
Generative Models for Structured Discrete
Data with Application to Drug Discovery

Chenghui Zhou

CMU-ML-24-109

August, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Barnabas Poczos, Chair

Andrej Risteski
Tom Mitchell

Siamak Ravanbakhsh

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Chenghui Zhou

This research was sponsored by Air Force Research Laboratory awards FA87501620042 and FA87501720130 and
National Science Foundation award IIS1637927.



Keywords: Generative Models, Discrete Data, Drug Discovery, Variational Autoencoder,
Diffusion Models, Machine Learning



For my father, who was my greatest supporter



iv



Abstract

My thesis focuses on generative models and their applications to discrete data. We propose
novel algorithms that integrate insights from state-of-the-art generative models and domain-
specific knowledge of discrete data types. These algorithms aim to enhance property similarity
to training data, improve data validity, and elevate the overall quality of generated outputs. The
first part of my thesis investigates converting geometric images into a discrete representation
using context-free grammar. We discuss effective and scalable techniques to identify suitable
representations in a large search space. The second part of my thesis examines the behavior
of Variational Autoencoders (VAEs) in recovering high-dimensional data embedded in lower-
dimensional manifolds, assessing their ability to recover the manifold and the data density over
it. Extending our exploration of VAEs into discrete data domains, particularly in molecular
data generation, we found that a method enhancing VAEs’ manifold recovery for continuous
data also significantly improves discrete data generation. We study its benefits and limitations
using the ChEMBL dataset and two smaller datasets of active molecules for protein targets.
Lastly, addressing the challenge of generating stable 3D molecules, the thesis incorporates a
non-differentiable chemistry oracle, GFN2-xTB, into the denoising process to improve geometry
and stability. This approach is validated on datasets like QM9 and GEOM, demonstrating higher
stability rates among generated molecules.
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i ’s from the s-th stage VAE become the input to

the s+ 1-th stage VAE during training. The later-stage VAE’s input dimension is equal
to the output dimension. During sampling, we sample z ∼ N (0, I) and obtain z′s

i from
the decoder. The output of a subsequent-stage VAE decoder is used as the input for the
preceding-stage VAE decoder until the latent variable is decoded into a new molecule x′

i
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Chapter 1

Introduction

Generative models learn the distribution of training data in order to generate novel data points
from it. They have wide applications across many fields, such as computer vision [Goodfellow
et al., 2014, Oord et al., 2016, 2017, Vahdat and Kautz, 2020], natural language processing
[Devlin et al., 2018, Radford et al., 2019]. Some examples of generative models are generative
adversarial network (GAN) [Goodfellow et al., 2014], variational autoencoders (VAE) [Kingma
and Welling, 2013], diffusion models [Ho et al., 2020, Song et al., 2020a, Song and Ermon, 2019,
Song et al., 2020b], autoregressive models, and normalizing flows [Rezende and Mohamed, 2015]
etc. They transform some variables from a distribution, oftentimes Gaussian distribution, to a
target distribution that the training dataset belongs to. [Goodfellow et al., 2016] states that many
real-life data, such as images and texts, are supported on a low-dimensional manifold embedded
in a high-dimensional ambient space. Recovering the low-dimensional manifold that the data
lie on thus becomes an important step for learning the data distribution. Generative modeling
can also relate to representation learning [Bengio et al., 2013] when a lower-dimensional latent
representation is inferred in the process of learning the output data distribution, such as the VAEs.

