθ(x), σθ(x)), where
µθ : X → RD and σθ : X → RD are the mean
and standard deviation functions respectively.
We will always assume this form of predictive
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distribution when referring to a PNN. Since this
work, PNN’s have been used in many MBRL works, including works from both
the online [Janner et al., 2019a] and offline [Yu et al., 2020, Chen et al., 2021b, Yu
et al., 2021] settings.

In their paper, Chua et al. [2018b] motivate the ensemble of PNNs by claiming
that the predicted variance of a PNN, σθ, captures aleatoric uncertainty (i.e. the
randomness inherent in the true dynamics of the MDP) and ensembling accounts for
epistemic uncertainty (i.e. estimation uncertainty stemming from a finite number of
datapoints from the system). However, we claim that in reality this breakdown is
not so clear. For one thing, the main experiments presented in Chua et al. [2018b]
as well as subsequent works that leverage this architecture [Janner et al., 2019a,
Yu et al., 2020, Chen et al., 2021b] test their methods in environments with no
aleatoric uncertainty. Despite this absence of aleatoric uncertainty, σθ seems to play
an important role and is even used for penalization in Yu et al. [2020] and Chen
et al. [2021b] to indicate that the policy is leaving the support of the data. It seems
that PNNs can play an important role in helping capture epistemic uncertainty, and
we demonstrate this empirically in Appendix D.2 with a toy example.

That being said, a PNN can only capture marginal uncertainty (i.e. the uncer-
tainty for any single input x ∈ X ), it has no notion of joint uncertainty over the input
space X . As a result, it is unable to draw smooth samples of the transition function
(see Figure 5.1). Why does this matter? Consider predicting a full trajectory and
assume that the true dynamics, T , and the predicted mean function, µθ, are Lips-
chitz smooth. Then, if consecutive inputs xt−1 and xt are close (i.e. ‖xt−1 − xt‖
is small), we expect the residuals T (xt−1)− µθ(xt−1) and T (xt)− µθ(xt) to also
be close. In other words, we often expect there to be temporal correlations in the
residuals that stem from the smoothness in the dynamics and policy (we empirically
show these correlations exist in Appendix D.8). This may be problematic for two
reasons: first, these correlations in residuals can lead to miscalibrated uncertainty
predictions (see Appendix D.7) and over-confident behavior in downstream policy
learning. Second, assuming that an adaptive policy is being trained, these temporal
correlations may be key in distinguishing and adapting to different environments.

Learning Residual Correlation An ideal model should therefore model uncer-
tainty jointly over X space, and as a result, be able to sample smooth transition
functions that can be used to generate trajectory predictions. For the following, we
fix an output dimension d and a time step in the dynamics rollout t. To motivate our
method, we first note that the predictive distribution of a PNN can be rewritten as
µ
(d)
θ (xt) + σ

(d)
θ (xt)Zt where all of the stochasticity comes from Zt ∼ N (0, 1). In

the vanilla PNN, Z1, . . . , Zt are i.i.d random variables; however, one can instead
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learn a joint distribution over these random variables. Intuitively, this joint distribu-
tion should be such that, when ‖xi − xj‖ is small, the correlation between Zi and
Zj is high. To achieve this, for each dimenions d, we leverage a kernel function
κd : X × X → [0, 1]. This function indicates the similarity between two points,
and we assume that κd(x, x) = 1 in our work. Then, Z1, . . . , Zt are distributed as
a multivariate Gaussian distribution with mean 0 and covariance matrix Σ, where
Σi,j = κd(xi, xj). The parameters of the kernel function can then be tuned by
optimizing the likelihood of the data via a gradient-based optimizer. Because this
technique results in smooth transition function samples, we refer to it as the Smooth
Probabilistic Neural Network (SPNN).

There are several important details to note about this method. First, because
of our assumption on the kernel function, the marginal distribution remains the
same as the vanilla PNN; only the smoothness of the function samples will change.
Second, since every collection of Z1, . . . , Zt is a multivariate Gaussian random
variable, this implies that we are modelling the function of standardized residuals
(i.e. T (x)−µθ(x)

σθ(x)
) as a Gaussian Process (GP) parameterized by a constant mean

function of 0 and kernel function κd. Although GPs are often used as a prior over
functions, our method is purely frequentist as the GP is fit to the residuals in the
dataset by optimizing kernel parameters via maximum likelihood, and a posterior
is never computed. That being said, we can take advantage of GP computational
efficiencies in our method. As discussed in Rahimi and Recht [2007] and Wilson
et al. [2020], function samples from a GP can be approximated as Fourier series.
Following this, for every trajectory, we can sample a function g : X → RD where

g(d)(x) =
√

2
B

∑B
b=1 cos(φTb,dx + τb,d). Here, B is the number of bases in the

approximation, τb,d ∼ U(0, 2π), and φb,d ∼ pκd where pκd is the spectral density
corresponding to kernel κd. One can then simply use g(d)(xt) in place of Zt. See
Appendix D.3 for more details.

5.3 Experiments

We empirically evaluate the impact of drawing smooth transition function samples.
We measure these effects in two ways: first, by assessing how smooth samples affect
modeling metrics such as likelihood and calibration under a test set, and secondly,
by assessing how smooth samples affect the downstream training of policies.

Environments. We test our method on a number of different environments where
there exists some safety critical limit that the agent must avoid. We give brief de-
scriptions of each environment here, but more details can be found in Appendix D.4.
(Fusion) We first consider controlling a tokamak for nuclear fusion, an applica-
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tion that has gained interest in the RL community [Degrave et al., 2022, Char
et al., 2023a, Seo et al., 2021, 2022]. In our environment, adapted from Char and
Schneider [2023], the goal is to push βN (the normalized ratio between plasma
and magnetic pressure) to be as close to a fixed limit as possible by adjusting the
amount of power injected; however, if the limit is exceeded, the episode ends and
the agent is given a large negative reward. The static dataset is comprised of five
trajectories in which a PID controller was used to hit a static βN target well below
the limit. (Mountain) Next, we consider an environment where an agent is tasked
with traversing a mountain ridge in a two-dimensional space. Not only can the agent
fall off either side of the ridge, but there is also a cliff at the end of the ridge that
the agent must get as close as possible to without falling over. To move, the agent
has a thruster which can be angled to accelerate the agent in different directions. To
form the dataset for this environment, we train an agent on the true environment and
collect data at different stages of performance. In total, we consider three variants
of datasets which we name Random, Medium, and Expert. Note that Medium is a
supser set of Random, and Expert is a super set of Medium. (Cart Pole) Finally,
we consider the standard environment in which an agent controls a cart with a pole
attached and is tasked with balancing the pole while ensuring the cart does not
go out of bounds. For this environment, we collect 250 data points with a poor
performing policy.

Training For each of the environments listed above, we train an ensemble of five
PNNs. Although forming an ensemble by itself does not give the ability to sample
smooth transition functions, it can introduce correlation in residuals assuming one
chooses and fixes an ensemble member for each trajectory prediction. We found that
for all environments (except the mountain ridge environment), each trained PNN
was miscalibrated. Thus, we use the Uncertainty Toolbox [Chung et al., 2021a] to
recalibrate each member by finding a constant scaling for the standard deviation
of each output dimension. To learn a policy, we use the Soft Actor Critic (SAC)
[Haarnoja et al., 2018b] algorithm. Following Ni et al. [2021], Chen et al. [2021b],
we use a recurrent network for the policy to enable the policy to adapt to different
instances of the dynamics. See Appendix D.5 for more details.

Modelling Metric Results We first use uncertainty metrics to evaluate the quality
of multi-step trajectory samples generated using our sampling technique. Specifi-
cally, we measure the average calibration of centered prediction intervals at each
timestep. Average calibration (also referred to as probabilistic or quantile calibra-
tion) [Gneiting et al., 2007, Kuleshov et al., 2018, Song et al., 2019, Chung et al.,
2021b] is a standard metric in uncertainty quantification which measures the average
discrepancy between the expected and observed proportion of data covered by a
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Figure 5.2: Overconfidence vs. Timestep. The plots above show the computed overconfi-
dence by timestep in the rollouts when a single PNN or SPNN is used. The solid line shows
the mean overconfidence computed over five random seeds, and the shaded region shows
the standard error. We use the in-distribution dataset to compute the metrics for the plots
shown here.

predictive interval. We also report the component of miscalibration (i.e. error in
average calibration) stemming from overconfidence - where prediction intervals
are too narrow and the observed proportion within the interval is thus less than the
expected proportion. We call this metric the overconfidence, and we focus on it
since it is often preferable to be underconfident, especially in safety-critical tasks.

To compute these metrics, we start by splitting a test set of data into sub-
trajectories of length 10 (a sub-trajectory is a contiguous segment of a full trajectory
in the dataset that need not include the start of the trajectory). Following this our
evaluation procedure is as follows: first, a number of “replay” samples are drawn
for each sub-trajectory (i.e. the model is used to predict the sub-trajectory using
the same action sequence), these samples are then used to form centered prediction
intervals for each sub-trajectory, and finally miscalibration and overconfidence
metrics can be computed for each step of the replays. We compute these metrics for
both an in-distribution (ID) dataset, collected using the same policy as the train set,
and an out-of-distribution (OOD) dataset, collected using an expert policy. Concrete
definitions of metrics and more details on evaluation procedure can be found in
Appendix D.6.

Table 5.1 shows the miscalibrations and overconfidences averaged across time
steps for each environment. Especially in the single PNN case, it is clear that adding
smoothness dramatically decreases the overconfidence in the PNN. This is apparent
in Figure 5.2, where it is clear that without smoothness, overconfidence grows much
faster over time. We also observe that ensembling often helps with uncertainty,
especially when evaluating on OOD datasets. While adding smoothness to the
samples can cause miscalibration due to underconfidence, we see that the least
overconfident models are the ones which couple ensembling and smoothness.

Policy Performance We now turn to examining the performance of an adaptive
policy trained with and without smooth samples. For this section we include an
additional baseline: an ensemble of neural networks outputting a point prediction
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Method Fusion Cart Pole Mountain Random Mountain Medium Mountain Expert

ID

PNN 0.22 ± 0.01 (0.22) 0.27 ± 0.01 (0.24) 0.16 ± 0.01 (0.16) 0.19 ± 0.01 (0.18) 0.16 ± 0.02 (0.15)
SPNN 0.10 ± 0.01 (0.08) 0.14 ± 0.02 (0.05) 0.11 ± 0.01 (0.11) 0.12 ± 0.01 (0.12) 0.12 ± 0.01 (0.09)
PNN Ensemble 0.13 ± 0.01 (0.03) 0.23 ± 0.01 (0.02) 0.06 ± 0.00 (0.04) 0.10 ± 0.01 (0.08) 0.10 ± 0.01 (0.05)
SPNN Ensemble 0.17 ± 0.01 (0.01) 0.29 ± 0.01 (0.00) 0.05 ± 0.00 (0.02) 0.09 ± 0.00 (0.05) 0.11 ± 0.01 (0.03)

O
O

D

PNN 0.35 ± 0.02 (0.35) 0.32 ± 0.01 (0.29) 0.15 ± 0.02 (0.08) 0.37 ± 0.01 (0.37) 0.23 ± 0.02 (0.23)
SPNN 0.27 ± 0.02 (0.26) 0.18 ± 0.02 (0.13) 0.17 ± 0.01 (0.05) 0.33 ± 0.01 (0.33) 0.16 ± 0.02 (0.15)
PNN Ensemble 0.18 ± 0.01 (0.16) 0.16 ± 0.01 (0.03) 0.18 ± 0.01 (0.06) 0.28 ± 0.00 (0.28) 0.14 ± 0.02 (0.11)
SPNN Ensemble 0.17 ± 0.01 (0.14) 0.19 ± 0.01 (0.01) 0.20 ± 0.01 (0.04) 0.26 ± 0.00 (0.26) 0.12 ± 0.01 (0.07)

Table 5.1: Miscalibrations and Overconfidences. The table shows the miscalibration
averaged over time steps for each method of sampling and environment. In addition we
show the standard error over the five seeds and the proportion of the miscalibration due
to overconfidence (in parentheses). All of these quantities are rounded to two digits. We
bold the lowest mean miscalibration and overconfidence for each of the environments. The
top and bottom blocks show the metrics computed over in-distribution (ID) and out-of-
distribution (OOD) datasets, respectively.

Method Fusion Cart Pole Mountain Random Mountain Medium Mountain Expert Average

NN 65.95 ± 1.63 100 ± 0.00 63.57 ± 9.80 26.79 ± 0.62 49.73 ± 2.50 61.21
PNN 65.34 ± 12.94 99.98 ± 0.02 64.29 ± 4.01 23.39 ± 1.34 44.34 ± 13.45 59.47
SPNN 91.46 ± 2.50 98.78 ± 1.22 65.93 ± 1.72 39.08 ± 8.24 84.72 ± 4.73 75.99

Table 5.2: Normalized Policy Returns. Each of the reported numbers is averaged over
the last 20% of recorded evaluation episodes during training and five random seeds. We
also report the standard errors from the five seeds, and we bold the result with the highest
mean. All numbers are normalized using the performance of a poor and expert policy (i.e. a
normalized score of 100 is the same performance as the expert policy).

(we refer to this as NN). Table 5.2 shows the returns achieved by the policy averaged
over the last 20% of training steps. For the fusion environment and all configurations
of the Mountain Ridge environment, we see that it is beneficial to have smooth
samples and that this better sampling prevents the final policy from crossing the
βN limit or falling off a cliff for each respective environment. Interestingly, we see
that the medium version of the mountain ridge environment is the most difficult to
optimize. We hypothesize this may be because the medium version of the dataset has
a greater spread of data so the dynamics are more confident yet do not have enough
data to fully model the dynamics. This is therefore a case where it is especially
important that there are smooth samples of the dynamics, and we visually show the
difference in policy performance in Figure D.19 in the Appendix. Lastly, while there
seems to be little difference between the final scores in Cart Pole, in Figure D.15,
we show that the returns while training are much more reliable when using smooth
dynamics samples. We hypothesize this may be due to the smooth dynamics being
more controllable and easier to adapt to.
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Discussion. To summarize, in this work we highlighted the existence of correlated
errors in dynamics models and how sampling smooth trajectory functions is key
to capture this phenomenon in uncertainty estimates. Experimentally, we show
that with more intelligent sampling we can achieve less overconfident uncertainty
predictions and better performing policies. In future works, we hope to extend our
results to more complex and higher dimensional environments.

5.4 Conclusion

After presenting this work at the Workshop on Adaptive Experimental Design and
Active Learning in the Real World, we attempted to scale up experiments to higher
dimensional problems but ran into difficulties. Ensuring smooth functions were
drawn had little impact on the performance and negatively impacted policy learning
stability. There may be a variety of reasons for this outcome, e.g. only the MuJoCo
D4RL tasks were attempted and perhaps different hyperparameters are needed for
our method.

In my opinion, however, I believe that there are two phenomena that affect
calibration over time and both were not correctly accounted for. The first, which
we explored in this chapter, is the phenomenon of over-confidence over time if
transition samples are drawn independently. While over-confidence may not always
occur, it is often observed and we theoretical motivated why in Appendix D.7. The
second phenomenon, which was not accounted for, is the rapid growth in errors that
occurs from performing auto-regression. Intuitively, this would likely cause under-
confidence since predictions should spread out rapidly because of increasing errors.
Moreover, in high-dimensional environments I would expect this phenomenon to be
exacerbated since it is easier for the agent to be pushed out of distribution, which
causes the model to make more extreme predictions, which then causes the model to
be pushed even further out of distribution. These two phenomena are likely at odds
with each other, and my hypothesis is that the second phenomenon is less important
in the experiments performed in this chapter but is dominant in high-dimensional
environments.

Even if this is the case, one would expect sampling smooth transition func-
tions would be beneficial for training an adaptable policy that uses the history of
observations since a distribution of smooth transition functions is a more realistic
distribution. However, this did not seem to be the case for high-dimensional tasks. It
is possible that the jumps in state space from time step to time step were big enough
that correlation in residuals was destroyed (although preliminary analysis showed
this correlation did exist). Another possibility is that the procedure laid out by Chen
et al. [2021b] does not actually create adaptable policies; perhaps it is just the case
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that the recurrent architecture leads to a better representation for the policy network.
Although I do believe that the framework laid out by Chen et al. [2021b] is worthy
of future research pursuits, I do think that further investigation needs to be done into
whether these policies are truly adapting to their environment at test-time.

This work assumes that the model predicts a Gaussian distribution and that this
Gaussian distribution captures epistemic uncertainty. This is more of a byproduct
of the model’s training procedure rather than an intentional design choice. Ideally
future works would remove this modeling assumption, especially since the original
purpose of predicting a Gaussian distribution is to capture aleatoric uncertainty.
Perhaps an alternative to our proposed method is to train a very large, diverse
ensemble of neural networks. Although the number of possible transition functions
remains finite, if the ensemble size is big enough this may not matter. The downside
of this approach is both computational expense and that it may require significant
hyperparameter tuning to ensure the spread in ensemble members is appropriate.
Yet another alternative is to use neural processes, which we explore in the next
chapter.
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Chapter 6

Graph Transformer Neural
Processes

This chapter is based on:
Char, I., Igoe, C. & Schneider J. Graph Transformer Neural Processes In
Submission, 2024.
Conor Igoe was an equally contributing author for this work.

One challenge with the previous chapter was that the uncertainty estimates relied
on several assumptions, the main one being that the Gaussian distribution predicted
by the network captured epistemic uncertainty. Aside from this assumption, another
assumption that is ubiquitous in the literature regards ensembles. In particular, by
training an ensemble one is finding a distribution of neural network parameters that
achieve good loss. The assumption is that doing so also means that the distribution
of predictions made by the ensemble members is in some sense good (e.g. well-
calibrated).

In this chapter, we focus on neural processes. Unlike with ensembles, neural
processes can directly learn a distribution in the output space that captures both
aleatoric and epistemic uncertainty. The assumption made is instead about the
data. In particular, it is assumed that the dataset contains a distribution of different
functions to learn from (thus this setting can be thought of as meta-learning uncer-
tainty). In what follows, we explore improvements needed to make neural processes
more viable for real-world cases, including how to make neural processes more
sample-efficient and more robust to test-time distribution shift.
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Figure 6.1: A Visualization of the Data as a Graph. The diagram depicts how one can
construct a graph (in red) from observations from an unknown function (points in black)
using a distance or similarity metric φ.

6.1 Introduction

When tasked with a decision making problem in the real world, one common ap-
proach is to use collected data to learn a surrogate model that can inform action
selection. This strategy is not without its challenges, however, since there is uncer-
tainty in the model’s predictions due to inherent noise in the real-world system or a
lack of data. Forming accurate predictive uncertainties is therefore essential, and
indeed, intelligent decision making algorithms take advantage of such uncertainties
[Snoek et al., 2012, Chua et al., 2018b, Shyam et al., 2019, Mehta et al., 2022, Li
et al., 2022a].

In this work, we learn these uncertainties using a type of model known as a
Neural Process (NP) [Garnelo et al., 2018b]. These models are neural networks
which take a context set of previous observations as input and predict a distribution
for a specified target set. Rather than assuming a prior over possible functions—as
is done with a Gaussian Process (GP)—we instead use collected data to meta-learn
[Hospedales et al., 2021] these uncertainties. This model class is powerful and has
been used for many real-world applications such as neuroscience [Pakman et al.,
2020, Cotton et al., 2020], astronomy [Čvorović-Hajdinjak et al., 2022, Park and
Choi, 2021, Pondaven et al., 2022], and robotics [Chen et al., 2022, Li et al., 2022b,
Yildirim and Ugur, 2022].

Most NP models operate directly on the raw data representations; however, this
does not take advantage of invariances that may be in the data, resulting in the
sample inefficiency. An important exception to this are Convolutional NPs [Gordon
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et al., 2019]. These models enforce translational equivariance through so-called
“convolutional deep sets”. However, these models require forming a grid over the
support of the data, which becomes infeasible with high dimensional input spaces.

To remedy this, we advocate for representing the condition and target set as a
graph. Depending on the choice of edge labels, this representation can be invariant
to translations or rotations, and at the same time, it can be extended to higher
dimensional settings. We start this work by first describing how to formulate the
context and target set into a graph. We then suggest two architectures that can
operate over such a graph: the first is a graph transformer architecture [Shi et al.,
2020] and the second is a novel architecture inspired by Gaussian elimination.
Through synthetic experiments we show that our proposed models not only achieve
strong results, but are dramatically more sample efficient. We then show how these
advantages translate to real data experiments on a nuclear fusion application and on
a cheminformatics application.

6.2 Method

6.2.1 Preliminaries

Let X ⊂ RDX and Y ⊂ R be input and output spaces, and let f : X → ∆(Y)
be a random function, where f ∼ P and ∆(Y) is the set of distributions over Y .
Sometimes P is known or assumed (e.g one could use a Gaussian Process prior
[Williams and Rasmussen, 2005]); however, it may be the case that one only has
access to data produced by the random function. Let D be such a dataset where

D = {{(xj , yj ∼ fi(xj)}Nij=1}Mi=1

and where fi ∼ P . In other words, D is a dataset composed of M different function
samples, and for the ith sample, there are Ni function evaluations.

This work focuses on learning a deep network that approximates the random
function f using the dataset D. Let pθ be such a network where θ is the set of
parameters for the network. Moreover, let pθ be a so-called Neural Process (NP)
[Garnelo et al., 2018b]. The hallmark of these models is that they can produce a
predictive distribution given an input x and a context set of previous observations.

Concretely, let x ∈ XN be a collection of N “points” in X . Further, let the first
C ∈ Z+ of these points, x1:C , belong to the context set, and let the remainder of
the points, xC+1:N , be the target set. Along with this, the model also has access
to the observations corresponding to the context set, y1:C ∈ YC . The goal is
for the model to predict a distribution for the target observations, yC+1:N , which
usually takes the form of a multivariate normal distribution where target points are
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independent from each other. In summary, the model produces µ, σ = pθ(x, y1:C),
where µ, σ ∈ RN−C are the mean and standard deviations of the predicted normal
distribution. Lastly, for notational convenience, we let p(·|x, y1:C) be the pdf of the
predicted distribution.

For most NPs (including the ones we will propose), the training objective is to
maximize the log likelihood. That is, the objective function is

J(θ) = EC,x,y
[
log pθ(yC+1:N |x, y1:C)

]
(6.1)

where context size, x, and y all have underlying distribution. In the rest of this
subsection, we give a brief overview of different members of the NP family that are
most salient for our work. For a more thorough review, see Jha et al. [2022].

Latent, Conditional, and Attentive Neural Processes Latent and conditional
NPs (LNP1 [Garnelo et al., 2018b] and CNP [Garnelo et al., 2018a], respectively)
were the first proposed NP models. Both of these architectures use a DeepSet
[Zaheer et al., 2017] over the context set to create an encoding which captures
the relevant information of the context set. This encoding is then used, along
with xC+1:N , to predict independent normal distributions for the targets. The key
difference between the two is that the LNP assumes a latent distribution over the
encoding and therefore uses a variational approximation. Kim et al. [2019] improves
on these NP architectures by introducing attention [Vaswani et al., 2017] into the
encoding scheme. In particular, they replace the DeepSet with self-attention and
add cross-attention between the context and target sets.

Convolutional Neural Processes All of the NPs discussed up until now work
directly on x representations. This is not the case, however, with the Convolutional
Conditional NP (ConvCNP) [Gordon et al., 2019]. Instead of using a DeepSet
architecture, the ConvCNP uses a ConvDeepSet, which operates over a grid
covering x. By operating over this grid rather than x representations, the ConvCNP
is translation equivariant and more sample efficient than other NPs. While operating
over a grid is natural for image based domains, it has challenges when operating
in the regression setting, especially when dealing with high dimensional X . While
there have been follow up works introducing new convolutional neural processes
[Wang et al., 2021b, Kawano et al., 2021], these methods are still bound to a grid.

Autoregressive Neural Processes and Transformers Most NPs assume con-
ditional independence over the target set given the context set. That is, the output
of these networks are the mean and standard deviation parameterizing an indepen-
dent normal distribution for each yC+1:N . While there are works which predict
multivariate normal distributions over the target set [Bruinsma et al., 2021, Markou

1In the original paper, this model is simply called a “Neural Process”. Following other works, we
instead call it a Latent Neural Process to differentiate it from the broad class of models.
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Figure 6.2: An Illustration of the GTNP Architecture. Data in the context and target
set are first formed into a graph. The vertex features of the graph are then transformed via
a graph transformer network [Shi et al., 2020]. Lastly, mean and standard deviations are
predicted using the final vertex features.

et al., 2022, Nguyen and Grover, 2022], recent work has shown that models that
are trained assuming conditional independence can predict the joint distribution in
an auto-regressive fashion to produce competitive results [Bruinsma et al., 2023,
Nguyen and Grover, 2022]. Concretely, one can form the joint distribution using
the chain rule:

pθ(yC+1:N |x, y1:C) =

N−1∏

i=C

pθ(yi+1|x1:i+1, y1:i)

where yi is the ith observation in y. As noted by Bruinsma et al. [2023], using
these NPs in “autoregressive mode” results in highly expressive model at the cost of
coherence. In this work, we will default to the autoregressive mode for evaluation.

An architecture of particular interest for this work is the transformer [Vaswani
et al., 2017]. Previous works have shown that transformers are excellent at meta-
learning for reinforcement learning [Melo, 2022], drug discovery [Chen and Bajo-
rath, 2023], and—most related to this work—for approximating Bayesian inference
[Müller et al., 2021]. Nguyen and Grover [2022] use the transformer architecture to
create the Transformer NP (TNP). This model frames the context and target sets
as sequences, and then uses a transformer architecture to directly predict normal
distributions for each target. Because our proposed architectures are variants of the
transformer, we briefly review self-attention.

Consider M embeddings z1, z2, . . . , zN ∈ Rd. We use d to denote the size
of embeddings throughout this work. Fix an i ∈ [1, N ]. To start, three linear
projections of zi are made. They are known as the key, query, and value vectors and
are denoted by ki, qi, vi ∈ Rd, respectively. We denote the attention operator for
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the ith embedding as Attentioni and define it as the following:

Attentioni(z1, . . . , zN ) =
N∑

n=1

αi,nvn

where αi,j =
exp

(
1√
d
〈qi, kj〉

)

∑N
n=1 exp

(
1√
d
〈qi, kn〉

)

In practice, transformers use multi-headed self attention, where the self-attention
mechanism is repeated H times, the results are concatenated together, and an
additional linear projection is performed.

6.2.2 Framing the Data as a Graph

In this subsection, we argue for representing the context and target sets as a graph.
We define a graph as G := (V,E), where V is the vertex set andE is the set of edges
between the vertices. Here, vertex νi ∈ V , where i ∈ {1, . . . , N}, corresponds to xi.
We will often refer to {νi}Ci=1 as context vertices and {νi}Ni=C+1 as target vertices.
In a slight abuse of notation, we consider consider E to be a tensor in RN×N×d,
where Ei,j ∈ Rd is the label for the edge between νi and νj , i is the row of the
tensor, and j is the column of the tensor. A diagram of such a graph can be seen in
Figure 6.1. Although the exact formation of the graph is architecture dependent, the
key idea is that Ei,j should capture information from φ(xi, xj), where φ can be a
distance metric or a kernel function. This representation is powerful because one
can encode different properties depending on the choice of φ. For example, when
φ(x, x′) = ‖x− x′‖2, the representation is both translation and rotation invariant.

In the following, we suggest two NP architectures which operate over such
graphs. The first architecture is a graph transformer [Shi et al., 2020] and focuses on
evolving the vertex features in the graph. The second is a novel architecture which
is highly expressive and focuses on evolving the edge features of the graph.

Graph Transformer Neural Process To start, we describe a model that takes
advantage of the graph transformer architecture [Shi et al., 2020]. Accordingly, we
refer to this model as the Graph Transformer Neural Process (GTNP). To start, the
graph is initialized by setting Ei,j = fEθ (φ(xi, xj)) and initializing vertex features
to ν0i = fVθ (yi) when i ≤ C and ν0i = fVθ (0) otherwise; here, the super-script on
νi indicates how many graph transformer block transformations the vertex encoding
has undergone. Both fVθ and fEθ are fully-connected neural networks.

After this intialization, the vertices of the graph are updated via a number of
graph transformer blocks. These blocks closely match the structure of those in
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Figure 6.3: An Illustration of the Key Idea behind GEAttention. Each edge em-
bedding outputs a key, query, and value (left of the divider). However, we combine entire
rows of values together inspired by the row operations of Gaussian Elimination (right of the
divider).

the GPT-2 model Radford et al. [2019] (where each instead of token embeddings
we have vertex embeddings); however, attention is replaced with graph attention
in order to fold in edge information. For each edge, Ei,j , key and value linear
projections are made, which we denote as λi,j , βi,j ∈ Rd, respectively. The graph
attention operator for vertex i is defined as

GraphAttentioni(V,E) =
N∑

n=1

αi,n (vn + βi,n)

where αi,j =
exp

(
1√
d
〈qi, kj + λi,j〉

)

∑N
n=1 exp

(
1√
d
〈qi, kn + λi,n〉

)

In practice we use a multi-headed version of graph attention. Additionally, we also
use a masking scheme that prevents all vertices from attending to a target vertex.
After L blocks, the vertices are used for predicting the mean and standard deviation
of a normal, i.e. µi, σi = gθ

(
νLi
)
, where gθ is another full-connected network. See

Figure 6.2 for a diagram of this architecture. In practice, we use the masking trick in
Nguyen and Grover [2022] to train the GTNP autoregressively (i.e. akin to TNP-A
in Nguyen and Grover [2022]). We detail this as well as a thorough description of
the architecture in Appendix E.1.1.

Graph Edge Evolution Neural Process In GTNP, the embeddings for the vertices
are updated after each block; however, a more powerful model would iteratively
update the edge embeddings. Towards this, we propose the Graph Edge Evolution
NP (GEENP) which acts exclusively on the edge embeddings of the graph. As such,
we must include both information from x and y in the edges. The edge encoder, fEθ
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now takes in five inputs:

E0
i,j = fEθ

(
φ(xi, xj), yi1{i ≤ C}, yj1{j ≤ C},
1{i ≤ C},1{j ≤ C}

)

This additional information is also used to indicate which vertices are context
vertices and which are target vertices.

How should one update these edge embeddings? One naive approach would be
to use a transformer on the N2 edge embeddings. Not only would the computational
costs of this scale withO(N4), but this model would likely have too much flexibility
and not enough structure. To strike the correct balance, we look to the Gaussian
Process (GP) for inspiration.

The GP is a stochastic process where the distribution of any finite collection
of points is distributed as a multivariate normal. The GP is fully characterized
by a mean function and a kernel function κ : X × X → R. Let K ∈ RN×N
be the matrix such that Ki,j = κ(xi, xj). After conditioning on a context set of
observations, the posterior is again a multivariate normal distribution. The bulk
of the computational effort for computing the posterior is dedicated to inverting
K1:C,1:C , and one straight-forward way of doing this is via Gaussian elimination.
Thus, perhaps the only operation necessary for sophisticated behavior is updating
each row of E with a linear combination of the other rows’ features.

Leveraging this idea, we replace the regular attention scheme over the N2

edge embeddings with “Gaussian Elimination Attention” (GEAttention). Thinking
about the set of edges as a matrix of embeddings, the key idea is to constrain the
attention mechanism to only make convex combinations of values in the same
column. Moreover, the weighting scheme for these values must be the same for
each column in E. This key idea is depicted in Figure 6.3. The GEAttention
operator for the edge embedding at row i and column j is

GEAttentioni,j(E) =
N∑

r=1

αi,rvr,j

where αi,r =
1

N

N∑

n=1

exp
(

1√
d
〈qi,n, kr,n〉

)

∑N
m=1 exp

(
1√
d
〈qi,n, km,n〉

)

Because it is somewhat unconventional, we will now further explain αi,j for
GEAttention. First note that αi,r prescribes the weighting on values from
row r when updating embeddings in row i. The term inside the summation is
standard attention across the nth column. The sum is then used for averaging this
information across columns. This scheme reduces the computational complexity
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from O(N4) to O(N3). Again, we use a multi-headed version of this scheme in
practice. After L blocks, the mean and standard deviation of a normal are pre-
dicted via µi, σi = gθ

(
ELi,i

)
. The full architecture description can be found in

Appendix E.1.2.

6.3 Experiments

In this section, we experimentally answer the following questions:
• How expressive are GTNP and GEENP compared to other NPs? How robust

are each of these NPs to translational shifts at test time? (Section 6.3.1)
• How sample efficient are GTNP and GEENP compared to other NPs? (Section

6.3.2)
• How do GTNP and GEENP perform on real world datasets? (Sections 6.3.3

and 6.3.4)
For comparison, we use the attentive versions of LNP and CNP (we refer to these as
AttnLNP and AttnCNP, respectively), ConvCNP, and the autoregressive version of
TNP (i.e. TNP-A). The implementation for AttnLNP, AttnCNP, and TNP were taken
from the official TNP GitHub repository2, and we use the same hyperparameters as
in Nguyen and Grover [2022] for each of these models. For ConvCNP, we use a
repository made by one of the authors of Gordon et al. [2019] 3. We use the same
parameters as their regression experiments and choose the “XL” version of their
architecture, which leverages a U-Net [Ronneberger et al., 2015]. Unfortunately,
we were unable to find any implementations extending the “off-the-grid” version of
ConvCNP for any dimensions higher than 1D. While higher dimensional versions
of the algorithm are theoretically possible, forming a grid with high enough fidelity
quickly becomes computationally taxing as the dimensionality increases.

For our proposed graph NPs, we try to match the hyperparameters of TNP as
closely as possible. In particular, we use 6 blocks, H = 4 attention heads, and an
embedding size of d = 64 for each architecture. We use the following for φ,

φ(x, x′) = W

H⊕

h=1

∥∥x⊗ wh − x′ ⊗ wh
∥∥
2

where ⊕ representation concatenation, ⊗ represents the Hadamard product, and
W ∈ Rd×H and wh ∈ RDx are learnable parameters. Note that this φ results in a
translation invariant representation of the data.

2https://github.com/tung-nd/TNP-pytorch/tree/master
3https://github.com/cambridge-mlg/convcnp
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Table 6.1: Infinite Dataset Results. The reported metric average joint log likelihood over
the test set. We use five seeds to report the average and the standard error.

Dimension AttnLNP AttnCNP ConvCNP TNP GTNP GEENP

1D 12.92± 0.03 12.62± 0.03 20.64± 0.08 21.34± 0.02 21.80± 0.01 22.48 ± 0.05
2D −4.43± 0.02 −4.69± 0.02 — −4.16± 0.55 −2.99± 0.01 −2.54 ± 0.03
4D −9.37± 0.01 −9.40± 0.00 — −9.86± 0.00 −9.25 ± 0.00 −9.25 ± 0.00
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Figure 6.4: Log Likelihood vs. Translational Offset in the 1D Infinite Data Case. The
y-axis shows the average log joint likelihood over the test set and the x-axis shows the
amount of translational shift made on the x inputs.

6.3.1 Synthetic Experiments in the Infinite Data Regime

We start by repeating the experiment first done in Garnelo et al. [2018a] in which the
NP is trained from data generated from a hierarchical, 1D GP. The GP has an RBF
kernel parameterized by lengthscale ` ∼ U(0.1, 0.6) and scale σκ ∼ U(0.1, 1.0).
Each point in x is drawn independently from U(−2.0, 2.0), and we draw N and
C uniformly from [6, 50] and [3, 47], respectively. We refer to this regime as the
“infinite data regime” because there is no fixed dataset D. Instead, because P is
known exactly, new x and y are sampled every batch. This is a luxury that is usually
absent from real-world cases with fixed datasets.

In addition to this 1 dimensional GP, we also consider 2 and 4 dimensional
GPs. We keep X = [−2.0, 2.0]Dx , but we adjust the range of lengthscales to be
(0.1
√
Dx, 0.6,

√
Dx). We use anisotropic kernels and sample lengthscales inde-

pendently for each dimension. As an evaluation metric, we compute the joint log
likelihood using the NPs in “autoregressive mode”, see Section 6.2.1 and Bruinsma
et al. [2023]).
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Figure 6.5: Contour of the Predicted Standard Deviation for the 2D 1K Task. The far
right plot titled “Oracle” shows the standard deviation of the posterior GP that generated
the data. The orange points show points in the context set.

Table 6.1 shows the results averaged over five random seeds. Both of our
proposed architectures achieve better results than the other baselines, likely because
they are translation invariant while not being bound to a grid. We also show how the
test metric changes as a translational shift is applied to x in Figure 6.4. This figure
helps demonstrate that our architectures and ConvCNP are robust to translational
shifts while the other baselines are highly susceptible.

6.3.2 Synthetic Experiments in the Finite Data Regime

We now consider the “finite” data regime in which there is a fixed dataset D to learn
from. To better understand the performance of the NPs, we simplify the problem by
making the data generating process a GP with fixed parameters. In particular, we set
the lengthscale for each dimension to the midpoint of the ranges in Section 6.3.1, we
set σk to 1.0, and we fix N = 50. At test time, we compute the joint likelihood for
every possible context size and average the results together. We also standardize this
metric so that 0.0 corresponds to predicting a standard normal for each point, and
100.0 corresponds to matching the performance of the true underlying GP. More
details can be found in Appendix E.2.4.

Table 6.2 shows the results for datasets generated from 1D, 2D, and 4D GPs. In
addition, we consider dataset sizes of 1K, 10K, and 100K points (i.e. the 1K dataset
has 1, 000÷50 = 20 GP function samples). In these experiments, it is clear that our
methods (especially GTNP) shine in low data regimes. Figure 6.5 shows contour
plots for the standard deviation predictions in 2D for a dataset size of 1K. Under
the limited data regime, it is clear that TNP cannot learn any useful uncertainty.
While the predictions for GEENP are more reasonable, GTNP produces far better
uncertainties than any other NP in this regime. Overall, these results suggest that
GTNP is the best choice when there is a limited amount of data, and GEENP is
preferential given a large dataset.

81



Table 6.2: Finite Dataset Results. The metric is a standardized score where a score of
100 means that the NP has exactly reproduced the GP, and a score of 0 means that the NP
produces a worse log likelihood than simply predicting the prior (see Appendix E.2.4 for
the exact definition of this metric). We use five seeds to report the average and the standard
error.

Dataset AttnLNP AttnCNP ConvCNP TNP GTNP GEENP

1D 1K 4.88± 1.74 −2.72± 4.20 34.26± 5.38 −2.62± 1.86 61.90 ± 1.92 44.81± 0.95
1D 10K 66.83± 0.75 63.94± 1.06 65.48± 4.52 82.01± 0.58 83.73 ± 0.59 74.94± 2.00
1D 100K 71.76± 0.74 71.92± 0.68 93.04± 0.35 92.95± 0.38 93.86 ± 0.23 93.45± 0.66

2D 1K −2.56± 1.48 −2.80± 1.79 — −8.78± 7.38 56.94 ± 0.64 11.20± 7.68
2D 10K 61.18± 0.96 57.81± 2.24 — 63.92± 0.42 73.49 ± 1.06 62.58± 2.74
2D 100K 66.04± 2.10 68.33± 1.07 — 82.33± 0.35 82.92± 0.34 88.67 ± 1.08

4D 1K −31.04± 15.97 −41.94± 19.01 — −9.24± 1.22 −6.10 ± 2.91 −9.52± 3.07
4D 10K 24.74± 7.62 −43.79± 29.08 — −2.59± 2.31 78.90 ± 1.40 70.04± 3.34
4D 100K 59.83± 2.40 51.47± 4.58 — 71.30± 1.54 91.08 ± 0.49 90.31± 0.60

Average 35.74 24.69 — 41.03 68.53 58.50

6.3.3 Nuclear Fusion Application

We now shift our attention to real world datasets. In this subsection, we apply
our models to an application for tokamaks: one of the most promising devices for
making nuclear fusion into an energy source. A tokamak is a toroidal device that
achieves fusion by magnetically confining plasma. An important yet challenging
problem fusion scientists face in this area is predicting the evolution of the plasma
within the device. Machine learning can play a valuable role in this task since one
can use historical data in order to learn a dynamics model [Abbate et al., 2021, Char
et al., 2023a, Jalalvand et al., 2021, Seo et al., 2024, Wang et al., 2023].

However, predicting the evolution of the plasma remains a challenging task.
This is not only due to the complicated nature of the dynamics, but also because the
conditions of the tokamak may change from day to day and the nature of the plasma
may change based on the experiment (here an experiment usually consists of a few
runs of the tokamak known as “shots”). Assuming that the dynamics function is
similar for an experiment, we wish to predict uncertainties for the dynamics models
by meta-learning over the history of previous experiments.

For this task, we wish to predict two properties of the plasma: its rotation
and a measurement called βN , which is the normalized ratio of plasma pressure
to magnetic pressure. We let X ⊂ R10 be a description of the plasma’s state
and the actuator settings of the tokamak at a given time step (more details can
be found in Appendix E.2.5). Let T : X → R2 be the transition function which
outputs βN and the rotation of the plasma 25ms into the future. Furthermore, let
T̂ : X → R2 be a learned model of the transition function. The random function
f of interest is the residuals between the estimated and real transition function, i.e.
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f(x) = T (x)− T̂ (x) for x ∈ X . Note that Y ⊂ R2 and as such, we adjust all NPs
to output a multivariate normal with a diagonal covariance matrix for each target
point.

We use 3,226 experimental groupings consisting of 736,900 specific transitions
from the DIII-D tokamak. We use an 80/10/10 split for training T̂ , training the NPs
to predict uncertainties over the residuals, and computing test results, respectively.
We set N = 50 and use the most recent data to the target set as the context set. The
context may be from the current shot in progress, a previous shot, or a mix. For
T̂ we use the same “Probabilistic Neural Network” (PNN) architecture described
in Chua et al. [2018b]. This network outputs a mean and standard deviation that
parameterize a normal distribution. We only use the outputted mean for the point
prediction, but we use the standard deviation predictions from this network as an
additional baseline. On top of this, we compare against predicting a fixed normal
distribution with zero mean and standard deviation estimated from the data.

Table 6.3 shows the results of the experiments. The reported metric is the joint
log likelihood averaged over all context sizes. We additionally divide by the size of
the target set for each context size in order to make sure all log likelihood are on the
same scale. Concretely,

1

(N − 1)M

M∑

m=1

N−1∑

c=1

1

N − c log pθ(y(m)
c+1:N |x(m), y(m)

1:c ) (6.2)

where x(m) and y(m) are the mth collection of points in the test set. Many of the
NPs are unable to form better uncertainties than the PNN, which does not condition
on previous information from the experiment. However, both the TNP and GTNP
are able to achieve better scores, with the GTNP getting the highest score out of all
methods. Interestingly, our choice of φ assumes that f is translation invariant, but
this is unlikely to be true. We speculate that the sample efficiency gained by this
assumption outweighs the bias incurred.

Table 6.3: Average Joint Log Likelihood for Nuclear Fusion Task. We use five seeds
to report the average and the standard error. The method “Fixed Normal” is the result of
predicting a single normal distribution over the test set using statistics from the training
dataset and as such does not have an associate standard error.

Fixed Normal PNN AttnLNP AttnCNP TNP GTNP GEENP

−2.65 −2.26± 0.00 −2.37± 0.03 −3.56± 0.06 −2.21± 0.01 −2.17 ± 0.01 −2.27± 0.01
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6.3.4 Lipophilicity Application

Lipophilicity is a critical physicochemical property that plays a significant role in
the pharmacokinetics and pharmacodynamics of drugs Miller et al. [2020], Con-
stantinescu et al. [2019]. The ability to make accurate predictions with uncertainty
quantification is therefore valuable in cheminformatics and drug discovery pro-
cesses Isert et al. [2023]. In this section, we use GTNP and GEENP to meta-learn
posteriors over unseen molecule lipophilicty given a context set of the most similar
molecules available from a training dataset.

Specifically, we leverage the Lipophilicity dataset from the Gaussian Process
Chemistry Library, GAUCHE Griffiths et al. [2023]. This is a dataset of 4,200
compounds represented as SMILES strings curated from the ChEMBL database
Zdrazil et al. [2024]. The label for each compound is the octanol/water distribution
coefficient (log D at pH 7.4). For more details on this dataset please refer to the
original publication in Griffiths et al. [2023].

For this experiment we train our proposed NPs by meta-learning over many
different local regression problems. To motivate this, we highlight that in many
real-world tasks, local Gaussian Process models significantly outperform global
models [Eriksson et al., 2019, Krityakierne and Ginsbourger, 2015]. This can be
understood by noting the rigidity of many kernels used in practice and the challenge
involved in finding a single set of kernel hyperparameters that fit all the training
data. For example, if different kernel lengthscales are appropriate for different
regions of X , then forcing a GP model to commit to a single lengthscale to explain
the entire training dataset can lead to poorer quality predictions. This is especially
true when compared to training and tuning GPs on a local dataset relevant to a
particular test-time task [Eriksson et al., 2019]. Indeed, in Appendix-E.2.6, we
provide experimental results validating that for our Lipophilicity task, when using a
state-of-the-art molecule representation and kernel, there is a clear multi-modality
of optimal lengthscales as a function of the region of molecule space.

We follow Griffiths et al. [2023] and choose to represent each molecule using
Mordred descriptors [Moriwaki et al., 2018] followed by dimensionality reduction
with PCA to ultimately represent each molecule as a feature vector in R51. We use
two local GP models for baselines. The first GP conditions on the context set and
uses a fixed set of kernel hyperparameters that performs well on the training set
(see Appendix-E.2.6 for more details on how these hyperparameters were selected).
The second GP conditions on the context set and tunes the kernel hyperparameters
locally by maximising the marginal log-likelihood of the context set using L-BFGS
Liu and Nocedal [1989]. Both GPs use use the Rational Quadratic (RQ) kernel, and
we replace the norm in φ with the RQ kernel as well.

To generate the training data for our experiments, we first split the data into
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equal train/validate/test splits, each containing 1,400 molecules. For each split and
each molecule, we find the 24 most similar molecules in the same split according
to the RQ kernel. These 24 molecules are treated as a context set, and the single
molecule they are related to is used for the target set (i.e. N = 25 and C = 24).

Note that we do not compare against other Neural Process models in this task
as the dimension of the molecule representation is too large and the training data is
too small to render other NP models appropriate. We additionally compare against
an uninformed baseline that uses a fixed standard normal to predict the target point,
which can be considered a prior given that the labels have been whitened.

Table 6.4 shows both the mean and median log likelihood over the test set for
the single target point. Overall, both GTNP and GEENP are competitive with GP
models on this task, demonstrating that meta-learning can be a successful alternative
to an assumed prior. This performance is especially notable given the comparative
paucity of training data by Neural Process standards. Furthermore, although the
tuned GP gets approximately the same median log likelihood as GTNP, it achieves a
significantly worse mean score than any other method. This is due to some context
sets resulting in poor parameters in the kernel after tuning; however, both GTNP
and GEENP are robust to this phenomenon.
Table 6.4: Target Log Likelihood for Lipophilicity Task We use five seeds to report the
mean and standard deviation of the statistics.

Mean Median

Standard Normal −1.53 −1.21
GP (Fixed) −1.40± 0.00 −1.10± 0.00
GP (With Tuning) −13.31± 0.00 −0.97 ± 0.00
GTNP −1.21 ± 0.00 −0.98± 0.01
GEENP −1.26± 0.01 −1.02± 0.02

6.4 Related Work

There are several other NPs that incorporate graphs into their architecture. Nassar
et al. [2018] introduce the “Conditional Graph NP” (CGNP), which leverages
bipartite graph convolutions [Nassar, 2018] to group samples in the context set that
are in some neighborhood of each other. Importantly, they do not label the edges
of their graph, a key aspect of our architectures. In addition, the “Function Neural
Process” (FNP) [Louizos et al., 2019] first projects x into a latent space and then
constructs two directed acyclic graphs in this space: one between the context points
and one which is a bipartite graph between context and target sets. This avoids the
need to create a global latent encoding that summarizes the context set. Our work
differs from theirs since our graph encodes relationships in the original X space via
edge labels. Lastly, in contrast to our work which frames regression data as a graph,
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there are also works on neural processes that operate on graph datasets [Carr and
Wingate, 2019, Day et al., 2020, Liang and Gao, 2022].

6.5 Discussion

In this work, we advocate for representing the context and target sets for an NP as
a graph. While both of our proposed models often had stronger performance over
previous baselines, we found that GEENP shines when there is a plethora of data
whereas GTNP has stronger performance when the amount of data is limited. There
are several limitations to our architectures, however. One of these limitations is that
these architectures incur higher computational costs (Appendix E.2.7). This cost is
unavoidable when viewing the data as a fully-connected graph since the architecture
must account for the N2 edges. Additionally, in this work we only use φ that is
based on the norm between two points in X . Depending on the application, this
may be a drawback if the underlying process is non-stationary in X or if the data
lies on a lower dimensional manifold.

In terms of nuclear fusion applications, in this chapter we explored augment-
ing the dynamics model with a neural process for better uncertainty predictions.
However, there are additional applications that this model would be well suited for
in nuclear fusion. In particular, this model could be used rather than a Gaussian
process or other probabilistic model in a Bayesian optimization set up. Mehta et al.
[2024] showed that a simple ensemble of models paired with an active learning
algorithm could have significant improvement for shot rampdown. Using a more
sophisticated model, such as GTNP or GEENP, has the opportunity to further push
this impact.
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Part IV

Applications to Nuclear Fusion
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Chapter 7

Offline Model-Based
Reinforcement Learning for
Tokamak Control

This chapter is based on Char et al. [2023a]:
Char, I., Abbate, J., Bardóczi, L., Boyer, M., Chung, Y., Conlin, R., Erickson
K., Mehta V., Richner, N., Kolemen, E., & Schneider, J. (2023, June). Offline
model-based reinforcement learning for tokamak control. In Learning for
Dynamics and Control Conference (pp. 1357-1372). PMLR.

We now discuss applying model-based reinforcement learning for tokamak
control on the DIII-D device. Unfortunately, because of the timing of experiments,
we were not able to employ any of the algorithmic improvements detailed in Parts II
and III of this thesis. Additionally, after the experiments outlined in this chapter,
improvements were made to the dynamics model, and this improved dynamics
model is outlined in Chapter 8.

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Fusion Energy Sciences, using the DIII-D National
Fusion Facility, a DOE Office of Science user facility, under Awards DE-AC02-
09CH1146 and DE-FC02-04ER54698. This work was also supported by DE-
SC0021414 and DE- SC0021275 (Machine Learning for Real-time Fusion Plasma
Behavior Prediction and Manipulation).

Disclaimer This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, makes any warranty, express or
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implied, or assumes any legal liability or responsibility for the accuracy, complete-
ness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.

7.1 Introduction

Unlocking the potential of nuclear fusion as an energy source would have profound
impacts on the world. Nuclear fusion is an attractive energy source since the fuel
is abundant, there is no risk of meltdown, and there are no high-level radioactive
byproducts [Walker et al., 2020]. Perhaps the most promising technology for
harnessing nuclear fusion as a power source is the tokamak: a device that relies
on magnetic fields to confine a toroidal plasma. While strides are being made to
prove that net energy output is possible with tokamaks [Meade, 2009], there are still
crucial control challenges that exist with these devices [Humphreys et al., 2015].