Generative models have many well-known applications, such as images and languages. Partic-
ularly, conditional generation is a useful capability that has been widely adopted for commercial
purposes. For example, image inpainting [Yu et al., 2018, Lugmayr et al., 2022] models are
able to fill in the missing or corrupted pixels of images, language-conditioned image generation
models such as Stable Diffusion [Rombach et al., 2022] and Dall-E [Ramesh et al., 2021] can
generate images out of this world at a simple command, and language translation features are
now ubiquitous in our digital life. Generative models have also brought disruption to applications
such as program generation and drug discovery. Foundation models for code generation, such as
Code Llama [Roziere et al., 2023] and AlpahCode [Li et al., 2022], are now capable of solving
competitive-level coding problems, albeit unreliably. The field of drug discovery also sees im-
mense progress when applying machine learning to drug discovery. AlphaFold [Jumper et al.,
2021] can predict a protein’s 3D structure from its amino acid sequences and was ranked #1 in the
Critical Assessment of Structure Prediction (CASP) competition, significantly outperforming the
second-place competitor. DiffDock [Corso et al., 2022] applies diffusion models to the problem
of pose generation for protein docking, beating all previous approaches, including the previous
state-of-the-art search-based approaches. A plethora of generative models’ applications have truly
brought technological disruption to our modern world.
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Despite all the progress we have made in the past years, there are still many challenges to be
tackled. For example, hallucination is a common problem among generative models, it manifests
itself in the Large Language Model in the form of wrong answers to questions and, in drug
discovery, it presents itself as molecules that do not exist in the natural world. Generative models
nowadays are often very large in size with up to a trillion parameters, making them reliant on large
quantities of good-quality data. This thesis will explore the mechanics of generative modeling,
particularly in the case of VAE. Another focus of this thesis is to improve the generation of discrete
data, with direct applications in molecule generation and program synthesis. Furthermore,

can we make use of the advancements and understanding in the continuous data generation to
improve discrete data generation?

The application of generative models often involves generating novel data that fulfill certain
objectives – to be similar in properties to the training data or achieve certain conditioned or
unconditioned objectives. In this thesis, we want to dive deeper into methods that help generative
models satisfy the objectives. The two underlying themes of this thesis are i) studying the
deficiencies of the current generative models, how they affect generation quality, and ways to
mitigate their effects; ii) how to improve data generation quality under computational constraints
by leveraging domain knowledge.

Here, we provide a brief summary of the future chapters that will tackle

• In Chapter 2 (based on the paper Zhou et al. [2021]), we studied a program synthesis
problem that touches on the challenges in discrete data generation. Given a geometric image
as input, the goal of the project is to generate the context free grammar programs (CFG)
that can be used to recreate the original image. In this work, we treat a non-differentiable
renderer as a decoder and learn an interpretable encoder that leverages CFG grammar to
generates a low-dimensional program representation of geometric images.

• Chapter 3 (based on the paper Koehler et al. [2021]) studies VAE’s behavior in manifold
and density recovery – for non-linear synthetic data, we found that VAE is not guaranteed to
recover the underlying manifold that the high-dimensional training data lie on. We further
studied the effects of a multi-stage VAE and showed it can improve manifold recovery on
synthetic datasets.

• In Chapter 4 (based on the paper Zhou and Poczos [2023]), we apply the multi-stage VAE
that was shown to improve manifold recovery of synthetic data to the task of molecule
generation. We showed improvement in properties among the generated molecules on two
tasks: a general generation task trained on ChEMBL dataset Mendez et al. [2019] and a
generation task for protein targets fine-tuned on two curated smaller molecule sets.

• In Chapter 5, we incorporate a non-differentiable chemistry oracle that provides information
on the net force of each atom in molecules and uses it to guide the reversed diffusion
sampling process in order to achieve better stability among the final samples.
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1.1 Generative Models

Generative models are probabilistic models that learn the distribution of a particular type of
data, denoted as X for the rest of the thesis. If we know the distribution P (X), we are able to
sample novel data points from it. Oftentimes, we do not know the explicit distribution. Instead,
we are given a dataset that includes individual points x’s drawn from it and generative models
learn a distribution that explains these data points. A variety types of generative models have
been proposed, including autoregressive models, variational autoencoders, diffusion models, and
generative adversarial models. We will show their applications in the later sections of this thesis.
Here we include a brief overview of these different types of generative models.

Variational autoencoder (VAE) Kingma and Welling [2013] is one of the common generative
models studied in this thesis. The variational inference framework assumes that the data x is
generated from a latent variable z ∼ p(z). The prior p(z) is assumed to be a multivariate standard
normal distribution in the application of a VAE. A VAE model seeks to maximize the likelihood of
the data, denoted as log pθ(x) = log

∫
p(z)pθ(x|z)dz where θ denotes the generative parameters.

However, the marginalization is intractable in practice due to the inherent complexity of the
generator, or the decoder, thus an approximation of the objective is needed. Let xi be an i.i.d.
molecular sample from a discrete distribution. The VAE model assumes each of the output xi is
generated from a latent variable z follows the conditional distribution p(x|z). However, in the
situations where VAE is used, the posterior p(z|x) is generally intractable. Let θ and ϕ denote
the generative parameters and variational parameters respectively, the VAE model consists of a
tractable encoder qϕ(z|x) and a decoder pθ(x|z). Together, they approximate a lower bound to the
log-likelihood of the data. By optimizing this lower bound we aim to increase the likelihood. This
approximation enables the efficient posterior inference of the latent variable z given the output xi

and for marginal inference of the output variable x. The objective function of VAE is:

L(θ, ϕ;x) = −DKL(qϕ(z|x) || p(z)) + Eqϕ(z|x)[log pθ(x|z)] ≤ log pθ(x) (1.1)

For a generation, latent variable zi is sampled from the prior p(z) which is a multivariate
standard normal and the decoder transforms zi into the output xi.

Many variations of VAEs are proposed, Most notable ones include Vector Quantized Vari-
ational Autoencoder (VQ-VAE) [van den Oord et al., 2017, Razavi et al., 2019b] and Deep
Hierarchical Variational Autoencoder (NVAE) [Vahdat and Kautz, 2020]. VQ-VAE uses discrete
latent representations and learns the prior. It has shown impressive results on image, video, and
audio data. NVAE proposed a deep hierarchical VAE architecture with a new residual parame-
terization of the approximate posteriors and can obtain state-of-the-art results on several image
datasets. In this thesis, we will discuss a Multi-Stage VAE which differs from NVAE in that
multiple VAEs are trained sequentially, whereas NVAE, though it includes multiple latent layers,
is trained as a single one. The training dynamics of the two models are thus entirely different.
Most recently, VAE has also been combined with a diffusion model in stable diffusion [Rombach
et al., 2022] to produce state-of-the-art performance.
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Diffusion Model Current work on diffusion model consists of three main directions – Denoising
Diffusion Probabilistic Models [Ho et al., 2020, Dhariwal and Nichol, 2021, Sohl-Dickstein et al.,
2015, Song et al., 2020a] and Score-based Generative Model [Song and Ermon, 2019, Song et al.,
2020b]. Here, we provide a more detailed introduction to DPPM because it is relevant to our work
in Section 5. A DDPM consists of a forward diffusion process and a reverse denoising process.
The diffusion process is a Markov chain that gradually adds Gaussian noises with a variance
schedule β1:T from timestep 1 to T to the original datapoint x0. The schedule is chosen such
that xT ∼ N (0, I). The forward diffusion process q is usually defined as a fixed schedule by the
following:

q(x1:T | x0) =
T∏
t=1

q(xt | xt−1) q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI) (1.2)

where β1:T is pre-defined ahead of training. The reverse denoising process starts with xT and
recovers the original datapoint x0 by predicting the mean of xt−1 given xt, denoted as µθ(xt, t)
where θ is the parameter. We can model the reverse process as follows:

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1 | xt) pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (1.3)

In practice, Σθ is set to be σ2
t I for all t for simplicy, and σt =

√
1− α2

t and αt =
√∏t

i=1(1− βi).
Ho et al. [2020] further simplified the objective from predicting mean µθ(xt, t) to predict the
noise at each step, which is denoted by ϵθ(xt, t), as xt = αtx0 + σtϵ , and ϵ ∼ N (0, I). The
training objective is minimize Ex0,ϵ∼N (0,I),t [∥ϵ− ϵθ(xt, t)∥2], and the original µθ(xt, t) can be
parameterized as 1

1−βt
(xt − βt√

1−α2
t

ϵθ(xt, t)). Consequently, we have

xt−1 ∼ N (
1

1− βt

(xt −
βt√
1− α2

t

ϵθ(xt, t)), σ
2
t I) (1.4)

To generate via the score-based diffusion model [Song and Ermon, 2019] (as opposed to
DDPM we just described), the output is sampled via Langevin Dynamics using a score function
∇x log p(x):

x̃t = x̃t−1 +
σ

2
∇x log p(x̃t−1) +

√
ϵzt (1.5)

where zt ∼ N (0, I) and ϵ > 0 is a fixed step size. x̃0 ∼ π(x0) where π is the prior. x̃T equals
p(x) when ϵ→ 0 and T →∞. The score-based generative model trained a score function sθ(x̃)
parameterized with θ to estimate the∇x log p(x̃t−1) term.