At the same time, exciting developments in reinforcement learning (RL) have
provided the possibilities for learning complex controls. While there have been
some astounding results that leverage RL, they depend either on a cheap, accurate
simulator or an expensive set up where many samples can be collected on the actual
device. In our setting, unfortunately, it is infeasible to collect enough samples
on the real device, and simulators are both expensive and do not reflect the true
dynamics for many aspects of the plasma. Thus, in this work we focused learning
controls entirely from historical data. In particular we learned controls for DIII-D,
a device operated by General Atomics in San Diego, California. This device has
been in operation since 1986, during which there have been over one hundred
thousand “shots” (runs of the device). We use approximately 15k of these shots to
learn dynamics models that predict the evolution of the plasma, subject to different
actuator settings. These surrogate models can then be used as a simulator that
generates experience for the RL algorithm to train with. We applied this method to
train a controller that uses DIII-D’s eight neutral beams to achieve desired βN (the
normalized ratio between plasma pressure and magnetic pressure) and differential
rotation targets.

In the following, we first give an overview of the state and actuator variables
considered for this control task and the training procedure for learning the controller.
We then review our validation experiments conducted on DIII-D for both feedfor-
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ward and feedback control. The results show the effectiveness of using the learned
dynamics models for feedforward control, and while we found feedback control
to be more challenging, our controller showed clear promise for βN tracking. We
believe this is the first work for doing offline RL for feedback control on a tokamak,
and one of the first works to apply offline reinforcement learning to an expensive
device. Thus, we end this paper with a discussion of perspectives on the offline RL
problem gleaned from this application.

7.2 Related Work

Reinforcement Learning. Several advancements in the field of deep RL have
made the prospect of doing continuous control within reach. Strides in both on-
policy algorithms [Schulman et al., 2015, 2017, Mnih et al., 2016] and off-policy
algorithms [Lillicrap et al., 2015, Fujimoto et al., 2018, Haarnoja et al., 2018b]
have resulted in relatively stable optimization procedures that can produce controls
for complex, high-dimensional problems. However, these “model-free” methods
are data hungry and usually require millions of samples from the environment. To
address this, “model-based” reinforcement learning (MBRL) algorithms can often
learn to control with fewer samples by simultaneously learning a model of the
dynamics. These models can either be used for better estimates of the value function
[Feinberg et al., 2018, Amos et al., 2021] or can be used to generate additional,
fictitious data for the agent to train on [Kurutach et al., 2018, Janner et al., 2019a].
We use the latter MBRL approach in this work.

The aforementioned developments in RL target the standard online setting,
in which agents gather experience through interactions with the environment. In
contrast, offline RL [Levine et al., 2020] attempts to learn a policy only through
logged, historical interactions from possibly many different policies. This is an
attractive setting since many real-world problems will have logged interactions to
leverage; however, the added restriction usually causes deep RL algorithms designed
for the online setting to fail because they pick actions that are out of distribution.
To combat this problem, offline RL algorithms add in extra penalization to ensure
that the optimization procedure chooses actions close to the support of the dataset
[Kumar et al., 2020, Wu et al., 2019, An et al., 2021]. There have also been a number
of offline MBRL algorithms which rely on the uncertainty in the dynamics models
for penalization [Yu et al., 2020, Kidambi et al., 2020a, Yu et al., 2021]. In our
work we decided against using a penalization scheme for a couple of reasons. First,
the amount of penalization needs to be tuned by evaluating the controller on a real
device, something that we do not have the luxury of. Second, the dynamics models
in these works are only accurate for a few time steps, a problem that usually plagues
autoregressive models due to the multiplicative accumulation of error [Asadi et al.,
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2018]. For example, in Yu et al. [2020] the model is only used for 1 or 5 time steps
(see Appendix G). We believe our setting is unique since we are able to learn a
dynamics model that is often accurate for entire shots.

Learning Controls for Tokamaks There has recently been a surge of interest in
applying machine learning for controls of tokamaks. Many of these works focus on
predicting disruptions for avoidance or safe shutdowns [Fu et al., 2020b, Parsons,
2017, Rea et al., 2019, Boyer et al., 2021b]; however, in this work, we focus on
control during stable operation. Under these conditions, Char et al. [2019] used
contextual Bayesian optimization to find controls that balance increasing βN and
keeping the plasma stable. While this technique is fully automated, Baltz et al.
[2017] present an algorithm that performed human-in-the-loop optimization to
increase plasma confinement.

In terms of modeling dynamics, Abbate et al. [2021] used a convolutional neural
network to model the evolution of the plasma’s profiles, and they later used this
model for control via MPC [Abbate et al., 2023]. Many of the choices for our
dynamics modeling, such as the signals to use and the data preprocessing, were
directly inspired by this work. Additionally, Seo et al. [2021, 2022] learned a
dynamics model for the KSTAR tokamak. They then used RL for tracking several
scalar values including βN ; however, they used this policy to generate feedforward
controls only. While Wakatsuki et al. [2021] trained a feedback controller to do ion
temperature gradient control for the JT-60 tokmak, this controller was both trained
and tested in the same TOPICS simulator. To the best of our knowledge, the only RL
feedback controller deployed on a real device up to this point was done by Degrave
et al. [2022]. They leveraged a simulator to learn a controller for the plasma’s shape
on Tokamak a Configuration Variable [Coda et al., 2019]. Our work differs not only
in the goal and actuators used, but also from the fact that we leveraged historical
data exclusively. The dynamics for the plasma’s shape is more well-understood than
other aspects of the plasma, and as such, can be modeled and controlled relatively
precisely [Walker et al., 2020, 1997]. While the potential impact of learning controls
for other aspects of the plasma is great, the corresponding simulations are expensive
and less precise, which prompted us to leverage logged data.

7.3 Method

Problem Description We cast the problem of control of the tokamak as a discrete-
time, infinite-horizon Markov decision process (MDP). In particular, let M :=
〈S,A, γ, T, r, ρ〉 be the MDP, where S is the state space, A is the action space,
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Figure 7.1: Diagram of Tokamak (Left) and Top-Down View of DIII-D (Right).
Looking at the right figure, one can see that each beam line contains two independent
neutral beam sources (yellow boxes). Here, the plasma is rotating in the counter-clockwise
direction, and the two beams in the bottom left of the figure are oriented to be counter-
current. Because of this, the total power and torque are decouple. The left image is from Li
et al. [2014]. The right image gives a rough idea of the beam positioning and is not drawn
to proportion.

γ ∈ (0, 1) is the discount factor, r : S × A → R is the reward function, and
ρ is the initial state distribution. Lastly, T : S × A → P(S) is the transition
function, where P(S) denotes the space of distributions over S. Each transition
corresponds to a 100ms time step in real time. In practice, it is difficult to observe
all state variables in real-time for feedback control. As such, we learn a policy for
the partially observable MDP (POMDP). Let O be the observation space and let
h : S → O be the mapping from states to observations. The overall goal is then
to learn a policy π : O → P(A) that maximizes the expected discounted sum of
rewards E

[∑∞
t=0 γ

tr(st, at)
]
, where s0 ∼ ρ, at ∼ π(h(st)), and st+1 ∼ T (st, at).

State and Action Spaces DIII-D has a number of actuators for controlling the
plasma. Of key interest to our work are the eight neutral beams that inject particles
into the core of the plasma (see Figure 7.1) [Grierson et al., 2021]. These are used
to inject both power and torque into the plasma, and because two of these beams can
be oriented in the opposite toroidal direction, the amount of total power and torque
injected can be decoupled. We also consider the the ohmic coil (for controlling
current), gas valves (for controlling plasma density), and toroidal field coils for our
modelling [Luxon, 2002]. Lastly, one can also control the shape of the plasma via
the field coils. We assume that these controls are sophisticated enough to the point
that we can control the elongation, top triangularity, bottom triangularity, and the
minor radius of the plasma exactly. While there are many other ways of affecting
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MDP Spaces
Signal Group Signals Actuator State (S) Action (A) Observation (O)

Scalar States
βN 7 3 7 3

li (Internal Inductance) 7 3 7 7

Line Averaged Density 7 3 7 7

Profile States Ion Rotation, Electron Density,
Electron Temperature, Pressure, q

7 3 7 7

Neutral Beam Variables Power Injected and Torque Injected 3 3 3 3

Shape Variables Elongation, Top Triangularity,
Bottom Triangularity, aminor

3 3 7 7

Other Actuators Current Target, Density Target, and
Toroidal Field

3 3 7 7

Observations DR, DR Target, and βN Target 7 7 7 3

Total Dimensions 9D 47D 2D 10D

Table 7.1: Overview of Signals. Note that DR and both targets are not in the state
space. DR is calculated from rotation and q (but is not modeled explicitly), and the
targets do not influence the transition function. The total dimension of the state
space factors in the number of PCA components used to represent the profiles, and
the total dimensions of both state and observation spaces accounts for measurements
100ms in the past. While the state dimension is relatively high, the dynamics model
only predicts future scalar and profile state variables (19D).

the plasma, this subset encapsulates most standard runs on the device. All of these
actuators could potentially be part of the action space; however, we focused on only
the neutral beams for this work. As such, the action space is simply the total power
and torque injected from the neutral beams.

Differential 
Rotation

Figure 7.2: Visual Represen-
tation of Differential Rotation
(DR). The top and bottom plots
show examples of rotation and q
profiles, respectively. The q pro-
file dictates the ψ (flux surface)
locations to measure on the rota-
tion profile.

For the state space, we assume that the
plasma can be fully characterized by the cur-
rent settings of the above actuators, three scalar
values, and five “profiles” which consist of dis-
cretized measurements of physical quantities
along the minor radius of the toroid. The scalar
states consist of the line-averaged electron den-
sity, the internal inductance, and βN , which is
the normalized ratio between plasma pressure
and magnetic pressure. βN is an important quan-
tity as it can be used as a rough economic in-
dicator of efficiency. Radial profiles of the ion
rotation, pressure, electron temperature, elec-
tron density, and the safety factor, known as
“q”, are also used. The q profile is the num-
ber of toroidal transits per poloidal transit of a
magnetic fieldline, and is an important indicator
of stability of the plasma (the higher the q fac-
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tor the better). Following Boyer and Chadwick
[2021], we reduced the dimensionality of these
profile states (originally 64 dimensions) by us-
ing principal component analysis (PCA). We found that we can explain 99% of
the variance in the data by using two principal components for the q and pressure
profiles, and by using four components for the rest of the profiles. For these scalar
and profile descriptions of the plasma, we assume the state can be represented by
the current measurements as well as the measurements 100ms in the past. This
assumption stems decisions made about the learned dynamics model. In particular,
including this history increased the predictive performance of the dynamics model;
however, including history for the actuators variables made the model susceptible to
overfitting).

Objective and Reward Function The control objective is to do target tracking
for two quantities: βN and differential rotation (DR). Specifically in this work, DR
refers to the difference in the rotation profile at the locations where q = 1 and q = 2
(see Figure 7.2). This is an important quantity of interest as it is hypothesized that
higher DR results in a more stable plasma [Bardoczi et al., 2021, Tobias et al., 2016,
Buttery et al., 2008, Reimerdes et al., 2007, Politzer et al., 2008]. While control
for βN is relatively straight forward, DR relies on the correct measurements of two
profiles and is therefore harder to predict and control. For every episode in the
MDP, new targets β′N and DR′ are drawn from target distributions. In particular,
β′N ∼ U(1.25, 2.5) and DR′ ∼ U(10, 80). The reward at time step t, r(st), is then

−1

C1

(
β
(t)
N − β′N

)2
+
−1

C2

(
DR(t) −DR′

)2
,

where β(t)N and DR(t) are the current measurements at time t, and C1 and C2 are
positive normalizing constants that puts each term onto the same scale.

7.3.1 The Dynamics Model and Controller

Dynamics Model We chose to approximate T using a fully connected neural
network which takes in the current state of the system and the actuators settings
planned for 100ms in the future, and then outputs predictions for the (non-actuator)
state variables 100ms into the future. We trained this network on a dataset consisting
of 15,534 shots (or 268,702 time steps), which was pre-processed in the same
manner as Abbate et al. [2021]. In particular, at each 100ms increment we formed
the observation for each signal by averaging over every measurement 25ms previous
to that point.
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Figure 7.3: Replay of Shot 187076. Here, the model receives the first observations
of βN and DR, but then autoregressively predicts these values into the future. The
faded lines are different samples of the neural network parameterization, and the
solid lines are the average over the different predictions. Note that there are no
faded lines for the power and torque plots since actuators are given to the model
and are not predicted. The black dashed lines are the real observations.

To ensure that a controller learned on this model will still perform on the real
device, it is important to learn many different possibilities of what the dynamics
could be. This has been shown to be essential both in the context of MBRL [Chua
et al., 2018b], and in the context of doing “sim2real” (e.g. domain randomization
[Tobin et al., 2017]). We incorporated uncertainty by learning a subspace of network
parameters [Wortsman et al., 2021, Benton et al., 2021], which has been shown
to better calibrated models over standard ensembling. In particular, we used an
ensemble of five networks to learn a simplex of network parameters following the
procedure described in Wortsman et al. [2021]. We repeated this training procedure
five times to learn five different simplices. By making a uniform draw from this
collection of network parameters, we can sample a new possibility for the dynamics.

To do hyperparameter tuning and evaluation, we took the most recent 10% of
shots as our test set. Our tuning procedure targets high explained variance (EV) for
one-step predictions. After performing grid search, we settled on a model with 4
hidden layers of 512 units, and a learning rate of 3e-4. When learning the simplex,
we encouraged diversity by adding a cosine similarity penalizer to the loss function
(see Wortsman et al. [2021]), and we found that a coefficient of 5 to this penalty
gets the best results. Averaged across five seeds and one hundred samples from
the simplex for each seed, these mean predictions achieve an EV score of 0.46 for
βN , 0.43 for the first rotation PCA component, and 0.33 averaged across all output
signals. We use the Uncertainty Toolbox library Chung et al. [2021a] to evaluate our
ensemble’s predictive uncertainty. We find that our model tends to be overconfident
and achieves a miscalibration area of 0.26 for βN , 0.25 for the first rotation PCA
component, and 0.297 averaged across all predictions. We believe that part of the
reason these scores are poor is that the future shots in the test set are meaningfully
different. However, qualitatively the model often captures the trends of the state
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quite well. Figure 7.3 shows the replay for shot 187076, which was not seen during
training. This shot is significantly unique from other shots in the dataset in that
there is a drastic drop then increase of both power and torque. Lastly, although we
do find that our predictions into the future are generally stable, there are rare cases
where the prediction error explodes. To mitigate against this, we bound the state of
the plasma and the amount that it can change to be between the 2.5% and 97.5%
quantiles of the dataset.

Controller This learned dynamics model can be used to generate data for learning a
controller. For the start state distribution, ρ, we used a uniform distribution over over
the first 500ms of flat top (i.e. where current stops ramping up and becomes stable)
for all shots in the dataset. Since the controller is only allowed to counterfactually
set the total power and torque of the neutral beams, all other actions are the same as
what happened in the historical shot corresponding to the start state. We trained a
controller on these generated shots using the Proximal Policy Optimization (PPO)
algorithm [Schulman et al., 2017]. The controller is able to observe the targets as
well as the current and past values of βN , DR, power injected, and torque injected.
We use a policy and value network with 2 hidden layers consisting of 500 units
each, a gradient clipping parameter of ε = 0.25, and a learning rate of 3e− 4 for
both the policy and value networks. We decided on these hyperparameters by using
an off-policy evaluation procedure in which we have two sets of dynamics models:
one used for training and one used for evaluation. The only difference between the
two sets is that the model used for evaluation was trained using both the training
and testing set. Additionally, for the start state selection and actuator replays, we
reserved some historical shots for the evaluation period. The final set of policies
were trained on the test set of models (with some historical shots still held out), and
the model that was ultimately selected for deployment was the one with the best
returns on the held out shots.

7.4 Experiment

To test the controller on the device, we implemented our trained policy in DIII-D’s
plasma control system (PCS) [Margo et al., 2020]. We used the Keras2C library
[Conlin et al., 2021] in order to transfer our policy network (originally implemented
in PyTorch [Paszke et al., 2019a]) to a deterministic subset of C, meaning no
dynamic memory allocation, system calls, or use of external libraries. For beam
control, we used the algorithm presented in Boyer et al. [2019] to decide the duty
cycles of each of the eight beams to hit the requested power and torque targets.
For inputs to the policy, we relied on the profile fitting algorithm [Shousha et al.,
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2023] and the charge exchange recombination (CER) diagnostic system [Gohil
et al., 1991]. The policy sends requests for updates to the beams roughly every
10 ms. During our testing session, we were able to test the βN and DR tracking
separately. We used shot 164987 (shots are labeled) as a reference shot, and the
actuators besides the beams were mostly used from this shot.

Feedforward Control To disentangle the predictive power of the dynamics model
from the policy learning procedure, we used the dynamics model only to prepare
feedforward control for the neutral beams. In particular, we used the model to
evaluate how closely target values are achieved given fixed controls where the
power and torque are ramped up to constant values. A two-dimensional grid search
was performed to find the constant values corresponding to the highest cumulative
rewards averaged over the sampled shots. We used an even larger ensemble of
models for this procedure where the additional models have slightly altered inputs
and outputs. In particular, we included five additional network simplexes that
consider the actuators from the previous time steps as input and five network
simplexes that only consider quantities relevant for this task as inputs and outputs,
i.e. βN , rotation, q, and beam information. This results in a total of 15 different
network simplexes, each composed of 5 networks. We found the performance of
each type of model is dependent on the shot, so we used all models in the hope for
the most robust solution.

We pick a target βN = 1.75 and try to push differential rotation to be high by
setting the target to DR = 40 krad/s, which is relatively high for this reference
shot. Our optimization procedure found that setting the total power to 3.6 MW
and the total torque to 2.1 Nm was best. As shown in Figure 7.4, the choice of
these actuators resulted in hitting the βN target remarkably well. Although the DR
achieved was lower than the target, one can see that it does achieve higher DR.
For reference, DR has a standard deviation of 35.2 and an interquartile range of
47.2 amongst all shots in the dataset, so the error between the target and the value
achieved is not as bad as it may appear.

Feedback Control Next, we tested the learned policy’s ability to do feedback
control. We started by having the controller track increasing βN targets. Because
βN primarily relies on the power injected, we used the policy to control the injected
power only and set the total torque to be 2 Nm throughout the shot. For shot 191611
in Figure 7.4, one can see that the controller increases the power in order to hit
the target values. The last target is overshot slightly and some oscillatory behavior
occurs. After the experiment, we identified a bug in our set up where the magnitude
of change in power is greater than what was requested by the controller when there
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Figure 7.4: Experiment Shots. The top four plots show the βN , DR, total power,
and total torque during both shot 191614 (feedforward control) and the reference
shot 164987 (red). These values are smoothed when needed and the original,
unsmoothed values are shown as faded lines. The DR values are taken after doing
preprocessing and dimensionality reduction via PCA. For the bottom plots, the left
pair of plots shows the experiment controlling the power to hit βN targets, while the
right pair of plots shows controlling the torque injected to hit DR targets. In each
pair, we show the requested amount of power or torque requested by our controller
vs the actual value achieved.

is high beam usage. This occurs at the 4500 ms point onward, and this phenomenon
could perhaps be the reason behind the oscillatory behavior. The fluctuation in βN
is then further exacerbated by a disruption in the plasma, and all control is lost.
Because of limited time, we were unable to compare against pre-existing controllers
on our set up [Boyer et al., 2019, Scoville et al., 2007]. While they are likely to
track βN more reliably, we still believe that this is a step in the right direction for
showing MBRL’s value in learning controls.

Unlike βN tracking, there is no other controller in the DIII-D PCS that specif-
ically tracks the difference in rotation between the q = 1 and q = 2 surfaces. To
test our controller’s ability to do so, we set a series of decreasing DR targets for the
controller to achieve using only total torque. We set the power injected to a constant
value of 5 MW, and although torque could vary since the 210 beams were in the
counter-current orientation, this still restricts the total torques that can be achieved.
The controller is unable to track the DR targets nearly as well as the βN targets.
While there are some instances of the policy doing the right thing (e.g. torque is
decreased at time 4000 ms time to drop DR to the target), the policy shortly after
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observes DR dropping too quickly and raises torque back up again (shot 191616 in
Figure 7.4).
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Figure 7.5: Replay of Experiments. The top and bottom left pair of plots show
the experiment observations (blue) and the mean prediction from the model (gray
dotted line). We used 20 sampled shots per model in the ensemble, i.e. we used 300
samples for shot 191614 and 100 samples for the other shots. The gray region is the
area spanned by the 5th and 95th percentile sample. The bottom right pair of plots
show the three highest return samples (shown in red, yellow, and green) for the βN
feedback control shot.

7.4.1 Post Experiment Analysis

To aid in the analysis of these experiments, we can see how predictions in our
dynamics model line up with what actually happened in the experiment. Starting
with the feedforward shot (191614), predictions were made using the reference shot;
however instead of the original power and torque controls, the planned controls
are used instead. In Figure 7.5, one can see that the that the true shot is indeed
contained within the predicted distribution. Despite the model predicting that the
target DR would not be achieved, this was the optimal configuration landed on by
the model because increasing the torque injected causes βN to overshoot the target
in the simulated environment. Moreover, because the spread in DR is much higher
than βN , the optimizer implicitly favors tracking βN .

Next, for the βN tracking shot (191611), we replayed the shot in our simulated
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environment using the learned controller. Many of the sampled trajectories cannot
achieve the second target of βN = 2.5. This may be due to the fact that this is a
relatively high βN value for this reference shot, and the dynamics model may have
learned that a loss of confinement usually happens at this range of βN . When this
happens, the controller keeps increasing the power in order to try to achieve the
target value. For the samples of the dynamics model that are able to achieve higher
βN , the controller is able to hit the target well, and the schedules in power injected
used to achieve the targets are comparable to what was seen in the actual experiment
(Figure 7.5). For these samples, there is no overshoot of the target or oscillation of
βN , and it is possible that without the problem with the beams that the controller
would have been able to hit the target more reliably during the experiment.

Lastly we replayed the shot 191616, and use the controller to try to achieve the
DR targets. Unlike control of βN , it does not seem that DR is controllable to the
same extent for this shot. However, looking at the values of the torque injected there
are clear changes in the torques as the target values change. We also find that the
controller does not make any drastic changes to torque if it cannot hit the DR target.
We hypothesize that this is because βN is affected by the torque injected, and it
is the more reliable quantity to track. The controller will therefore not drastically
change the torque if it compromises the tracking of βN . Furthermore, we find that
the uncertainty in the model increases with lower settings of torque, which may
further deter the controller from decreasing torque.

7.5 Discussion

In this work, we show the first steps towards doing feedback control on a tokamak by
learning through logged data alone. Furthermore, through our feedforward controls,
we have demonstrated the predictive ability of our dynamics models for control.
While we faced challenges throughout the course of this work that are common
to every application of sim2real [Ibarz et al., 2021] and offline RL [Levine et al.,
2020], we believe that our work provides takeaways for the RL community.

MBRL on Undirected Data. Many offline RL benchmark tasks assume that much
of the collected data has the test-time task or reward function in mind. While the
D4RL benchmarks [Fu et al., 2020a] do have tasks with undirected datasets (e.g.
the maze tasks and FrankaKitchen), these datasets contain sub-trajectories of good
behavior that simply need to be “stitched” together. We believe that our application
falls into another interesting setting that these baselines do not cover. This setting
is one in which there are not necessarily sub-trajectories of good behavior, but
reasonable dynamics models can be learned either because the dataset is sufficiently
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expansive or through injecting prior information into the models (e.g. Mehta et al.
[2021a], Yin et al. [2021]). Unique challenges and opportunities would likely come
from further studying this setting.

Model Diversity. As seen in Section 7.4.1, it was important to have diversity in the
dynamics models to ensure that the true dynamics are covered and that the controller
can handle different possibilities. While we used PPO in conjunction with these
models, it is possible better results could be achieved by using recent developments
that leverage the diverse model predictions for test-time adaptation [Ghosh et al.,
2022, Chen et al., 2021b]. This also raises the question: how should one evaluate
uncertainty estimates in this setting? While we chose to use miscalibration area
as our metric in this work, it is unclear which metric is indicative of good policies
being learned downstream.

Policy Evaluation. While it is known that models are a useful tool for off-policy
evaluation [Thomas and Brunskill, 2016, Jiang and Li, 2016], we believe that it
is important that these models are learned in such a way that they can test the
generalization capabilities of the policy. Our method of doing this was to set
aside some shots that only these testing models would train on; however, there are
possibly more sophisticated procedures for doing this. This was useful for making
key decisions for our learning pipeline (e.g. we found policies trained with SAC
[Haarnoja et al., 2018b] had worse generalization compared to those trained with
PPO).
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Chapter 8

Full Shot Predictions for the
DIII-D Tokamak via Deep
Recurrent Networks

This chapter is based on Char et al. [2024]:
Char, I., Chung, Y., Abbate, J., Kolemen, E. & Schneider, J. Full Shot
Predictions for the DIII-D Tokamak via Deep Recurrent Networks. arXiv
preprint arXiv:2404.12416, 2024.

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Fusion Energy Sciences, using the DIII-D National
Fusion Facility, a DOE Office of Science user facility, under Awards DE-AC02-
09CH1146 and DE-FC02-04ER54698. This work was also supported by DE-
SC0021414 and DE- SC0021275 (Machine Learning for Real-time Fusion Plasma
Behavior Prediction and Manipulation).

Disclaimer This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, complete-
ness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state
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or reflect those of the United States Government or any agency thereof.

8.1 Introduction

In a wide range of fields, dynamics modeling is a fundamental tool that can be used
to gain better understanding of a given system. Dynamics models are especially
useful in the context of control, as they allow for prediction of responses to system
perturbations over time, which can then be used to design and implement control
sequences that optimize for desirable behaviors.

Such benefits are especially apparent in tokamak systems. Tokamaks are toroidal
devices which magnetically confine plasma at high temperatures and pressures for
prolonged periods, during which nuclear fusion reactions occur within the plasma.
The tokamak system is one of the most promising approach to realizing nuclear
fusion as an energy source. While strides are being made to improve the efficiency,
stability, and reliability of the system, there are crucial control challenges which
remain [Humphreys et al., 2015].

Since running these devices is extremely expensive, domain experts rely on
virtual representations of the system dynamics, such as simulators and dynamics
models. Simulators typically rely on first principles and simulate the dynamics via
known equations which describe the theoretical behavior of the plasma. However,
simulators are prohibitively expensive in terms of time and computation, and despite
these costs, they are often still unable to accurately describe the plasma’s dynamics.

Concurrently, massive strides have been made in machine learning (ML), where
advances in algorithms and modeling architectures paired with data and compute
have allowed for a completely data-driven approach to learning highly accurate
models. This approach is promising for the nuclear fusion setting, and indeed,
numerous recent works have applied ML methods to tokamak modeling [Abbate
et al., 2021, Boyer et al., 2021a, Seo et al., 2021, 2022, Char et al., 2023a].

In this work, we focus on learning a dynamics model for the DIII-D tokamak, a
tokamak in San Diego, California operated by General Atomics. Since the device
has been in operation since 1986, we are able to draw from a wealth of previous
plasma discharges (or “shots”) from the device to train a deep recurrent network.
A typical shot on DIII-D lasts around 6-8 seconds, with a 1 second ramp up phase,
several second flat top phase, and one second ramp down phase. DIII-D also has
several real-time and post-shot diagnostics that measure the magnetic equilibrium
and plasma parameters with high temporal resolution. We find that learned models
are able to predict these measurements for entire shots remarkably well.

We further investigate the impacts of our modelling choices. Along with archi-
tecture and training choices, we highlight the importance of uncertainty quantifica-
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tion and explore which methods of forming predictive distributions results in the
most calibrated models. As more interest accumulates in control of tokamaks via
data-driven models [Seo et al., 2021, 2022, Char et al., 2023a, Seo et al., 2024],
we hope that this work provides valuable insights that accelerates prediction and
control.

8.2 Related Work

8.2.1 Simulators for Tokamaks

Predictive modelling of the plasma through first principle equations is difficult
since different aspects of the plasma evolve at different time scales. State of the art
simulators solve this problem by evolving these aspects independently [Felici et al.,
2011]. While these simulators have been useful for exploring different regimes for
the plasma [Rodriguez-Fernandez et al., 2022] and making new controls [Felici
and Sauter, 2012], they are nevertheless limited in that they require additional
information such as an estimate for the density at the edge of the plasma. Our
learned models are unique from these in that the only information they require are
the settings for the difference actuators throughout the shot.

8.2.2 System Identification and Machine Learning for Dynamics

There is a long lineage of methods for inferring behavior of a dynamic systems
from data. “System identification” is one broad categorization of such methods
and provide a classification along a spectrum of “white” to “black” based on how
much prior domain knowledge is incorporated. Whereas white-box models rely
strictly on prior knowledge of the relationships between system variables to infer
the system parameters, black-box methods rely on purely observed data to model
their plausible relationships. We refer the reader to Ljung [2010] and Schoukens
and Ljung [2019] for a more in-depth, comprehensive survey of existing methods in
system identification.

Recently, neural networks (NN) have been widely used for modeling dynamics
and have shown substantial success [Wang and Yu, 2021]. Many of these methods
require at least some prior knowledge of the system (i.e. they are grey box models).
For example, one may be able to describe the system with a set of ODEs that capture
some (but not necessarily all) of the dynamics [Mehta et al., 2021a, Yin et al., 2021],
or one may have a set of PDEs and is unable to compute a solution easily [Raissi and
Karniadakis, 2018, Raissi et al., 2019]. Unlike these works, however, we explore
black box models in which there is no prior knowledge available.
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Group Representation Type Signal Dimension

States
Scalar

Shape
κ, aminor, Triangularity Top, Triangularity Bottom,

R and Z Coordinates of Magnetic Axis 6

Other
βN , Line Averaged Density, Internal Inductance (li), q0, q95,

n1rms, n2rms, n3rms, vloop, wmhd, Differential Rotation [Char et al., 2023a] 11

Profile Electron Temperature, Ion Temperature, Density, Rotation, Pressure, q 20

Actuators Scalar

Beam Power Injected, Torque Injected 2

Gas gasA, gasB, gasC, gasD 4

Shape 12 Shape Controls 12

Other Current Target, Density Target, Toroidal Field 3

Total Dimension: 58

Table 8.1: List of all state and actuator variables

8.2.3 Machine Learning in Nuclear Fusion

There has been a recent surge of interest in applying machine learning to predict
the state of the plasma within tokamaks. Perhaps one of the areas with the greatest
interests is predicting whether the plasma is in (or is about to be in) a disruptive
state. Fu et al. [2020b], Parsons [2017], Rea et al. [2019], Boyer et al. [2021b] learn
predictive models of whether the plasma will disrupt and use these models to take
preventative actions to stabilize the plasma. Char et al. [2019] also use Bayesian
Optimization with a similar goal in mind; however, they learn the actions to apply
directly rather than a prediction of whether the plasma is disruptive or not.

In terms of learning the evolution of the plasma state, Abbate et al. [2021] learn
a deep neural network in order to predict the profiles of the plasma; however, they
focus on one step predictions for their model. In contrast, Seo et al. [2021, 2022]
learn a recurrent neural network to predict scalar states of the plasma. They can use
this model to autoregressively predict these states into the future, and they leverage
this to plan shots on the KSTAR tokamak. Recently, Char et al. [2023a] used a
(non-recurrent) learned model that predicted both scalar and profile states in an
autoregressive manner. They used this model as a simulator to train a reinforcement
learning agent, which was then deployed on DIII-D. Whereas most of these works
focus on the control aspect of dynamics modelling, we do a deeper investigation on
the modelling itself. We hope our evaluation techniques and insights will benefit
future model-based control works.
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8.3 Method

8.3.1 Data

We begin this section by describing the data used to train our dynamics model. In
total, we use 7,884 historical shots from the DIII-D tokamak. We include both the
ramp up and flat top phases of each shot, and each shot is subdivided into a number
of ”time steps” 25ms apart from each other. For each time step, we average the
measurements collected 25ms previous to that point in time.

We partition the input signals into two groups: state signals and actuators signals.
All of these signals can be found in Table 8.1. For the state signals, we use 17
different scalar states and 6 so-called profile states. While scalar states provide
a summary statistic of one aspect of the current plasma state with a single scalar,
profile states are 1D measurements of the plasma, and in our dataset, they consist of
33 discrete measurements along the minor radius of the cross-section of the tokamak.
Following previous works in profile modeling [Char et al., 2023a, Boyer et al.,
2021a], we choose to lower the dimensionality of the (originally 33-dimensional)
profile states via Principle Component Analysis (PCA). In particular, we use four
principal components to represent all profiles states except for the pressure and q
profile. For these two signals, we use the first two principal components to represent
the profile. For actuator signals, we use 21 different scalar values that summarize
neutral beam settings, current and density targets, gas settings, and plasma shape
control.

We choose to separate these signals into two groups (states and actuators)
since we assume that all of the actuators are known a priori (from the perspective
of the experiment operator). As such, the model takes as input the current state
measurements, the current actuators settings, and the actuator settings 25ms into
the future. The model then predicts the change in the state variables for the next
25ms. Once trained, the model can predict many more steps into the future by
autoregressively feeding in predicted next states back into the model as inputs.

8.3.2 Model Architecture and Training

In designing our model architecture, we use a recurrent neural network (RNN) with
a gated recurrent unit (GRU) [Cho et al., 2014a]. We use 6 hidden layers (including
encoder and decoder), each with 512 hidden units and residual connections [He
et al., 2016]. A visual diagram of the model architecture can be seen in Figure 8.1.
We train our recurrent model with full length shots, the longest of which is 225 time
steps. We use a learning rate of 3e− 4 and a weight decay of 0.001.

For the model output, rather than making point predictions, we have two output

107



GRUStates

Actuators

Next
Actuators

Figure 8.1: Architecture for the Recurrent Model. The encoder is a single layer
MLP which embeds the states, actuators, and next actuators into a 512 dimensional
space. This is fed to the GRU unit which outputs a 128 embedding which is
concatenated with the original embedding before being fed to the decoder. The
double headed outputs are single linear layers outputting the mean and log variance
of a Gaussian. Note the pluses with circles denote a residual connection.

heads, where each head predicts the mean and log variance of a Gaussian distribution,
respectively. The negative log likelihood (NLL) is computed with this Gaussian
prediction, and the model is trained to optimize the NLL loss. This method of
predicting the parameters of a Gaussian distribution via the outputs of a neural
network is also known as a mean-variance network or a probabilistic neural network
(PNN) [Nix and Weigend, 1994, Lakshminarayanan et al., 2017], and is one of
the most widely used methods of modeling predictive uncertainty. We extend our
discussion on modeling uncertainty in Section 8.4.1.

Following Chua et al. [2018b], we found it essential to place a soft bound on
the log variance using a learned lower and upper bound to ensure stability during
training. The difference between the upper and lower bound is then added as an
additional penalty term to the loss function, encouraging the width of the bounds to
be as small as possible.

With the full dataset of shots available, we dedicate 90% of shots for training,
5% for validation, and 5% for testing. The shots are sorted chronologically before
the splits are made, and we ensure that the testing shots consist of the 5% most
recent shots. This is essential for testing since experiments (shots) run on the same
day tend to be similar. Further, the tokamak is upgraded over time, which alter the
dynamics of the plasma. Hence, enforcing the chronological order not only allows
us to test the generalization of the learned dynamics model, but also reflects the
realistic test setting that a practitioner will be faced with.
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Figure 8.2: Replay of a Test Shot The replay was generated with an ensemble
of models which sample from their respective Gaussian distribution at each step.
While the model has access to the true actuators throughout the entire shot, it only
takes in the first true state and autoregressively predicts the rest. The faded blue
lines show one sampled trajectory, while the darker blue line shows the average over
the trajectories. The black lines show the true values for the experiment. The top
row shows the reconstructed profiles at the last time step. Here, the x-axis is over
the minor radius of the tokamak, where 0 is the closest to the magnetic axis and 33
is closest to the wall. The other plots show the scalar values over time. The x-axis
shows the time into the shot in ms. This shot is part of the test set, and we observe
that the model of all signals well excluding n1rms.

8.3.3 Evaluation

To start, we visualize a “replay” of a shot from the test set. That is, we predict the
full shot using only the initial state of the plasma and the sequence of actuators. We
show the results of this in Figure 8.2, where we find that the model is able to predict
the trend across time for the majority of the plasma’s states remarkably well.

To quantitatively evaluate the model’s accuracy, we use Explained Variance
(EV) as an interpretable metric. This metric is used for the 1D regression setting
where, given ground-truth label y ∈ R and prediction ŷ ∈ R, the metric is defined
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Figure 8.3: Explained Variance per Time Step. Each of the colored lines show
a different way of generating trajectories with the same models. The blue lines
simply take the mean of the Gaussian distribution while the red line samples from
the Gaussian distribution at every step. Each curve shows the mean over four
different models with different random seeds. The shaded area shows the standard
error. In the bottom row, we show the EV for the first principle component of the
corresponding profiles.

as

EV := 1− Var (y − ŷ)

Var (y)
(8.1)

Here, Var (y − ŷ) and Var (y) are the empirical variance of the residuals and labels,
respectively. Intuitively, this metric shows how much of the variability in the dataset
the model can explain, with the maximum (best) score being 1. Since the plasma’s
state is multi-dimensional, we compute EV for each of the dimensions and for each
time step into the future.

We choose to compute the EV for the difference in the plasma’s state at some
time step t and the plasma’s initial state. With respect to Equation 8.1, we set
y = st−s0 and ŷ = ŝt−s0, where st is a single dimension of interest in the plasma
state at time step t, ŝt is the model’s prediction at time step t, and s0 is the initial
state. We believe that this choice in label better aligns with the task of predicting
the evolution of the plasma. Indeed, we found if we measure EV of the plasma state
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(i.e. we do not subtract s0), EV is nearly perfect for small t since the plasma does
not evolve drastically from time step to time step.

For each of the test shots, we evaluate the model by starting prediction at
different time steps during the shot (but always seeing the history up to that point),
and then autoregressively predicting the remainder of the shot. We assemble the
dataset to compute EV using every possible starting time step in all testing shots.
We also compare the EV when sampling from the learned distribution versus using
only the mean of the Gaussian. For this sampling method, we sample 30 different
trajectories and take the mean over them before computing the EV.

Figure 8.3 displays the EV over time for a select set of scalar quantities, the
first component of the profiles, and averaged across all input dimensions. We chose
these scalar signals because of their significance. In particular, βN is the normalized
ratio between plasma and magnetic pressure and can be used as an indicator of
economic performance; q0 and q95 are two points along the q (or safety factor)
profile, which is an important indicator of stability of the plasma; and n1rms is the
root mean squared of magnetic fluctuations for toroidal mode number n = 1, which
can signify an event such as a tearing mode in the plasma. We note that we expect
n1rms in particular to be hard to predict.

For each of these plots, EV starts low and grows over time, which can be
explained by a number of factors. First, there is noise in the system which makes it
difficult to predict on the 25ms time scale. However, we hypothesize that the signal
starts dominating over the noise after a handful of time steps. In addition, as the
number of time steps starts to grow the variance of st − s0 continues to grow (i.e.
the denominator of Equation 8.1), making it easier to achieve higher EV. In terms
of using the mean of the Gaussian versus sampling from it, it seems sampling helps
with short term predictions; however, for long term predictions, it appears that using
the mean can be more reliable.

8.4 Ablations

In this section, we examine a number of choices that we have made for modeling
and inference procedures. Our objective is to provide valuable insights that can
assist other practitioners in the field when developing dynamic models of plasma
evolution in tokamak devices.

8.4.1 Uncertainty Quantification

Uncertainty quantification is a crucial aspect in any modeling or prediction task,
especially in the face of system stochasticity or insufficient data. Adequately
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Figure 8.4: Uncertainty Metrics over Time. The leftmost plot shows coverage
of the 90% prediction interval. Models with good predictive uncertainties should
therefore match this 90% (shown as dotted black line). For the miscalibration area
plot, the lower the score, the better calibrated the model is. Each of the metrics is
averaged over all output dimensions. Moreover the curves show the mean over four
models, and the shaded region shows the standard error.

modeling uncertainty has been shown to be especially critical for dynamics models
when they are leveraged for control [Chua et al., 2018b].

In our modeling efforts, we account for uncertainty by producing predictive
distributions instead of point predictions, and we do so by relying on two different
methods: by predicting a Gaussian distribution and by ensembling predictions.
These two methods were utilized by Chua et al. [2018b] to capture the aleatoric
uncertainty (the uncertainty inherent in the system) and the epistemic uncertainty
(the uncertainty stemming from insufficient data), respectively. The ensemble con-
sists of 4 models, each of which have the same model architecture as described
in Section 8.3.2, but each model was randomly initialized and trained indepen-
dently [Lakshminarayanan et al., 2017] on the same dataset.

Inspired by Chua et al. [2018b], we test three methods of generating predictive
distributions from our ensemble of networks, each of which predict Gaussian
distributions. In the first method, which we denote as “Mean-TS1”, we take the
mean prediction of the Gaussian distribution, but sample a new model from the
ensemble to generate the next state every step. In the other two methods, we sample
from the Gaussian distribution, and we either choose to sample a model from the
ensemble every step or every shot. We denote these two methods as “Sample-TS1”
and “Sample-TSInf”, respectively. Because of ensembling and the auto-regressive
nature of the model, we do not have a closed form predicted distribution for the
plasma’s state. Instead, we approximate this distribution with independent Gaussians
for each dimension of the plasma’s state. The mean and standard deviations are
estimated from 30 samples from the dynamics model.
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To evaluate the predictive uncertainties, we measure the Coverage of a 90%
prediction interval (PI) and the so-called Miscalibration Area. At a high level,
Coverage is the empirical frequency of observations that fall within a constructed PI.
Ideally, if the PI is constructed to capture 1− α probability mass, (1− α)× 100%
of the data should fall within this interval. Concretely, given data points yn ∈ R and
(1− α) intervals PIn,(1−α) for n = 1, . . . , N , the (1− α) coverage is defined by

Coverage(1−α) =
1

N

N∑

n=1

1{yn ∈ PIn,(1−α)}.

Building on this, the deviation from the expected probability is regarded as miscali-
bration, and Miscalibration Area takes the average deviation over a set of expected
probabilities. Given a set of M expected probabilities drawn uniformly from [0, 1]:
pi ∼ U [0, 1], i ∈ [M ], and the observed Coveragepi , Miscalibration Area is calcu-
lated as

1

M

∑

i∈[M ]

| pi − Coveragepi | .

Much like EV, these metrics are for single dimensional spaces. As such, we compute
these metrics for each of the dimensions of the state space and average the results
together to produce a single metric. We also compute both metrics for each time
step into the future.

Figure 8.4 shows the Coverage, Miscalibration Area (computed with the “Uncer-
tainty Toolbox” [Chung et al., 2021a]), and EV for the three methods of generating
predictive distributions. We see that in the ensemble regime, purely taking the mean
of the distribution is detrimental. Not only does the EV suffer, but we also observe
extreme overconfidence as shown by the low Coverage (“Mean-TS1” method in
Figure 8.4).

Looking at the other two methods, we see that both methods are very well-
calibrated at the beginning in their short-term predictions. Moreover, there is an
improvement in average EV over the single model case (displayed in the top left
plot of Figure 8.3), indicating the significance of utilizing an ensemble approach
beyond simply quantifying uncertainty. We find that in all aspects, Sample-TS1
dominates over every other method. This aligns with the suggestion given by Chua
et al. [2018b].

As the prediction horizon increases, Miscalibration Area steadily increases, and
as evidenced by the Coverage plot, the predictive distributions become increasingly
under-confident (i.e. higher than expected coverage). In many cases, one can apply
recalibration [Kuleshov et al., 2018] methods to adjust the calibration; however, we
are unaware of any such method for the autoregressive setting.

113



Modelling Choice Scaled One-Step MSE

MLP + Gaussian 1.20
LSTM + Gaussian 1.05

GRU + Point Prediction 1.06
GRU + Gaussian 1.0

Table 8.2: One-Step MSE for Model Choices We scale the MSE by dividing each
score by the best MSE that appearing in the table. That is, 1.0 is the best score,
while a score of 1.20 means that the MSE achieved was 20% worse than the best
MSE. Each score is the mean over four different seeds.
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Figure 8.5: Explained Variance Averaged over All Output Dimensions. Each
curve was generated by taking the average over four different trained models. The
shaded area shows the standard error. All curves were generated by taking the mean
output of the Gaussian predicted Gaussian distributions (where applicable).

8.4.2 Recurrent Unit

Next, we consider the impact of the recurrent unit chosen. We consider two al-
ternatives besides the GRU component discussed in Section 8.3: a model with no
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recurrent unit at all (e.g. an MLP) and a model with an LSTM [Hochreiter and
Schmidhuber, 1997] unit. From Table 8.2, one can see that the GRU is superior
in terms of single step MSE. Indeed, overall we see that GRU seems to be a good
choice when looking at shorter horizon predictions. However, from Figure 8.5 it
appears that LSTMs are better when considering a longer time horizon. Therefore,
one may want to decide on the best recurrent unit based on the downstream applica-
tion of the dynamics model. In either case, we see that recurrent units are essential
since a standard MLP struggles both with one-step MSE and EV.

8.4.3 Point vs Distributional Estimate

Lastly, we look at the effect of having the model learn a distribution, as proposed in
Section 8.3, as opposed to having the model output a point prediction and training
with MSE loss. Interestingly, even though the models that output a point prediction
are trained on MSE, they achieve worse MSE on the test set according to Table 8.2.
We hypothesize this is because learning a Gaussian distribution prevents the network
from overfitting on the training data. Indeed, we observe that on the training set,
models with point predictions achieve roughly 20% lower MSE when compared
with those that output Gaussian distributions. On top of this, Figure 8.5 shows that
while models with point predictions have decent EV at first, as one predicts further
into the future they achieve worse performance than even models with no recurrent
units.

8.5 Discussion

In this work, we show that deep recurrent models are a powerful tool that can be
used for full shot predictions in tokamak devices. We emphasize that these models
were simply given the initial state and the actuators to be applied during the duration
of the shot. We encourage the fusion community to leverage data driven models
when designing controllers and exploring actuator choices, and we hope that insights
shown in this work will prove useful in those pursuits.
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Part V

Conclusion
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Chapter 9

Conclusion

In this thesis, we explored how reinforcement learning can be used to learn policies
for challenging systems in which we can only use surrogate models that are often
learned from data. There are many challenges within this broad problem statement,
but in this thesis we focused on how to efficiently make use of computationally
expensive simulators (Part I), how best to learn policies given erroneous surrogate
models (Part II), and how to improve uncertainty quantification in dynamics models
(Part III). Along with these algorithmic developments, we also detailed the steps
needed in order to learn and run a policy on a real tokamak. I will now give conclud-
ing thoughts about the future of offline model-based RL, uncertainty quantification,
and how AI can transform tokamak control and nuclear fusion.

Concluding Thoughts on Offline Model-Based Reinforcement Learning

One of the settings that reinforcement has shown the most recent progress in is the
setting in which one has a large, diverse dataset at its disposal, possibly where the
agent is doing many different tasks. In such a setting, trajectory stitching of the
best sub-trajectories (as discussed in Chapter 3), would likely lead to good behavior
since the dataset covers much of the state-action space. Rather than explicitly learn
a dynamics model and making “stitches” within the MDP, however, the most recent
methods instead learn generative models that sample both viable state and actions
[Chen et al., 2021a, Janner et al., 2021, Wu et al., 2024]. In particular, these are
conditional generative models, and at test time the model can be conditioned on
a specific task or “returns-to-go” value to sample an action plan. In doing so, the
planning procedure and dynamics modeling are folded into one. While the BATS
algorithm itself may not be competitive with these generative modeling methods,
the ideas presented in Chapter 3 about how to stitch trajectories together may be
useful for improving these generative models as noted in Wu et al. [2024].
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This line of research has had some exciting achievements [Reed et al., 2022];
however, I do not think that this methodology will be the single golden bullet for
applying reinforcement learning to offline data. For example, the offline dataset we
used for tokamak control has a relatively small dataset in comparison, and we would
potentially need to make novel sequences of actions rather than stitching together
pre-existing behavior from the dataset. Applying generative models may provide
reasonable actuator plans for relatively simple shots; however, to get truly sophis-
ticated, real-time control I believe we need to use a model-based reinforcement
learning setup like described in Part IV.

Another factor that makes control for nuclear fusion challenging is that it is
difficult or impossible to “close the loop” without a vast amount of resources. That
is, it is unlikely that one can collect a meaningful amount of additional training data
during test-time deployment, and it is also unlikely that repeated train-test cycles
will be granted on the device. Many times this is not the case, and indeed, training
on additional real data from the system can greatly boost performance of policies
[Kaufmann et al., 2023, Nair et al., 2020b].

For these cases in which extremely limited access to the real device is given, I
am excited about augmenting offline model-based reinforcement learning to learn
adaptive policies. The key idea here (and explored by Chen et al. [2021b]) is to
learn a distribution of different models of the environment (which in itself can be
viewed as a POMDP) and learn a policy that can adapt and perform well given any
model of the environment sampled from this learned distribution. The successful
execution of this idea relies on two things: a policy architecture that can quickly
adapt yet be robust to modeling errors (Chapter 4) and good epistemic uncertainty
that successfully covers the true dynamics function (Chapter 5). While I believe that
the works in this thesis are valuable steps towards this goal, I suspect that significant
additional advancement is needed in order to realize this on complicated, real-world
systems successfully.

Concluding Thoughts on Uncertainty Quantification

As previously mentioned, good epistemic uncertainty will be crucial for sophisti-
cated model-based RL. To make epistemic uncertainty estimates, however, there
must be some assumption made. Gaussian processes assume that points in Y space
(i.e. label space) are distributed as a multi-variate Gaussian with a covariance matrix
prescribed by the kernel function. In deep learning, a popular choice is to use the
distribution of functions formed by an ensemble of neural networks. This implicitly
assumes that the set of learnable functions contains the true function and that the
distribution of network parameters found translates to a good predictive distribution
in Y space. In practice, this method does well, especially in cases where the training
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set distribution is the same as the test-time distribution [Lakshminarayanan et al.,
2017]; however, in decision making problems this is rarely the case.

Given that queries made at test time will be out of the training distribution,
an assumption about how data relates to each other in Y space may be a more
appropriate assumption. This inspired me to turn to neural processes, where the
key assumption is that we have access to a distribution of function samples that we
can learn from. The proposed models in Chapter 6 strive to make neural processes
well-equipped for real-world problems (i.e. sample efficient and robust to test-time
distribution shifts). For the future, I am excited to see what alternative assumptions
can be made to generate epistemic uncertainty.

9.1 Thoughts on the Future of AI for Tokamaks

The Future of Reinforcement Learning for Tokamak Control

Part IV of this thesis detailed steps for learning a tokamak controller via model-based
reinforcement learning. While these were exciting initial steps, there are still many
improvements that need to be made in order for reinforcement learning to make
an impact on tokamak control. In my opinion, the performance of the controller is
currently bottlenecked by the accuracy and sophistication of the surrogate model
used for training the policy. In particular, I believe the surrogate model could be
improved in the following ways:

• Addition of Stability Predictors. Our current version of the surrogate model
has no notion of plasma stability. As such, learned neutral beam controllers
may push power as high as possible or change the beams rapidly with no
consideration of stability. One obvious next step for improvement is to include
a tearing mode or disruption predictor [Seo et al., 2024, Fu et al., 2020b, Rea
et al., 2019, Keith et al., 2024] that can be leveraged for feedback to the
policy.

• Incorporating Prior Knowledge. While learning neural network models to
predict the evolution of the plasma was key to making reinforcement learning
feasible, a fully data-driven surrogate model has weaknesses. Primarily,
we do not expect to predict the evolution of the plasma accurately out of
distribution if we only rely on data. However, on top of this, the model may
learn spurious correlations due to feedback controllers operating on the device.
These problems may be ameliorated by including prior information similar to
what was done in [Mehta et al., 2021a]. Promising work towards this end has
already been started by [Wang et al., 2023, 2024].

• More Advanced Machine Learning Models. The model detailed in Chap-
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ter 8 is a relatively straight-forward recurrent network. While standard trans-
former architectures were tried for this problem (but suffered from overfitting
to the relatively small dataset), there have been developments in transformers
for time series [Wen et al., 2022] that may lead to more accurate predictions.

• Accounting for Heterogeneity of the Data. The dynamics models described
in Part IV were learned with the assumption that the data is homogeneous. In
reality, the DIII-D tokamak changes over time. For example, the neutral beam
orientations may change from experiment to experiment (which is information
that could be provided to future models). There are also changes that are
unobservable from a data perspective, such as upgrades to the device itself.
Accounting for this would likely require a more sophisticated architecture
that accounts for and infers latent variables within the data. This may be
especially challenging because of the relatively limited size of the dataset.

• Richer Representations of the Plasma. The dynamics models were trained
on states of the plasma as informed by post-processing tools as discussed
in Lao et al. [1985]. An alternative route may be to train the model on the
raw diagnostic measurements themselves. This would vastly increase the
number of features in the data, although it is not clear whether the amount
of information would necessarily increase. It would also sidestep any bias
introduced by these post-processing tools.

• Making Actuators More Realistic. Besides predicting the evolution of the
plasma, more work needs to be done to better replicate how the actuators
act on the device. A significant amount of work was already done for this
with respect to viable power-torque requests for the neutral beams (see Ap-
pendix C.5.3). Even with the neutral beams, however, more effort needs to be
made to make this as close to the DIII-D device as possible (e.g. coding in the
beam dead-zone issues that caused oscillations described in Section 7.4). This
will require close collaborations with scientists that are intimately familiar
with DIII-D.

Building AI Assistants for Scientists

Besides using reinforcement learning for control, I believe there is great potential for
designing an AI agent that can collaborate with scientists for discovery in nuclear
fusion. Recently, Mehta et al. [2023a] made a retrieval-augmented-generation
(RAG) system that can assist scientists using information from the log information
from the DIII-D and Alcator C-Mod tokamaks. These are exciting first steps, but
there are two next steps that could make an AI fusion system much more powerful.
The first is allowing the language model to search over literature in order to access
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more information and possibly do hypothesis generation. The second improvement
is to allow the language model to be able to use a surrogate model (such as the one
proposed in this thesis) as a tool. Doing so would allow the language model to aid
in shot predictions, reason about how different actuator settings would affect the
plasma, and perform shot planning automatically for the scientist. Beyond nuclear
fusion, I believe such agents will revolutionize scientific discovery, and preliminary
steps to create such agents have already begun [Bran et al., 2023].
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Appendix A

Appendix for Chapter 2

A.1 Proof of Theorem 1

We start by defining notation for the following analysis. Let F be the collec-
tion of all possible reward functions (i.e. the support of our prior). Recall that
DT = {(xt, at, yt)}Tt=1 is the data sequence collected up to time T . Let DT be the
collection of all such T -length sequences, and note that the observations seen in this
sequence depend on the reward function in question. We also denote D = ∪∞t=1Dt.
For f ∈ F and DT ∈ DT , we define λ(f,DT ) as

λ(f,DT ) := 1−
∑

x∈X ω(x) (maxa∈A f(x, a)− f(x, a∗T (x)))∑
x∈X ω(x) (maxa∈A f(x, a)−mina∈A f(x, a))

(A.1)

Note that λ(f,DT ) ≥ 0 for all f ∈ F , DT ∈ DT and that maxD∈D λ(f,D) = 1
for all f ∈ F . We define D∗T,f to be the optimal T -length data sequence with
respect to f ; that is,

D∗T,f := argmax
DT∈DT

λ(f,DT ) (A.2)

We will often write this sequence as D∗T when it is clear from context. Note that
the optimal data sequence is also the one which makes greedy decisions at every
time step. To better understand D∗T , note that if T = 1, the evaluation selected will
be the task and its corresponding best action that yields the greatest reward out of
any task. If this optimal strategy is continued for more evaluations, each optimal
task-action pair will be evaluated in order of descending reward, and after making
|X | such evaluations, λ(f,D∗T ) = 1. After this, it does not matter which task-action
pairs are evaluated.

Because the strategy of Algorithm 1 is to play myopically optimal with respect
to a posterior sample, it falls into the broad class of algorithms known as Myopic

127



Posterior Sampling (MPS) [Kandasamy et al., 2019a]. We first restate known
properties of these algorithms in the context of our problem.
Condition 1 ([Kandasamy et al., 2019a]). Let H ∈ D be any arbitrary set of
starting task-action evaluations. For reward functions f, f ′ ∈ F and corresponding
optimal data sequences D∗T,f , D

∗
T,f ′ , there exists sequences {εT }T≥1 and {τT }T≥1

such that
1. The optimal data sequences achieve asymptotically similar performance:

sup
f,f ′∈F

sup
H∈D

{
E
[
λ(f,H ∪D∗T,f )

]
− E

[
λ(f ′, H ∪D∗T,f ′)

]}
≤ εT

where the expectations are over the observed rewards.
2. The rate of convergence is better than O(1/

√
T ). That is, where

√
τT =

1 +
∑T

t=1 εt, we have that τT = o(T ).
Condition 2 ([Kandasamy et al., 2019a]). Let EYx,a denote the expectation over
the likelihood Y ∼ P(·|x, a, f). Where j < k, let Dj , Dk ∈ D be such that Dj is a
prefix of Dk (i.e. the first j members of Dk make up Dj). For all such Dj , Dk ∈ D,
x ∈ X , a ∈ A, and f ∈ F the following holds:

1. λ is monotone, meaning that EYx,a [λ(f,Dj ∪ {(x, a, Yx,a)}] ≥ λ(f,Dj).
2. λ is adaptive submodular, meaning that,

EYx,a [λ(f,Dj ∪ {(x, a, Yx,a)})]− λ(f,Dj)

≥ EYx,a [λ(f,Dk ∪ {(x, a, Yx,a)})]− λ(f,Dk)

Note that λ as defined in (A.1) satisfies Condition 1. As mentioned before, the
optimal strategy λ(f,D∗T,f ) = 1 for T ≥ |X | and ∀f ∈ F . This is true regardless of
the initial data sequence H . Therefore, we see that εT = 0 for T ≥ |X |. Whenever
T < |X |, the largest E

[
λ(f,H ∪D∗T,f )

]
−E

[
λ(f ′, H ∪D∗T,f ′)

]
can be is 1 since

λ is bounded. Therefore, we can set εT = 1 for T < |X |. Putting this together,

τT =

(
1 +

T∑

t=1

εt

)2

≤


1 +

|X |−1∑

t=1

1




2

= (1 + |X | − 1)2 = |X |2

Thus Condition 1 holds with τT = |X |2.
Our definition of λ also meets the requirements of Condition 2. First of all, λ

is monotonically increasing because it relies on the maximum reward seen, and
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therefore λ can only increase after seeing new data. λ is also adaptive submodular
since any improvement from seeing a new evaluation can only be more impactful
when less data has been seen. For intuition, consider any evaluation {x, a, y}. There
are two cases:

1. {x, a, y} is better than any other evaluation for task x in Dk. Therefore Dj

and Dk will both have the same maximum played reward for task x; however,
the previous maximum may have been greater for Dk since it is a superset of
Dj . Thus, the increase in λ must be greater or equal for Dj .

2. {x, a, y} is not best evaluation for task x in Dk. In this case,

λ(f,Dk ∪ {(x, a, y})− λ(f,Dk) = 0

and the condition holds.
Theorem 4 ([Kandasamy et al., 2019a]). Assume that λ satisfies conditions 1 and
2, and let τT be as defined in Condition 1. Let DT be data collected by playing
myopically optimal according to posterior samples. Then, for all 0 < ρ < 1,

E [λ(f,DT )] ≥ (1− ρ)E
[
λ(f,D∗ρT )

]
−
√
|X ||A|τTγT

2T

Using this theorem, the proof for Theorem 1 is relatively straightforward.

Proof (Theorem 1). Note that Theorem 4 can be used because Algorithm 1 opti-
mizes λ as defined in (A.1) with respect to posterior samples,

E
[
λ(f,D∗ρT )

]
− E [λ(f,DT )] ≤

√
|X ||A|τTγT

2T
+ ρE

[
λ(f,D∗ρT )

]

≤ |X |
√
|X ||A|γT

2T
+ ρ

In the case where T > |X |, we can set ρ = |X |
T . In this case,

E
[
λ(f,D∗|X |)

]
− E [λ(f,DT )] = 1− E [λ(f,DT )]

= E
[ ∑

x∈X ω(x) (maxa∈A f(x, a)− f(x, a∗T (x)))∑
x∈X ω(x) (maxa∈A f(x, a)−mina∈A f(x, a))

]

≤ |X |
√
|A||X |γT

2T
+
|X |
T

If T ≤ |X |,

E
[ ∑

x∈X ω(x) (maxa∈A f(x, a)− f(x, a∗T (x)))∑
x∈X ω(x) (maxa∈A f(x, a)−mina∈A f(x, a))

]
≤ 1 < |X |

(
1

T
+

√
|A||X |γT

2T

)

Therefore, the theorem holds.
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A.2 Random Function Generation

In order to run experiments in which there are many different optimization problems,
we consider drawing problems at random from a particular class of functions. These
functions are over the domain [0, 1]d and have the following form:

fm,s,c,b(x) =
m∑

k=1

d∑

i=1

si exp

[
−(xi − ck,i)2

bk,i

]

where m is the number of point masses, si are the scales, ck,i control the centers of
the masses, and bk,i are the bandwidths. These quantities are generated at random in
order to construct a suite of different functions. To ensure varying difficulty in the
30 randomly drawn functions, we drew 15 “easy” functions, 10 “average” functions,
and 5 “hard” functions. These classes of difficulty are characterized by the possible
values the parameters of f can take (except for the centers of the mass, which can
be anywhere in [0, 1]d). To sample a function, each parameter is drawn uniformly at
random over the support given in Table A.1.

Difficulty Number of Masses Scale Range Bandwidth Range
Easy {0, 1, 2} [0, 1] [0.7, 0.9]

Average {3, 4} [0.25, 1] [0.4, 0.6]
Hard {5, 6, 7} [0.5, 1] [0.25, 0.4]

Table A.1: Ranges of parameters for randomly generated function by difficulty
class.

A.3 Correlated Tasks of Varying Difficulty

For correlated tasks of varying difficulty we use the function g : X ×A → R, where
X = [0, 1] and A = [0, 1]. From this, we discretize the problem by choosing ten
equispaced tasks from X . The function g is defined as follows:

g(x, a) =
M∑

m=1

sm exp

[−(a− ca,m)2

ba,m
+
−((|x− 0.5| − cx,m)2

bx,m

]
(A.3)

where the specific quantities are shown in the table below.
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m sm ca,m ba,m cx,m bx,m
1 15 0.1 0.005 0.45 0.01
2 −15 0.2 0.005 0.45 0.01
3 16 0.3 0.005 0.45 0.01
4 −6 0.4 0.005 0.45 0.01
5 7 0.5 0.005 0.45 0.01
6 −7 0.6 0.005 0.45 0.01
7 16 0.7 0.005 0.45 0.01
8 −16 0.8 0.005 0.45 0.01
9 15 0.9 0.005 0.45 0.01
10 4 0.1 0.05 0.25 0.01
10 −4 0.3 0.075 0.25 0.01
11 8 0.6 0.05 0.25 0.01
12 −4 0.8 1 0.25 0.01
13 4 0.1 0.05 0.15 0.0025

Table A.2: Parameters for (A.3)

A.4 Nuclear Fusion Experiments Preliminaries

For our nuclear fusion experiments in Section 2.5, we use the TRANSP program to
simulate runs on the DIII-D tokamak. TRANSP is a time-dependent transport code
used for interpretive analysis and predictive simulations of tokamaks, and DIII-D is a
tokamak in San Diego that is operated by General Atomics. Access to TRANSP and
running TRANSP experiments were possible thanks to our collaborators at Princeton
Plasma Physics Lab. We run the predictive module of TRANSP (PTRANSP) where
each experiment on TRANSP (referred to as ”run”) simulates a fusion experiment
already conducted on DIII-D (referred to as ”shot”) while predicting how changes
in the input parameters would affect the plasma state. When conducting a run
on a given shot, at each time step of the run, we can identify task variables that
correspond to the state of the plasma at the time during the experiment. These
variables can include βn, initial total energy eigenvalues, total pressure, plasma
current, etc.

βn is a ratio of the pressure of the plasma to the magnetic energy density,
and thus represents how effectively the plasma is confined during the shot. It is
essentially a proxy for the economic output of the fusion reaction. Total energy
eigenvalues represent the amount of change in energy within and outside the plasma
due to certain perturbations, and the minimum value of the total energy eigenvalues
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(which we will refer to as ”minimum eigenvalue”) indicates the stability of the
plasma.

When conducting a run (i.e. experiment on TRANSP), we can apply controls
that specify parameters of the neutral beams, which include power, energy, full
energy fraction and half energy fraction. DIII-D has a total of 8 physical neutral
beams, 6 of which are co-current beams (which inject in the same direction as the
plasma current) and 2 of which are counter-current beams (inject in the opposite
direction of the plasma current). In our experiments, we confine the action space
to 2 dimensions: power coefficient of co-current beams and power coefficient of
counter-current beams, each with domains [0.001, 1.0]. These power coefficients are
applied by multiplying the maximum power of the set of beams by the coefficient.
By ranging the power coefficient from 0.001 to 1.0, we essentially scale the beam
powers from the minimum to the maximum power level possible.

After each TRANSP run, we can extract a measure of stability of the plasma at
each time step of the run, which is the minimum eigenvalue. The shots that we are
concerned with in our experiments are those in which a common instability called
”tearing” occurred. This occurs when the layers of magnetic fields that confine
the plasma rip apart and reform to create magnetic field islands, which causes
disturbances in the plasma. Therefore, in our experiments, we apply our designated
controls before tearing occurs and try to maximize the stability of the plasma after
the time of tearing.

Preliminary experiments have shown that purely optimizing the stability (mini-
mum eigenvalue) will always decrease the power of all beams, which is not desirable
because this will also dissipate the plasma. Therefore, we add βn to our objective
in order to steer the optimization towards maintaining high reaction output while
stabilizing the plasma. Hence, our optimization objective is C1εm + C2βn, where
C1, C2 are constants and εm is the minimum eigenvalue.

A.5 Nuclear Fusion Experiment Setup

The 8 shots selected to comprise the independent tasks in the experiments in Sec-
tion 2.5 are shots 145699, 149205, 149689, 153145, 155215, 162939, 170473,
171315 on the DIII-D tokamak. All of these shots had a tearing instability that ter-
minated the fusion reaction soon after the occurrence of the instability. The plasma
state that is of interest then is the state of the plasma shortly before tearing occurred.
Ideally, we would like to identify these states that will quickly turn unstable and
apply controls to prevent the instability.

Therefore, in our optimization experiments, the tasks are identified by the state
of the plasma 50 milliseconds (ms) before tearing time. Each query of a set of
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controls corresponds to a run (simulation experiment on TRANSP) from 50ms
before tearing to 50ms after tearing time. After the run completes, we extract the
minimum eigenvalues εm and βn values at 5ms increments throughout the duration
of the run and average them to produce ε̄m and β̄n. Because the scales of ε̄m and β̄n
are very different, we scale them to be roughly the same scale. The sum of these two
scaled terms is the optimization objective, which signifies maximizing the stability
of the plasma (max ε̄m) while maximizing the reaction efficiency, or economic
output (max β̄n). The objective used in our experiments was 10β̄n + 100ε̄m.

The optimization experiment results presented in Section 2.5.1 are averaged
over 10 trials, each with 125 query capital. In each trial, for each task, 5 initial
points are drawn uniformly at random for evaluation. Each task is modeled by a
GP with an RBF kernel, and hyperparameters are tuned for a GP every time an
observation is seen for its corresponding task by marginal likelihood.

Optimization was asynchronously parallelized with 20 workers. Kandasamy
et al. [2018] proposed parallelized versions of standard Thompson sampling, and
the algorithms used for the fusion experiment were the asynchronous Thompson
sampling from Kandasamy et al. [2018] and the analougous parallel version of
MTS.
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Appendix B

Appendix for Chapter 3

B.1 The BATS Algorithm

Below we state the steps of the BATS algorithm. Algorithm 2 shows the main loop,
while Algorithm 3 shows the subroutines.
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Algorithm 2 The BATS Algorithm

BATS Input: Offline DatasetD =
⋃
j∈[M ]{(sji, aji, s′ji, rji)}

tj
i=1, Max Stitching

Length K, Number of Iteration n, Number of Samples per Iteration m, Neigh-
borhood Radius ε, Planning Tolerance δ, Discount Factor γ, Penalty Coefficient
c, and Distance Metric d
M0 = 〈S0, {As0}s∈S0 , γ, T0, r0, ρ0〉
Learn dynamics estimate, T̃ , and reward estimate, r̃ from D
for i = 0, 1, . . . , (n− 1) do
V̂ ∗i (·), πi(·)← valueIteration(Mi)
neighbors← getNeighbors(S, π,Mi, ε)
Mi+1 ←Mi

for j = 1, 2, . . . ,m do
s ∼ µMi(s | πi)
E ← getCandidateEdges(s,Mi, neighbors, j)
for (s, s′) ∈ E do

actions = stitch((s, s′),K, δ)
s′′ = s
for a ∈ actions do
As′′i+1 ≥ {a} ∪ As

′′
i+1

if a is last action in actions then
Ti+1(s

′′, a)← T̃ (s′′, a)

ri+1(s
′′, a)← r̃(s′′, a)− cd

(
T̃ (s′′, a), T (s′′, a)

)

s′′ ← T̃ (s′′, a)
Si+1 ← {s′′} ∪ Si+1

else
Ti+1(s

′′, a)← s′

ri+1(s
′′, a)← r̃(s′′, a)− cd

(
T̃ (s′′, a), s′

)

end if
end for

end for
end for

end for
V (·), π(·)← valueIteration(Mn)
return Mn
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Algorithm 3 Subroutines for BATS

getCandidateEdges Input:s, t, M̂ , neighbors, j
if k == 0 then

return []
end if
edges = []
vertexNeighbors← neighbors[t]
MDPNeighbors← M̂ [s, Âs]
for n ∈ vertexNeighbors do

edges += getFutureEdges(s, n, M̂ , j)
end for
for n ∈MDPNeighbors do

successorNeighbors← neighbors[t]
for n′ ∈ successorNeighbors do

neighbors += [(s, n′)]
end for
neighbors += getCandidateEdges(s, n, M̂ , neighbors, j − 1)

end for
return edges
getFutureEdges Input:s, n, M̂ , j
MDPNeighbors← M̂ [s, Âs]
edges← []
for n′ ∈MDPNeighbors do

edges += [(s, n′)]
edges += getFutureEdges(s, n′, M̂ , j − 1)

end for
return edges
stitch Input:e, k, ε
minDistance←∞
bestActions← []
for i = 1:j do

distance, actions← CEM(e, k)
if distance ¡ minDistance then

minDistance← distance
bestActions← actions

end if
end for
if minDistance ¡ ε then

return []
end if
return bestActions
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B.2 Additional Explanation of Bisimulation

In this work, we make use of bisimulation metrics as introduced by Givan et al.
[2003] in order to guarantee accurate value function estimates in our stitched graph.
Informally, bisimulation metrics compare states based solely on their expected
future reward distribution and thus ignore information that does not affect the
reward. Specifically, they are constructed in Ferns et al. [2012] as a generalization
of the following equivalence relation:
Definition 1. ∼ is a bisimulation relation if s ∼ s′ implies that ∀a ∈ A, r(s, a) =
r(s′, a) and T (s, a) ∼ T (s′, a).

This means that two states are bisimilar (related via ∼) if they attain the same
one-step rewards and their future state distributions also return the same under the
same actions. Intuitively, this relation serves to ignore attributes of the state space
which are not related to the returns attained executing actions. This relation and its
derived equivalence classes group together the states in which the agent receives the
same rewards under the same actions for an arbitrary choice of actions. However,
the restriction that states are only similar if they give the same future rewards under
any sequence of actions is quite strong–if an obviously bad action executed in a pair
of otherwise bisimilar states gives different rewards which are both bad, those states
will not be bisimilar. Any competent reinforcement learning algorithm will not take
an obviously bad action, so the states will be indistinguishable for RL purposes.

To rectify this, Castro [2019] give a coarser bisimulation relation and associated
metric which is based on the actions a particular policy would take:
Definition 2. The on-policy bisimulation relation∼π for a stochastic policy π is the
strongest relation such that s ∼π s′ iff

∑
a π(a | s)r(s, a) =

∑
a π(a | s′)r(s′, a)

and ∀C ∈ S/ ∼π, P π(C | s) = P π(C | s′) where S/ ∼π is the partition induced
by ∼π and P π(C | s) =

∑
a∈A (π(a | s)1[T (s, a) ∈ C]).

These works also give metrics which relax these equivalence classes, preserving
a notion of approximate bisimilarity. In our work, we use the on-policy bisimulation
distance from Castro [2019], which also gives a sampling-based algorithm for
approximating such a metric, which we’ll denote dπ∼(·, ·). As one might imagine,
it turns out that this distance is closely related to the value function for π by the
following theorem from the paper:
Theorem 5 (Theorem 3 from Castro [2019]). Given any two states s, t ∈ S in an
MDP M and a policy π, |V π(s)− V π(t)| ≤ dπ∼(s, t).

This result gives us a metric over states for which the value function is 1-
Lipschitz continuous. This property allows us to unify the graphical perspective of
stitching we take with the more traditional value function approach to RL.

There is an extensive literature on bisimulation, and further discussion, theory,

138



and empirical investigation can be found in Ferns et al. [2011, 2012], Zhang et al.
[2020], Castro [2019].

B.3 Proof of Theorem 3

We prove theorem 3 in this section. The proof proceeds by taking the infinite
expansion of a value function and correcting for planning errors using Theorem 2.
We can do this for each transition which is added by BATS instead of being take
from the dataset, allowing us to compare the upper and lower bounds with their true
values.

Proof. WLOG, suppose that for a fixed z ≤ `, π−(bi) = ai if i ≤ z and π−(bi) 6=
ai if z < i ≤ `. In other words, the π− chooses to take advantage of z of the stitches
made. Note that z can possibly be 0, but in this case the theorem holds trivially.

Let T− be the transition function in M−, and let s0, s1, . . . be the infinite
sequence of states that π− visits in M− starting from s0 = s and where ŝi =
T−(ŝi−1, π

−(ŝi−1)). Let τ be the ordered set hitting times of the states where
π− uses a stitched transition plus 0 and ∞, i.e. τ = {0} ∪ {t|t ∈ N+ s.t. st ∈
{bi}zi=1} ∪ {∞}, and let ti be the ith sorted element of τ .

We can expand the value function V (s) as follows:

V π−
M (s) =

∑

i=0,s0=s,si=T (si−1,π−(si−1))

γir(si, π
−(si))

=
∑

ti∈τ




j=ti+1−1∑

j=ti,sj=T (sj−1,π−(sj−1))

γjr(sj , π
−(sj))


 .

Leveraging our mapping, φ, and Theorem 2, note that

V π−
M (sti) = r(sti , π(sti)) + γV π−

M (sti+1)

= r(sti , π(sti)) + γV (sti+1) + γV π−
M (cti+1)− γV π−

M (cti+1)

≤ r(sti , π(sti))− γ ‖φ(sti+1)− φ(cti)‖+ γV π−
M (cti)

≤ r(sti , π(sti))− γεti + γV π−
M (cti)

We can apply this inequality at each hitting time to get the below:

V π−
M (s) ≥

∑

ti∈τ


γtir(sti , π−(sti))− γti+1εi +

j=ti+1−1∑

j=ti+1,sti=cti ,sj=T
−(sj−1,π−(sj−1))

γjr(sj , π
−(sj))
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V π−
M (s) ≤

∑

ti∈τ


γtir(sti , π−(sti)) + γti+1εi +

j=ti+1−1∑

j=ti+1,sti=cti ,sj=T
−(sj−1,π−(sj−1))

γjr(sj , π
−(sj))


 .

Note that, by construction, these lower and upper bounds equal the value functions
in the MDPs M− and M+, respectively.

V π−

M−(s) =
∑

ti∈τ


γtir(bti , π−(bti))− γti+1εi +

j=ti+1−1∑

j=ti+1,sti=cti ,sj=T
−(sj−1,π−(sj−1))

γjr(sj , π
−(sj))




(B.1)
and

V π−

M+(s) =
∑

ti∈τ


γtir(bti , π−(bti)) + γti+1εi +

j=ti+1−1∑

j=ti+1,sti=cti ,sj=T
−(sj−1,π−(sj−1))

γjr(sj , π
−(sj))


 .

(B.2)
Combining the above gives the desired result for our arbitrary s:

V π−

M−(s) ≤ V π−
M (s) ≤ V π−

M−(s).

B.4 Experiment Details

B.4.1 Hyperparameters and Training Procedure

Dynamics Models. To learn dynamics models, we use the architecture introduced
by Chua et al. [2018a], and follow the procedure described in Yu et al. [2020],
making a few minor changes. Like Yu et al. [2020], we train seven different
dynamics models and take the best five based on a validation set of 1,000 points.
Each model is a neural network with 4 hidden layers of size 200 and 2 heads at
the end: one predicting mean and one predicting log-variance. These models are
trained using batches of size 256 and using negative log likelihood as the loss. We
use ReLU for our hidden activation function, and unlike Yu et al. [2020], we do not
use spectral normalization. Following their procedure, we use a validation set of
one thousand points to select the best model to use after training.

BATS. For each of the experiments in Section 3.7, we perform BATS three times,
using different learned dynamics models, to produce three different stitched MDPs.
When using CEM to plan new stitches, we use the mean output of each member
of the dynamics model and check if the 80th quantile is under some planning
threshold. This planning threshold was set to 0.425 with for the mazes and 10 (after
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normalization) for Mujoco tasks. All experiments imposed a restriction of k = 1
number of actions that could be taken for stitching, except for halfcheetah which
we set to k = 5. Additionally, when forming the nearest neighbor graph for finding
potential stitches, we consider neighbors up to 0.225 away for umaze and medium
maze and 0.15 away for large maze. These were set as large as memory constraints
would allow for. For Mujoco tasks we found it easier to instead use the 25 closest
neighbors.

We assume for these experiments that we have access to the start state distribu-
tion. For Mujoco tasks we simply label the beginning of trajectories in the logged
dataset as start states. Since there is only one trajectory for each of the maze tasks,
we label every state that is in the support of the start state distribution as a start state.
The large maze dataset does not contain possible start states for all cells. For cells
in which there is not a start state in the dataset, we widen the distribution slightly so
that enough starts are included.

For the maze tasks we attempt 50, 000 stitches every iteration, and we run BATS
for 10 iterations for umaze and medium maze and 20 iterations for the large maze.
For the Mujoco experiments, we attempt to make 5, 000 stitches ever iteration, and
we run BATS for 40 iterations.

To increase exploration for the stitches to consider, we apply Boltzmann explo-
ration when selecting next actions to perform in the stitched MDP. That is, we select
actions according to:

P(a|s) =∝ exp (Q(s, a)/T )

where T is a temperature parameter, which we choose to set to 0.25 for all experi-
ments.

After running BATS, we searched for good hyperparameters by relabeling or
removing stitched edges accordingly. The best found parameters are shown in
Table B.1. When looking at the distribution of returns from trajectories in the
resulting MDPs, there is a clear value for the returns that separates successfully
stitched trajectories from those that were not able to be stitched to high value areas.
As such, we only behavior clone on trajectories above 100 (umaze), 200 (medium
maze), 300 (large maze), 1, 000 (hopper and walker2d), and 4, 000 (halfcheetah).
These thresholds were selected by inspection.

Mountaincar.
For the mountain car example, we found that doing 20 iterations of stitching

(each trying to make 100 stitches) was sufficient. We use the nearest 25 neighbors
to determine which stitches can be made, and we allow for up to k = 5 actions to be
used when stitching between states. We found that smaller dynamics models were
sufficient for this problem, and in particular, each member of the ensemble had 3
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Mazes Mujoco Mixed Tasks
umaze medium large hopper walker2d halfcheetah

Planning Error Threshold 0.425 2.25 0.5 2
Penalty Coefficient 20 10 50
Policy Layer Sizes 64, 64 256, 256 256, 256, 256 256, 256

Batch Size 256
Batch Updates 10, 000 20, 000 10, 000

Table B.1: Table of BATS Hyperparameters.

layers with 64 hidden units each. Lastly, we set the the temperature for Boltzmann
exploration to T = 0.1. We behavior clone using a policy network with two hidden
layers with 256 units each.

B.4.2 Bisimulation Implementation

The model architecture that we use for bisimulation is that of Zhang et al. [2020].
That is, we have a network that takes state observations as inputs and outputs a
latent representation, and we have a dynamics model that operates on this latent
representation. For the encoder network, we use three hidden layers with 256, 128,
and 64 units, respectively, and we set the latent dimension to be 6. Unlike the
model in Zhang et al. [2020]. however, we have one network that predicts both next
transitions in bisimulation space and next rewards (the same dynamics model as
described in Appendix B.4.1). We also use the same loss function as described in
Zhang et al. [2020]. In particular, we draw batches of pairs of state observations
and optimize according to

J(φ) =
(
‖zi − zj‖ − |ri − rj | − γW2

(
P̂ (·|zi, ai), P̂ (·|zj , aj)

))2

where zk, rk, ak are the latent encoding, the predicted reward, and the observed
action for the kth sample, respectively. P̂ is the learned dynamics model for the
latent space, and we use a bar over z to signify that we stop gradients. For more
details, please refer to Zhang et al. [2020]. Although in their work they iteratively
update their model to reflect a changing policy, in our work we train with respect
to a fixed policy. The on-policy nature of our training procedure resembles Castro
[2019].

B.4.3 COMBO Implementation

Because the original COMBO [Yu et al., 2021] paper did not include results on the
maze environments and does not yet have a public implementation, we made our
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best attempt at reimplementing their method in order to properly compare results.
For running COMBO, we based our dynamics model training on Yu et al. [2020]
and used all of their associated hyperparameters. For the conservative Q-learning
and policy learning components, we mostly followed the public implementation of
Kumar et al. [2020], but had to make some small tweaks to make it consistent with
the descriptions in Yu et al. [2021].

For the COMBO hyperparameters, we did a grid search over conservative
coefficient β in {0.5, 1.0, 5.0} and rollout length h in {1, 5} for all the maze tasks.
We found the best parameters to be h = 1, β = 1 on umaze, h = 1, β = 0.5
on medium, and h = 1, β = 0.5 on large. For all the other hyperparameters, we
followed the halcheetah parameters used in Yu et al. [2021]. Specifically, 3-layer
feedforward neural networks with 256 hidden units for Q-networks and policy, Q-
learning rate 3.e−4, policy learning rate 1.e−4, ρ(a|s) being the soft-maximum of
the Q-values and estimated with log-sum-exp, µ(a|s) = π(a|s), and deterministic
backups.
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Appendix C

Appendix for Chapter 4

C.1 Additional GPIDE Details

C.1.1 Forming the P, I, and D Features with GPIDE

As mentioned in Section 8.3, the P, I, and D features associated with a PID controller
can be easily formed with GPIDE, and in this Appendix we show this concretely.
Assume that the observations take the form ot =

(
x
(1)
t , . . . , x

(M)
t , σ

(1)
t , . . . , σ

(M)
t

)
,

and assume that the actions and rewards are not given to GPIDE for simplicity. Then
the linear projection for each head, fhθ , takes in x(1)t−1, . . . , x

(M)
t−1 , σ

(1)
t−1, . . . , σ

(M)
t−1 , (x

(1)
t −

x
(1)
t−1), . . . , (x

(M)
t − x(M)

t−1 ), (σ
(1)
t − σ

(1)
t−1), . . . , (σ

(M)
t − σ(M)

t−1 ) at each time step t.
We use a GPIDE architecture with three heads and where gθ is the identity function.
The linear projections for each head is as follows:

f1θ (ot−1, ot − ot−1) = f2θ (ot−1, ot − ot−1) =
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f3θ (ot−1, ot − ot−1) =
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(1)
t−1)− (σ

(1)
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(1)
t−1)

...
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(M)
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t−1 )− (σ
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t − σ(M)
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Note that f1θ and f2θ form the current error at time t (i.e. the P term), and f3θ forms
the change in error (i.e. the D term). For accumulation strategies, using exponential
smoothing with α = 1 for the first and third heads and a summation head for the
second head will recover the P, I, and D terms for heads 1, 2, and 3, respectively.
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Note that the above assumes dt = 1, but the linear projections can be adjusted to
take different dt values into account.

C.2 Implementation Details

Code Release All code for implementations are provided in the supplemental
material along with instructions for how to run experiments. The code can also
be found at https://github.com/IanChar/GPIDE. The only experiment
that cannot be run are the “real” cases for tokamak control.

Shortcut
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Observation
Encoder

Action
Encoder

Reward
Encoder

Transition
Encoder

GPIDE / Transformer

Shortcut
Encoder

Observation
Encoder

Action
Encoder

Reward
Encoder

Transition
Encoder

GPIDE / Transformer

Figure C.1: General Policy and Q Function Architectures. This architecture is heavily
inspired by Ni et al. [2022]. The gray box shows the history encoder modules, and this
is the only thing that changes between baseline methods in the tracking problems. Note
that there are two encoders: one for the policy function and one for the Q value function.
The purple boxes show the input encoders, and hyperaparmeters for these can be found
in Table C.2. We found the shortcut encoders to be essential to good performance. The
architecture when using GRU is nearly identical; however, there is no “Transition Encoder”
since Ni et al. [2022] encodes (oi, ai−1, ri−1) for each time step instead.

Architecture We use the same general architecture for each of the RL methods in
this paper (see Figure C.1). Each input to the history encoders, policy functions, and
Q-value functions have corresponding encoders. This setup closely follows what
was done in Ni et al. [2022]. The encoders are simply linear projections; however, in
the case of our GRU history encoder we do linear projections followed by a ReLU
activation (as done in Ni et al. [2022]). Although hypothetically the policy only
needs to take in history encoding, zt, since int includes the current observation, we
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found it essential for the current observation to be passed in independently and have
its own encoder.

C.2.1 GPIDE Implementation Details

In addition to what is mentioned in Section 8.3, we found that there were several
choices that helped with training. First, there may be some scaling issues because
ot − ot−1 may be small or the result of summation type heads may result in large
encodings. To account for this, we use batch normalization layers [Ioffe and
Szegedy, 2015] before each input encoding and after each `h.

There are very few nonlinear components of GPIDE. The only one that remains
constant across all experiments is that a tanh activation is used for the final output
of the encoder. For tracking tasks, the decoder gθ has 1 hidden layer with 64 units
and uses a ReLU activation function. For PyBullet tasks, gθ is a linear function.

C.2.2 Recurrent and Transformer Baseline Details

Recurrent Encoder. For the recurrent encoder, we tried to match as many details as
Ni et al. [2022] as possible. We double checked our implementation against theirs
and confirmed that it achieves similar performance.

Transformer Encoder. We follow the GPT2 architecture [Radford et al., 2019]
for inspiration, and particularly the code provided in Karpathy [2022–]. In particular,
we use a number of multi-headed self-attention blocks in sequence with residual
connections. We use layer normalization [Ba et al., 2016] before multi-headed
attention and out projections; however, we do not use dropout. The out projection
for each multi-headed self-attention block has one hidden layer with four times the
number of units as the embedding dimension. Although Melo [2022] suggests using
T-Fixup weight initialization, we found that more reliably high performance was
achieved with the weight initialization of Radford et al. [2019]. Lastly, we used
the same representation for the history as GPIDE, i.e. (ot−1, at−1, rt−1, ot − ot−1),
since it results in better performance.

C.2.3 PID Baseline

To tune our PID baseline, we used Bayesian Optimization over the three (for SISO)
or six (for MIMO) dimensional space. Specifically we use the library provided by
Nogueira [2014–]. The output of the blackbox optimization is the average over 100
different settings (independent from the 100 settings used for testing). We allow the
optimization procedure to collect as many samples as the RL methods. The final
performance reported uses the PID controller with the best gains found during the

147



optimization procedure. The bounds for each of the tracking tasks were eyeballed
to be appropriate, which potentially preferably skews performance.

C.3 Hyperparameters

Because of resource restrictions, we were unable to do full hyperparameter tuning
for each benchmark presented in this paper. Instead, we focused on ensuring that all
history encoding methods were roughly comparable, e.g. dimension of encoding,
number of parameters, etc. Tables C.1 show selected hyperparameters, and the
following subsections describe how an important subset of these hyperparameters
were picked. Any tuning that was done was over three seeds using 100 fixed settings
(different from the 100 settings used for testing).

Task Type Learning Rate Batch Size Discount Factor Policy Network Q Network Path Length Encoding

Tracking 3e−4 32 (256 for PIDE) 0.95 [24] [256, 256] 100
PyBullet 3e−4 32 (256 for PIDE) 0.99 [256, 256] [256, 256] 64

Table C.1: SAC Hyperparameters. The “Path Length Encoding” is the amount of history
each encoder gets to observe besides PIDE which, because of the nature of it, uses the entire
episode.

Observation Action Reward Transition Policy Shortcut Q Shortcut History Encoding

GPIDE (Tracking) 8 N/A N/A 8 8 64 64
GRU (Tracking) 8 N/A N/A N/A 8 64 64

Transformer (Tracking) 16 N/A N/A 16 8 64 64
GPIDE (PyBullet) 32 16 16 64 8 64 128

Transformer (PyBullet) 48 16 16 48 8 64 128

Table C.2: Dimension for the Input Encoders and Final History Encoding. The input
encoders correspond to the output dimensions of the purple boxes in Figure C.1. By “History
Encoding” size we mean the dimension of zt.

Task Type D gθ Hidden Size

Tracking 16 [64]
PyBullet 32 []

Table C.3: GPIDE Specific Hyperparamters. Recall that D corresponds to the output
dimension of fθ. Empty brackets for the hidden size means that gθ is a linear function.
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Task Type Number of Layers Number of Heads Embedding Size per Head

Tracking 2 4 8
PyBullet 4 8 16

Table C.4: Transformer Specific Hyperparamters

Encoder SISO Tracking MIMO Tracking (2D) PyBullet

Transformer 25,542 25,644 793,868-795,026
GRU 14,240 14,264 74,816-75,248

GPIDE 13,228 13,288 75,296-76,486
GPIDE-ES 12,204 12,264 50,720-51,910

GPIDE-ESS 12,204 12,264 50,720-51,910
GPIDE-Attention 15,276 15,336 99,872-101,062

Table C.5: Number of Parameters in History Encoder Modules. The number of
parameters corresponds to the gray boxes in Figure C.1. The difference in SISO vs MIMO
and the PyBullet tasks is due to the different observation and action space dimensionalities.

C.3.1 Hyperparamters for Tracking Tasks

For tracking tasks, we tried using a history encoding size of 32 and 64 for GRU,
and we found that performance was better with 64. This is surprising since PIDE
can perform well in these environments even though its history encoding is much
smaller (3 or 6 dimensional). To make it a fair comparison, we set the history
encoding dimension for GPIDE and transformer to be 64 as well. We use one layer
for GRU. For the transformer-specific hyperparameters we choose half of what
appears in the PyBullet tasks.

C.3.2 Hyperparameters for PyBullet Task

For the PyBullet tasks, we simply tried to emulate most of the hyperparameters found
in Ni et al. [2022]. For the transformer, we choose to use similar hyperparameters
to those found in Melo [2022]. However, we found that, unlike the tracking tasks,
positional encoding hurts performance. As such, we do not include it for PyBullet
experiments.
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C.3.3 Hyperparameters for Ablations

For the ablations of GPIDE, we use α = 0.01, 0.1, 0.25, 0.5, 0.9, 1.0 for the smooth-
ing parameters when only exponential smoothing is used. When using exponential
smoothing and summation, the α = 0.01 head is replaced with a summation head.
The attention version of GPIDE replaces all six of these heads with attention.

C.4 Computation Details

We used an internal cluster of machines to run these experiments. We mostly
leveraged Nvidia Titan X GPUs for this, but also used a few Nvidia GTX 1080s. It
is difficult to get an accurate estimate of run time since job loads vary drastically
on our cluster from other users. However, to train a single policy on DMSD to
completion (1 million transitions collected, or 1,000 epochs) using PIDE takes
roughly 4.5 hours, using GPIDE takes roughly 17.25 hours, using a GRU takes
roughly 14.5 hours, and using a transformer takes roughly 21 hours. This is similar
for other tracking tasks. For PyBullet tasks, using GPIDE took roughly 43.2 hours
and using a transformer took roughly 64.2 hours. We note that our implementation
of GPIDE is somewhat naive and could be vastly improved. In particular, for
exponential smoothing and summation heads, wt can be cached to save on compute,
which is not being done currently. This is a big advantage in efficiency that GPIDE
(especially one without attention heads) has over transformers.

C.5 Environment Descriptions

C.5.1 Mass Spring Damper

For both MSD and DMSD, the observations include the current mass position(s),
the target reference position(s), and the last action played. Each episode lasts for
100 time steps. For all RL methods, the action is a difference in force applied to
the mass, but for the PID the action is simply the force to be applied to the mass at
that time. The force is bounded between -10 and 10 N for MSD and -30 and 30 N
for DMSD. Each episode, system parameters are drawn from a uniform distribution
with bounds shown in Table C.6 (they are the same for both MSD and DMSD).
Targets are drawn to uniformly at random to be −1.5 to 1.5 m offset from the
masses’ resting positions.
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MSD DMSD

Figure C.2: Diagram of the Mass Spring Damper Environments. The diagram on the
left the Mass Spring Damper (MSD) environment, and the diagram on the right shows
the Double Mass Spring Damper (DMSD) environment. In the diagram, we have labelled
the system parameters and the parts of the observation. The dotted line shows where the
center of the mass is located with no force applied, and the current position of the mass is
measured with respect to this point.

System Parameter Fixed Small Large

Damping Constant U(4.0, 4.0) U(3.5, 5.5) U(2.0, 10.0)
Spring Constant U(2.0, 2.0) U(1.75, 3.0) U(0.5, 6.0)

Mass U(20.0, 20.0) U(17.5, 40.0) U(10.0, 100.0)

Table C.6: MSD and DMSD System Parameter Distributions. Each episode system
parameters are uniformly at random drawn from these bounds.

C.5.2 Navigation Environment

Like the MSD and DMSD environments, the navigation experiment lasts 100 time
steps each episode. Additionally, the observation includes position signal, target
locations, and the last action. For all methods we set the action to be the change
in force, and the total amount of force is bounded between -10 and 10 N . The
penalty on the reward is equal to 0.01 times the magnitude of the change in force.
In addition, the maximum magnitude of the velocity for the agent is bounded by
1.0m/s. The agent always starts at the location (0, 0), and the target is picked
uniformly at random to be within a box of length 10 centered around the origin.

Every episode, the mass, kinetic friction coefficient, and static friction coefficient
is sampled, The friction is sampled by first sampling the total amount of friction in
the system, and then sampling what proportion of the total friction is static friction.
All distributions for the system parameters are uniform, and we show the bounds in
Table C.7.
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System Parameter No Friction Friction

Total Friction U(0.0, 0.0) U(0.05, 0.25)
Static Friction (Proportion) U(0.0, 0.0) U(0.25, 0.75)

Mass U(15.0, 25.0) U(5.0, 35.0)

Table C.7: Navigation System Parameter Distributions. Each episode system parameters
are uniformly at random drawn from these bounds. The static friction parameter drawn is
the proportion of the total friction that is static friction.

C.5.3 Tokamak Control Environment

Simulator Our simulator version of the tokamak control is inspired by equations
used by Boyer et al. [2019], Scoville et al. [2007]. In particular, we use the following
relations for stored energy, E, and rotation, vrot:

Ė = P − E

τE

v̇rot = CrotT −
vrot

τm

where P is the total power, T is the total torque, τE is the energy confinement time,
τm is the momentum confinement time, and Crot is a quantity relying on the ion
density and major radius of the plasma. We treat τm and Crot as constants with
values of 0.1 and 80.0 respectively.

We base the energy confinement time off of the ITERH-98 scaling [Transport
et al., 1999]. This uses many measurements of the plasma, but we focus on a subset
of these and treat the rest as constants. In particular,

τE = CEI
0.95B0.15P−0.69

where CE is a constant value we set to be 200, I is the plasma current, and B is
the toroidal magnetic field. To relate the stored energy to βN we use the rough
approximation

βN = Cβ

(
aB

I

)
E

where Cβ is a constant we set to be 5, and a is the minor radius of the plasma. For
a, I , and B, we sample these from the distribution described in Table C.8 for each
episode. Lastly, we add momentum to the stored energy. That is, the stored energy
derivative at time t, Ėt, is

Ėt = 0.5

(
Pt −

Et
τE

)
+ 0.5Ėt−1
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Minor Radius (m) Plasma Current (MA) Toroidal Magnetic Field (T)

N (0.589, 0.02) N (1e6, 1e5) N (2.75, 0.1)

Table C.8: Tokamak Control Simulator Distributions.
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Figure C.3: Power and Torque Bounds. The region outlined in blue shows the possible
power-torque configurations. The dots show possible requests, and the corresponding red
X marks show the actual achieved power-torque setting.

The actions for all control methods is the amount of change for the power and
torque. Because the total amount of power and torque injected rely on the beams,
they are not totally disentangled. In Figure C.3, we show the bounds for the action
space. Furthermore, we bound the amount that power and torque can be changed by
roughly 40MW/s and 35Nm/s, respectively. Each step is 0.025 seconds.

Each episode lasts for 100 increments of 0.025 seconds. The observations are
the current βN and rotation values, their reference values, and the current power
and torque settings. We make the initial βN and rotation relatively small in order to
simulate the plasma ramping up. We let the βN and rotation targets be distributed
as U(1.75, 2.75) and U(25.0, 50.0) rad/s, respectively.

“Real” For the real versions of the tokamak control experiments, most of the
previous (such as action bounds and target distributions) stays the same. This
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data-driven simulator is based on the one from Char et al. [2023a], and we refer the
reader there for more details. That being said, there are some differences between
the architecture presented there and the one used in this work. Our network is a
recurrent network that uses a GRU, has four hidden layers with 512 units each, and
outputs the mean and log variance of a normal distribution describing how βN and
rotation will change. In addition to power and torque, it takes in measurements for
the plasma current, the toroidal magnetic field, n1rms (a measurement related to
the plasma’ stability), and 13 other actuator requests for gas control and plasma
shaping. In addition to sampling from the normal distribution outputted by the
network, we train an ensemble of ten networks, and an ensemble member is selected
every episode. We use five of these models during training and the other five during
testing. Along with an ensemble member being sampled each episode, we also
sample a historical run, which determines the starting conditions of the plasma and
how the other inputs to the neural network which are not modelled evolve over time.
Recall that 100 fixed settings are used to evaluate the policy every epoch of training.
In this case, a setting consists of targets, an ensemble member, and a historical run.

C.6 Additional Experiments

C.6.1 Experiments Using VIB + GRU

As shown in this work, using a GRU for a history encoder often results in a policy
that is ill-equipped to handle changes in the dynamics not seen at train time. One may
wonder whether using other robust RL techniques is able to mask this inadequacy of
GRU. To test this, we look at adding Variational Information Bottlenecking (VIB)
to our GRU baseline [Alemi et al., 2016]. Previous works applying this concept to
RL usually do not consider the same class of POMDPs as us [Lu et al., 2020, Igl
et al., 2019]; however, Eysenbach et al. [2021] does have a baseline that uses VIB
with a recurrent policy.

To use VIB with RL, we alter the policy network so that it encodes input to
a latent random variable, and the decodes into an action. Following the notation
of Lu et al. [2020], let this latent random variable be Z and the random variable
representing the input of the network be S. The goal is to learn a policy that
maximizes J(π) subject to I(Z, S) ≤ IC , where I(Z, S) is the mutual information
between Z and S, and IC is some given threshold. In practice, we optimize
the Lagrangian. Where β is a Lagrangian multiplier, p(Z|S) is the conditional
density of Z outputted by the encoder, and q(Z) is the prior, the penalizer is
−βES [DKL (p(Z|S)||q(Z))]. Like other works, we assume that q(Z) is a standard
multivarite normal.

We alter our GRU baseline for tracking tasks so that the policy uses VIB. This
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is not entirely straightforward since our policy network is already quite small.
We choose to keep as close to original policy architecture as possible and set the
dimension of the latent variable, Z, to be 24. Note that this change has no affect on
the history encoder; this only affects the policy network. For our experiments, we
set β = 0.1, but we note that we may be able to achieve better performance through
more careful tuning or annealing of β.

In any case, we do see that VIB helps with robustness in many instances (see
Table C.9). However, the cases where there are improvements are instances where
the GRU policy already did a good job at generalizing to the test environment. These
are primarily the MSD and DMSD environments where the system parameters
drawn during training time are simply a subset of those drawn during testing time
(interestingly, this notion of dynamics generalization matches the set up of the
experiments presented in Lu et al. [2020]). Surprisingly, in the navigation and
tokamak control experiments, where there are more complex differences between
the train and test environments, VIB can sometimes hurt the final performance.

PID Controller GRU GRU+VIB Transformer PIDE GPIDE

MSD Fixed / Fixed −6.14± 0.02 −5.76± 0.02 −5.73± 0.01 −5.75± 0.01 −5.69 ± 0.00 −5.76± 0.01
MSD Fixed / Large −11.39± 0.09 −12.52± 0.11 −12.50± 0.14 −10.87 ± 0.05 −11.44± 0.03 −11.61± 0.07
MSD Small / Small −7.49± 0.03 −7.02± 0.01 −7.01 ± 0.01 −7.15± 0.02 −7.14± 0.01 −7.12± 0.04
MSD Small / Large −11.18± 0.09 −9.82± 0.07 −9.57 ± 0.03 −10.01± 0.03 −10.88± 0.04 −10.43± 0.14

DMSD Fixed / Fixed −15.33± 0.14 −16.20± 0.31 −15.83± 0.28 −15.41± 0.13 −12.64 ± 0.04 −13.49± 0.22
DMSD Fixed / Large −27.59± 0.44 −37.21± 0.35 −35.34± 0.28 −28.16± 0.17 −25.29 ± 0.18 −27.54± 0.33
DMSD Small / Small −21.78± 0.14 −22.49± 0.34 −22.51± 0.24 −20.56± 0.16 −18.09 ± 0.04 −18.67± 0.17
DMSD Small / Large −26.57± 0.22 −31.27± 0.36 −30.93± 0.34 −26.04± 0.24 −23.82± 0.13 −23.65 ± 0.20

Nav Sim / Sim −17.23± 0.18 −13.82± 0.01 −14.69± 0.02 −13.68± 0.01 −13.74± 0.00 −13.65 ± 0.00
Nav Sim / Real −23.87± 0.29 −29.85± 0.55 −39.57± 0.24 −22.84± 0.11 −20.37 ± 0.08 −21.23± 0.12

βN Sim / Sim −8.09± 0.00 −7.19 ± 0.00 −7.24± 0.01 −7.22± 0.00 −8.71± 0.02 −7.21± 0.01
βN Sim / Real −16.41 ± 0.30 −31.21± 1.67 −32.19± 1.19 −31.49± 3.66 −43.78± 6.46 −26.83± 1.36

βN -Rotation Sim / Sim −27.56± 0.08 −18.53± 0.02 −18.61± 0.12 −18.79± 0.09 −21.36± 0.05 −18.45 ± 0.03
βN -Rotation Sim / Real −30.08 ± 0.95 −45.91± 2.10 −44.24± 1.33 −48.23± 0.25 −60.23± 3.20 −41.86± 0.69

Average -18.33 -20.12 -21.14 -18.71 -19.58 -17.51

Table C.9: Tracking Experiments with GRU+VIB. We use green and red text to highlight
significant improvements and deteriorations in performance over vanilla GRU. We only
highlight a subset of configurations since we are focused on the robustness properties. This
table shows average (unnormalized) returns.

C.6.2 Lookback Size Ablations

To better understand the role of the maximum lookback size (i.e. the amount of
history used to form the encoding) of GPIDE, we repeat the PyBullet experiments
using a lookback size of 4, 16, 64, and 128 with and without attention (labelled
GPIDE and GPIDE-ESS, respectively). Figures C.4 and C.5 show performance
curves for GPIDE and GPIDE-ESS respectively. It is clear that there is a massive
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increase in improvement when expanding the maximum size of the lookback from
4 to 16. For the most part, this trend continues expanding the lookback size from
16 to 64; however, it seems pushing from 64 to 128 yields mixed results. For some
tasks, such as HalfCheetah-P, expanding the lookback to 128 results in noticeable
improvements both with and without attention. For other tasks, such as Hopper-
V, this expansion yields slightly worse performance, possibly because of training
stability issues.

One interesting observation is that, when attention is included, this decrease
in performance from expanding lookback can occur when increasing from 16 to
64 (see HalfCheetah-V and Walker-V). At the same time, however, it appears the
GPIDE can sometimes maintain good performance when expanding the lookback
to 128 when GPIDE-ESS cannot (Walker-P).
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Figure C.4: GPIDE Lookback Ablation. Each curve shows the average over four seeds
and the standard error of each.

C.7 Further Results

In this Appendix, we give further evaluation of the evaluation procedure. In addition,
we give full tables of results for normalized and unnormalized scores for all methods.
We also show performance traces. Note that the percentage changes in Table 4.4
do not necessarily reflect tables in this section since they report all combinations of
environment variants.

C.7.1 Evaluation Procedure

As stated in the main paper, for tracking tasks, we fix 100 settings (each comprised
of targets, start state, and system parameters) that are used to evaluate the policy for
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Figure C.5: GPIDE-ESS Lookback Ablation. Each curve shows the average over four
seeds and the standard error of each.

every epoch of training (i.e. for every epoch the evaluation returns is the average
over all 100 settings returns). We use a separate 100 settings when tuning. For the
final returns, we average over the last 10% of recorded evaluations.

For the PyBullet tasks, we use ten different rollouts for evaluation following Ni
et al. [2022]. We also average over the last 20% of recorded evaluations like they
do.

Normalized Table Scores. We now give an in-depth explanation of how the
scores in the table are computed. Let π(b,i) be the policy trained with baseline
method b (e.g. with GPIDE, transformer, or GRU encoder) on environment variant
i (e.g. fixed, small, or large). Let Jj(π(b,i)) be the evaluation of policy π(b,i) on
environment variant j, i.e. the average returns over all seeds and episodes. The
normalized score for policy π(b,i) on variant j is then

Jj(π(b,i))−min
b′,i′

Jj(π(b′,i′))

max
b′,i′

Jj(π(b′,i′))−min
b′,i′

Jj(π(b′,i′))

Note that we only min and max over baseline methods presented in the table.
For PyBullet tasks, we do the same procedure but normalize by the oracle

policy’s performance (sees both position and velocity and has no history encoder)
and the Markovian policy’s performance (sees only position or velocity and has
no history encoder). For both of these policies, we use what was reported from Ni
et al. [2022]. Note the our normalized scores differ slightly from those used in Ni
et al. [2022] since they normalize based on the best and worst returns of any policy;
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however, we believe our scheme gives a more intuitive picture of how any given
policy is performing.

C.7.2 MSD and DMSD Results

PID Controller GRU Transformer PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Fixed / Fixed −6.14± 0.02 −5.76± 0.02 −5.75± 0.01 −5.69 ± 0.00 −5.76± 0.01 −5.75± 0.01 −5.73± 0.01 −5.83± 0.02
Fixed / Small −7.51± 0.04 −7.56± 0.03 −7.29 ± 0.01 −7.37± 0.01 −7.33± 0.04 −7.37± 0.01 −7.32± 0.03 −7.39± 0.03
Fixed / Large −11.39± 0.09 −12.52± 0.11 −10.87 ± 0.05 −11.44± 0.03 −11.61± 0.07 −11.48± 0.05 −12.50± 0.19 −11.52± 0.10
Small / Fixed −6.26± 0.06 −5.80 ± 0.00 −5.92± 0.01 −5.95± 0.01 −5.93± 0.05 −5.89± 0.01 −5.92± 0.02 −5.91± 0.02
Small / Small −7.49± 0.03 −7.02 ± 0.01 −7.15± 0.02 −7.14± 0.01 −7.12± 0.04 −7.09± 0.02 −7.15± 0.02 −7.12± 0.02
Small / Large −11.18± 0.09 −9.82 ± 0.07 −10.01± 0.03 −10.88± 0.04 −10.43± 0.14 −10.42± 0.13 −10.43± 0.12 −10.07± 0.14
Large / Fixed −6.78± 0.16 −6.08 ± 0.01 −6.28± 0.03 −6.27± 0.01 −6.27± 0.03 −6.23± 0.04 −6.25± 0.04 −6.28± 0.05
Large / Small −7.78± 0.12 −7.25 ± 0.02 −7.44± 0.05 −7.43± 0.02 −7.45± 0.03 −7.44± 0.05 −7.44± 0.04 −7.48± 0.06
Large / Large −11.12± 0.05 −9.44 ± 0.02 −9.67± 0.05 −10.37± 0.02 −9.66± 0.04 −9.68± 0.05 −9.70± 0.05 −9.69± 0.06

Average -8.41 -7.92 -7.82 -8.06 -7.95 -7.93 -8.05 -7.92

Table C.10: Unnormalized MSD Results.

PID Controller GRU Transformer PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Fixed / Fixed 58.09± 1.66 93.18± 1.46 94.04± 0.83 100.00 ± 0.27 93.18± 1.20 93.77± 1.26 96.20± 1.22 87.16± 1.78
Fixed / Small 36.41± 5.36 29.74± 3.82 64.96 ± 1.38 54.90± 0.73 59.54± 5.78 54.35± 1.35 60.89± 3.48 51.84± 3.38
Fixed / Large 36.58± 2.86 0.00± 3.42 53.70 ± 1.71 34.92± 0.93 29.55± 2.32 33.62± 1.71 0.60± 6.25 32.51± 3.29
Small / Fixed 46.87± 5.88 89.05 ± 0.32 78.21± 1.31 75.81± 0.79 77.27± 4.66 81.41± 1.20 78.82± 1.44 79.64± 1.80
Small / Small 38.25± 3.44 100.00 ± 0.98 83.49± 3.07 84.88± 0.81 87.78± 5.31 90.66± 2.02 83.97± 2.40 87.57± 2.65
Small / Large 43.52± 2.82 87.63 ± 2.28 81.44± 0.82 53.21± 1.31 68.03± 4.43 68.09± 4.10 67.78± 3.84 79.57± 4.71
Large / Fixed 0.00± 15.12 63.36 ± 1.17 45.01± 3.18 46.37± 1.29 46.68± 3.06 49.86± 3.84 48.52± 3.69 45.03± 4.72
Large / Small 0.00± 15.75 70.44 ± 3.30 45.45± 6.93 45.73± 2.47 43.66± 4.47 44.71± 6.45 45.21± 5.42 39.64± 7.82
Large / Large 45.60± 1.71 100.00 ± 0.61 92.60± 1.49 69.88± 0.69 93.03± 1.27 92.36± 1.62 91.67± 1.68 91.95± 1.80

Average 33.92 70.38 70.99 62.86 66.53 67.65 63.74 66.10

Table C.11: Normalized MSD Results.

PID Controller GRU Transformer PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Fixed / Fixed −15.33± 0.14 −16.20± 0.31 −15.41± 0.13 −12.64 ± 0.04 −13.49± 0.22 −13.92± 0.09 −13.35± 0.05 −16.77± 0.13
Fixed / Small −21.29± 0.29 −25.21± 0.32 −21.37± 0.16 −18.58 ± 0.05 −19.77± 0.24 −21.31± 0.07 −20.09± 0.08 −23.29± 0.15
Fixed / Large −27.59± 0.44 −37.21± 0.35 −28.16± 0.17 −25.29 ± 0.18 −27.54± 0.33 −31.14± 0.13 −28.14± 0.11 −31.84± 0.71
Small / Fixed −18.15± 0.91 −17.75± 0.42 −15.86± 0.11 −13.43 ± 0.09 −14.37± 0.17 −14.35± 0.11 −13.57± 0.10 −16.85± 0.11
Small / Small −21.78± 0.14 −22.49± 0.34 −20.56± 0.16 −18.09± 0.04 −18.67± 0.17 −18.93± 0.10 −17.97 ± 0.07 −21.77± 0.10
Small / Large −26.57± 0.22 −31.27± 0.36 −26.04± 0.24 −23.82± 0.13 −23.65± 0.20 −23.66± 0.10 −22.72 ± 0.08 −28.26± 0.12
Large / Fixed −21.96± 0.62 −22.41± 0.32 −18.37± 0.30 −14.83 ± 0.12 −15.75± 0.14 −16.79± 0.04 −15.23± 0.12 −18.89± 0.28
Large / Small −22.30± 0.44 −26.63± 0.39 −22.00± 0.24 −19.46 ± 0.08 −19.99± 0.15 −21.14± 0.07 −19.71± 0.12 −23.19± 0.32
Large / Large −25.29± 0.30 −29.34± 0.30 −24.43± 0.21 −24.06± 0.03 −22.08± 0.14 −23.06± 0.07 −21.81 ± 0.09 −25.32± 0.19

Average -22.25 -25.39 -21.36 -18.91 -19.48 -20.48 -19.18 -22.91

Table C.12: Unnormalized DMSD Results.
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Figure C.6: MSD Performance Curves. Each row corresponds to a training environment,
and each column corresponds to a testing environment.

PID Controller GRU Transformer PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Fixed / Fixed 72.45± 1.44 63.59± 3.16 71.62± 1.30 100.00 ± 0.39 91.35± 2.28 86.93± 0.89 92.74± 0.55 57.75± 1.31
Fixed / Small 61.66± 3.35 16.43± 3.75 60.71± 1.80 93.01 ± 0.60 79.26± 2.81 61.50± 0.81 75.51± 0.97 38.55± 1.77
Fixed / Large 62.47± 2.86 0.00± 2.24 58.78± 1.11 77.38 ± 1.14 62.76± 2.13 39.41± 0.83 58.92± 0.73 34.84± 4.61
Small / Fixed 43.59± 9.27 47.76± 4.25 67.02± 1.10 91.92 ± 0.90 82.32± 1.72 82.52± 1.14 90.46± 0.99 56.98± 1.16
Small / Small 56.04± 1.57 47.82± 3.96 70.07± 1.88 98.69± 0.48 91.94± 2.00 88.95± 1.18 100.00 ± 0.78 56.17± 1.11
Small / Large 69.11± 1.42 38.57± 2.33 72.51± 1.58 86.96± 0.82 88.08± 1.31 87.99± 0.64 94.09 ± 0.51 58.08± 0.80
Large / Fixed 4.64± 6.34 0.00± 3.30 41.37± 3.09 77.62 ± 1.24 68.16± 1.45 57.60± 0.36 73.51± 1.24 36.06± 2.85
Large / Small 50.02± 5.07 0.00± 4.56 53.45± 2.80 82.77 ± 0.98 76.66± 1.75 63.36± 0.85 79.93± 1.43 39.74± 3.65
Large / Large 77.38± 1.93 51.09± 1.98 82.96± 1.38 85.37± 0.18 98.23± 0.90 91.86± 0.44 100.00 ± 0.56 77.22± 1.21

Average 55.26 29.47 64.28 88.19 82.08 73.35 85.02 50.60

Table C.13: Normalized DMSD Results.
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Figure C.7: MSD Performance Curve for Ablations. Each row corresponds to a training
environment, and each column corresponds to a testing environment.
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Figure C.8: DMSD Performance Curves. Each row corresponds to a training environment,
and each column corresponds to a testing environment.
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Figure C.9: DMSD Performance Curve for Ablations. Each row corresponds to a
training environment, and each column corresponds to a testing environment.
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C.7.3 Navigation Results

PID Controller GRU Transformer PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Sim / Sim 28.94± 3.63 96.76± 0.15 99.57± 0.12 98.33± 0.06 100.00 ± 0.07 99.64± 0.06 99.66± 0.06 99.81± 0.09
Sim / Real 43.12± 2.08 0.00± 3.94 50.55± 0.78 68.34 ± 0.57 62.16± 0.89 63.17± 0.57 59.21± 1.15 52.52± 0.50
Real / Sim 0.00± 4.09 57.49± 1.17 68.03± 0.40 59.54± 0.85 74.88 ± 0.61 72.84± 0.64 74.75± 0.68 71.13± 0.72
Real / Real 67.28± 2.05 97.29± 0.20 99.20± 0.14 95.94± 0.04 100.00 ± 0.21 99.19± 0.09 99.11± 0.21 99.67± 0.17

Average 34.83 62.89 79.34 80.54 84.26 83.71 83.18 80.78

Table C.14: Normalized Navigation Results. Note that these results are after 1 million
collected samples.

PID Controller GRU Transformer PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn
Sim / Sim −17.23± 0.18 −13.82± 0.01 −13.68± 0.01 −13.74± 0.00 −13.65 ± 0.00 −13.67± 0.00 −13.67± 0.00 −13.66± 0.00
Sim / Real −23.87± 0.29 −29.85± 0.55 −22.84± 0.11 −20.37 ± 0.08 −21.23± 0.12 −21.09± 0.08 −21.64± 0.16 −22.57± 0.07
Real / Sim −18.69± 0.21 −15.79± 0.06 −15.26± 0.02 −15.69± 0.04 −14.92 ± 0.03 −15.02± 0.03 −14.93± 0.03 −15.11± 0.04
Real / Real −20.52± 0.28 −16.36± 0.03 −16.09± 0.02 −16.55± 0.01 −15.98 ± 0.03 −16.09± 0.01 −16.11± 0.03 −16.03± 0.02

Average -20.08 -18.96 -16.97 -16.59 -16.45 -16.47 -16.59 -16.84

Table C.15: Unnormalized Navigation Results. Note that these results are after 1 million
collected samples.
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Figure C.10: Navigation Performance Curves. Each row corresponds to a training
environment, and each column corresponds to a testing environment. Note that these runs
are only done for one million transitions.
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Figure C.11: Navigation Performance Curve for Ablations. Each row corresponds to
a training environment, and each column corresponds to a testing environment. Note that
these runs are only done for one million transitions.
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C.7.4 Tokamak Control Results

PID Controller GRU Transformer PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Sim / Sim 90.95± 0.05 100.00 ± 0.03 99.63± 0.03 84.74± 0.16 99.75± 0.06 99.91± 0.02 99.90± 0.02 99.47± 0.04
Sim / Real 89.15 ± 0.99 40.96± 5.45 40.05± 11.91 0.00± 21.04 55.21± 4.44 61.56± 7.40 65.65± 5.66 35.66± 4.41
Real / Sim 50.62± 3.96 36.33± 3.61 35.26± 2.22 0.00± 3.48 48.40± 4.04 52.62± 1.38 56.30 ± 2.25 16.33± 5.98
Real / Real 98.45± 0.77 98.24± 0.38 98.74± 0.29 100.00 ± 0.23 99.30± 0.64 98.39± 0.33 98.55± 0.33 98.27± 0.37

Average 82.29 68.88 68.42 46.18 75.67 78.12 80.10 62.43

Table C.16: Normalized βN Tracking Results.

PID Controller GRU Transformer PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Sim / Sim −8.09± 0.00 −7.19 ± 0.00 −7.22± 0.00 −8.71± 0.02 −7.21± 0.01 −7.19± 0.00 −7.20± 0.00 −7.24± 0.00
Sim / Real −16.41 ± 0.30 −31.21± 1.67 −31.49± 3.66 −43.78± 6.46 −26.83± 1.36 −24.88± 2.27 −23.63± 1.74 −32.83± 1.35
Real / Sim −12.12± 0.40 −13.55± 0.36 −13.66± 0.22 −17.18± 0.35 −12.34± 0.40 −11.92± 0.14 −11.55 ± 0.22 −15.55± 0.60
Real / Real −13.56± 0.23 −13.62± 0.12 −13.47± 0.09 −13.08 ± 0.07 −13.30± 0.20 −13.58± 0.10 −13.53± 0.10 −13.61± 0.11

Average -12.55 -16.39 -16.46 -20.69 -14.92 -14.39 -13.98 -17.31

Table C.17: Unnormalized βN Tracking Results.
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Figure C.12: βN Tracking Performance Curves. Each row corresponds to a training
environment, and each column corresponds to a testing environment.
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Figure C.13: βN Tracking Performance Curve for Ablations. Each row corresponds to
a training environment, and each column corresponds to a testing environment.

PID Controller GRU Transformer PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Sim / Sim 46.78± 0.44 99.50± 0.12 97.99± 0.50 82.96± 0.27 100.00 ± 0.15 99.64± 0.19 99.97± 0.12 96.18± 1.35
Sim / Real 83.48 ± 2.63 39.65± 5.83 33.22± 0.69 0.00± 8.87 50.86± 1.92 54.36± 2.07 52.56± 2.44 42.51± 2.97
Real / Sim 0.00± 8.79 21.31± 2.45 7.23± 3.86 22.49± 1.84 19.02± 3.88 22.70 ± 4.42 5.20± 20.06 15.35± 8.29
Real / Real 91.76± 0.84 98.07± 0.52 96.05± 0.31 97.94± 0.23 99.73± 0.46 97.62± 0.46 100.00 ± 0.28 96.33± 0.47

Average 55.51 64.63 58.62 50.85 67.40 68.58 64.43 62.59

Table C.18: Normalized βN -Rotation Tracking Results.

PID Controller GRU Transformer PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Sim / Sim −27.56± 0.08 −18.53± 0.02 −18.79± 0.09 −21.36± 0.05 −18.45 ± 0.03 −18.51± 0.03 −18.45± 0.02 −19.10± 0.23
Sim / Real −30.08 ± 0.95 −45.91± 2.10 −48.23± 0.25 −60.23± 3.20 −41.86± 0.69 −40.60± 0.75 −41.25± 0.88 −44.88± 1.07
Real / Sim −35.57± 1.50 −31.92± 0.42 −34.33± 0.66 −31.72± 0.32 −32.31± 0.66 −31.68 ± 0.76 −34.68± 3.43 −32.94± 1.42
Real / Real −27.09± 0.30 −24.81± 0.19 −25.54± 0.11 −24.86± 0.08 −24.21± 0.16 −24.98± 0.17 −24.12 ± 0.10 −25.44± 0.17

Average -30.08 -30.29 -31.72 -34.54 -29.21 -28.94 -29.62 -30.59

Table C.19: Unnormalized βN -Rotation Tracking Results.
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Figure C.14: βN -Rotation Tracking Performance Curves. Each row corresponds to a
training environment, and each column corresponds to a testing environment.
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Figure C.15: βN -Rotation Tracking Performance Curve for Ablations. Each row corre-
sponds to a training environment, and each column corresponds to a testing environment.
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C.7.5 PyBullet Results

For these results, SAC encodes observations, actions and rewards. TD3 encodes
observations and actions since it is the best performing on average.
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Table C.20: Normalized PyBullet Scores.
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Table C.21: Unnormalized PyBullet Scores.
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Figure C.16: PyBullet Performance Curves.
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Figure C.17: PyBullet Performance Curve for Ablations.

Interestingly, we found that GPIDE policies often outperform the oracle policy
on Hopper-P. While the oracle performance here was taken from Ni et al. [2022],
we confirmed this also happens with our own implementation of an oracle policy.
We hypothesize that this may be due to the fact the GPIDE policy gets to see actions
and rewards and the oracle does not.
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C.7.6 Attention Scheme Visualizations

We generate the attention visualizations (as seen in Figure 4.4) by doing a handful
of rollouts with a GPIDE policy using only attention heads. During this rollout we
collect all of the weighting schemes, i.e. softmax

(
q1:tkT1:t√

D

)
, generated throughout

the rollouts and average them together. Below, we show additional attention visual-
izations. In all figures/gpide, each plot shows one of the different six heads. For
each of these, the policies were evaluated on the same version of the environment
they were trained on.
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Figure C.18: MSD-Fixed Attention.
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Figure C.19: MSD-Small Attention.
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Figure C.20: MSD-Large Attention.
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Figure C.21: DMSD-Fixed Attention.
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Figure C.22: DMSD-Small Attention.
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Figure C.23: DMSD-Large Attention.
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Figure C.24: Navigation No Friction Attention.
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Figure C.25: Navigation Friction Attention.
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Figure C.26: βN Tracking Sim Attention.
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Figure C.27: βN Tracking Rotation Attention.
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Figure C.28: βN -Rotation Tracking Sim Attention.
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Figure C.29: βN -Rotation Tracking Rotation Attention.
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Figure C.30: HalfCheetah-P Attention.
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Figure C.31: HalfCheetah-V Attention.
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Figure C.32: Hopper-P Attention.

0 25 50
Time Step

0

20

40

60Se
qu

en
ce

 L
en

gt
h

0 25 50
Time Step

0

20

40

60
0 25 50

Time Step

0

20

40

60
0 25 50

Time Step

0

20

40

60
0 25 50

Time Step

0

20

40

60
0 25 50

Time Step

0

20

40

60

Figure C.33: Hopper-V Attention.
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Figure C.34: Walker-P Attention.
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Figure C.35: Walker-V Attention.
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Figure C.36: Ant-P Attention.
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Figure C.37: Ant-V Attention. Note that total path length is less than 64 here since the
agent falls down pretty fast.
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D.1 Related Works

Reinforcement Learning The experimental setting considered in this work falls
under the so-called “offline” reinforcement learning setting [Levine et al., 2020]. In
this setting, a policy must be learned from a fixed dataset of environment interactions
and additional environment queries cannot be made. In this setting, Yu et al. [2020]
the MOPO algorithm that uses an ensemble of PNNs and relies on penalties to make
sure the policy does not steer out of the offline dataset’s support. Chen et al. [2021b]
extend this idea in the algorithm MAPLE, which incorporates an adaptive policy
into the learning procedure. Our reinforcement learning experiments are similar to
the set up in MAPLE, except we do full episodes from start states (drawn from the
start distribution which is assumed to be known). In contrast, MAPLE does short
rollouts of 10 steps starting states randomly selected in the offline dataset.

Gaussian Processes in RL Hypothetically, one could use a GP for the dynamics
model and draw posterior samples when generating rollouts with the policy, and
this has been done for several low dimensional tasks by previous works [Deisenroth
and Rasmussen, 2011, Mehta et al., 2021b, 2022] However, the non-parametric
nature of GPs makes scaling up to higher dimensional tasks a challenge. Perhaps
an even greater problem comes from the fact that these posterior samples are much
more computationally expensive than their PNN alternative. Because algorithms
such as MBPO, MOPO, and MAPLE require millions if not billions of model
samples to train a neural network policy to convergence, GPs are often too big of a
computational burden to use.

D.2 PNN Toy Example

To help guide intuition on why the PNN is useful even in deterministic environ-
ments, consider a toy regression problem in which we wish to model the function
f(x) = cos(3x). Our training dataset consists of 100 (X,Y ) data points where
X is distributed as an exponential random variable. As such, there will be a high
concentration of X data around 0, but the concentration of training data quickly
tapers off. We train a PNN on this toy problem and show the results in Figure D.1.
As one would hope, the PNN is confident in regions where data is plentiful, and the
model produces wide predictive distributions in regions lacking data. Why does this
happen instead of the network producing highly confident predictive distribution
where the mean goes through each training point? We hypothesize that this is due
to both the capacity of the network and the property of neural networks to produce
generally smooth solutions. Similar observations were also made in Seitzer et al.
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True Function
Mean Prediction
Train Data

Figure D.1: PNN Trained on a Toy Example. The orange points make up the training
dataset, the black dashed line is the true function, and the dotted blue line shows predicted
mean. The blue shaded region shows three standard deviations of the predicted Gaussian
distribution. We also use a validation set with 20 points to know when to stop training the
model.

[2022], although they consider the setting in which aleatoric noise truly does exist.

D.3 Algorithm Details

Algorithm 4 SPNN Trajectory Sampling

1: Input: Policy π, initial state s1, kernels {κd}Dd=1, horizon H , and number of
bases B.

2: Sample function g by sampling φb,d ∼ pκd and τb,d ∼ U(0, 2π) for b ∈
{1, . . . , B} and d ∈ {1, . . . , D}.

3: for t← 1, . . . H do
4: at ∼ π(st)
5: xt ← (st, at)
6: st+1 ← st + µθ(xt) + σθ(xt)g(xt)
7: end for
8: Return (x1, . . . , xH)
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D.4 Environment Details

Nuclear Fusion Environment As stated in the main body of the paper, this
environment is adapted from Char and Schneider [2023]. This environment uses
equations described in Boyer et al. [2019] and Scoville et al. [2007]. In particular,
we use the following relations for stored energy, E, and rotation, vrot:

Ė = P − E

τE
τE = CEI

0.95B0.15P−0.69

βN = Cβ

(
aB

I

)
E

where P is the total power, τE is the energy confinement time, I is the plasma
current, a is the minor radius, B is the magnetic field, and CE , Cβ are constants
set to 200 and 5, respectively. The second of these equations is ITERH-98 scaling
[Transport et al., 1999]. For our version of the environment, we also fix I = 106,
a = 0.589, and B = 2.75. Similar to Char and Schneider [2023], we include
momentum in the energy update. The equation describing the evolution of the
energy is

Ėt = 0.5

(
Pt −

Et
τE

)
+ 0.5Ėt−1

The observation space for the environment is three dimensional and consists of the
current βN measurement, the rate of change of βN , and the current amount of power
being injected into the system. The action space is one-dimensional and is simply
the change in the power. We set the βN limit to be 2.2 , and the reward function is

r(βN , a) :=





(
2.5−|βN−2.2|

2.5

)2
− ‖a‖10 βN ≤ 2.2

−100 βN > 2.2

where a is the action scaled to be between −1 and 1. We use a horizon length of
100 for each episode.

Mountain Ridge Environment The mountain ridge environment has five-dimensional
observations space: st = (xt, ẋt, yt, ẏt, θ), where xt is the x position, yt is the y
position, and θ is the angle of the thruster used to propel the agent. The action space
is two-dimensional and consists of athrust and aangle, which controls the amount
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of thrust and the change in angle of the thruster, respectively. The updates are as
follows:

xt+1 = xt + ẋt∆t

ẋt+1 = ẋt +
(
sign(xt)x

2
t + athrust sin(θt)

)
∆t

yt+1 = yt + ẏt∆t

ẏt+1 = ẏt +
(
athrust cos(θt) + 0.05 exp(yt)

)
∆t

θt+1 = clip
(
θt +

π

6
f(aangle),−π, π

)

where the function f is defined as

f(x) =

{
1 + exp [−12.5 (x− 0.5)] x > 0

1 + exp [12.5 (x+ 0.5)] x ≤ 0

The reward function is simply
6+yt−‖athrust‖

10 while the agent is on the cliff. The
episode ends and the agent recieves a reward of −100 if |xt| > 3, yt < −6, or
yt > 5. We use a horizon length of 200 for each episode.

D.5 Additional Training Details

Model Training For each of the dynamics models, we use a network with 2
hidden layers, each with 512 units. We use two separate heads for the mean and
standard deviation predictions. We find that we can get better uncertainty by adding
an additional hidden layer with 256 units to the standard deviation head. Besides
the change in architecture, the learning procedure follows what is done in Chua et al.
[2018b], and we use the Adam [Kingma and Ba, 2014] optimizer with a learning
rate of 3×10−4 and a batch size of 64. Lastly, we use 10% of the data as a validation
set and early stop based on MSE (although we pick the checkpoint that achieves the
best negative log likelihood).

Reinforcement Learning Training Our implementation of SAC with recurrent
policies closely follows the implementation given by Ni et al. [2021] and uses a
Gated Recurrent Unit (GRU) [Cho et al., 2014b]. We give hyperparameter settings
in Table D.1. We train for 100, 250, and 1000 epochs for the Cart Pole, Fusion,
and Mountain environments, respectively. Following other offline model-based
reinforcement learning works [Yu et al., 2020, Chen et al., 2021b], we add a penalty
to the reward to indicate when the policy is going out of distribution. When
using PNN models, we use the maximum predicted standard deviation among the
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ensemble members, and, when using neural networks with point predictions, we
use the standard deviation among the mean predictions. As per [Chen et al., 2021b]
we scale this uncertainty by 0.25.

When simulating episodes with the model during training time, the trajectory can
sometimes blow up and predict large values. While this is rare, we find that it helps
training stability to cap the velocity components of the state space to reasonable
values. Finally, for all methods of sampling, we choose a member of the ensemble
to make predictions each episode, and we fix this member for the entire episode.

Hyperparameter Value

Discount Factor 0.99
Learning Rate 3× 10−4

Batch Size 256
Target Soft Update Weight 5× 10−3

History Lookback Size 64
Exploration Steps per Epoch 1000

Gradient Steps per Epoch 1000

Table D.1: Reinforcement learning hyperparameters.

D.6 Model Metric Details

A widely accepted metric in uncertainty quantification to evaluate the validity of
distributional predictions is average calibration. Given input covariates X , target
variables Y , a predictive distribution with CDF FX : X → (Y → [0, 1]) and its
corresponding quantile function F−1X : X → ([0, 1]→ Y), F is said to be average
calibrated if

P
(
Y ≤ F−1X (p)

)
= p,∀p ∈ [0, 1]. (D.1)

Note that Eq. D.1 assesses the validity of the predictive quantile function F−1X ,
which is identical to a prediction interval between the probabilities [0, p]. We
note that centered prediction intervals (e.g. a 95% prediction interval that spans
the probabilities [0.025, 0.975]) can be more useful in practice, and we assess the
average of centered prediction intervals, which is defined as:

P
(
F−1X (0.5− p/2) ≤ Y ≤ F−1X (0.5 + p/2)

)
= p,∀p ∈ [0, 1]. (D.2)

Miscalibration, i.e. error in average calibration of centered intervals, is then
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measured as
∫ 1

0
| P
(
F−1X (0.5− p/2) ≤ Y ≤ F−1X (0.5 + p/2)

)
− p | dp. (D.3)

Given a dataset {xi, yi}Ni=1, and a uniform draw of probabilities {pk}Kk=1 ∈
[0, 1], miscalibration of centered intervals can be estimated as

1

K

K∑

k=1

∣∣∣∣(empirical coverage at pk)− pk
∣∣∣∣, (D.4)

where (empirical coverage at pk) is defined as 1
N

∑N
i=1 I{F−1xi (0.5 −

pk/2) ≤ yi ≤ F−1xi (0.5 + pk/2)} and I is the indicator function.
We compute miscalibration of centered intervals at each timestep of a trajectory,

where the inputs are the current state-action pairs, and the targets are the state delta:
i.e. from Eq. D.4, xi would be the tuple (si,t, ai,t) and yi would be si,t+1 − si,t.
We used 19 equi-spaced probabilities: {pk = k

20}19k=1. Since an ensemble does not
provide a closed form quantile function, we use empirical quantiles for F−1xi by
generating many trajectories for a single test sequence of states and actions.

To measure overconfidence, we performed the outer summation over probabili-
ties in Eq. D.4 only if the empirical coverage was lower than pk:

1

K

K∑

k=1

min (0,(empirical coverage at pk)− pk) , (D.5)

D.7 Ignoring Error Correlation Can Lead to Overconfi-
dence

In this section, we show that under certain assumptions, ignoring the correlation
between consecutive residuals leads to overconfident predictions. While these
assumptions make major simplifications to the problem, this result still gives insight
into why overconfidence may grow over time. In what follows, assume that there
is a fixed action sequence a1, . . . , aN . The corresponding rollout using the true
transition function, T , is then x1 . . . , xN+1.

Ideally, we would compare this to the distribution of rollouts created by sam-
pling autoregressively from T̂ , which we assume to be a PNN. However since
this distribution is difficult to characterize, we focus on analyzing one-step errors.
Towards this end, let δt := µθ(xt)− T (xt) and let ∆N :=

∑N
t=1 δt. Although the

true amount of error after N steps is hard to reason about because of the predicted
sequence’s autoregressive nature, ∆N can be thought of as a proxy. We also make
the following assumptions:
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1. The sequence of residuals is Markovian, i.e. p(δt|δ1, . . . , δt−1) = p(δt|δt−1).

2. The distribution between consecutive residuals is

[
δt
δt−1

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])

Note that these are assumptions that are made to the true underlying transition
function (i.e. that there are correlations between residuals). We will now see that
the standard deviation of ∆N grows faster if positive correlation is present versus if
an independence assumption is made (as is usually done with sampling procedure
in PNNs).

Proposition 1. (Deserno [2002]) Following the above assumptions

∆N+1 =

√
1 + ρ

1− ρGN+1 −
ρ

1− ρδN+1 +
1−

√
1− ρ2

1− ρ g1

where N > 1, g1, . . . , gN+1
i.i.d∼ N (0, 1), and GN+1 :=

∑N+1
t=1 gt.

Note that the first term of ∆N has standard deviation
√

1+ρ
1−ρN , and the standard

deviation for the rest of the terms does not grow as N increases. In contrast, if
one were to model residuals as independent, the standard deviation of the sample
trajectories from that model after N steps would be

√
N . Again, the assumptions

made here prevent any statement from being made in the actual setting in which
trajectories are autoregressively predicted; however, it does give intuition as to why
PNNs may produce overconfidence predictive distributions over time.

We now restate the proof from Deserno [2002] for completeness.

Proof. Using the fact that p(δt|δt−1 = d) ∼ N (ρd, 1 − ρ2), we can express the
sequence in terms of IID samples as follows:

δ1 = g1; δt = ρδt−1 +
√

1− ρ2gt

We can expand the right definition of δt to get the following,

δt = ρt−1g1 +
√

1− ρ2
t∑

i=2

giρ
t−i

184



Summing this up to get ∆N ,

∆N+1 =

N+1∑

t=1

[
ρt−1g1 +

√
1− ρ2

t∑

i=2

giρ
t−i

]

= g1
1− ρN+1

1− ρ +
√

1− ρ2
N+1∑

i=2

gi

N+1∑

n=i

ρn−i

= g1
1− ρN+1

1− ρ +

√
1− ρ2

1− ρ

(
N+1∑

i=2

gi − ρ
N+1∑

i=2

giρ
N+1−i

)
.

The first term in the bracket is GN+1 − g1, and the second term can be rewritten
with δN+1.

∆N+1 =

√
1 + ρ

1− ρGN+1 −
ρ

1− ρxN +
1−

√
1− ρ2

1− ρ g1

D.8 Empirical Correlations

We empirically compute temporal correlation between the residuals for models,
specifically ensembles of PNNs trained on all our environments. Consider a rollout
in the true dynamics - (s0, a0, r0), . . . , (sn, an, rn). For a given ensemble member,
let b0 = T (s0,a0)−µθ(s0,a0)

σθ(s0,a0)
, . . . , bn = T (sn,an)−µθ(sn,an)

σθ(sn,an)
be the corresponding se-

quence of standardized residuals. We make the assumption that successive residuals
bi, bi+1 are sampled from a bivariate gaussian with correlation coefficient ρ, that

is
[
bi
bi+1

]
∼ N (µ,Σ), where µ =

[
0
0

]
and Σ =

[
1 ρ
ρ 1

]
. Then, we compute the

maximum likelihood estimator, ρ̂, based on the observed residuals b1, . . . , bn. The
estimates in Table D.2 are averaged over five seeds and five ensemble members in
each corresponding ensemble.

D.9 Additional Experimental Results

Additional Calibration Results To better understand how uncertainty estimates
change with different sampling procedures, we provide additional plots of the
miscalibration and overconfidence metrics. Figures D.2- D.9 show how both metrics
change with respect to time for single models and an ensemble. Figures D.10- D.13
show how the metrics change with respect to ensemble size. In all of these, it is
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Method Fusion Cart Pole Mountain Random Mountain Medium Mountain Expert

Dimension 0 0.69 ± 0.13 0.96 ± 0.04 0.95 ± 0.02 0.94 ± 0.01 0.93 ± 0.02
Dimension 1 0.70 ± 0.04 0.95 ± 0.05 0.93 ± 0.01 0.97 ± 0.01 0.98 ± 0.01
Dimension 2 0.85 ± 0.08 0.96 ± 0.04 0.62 ± 0.10 0.57 ± 0.07 0.51 ± 0.11
Dimension 3 - 0.93 ± 0.07 0.45 ± 0.03 0.66 ± 0.02 0.68 ± 0.07
Dimension 4 - - -0.02 ± 0.03 0.13 ± 0.02 0.13 ± 0.03

Table D.2: Empirical Correlations Each value is the average over five seeeds and five
ensemble members. Note entries in the table that are entry are due to the environment being
lower dimensional (e.g. Fusion only has three dimensions).

clear that smooth samples mitigate against overconfidence over time; however, this
can also cause uncertainty predictions to be slightly underconfident.
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Figure D.2: Average miscalibration for ID data using a single PNN with respect to
rollout step. The regions shows the standard error over the five seeds.
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Figure D.3: Average miscalibration for ID data using an ensemble of PNNs with
respect to rollout step. The regions shows the standard error over the five seeds.

Reinforcement Learning Training Curves We also provide plots of the average
returns during training of the policy in Figures D.14- D.18. In general, we see that
training with SPNN is less prone to overfitting and often more stable.

Can additional penalty help in the Mountain environment? To prevent the
agent from falling off the cliff, it is possible that a higher scale on the penalty
could be beneficial. In Table D.3, we test what happens when the penalty scaling is
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Figure D.4: Average overconfidence for ID data using a single PNN with respect to
rollout step. The regions shows the standard error over the five seeds.
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Figure D.5: Average overconfidence for ID data using an ensemble of PNNs with
respect to rollout step. The regions shows the standard error over the five seeds.

changed to 0.0 or 1.0. We find that greatly increasing the penalty 4× does not have
same affect on policy performance as intelligent sampling.

Method Mountain Random Mountain Medium Mountain Expert Average

SPNN Penalty=0.0 61.41 ± 4.47 29.67 ± 0.87 88.00 ± 1.60 59.69
PNN Penalty=0.0 63.64 ± 11.41 23.13 ± 1.15 68.77 ± 11.97 51.84
NN Penalty=0.0 31.26 ± 5.68 27.25 ± 0.67 40.71 ± 5.11 33.07

SPNN Penalty=0.25 65.93 ± 1.72 39.08 ± 8.24 84.72 ± 4.73 63.24
PNN Penalty=0.25 64.29 ± 4.01 23.39 ± 1.34 44.34 ± 13.45 44.01
NN Penalty=0.25 63.57 ± 9.80 26.79 ± 0.62 49.73 ± 2.50 46.7

SPNN Penalty=1.0 62.05 ± 1.07 40.45 ± 8.91 81.78 ± 3.63 61.42
PNN Penalty=1.0 53.06 ± 7.93 30.57 ± 2.33 46.28 ± 4.63 43.3
NN Penalty=1.0 67.47 ± 10.56 25.71 ± 0.07 55.07 ± 12.17 49.42

Table D.3: Normalize policy performances for different penalties on the Mountain
environment. Each result is averaged over the last 20% of evaluations during training. Five
seeds were used to compute the average scores, and we show the standard errors.

Mountain Environment Visualization To better understand what is happening
in the Mountain environment, we plot the average path taken by each type of policy
(see Figure D.19). While all policies are overconfident and have episdoes where
the agent falls off the cliff, on average policies trained with SPNN stay within the
support of the dataset and avoid falling off the cliff.
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Figure D.6: Average miscalibration for OOD data using a single PNN with respect to
rollout step. The regions shows the standard error over the five seeds.
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Figure D.7: Average miscalibration for OOD data using an ensemble of PNNs with
respect to rollout step. The regions shows the standard error over the five seeds.
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Figure D.8: Average overconfidence for OOD data using a single PNN with respect to
rollout step. The regions shows the standard error over the five seeds.
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Figure D.9: Average overconfidence for OOD data using an ensemble of PNNs with
respect to rollout step. The regions shows the standard error over the five seeds.
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Figure D.10: Average miscalibration over rollout for ID data with respect to ensemble
size. The error bars shows the standard error over the five seeds.
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Figure D.11: Average overconfidence over rollout for ID data with respect to ensemble
size. The error bars shows the standard error over the five seeds.
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Figure D.12: Average miscalibration over rollout for OOD data with respect to
ensemble size. The error bars shows the standard error over the five seeds.
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Figure D.13: Average overconfidence over rollout for OOD data with respect to
ensemble size. The error bars shows the standard error over the five seeds.
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Figure D.14: Average returns for the Fusion environment during training. The regions
shows the standard error over the five seeds.
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Figure D.15: Average returns for the Cart Pole environment during training. The
regions shows the standard error over the five seeds.
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Figure D.16: Average returns for the Mountain Random environment during training.
The regions shows the standard error over the five seeds.
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Figure D.17: Average returns for the Mountain Medium environment during training.
The regions shows the standard error over the five seeds.

191



0.2 0.4 0.6 0.8 1.0
Samples 1e6

40

20

0

20

40

60

80

100

120

Av
er

ag
e 

R
et

ur
ns

Mountain Expert

SPNN
NN
PNN

Figure D.18: Average returns for the Mountain Expert environment during training.
The regions shows the standard error over the five seeds.

PNN
SPNN
NN

Figure D.19: Average trajectory in medium mountain ridge environment. To create
this figure, we collect 100 paths in the true environment with each of the five policies
corresponding to the random seeds. We then average each path together, and the average
path can be seen in the top plot. The red regions represent terminal regions where the agent
falls off the cliff, and the contour lines show the contours of the mountain ridge. Here,
the x-axis shows the y position of the agent as described in the environment definition
(Appendix D.4). The bottom plot shows a histogram of the y data in the Medium dataset,
and the dashed black line shows the most extreme recorded y value.
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Appendix E

Appendix for Chapter 6

E.1 Implementation

E.1.1 More GTNP Details

Algorithm 5 One Graph Transformer Block
Input: V,E
for ν`i ∈ V do
ν`i = ν`i + MultiHeadedGraphAttentioni(

LayerNorm(V ), E)
ν`+1
i = ν`i + qθ(LayerNorm(ν`i ))

end for
Return: V

Algorithm 5 shows one graph transformer block. Here qθ is a neural network
with one hidden layer neural network with a ReLU activation function. Before
multi-headed graph attention and before qθ we use LayerNorm [Ba et al., 2016].
Note that the architecture for this block is almost exactly the same as the blocks
in GPT2 [Radford et al., 2019]; however, we use 2d hidden units in qθ following
Nguyen and Grover [2022] instead of 4d.

Autoregressive Training Scheme. We use the same scheme as TNP-A in Nguyen
and Grover [2022] in order to efficiently consider multiple context sizes at once
per mini-batch update. To do this, instead of using x we use x̃ = x⊕ xC+1:N . The
corresponding node embeddings are then νi = fVθ (yi) for i ≤ N and νi = fVθ (0)
if i > N . Let M ∈ R2N−C×2N−C be a matrix of the masks for the attention where
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Mi,j = 1 if the ith vertex can attend to the jth vertex and 0 otherwise. The entries
of this matrix are as follows:

Mi,j =





1 j ≤ C
1 i ≤ N and j ≤ i
1 j − C < i−N
0 else

This is visualized on page four of Nguyen and Grover [2022]. Effectively, this
masking scheme allows target points to attend to observations of other target points
occuring earlier in the sequence. Alternatively, we could simply use x, the vertex
encoding scheme described in Section 6.2.2, and a masking matrix of M ∈ RN×N
where

Mi,j =

{
1 j ≤ C
0 else

This would only consider one context during training (although at test time, the
target set could still be predicted autoregressively). This is akin to TNP-D in Nguyen
and Grover [2022], which was found to achieve worse log likelihood. We also find
that this more straightforward masking scheme yields slightly worse results for
GTNP.

E.1.2 More GEENP Details

Algorithm 6 One GEENP Block
Input: E
for E`i,j ∈ E do
E`i,j = E`i,j + MultiHeadedGEAttentioni,j(

LayerNorm(E))
E`+1
i,j = E`i,j + qθ(LayerNorm(E`i,j))

end for
Return: E

Algorithm 6 shows one GEENP block. Note that most of the details are indis-
tinguishable from Algorithm 5 besides the type of attention used and the operation
over edge embeddings instead of vertex embeddings.
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E.2 Experiment Details

E.2.1 Reproducibility

We include an anonymized pytorch [Paszke et al., 2019b] implementation of GTNP
and GEENP in the supplementary material, instructions for installing dependencies,
and directions for launching synthetic experiments (i.e. the experiments in Sections
6.3.1 and 6.3.2). See README.md for more details.

E.2.2 Hyperparameters

Table E.1: Hyperparameters for GTNP and GEENP.

Batch Size 16
Learning Rate 5e-4

Learning Rate Scheduler Cosine Annealing
d 64
H 4

Blocks 6
Activation Function ReLU
fVθ and fEθ Depth 4
fVθ and fEθ Width 64

gθ Depth 1
gθ Width 128

qθ width (see Algorithms 5 and 6 128

Table E.1 show the hyperparameters used for GTNP and GEENP. We selected
these hyperparameters to be as close as possible to the ones used in TNP for
a fair comparison. For each of the other baselines, we use the same hyperpa-
rameters they report. In particular, we use the same configurations that appear
in https://github.com/tung-nd/TNP-pytorch/tree/master and
https://github.com/cambridge-mlg/convcnp.

E.2.3 Additional Infinite Data Regime Details

Following the procedure in Nguyen and Grover [2022], all methods were trained on
1M batch updates, where each batch contains 16 sampled functions. The exception
to this is in the 4D case, where it seemed that models were still learning after 1M
batch updates. Thus we increase the number of batch updates to 10M for this
setting. For test time, we generate 3,000 of these batches to evaluate on. Like
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during training, each batch has a random N and C chosen in the ranges of [6, 50]
and [3, 47], respectively. We use the code in the official repository for Nguyen and
Grover [2022] to generate the test set for the 1D experiment and our own code for
the higher dimensions.

E.2.4 Additional Finite Data Regime Details

The GPs that generated the data for the finite datasets have fix When dealing with
finite datasets, we shuffle the data every epoch in order to get different context-target
splits in the data. We reserve 10% of the total data as a validation set. We train each
model until 100 epochs after the best validation loss was observed (with a maximum
of 5,000 epochs). We checkpoint the model that achieves the best validation loss
and use this during evaluation.

We use a test set with 100,000 data points for each of the dimensions. The same
test set is used regardless of how much training data is used. We now describe how
to compute the normalized metrics found in Table 6.2. Let sc be the average log
joint likelihood that the trained model achieves on the test set given a context size
of c. Furthermore, let f be the true GP that generated the data. We then define smin

c

and smax
c as

smin
c =

1

M

M∑

m=1

f(y(m)
c+1:N |x

(m)
c+1:N )

smax
c =

1

M

M∑

m=1

f(y(m)
c+1:N |x(m), y(m)

1:c )

where x(m) and y(m) are the mth set of test points. In other words, smin
c is the joint

log likelihood using the true prior and smax
c is the joint log likelihood using the true

posterior. The final reported score is then

100× 1

49

49∑

c=1

sc − smin
c

smax
c − smin

c

Note that when M is large this score cannot be over 100; however, it is possible to
get a score lower than 0.

E.2.5 Additional Nuclear Fusion Experiment Details

The dimensions ofX for the nuclear fusion data are the current measurements of βN ,
rotation, power injected from the neutral beams, torque injected from the neutral
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beams, and the backward difference of these four measurements. Additionally,
because the power and torque injected from the neutral beams are actuators, we
include the forward differences for the power and torque. Each shot on average has
roughly 107 time steps.

The architecture for the PNN is the same as it appears in Chua et al. [2018b].
In particular, we use a fully connected network with 4 hidden layers each with 200
units. We use the swish activation function [Ramachandran et al., 2017] and have
two dedicated heads for the mean and log variance predictions. We use mini-batches
of size 256 and a learning rate of 1e-3.

E.2.6 Additional Lipophilicity Experiment Details

The RQ kernel is defined as

kRQ(x, x′) = σ2
(

1 +
(x− x′)2

2α`2

)
.

Recall that the train split used to train our GTNP models contains sequences of
molecule representations. For each of the 1400 sequences, we compute the optimal
hyperparameters using L-BFGS that maximise the marginal log-likelihood of the
context points in the sequence. The two histograms show the distribution of optimal
hyperparameters over the train split. For α in particular, two clear peaks are present,
which illustrate the inappropriateness of using a global GP model with a single
choice of kernel hyperparameters to fit all the training data.

For the GP (fixed) baseline, α and ` were chosen to be right modes in their
respective histograms, ` = 2.9 , α = exp(7.5). The scale parameter σ2 was set to 1
as we are using whitened data.

E.2.7 Compute Details

We train our models using Nvidia Titan Xp GPUs. Other baselines were trained
using a mix of these GPUs and Titan X Pascals. Since the cluster we use to train
on has many users, it is difficult to get a precise timing comparison; however, we
give estimates in Table E.2. Note that TNP and GTNP are considerably faster at
evaluation because only one forward pass is necessary to compute the joint log
probability due to the masking scheme described in Appendix E.1.1.
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Figure E.1: Histograms of Optimal logα and ` RQ Kernel Hyperparameters for the
Lipophilicity Task. Note the two peaks illustrating the multi-modal nature of optimal
kernel hyperparamters for our task.
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Table E.2: Approximate Run Times. Each estimate is for one seed on the infinite 1D
experiment.

Method Train Evaluation

AttnLNP 45m 2m 23s
AttnCNP 33m 1m 57s
ConvCNP 27m 2m 11s
TNP 52m 16s
GTNP 92m 39s
GEENP 89m 15m 32s
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R Ambrosino, H Anand, Y Andrèbe, et al. Physics research on the tcv tokamak
facility: from conventional to alternative scenarios and beyond. Nuclear Fusion,
59(11):112023, 2019.

Rory Conlin, Keith Erickson, Joseph Abbate, and Egemen Kolemen. Keras2c: A li-
brary for converting keras neural networks to real-time compatible c. Engineering
Applications of Artificial Intelligence, 100:104182, 2021.

Teodora Constantinescu, Claudiu Nicolae Lungu, and Ildiko Lung. Lipophilicity as a
central component of drug-like properties of chalchones and flavonoid derivatives.
Molecules, 24(8):1505, 2019.

Ronald James Cotton, Fabian Sinz, and Andreas Tolias. Factorized neural processes
for neural processes: K-shot prediction of neural responses. Advances in Neural
Information Processing Systems, 33:11368–11379, 2020.

205

http://arxiv.org/abs/1805.12114
http://arxiv.org/abs/1805.12114


Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation
for games, robotics and machine learning. http://pybullet.org, 2016–
2021.
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Potapenko, et al. Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583–589, 2021.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning
and acting in partially observable stochastic domains. Artificial intelligence, 101
(1-2):99–134, 1998.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás
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