Generative Adversarial Network (GAN) [Goodfellow et al., 2014] GAN is a framework that
consists of a generator G that learns the distribution of the training data and a discriminator D
that classifies if a sample comes from the original data distribution. The discriminator and the
generator plays a twp-player minimax game with the following value function:
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min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)(log(1−D(G(z)))) (1.6)

where z generally follows a normal distribution as the initial noise to be transformed by the
generator. We alternate between k-step of training the discriminator and one step of training the
generator.

Arjovsky et al. [2017] proposed a variant of GAN called Wasserstein GAN that improves
the stability of the minimax training and reduces mode collapse, which means that the generated
samples only capture a single or a few modes of the training data as opposed to the full range. It
introduces a critic function f parameterized by ω in place of the discriminator during training to
help minimize the Wasserstein distance between the generator distribution and the data distribution.
The critic does not play the same role as the discriminator and is trained according to the following
loss:

Lcritic(ω) = max
ω∈W

Ex∼Pdata
[fω(x)]− Ez∼Pz [fω(g(z))] (1.7)

Naturally, the generator g(·) is trained by minimizing the same loss.
Besides other variants of loss functions, such as MMD GAN [Li et al., 2017], new architectures

have also been proposed for GAN to scale up to higher-resolution images [Brock et al., 2018], to
perform style transfer [Zhu et al., 2017]. Overall, the development of GAN over the years has
made it a ubiquitous model for image generation.

Autoregressive Models Given past output values, autoregressive models work as a next token
predictor. It models the distribution p(xi|x1 = x1,x2 = x2, · · · ,xi−1 = xi−1) at each iteration.
The probability of the overall output can be represented as the following:

P (x1,x2, · · · ,xn) =
N∏
i=1

P (xi = xi|x1 = x1,x2 = x2, · · · ,xi−1 = xi−1) (1.8)

The neural network used to model such data has evolved over the years from RNN [Rumelhart
et al., 1986] and LSTM [Hochreiter and Schmidhuber, 1997, Graves and Graves, 2012] to
transformers [Vaswani et al., 2017]. Transformers can overcome some of the challenges of RNN
and LSTM such as vanishing/exploding gradients due to the recurrent nature of the models and
are better at capturing long-term dependencies. Common applications for autoregressive models
have been sequential data such as language and time series data. Recent developments of large
foundation models with up to a trillion parameters, such as GPT [Achiam et al., 2023] and
Llamma [Touvron et al., 2023], have greatly boosted the profile of autoregressive models and
become the state-of-the-art model for sequential data. They can also be "repurposed" to different
tasks through fine-tuning. Beyond generating sequential data, transformer-based models for
image generation such as ViT [Dosovitskiy et al., 2020] have shown comparable results on image
benchmark datasets to the state-of-the-art convolutional neural network models. Each image is
divided into ordered patches flattened before inputting to the model, positional embeddings are
added to preserve the order information, similar to sequential data.

In the following sections, we will show how these generative models can be applied to tasks
such as program synthesis and molecule generation.
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Chapter 2

Learning Discrete Representation of
Geometric Images

Image generation is extensively studied in machine learning and computer vision literature. Vast
numbers of papers have explored image generation through low-dimensional latent representations
[Goodfellow et al., 2014, Arjovsky et al., 2017, Li et al., 2017, Kingma and Welling, 2013,
van den Oord et al., 2017, Oord et al., 2016]. However, it is challenging to learn disentangled
representations that allow control over each component of the generative models separately
[Higgins et al., 2017, Kim and Mnih, 2018, Locatello et al., 2018, Chen et al., 2016]. In this sectin
of the thesis, we tackle the problem of CFG program generation from constructive solid geometry
(CSG) [Hubbard, 1990] and computer aided design (CAD) images, which are commonplace in
engineering and design applications. Parsing a geometric image into a CFG program not only
enables selective manipulations of the desired components while preserving the rest, but also
provides a human-readable alternative to the opaque low-dimensional representations generated
by neural networks. Our model for extracting the programs can be viewed as an encoder and the
renderer that reconstructs the image as a decoder. We focus on a non-differentiable renderer (most
design software are non-differentiable, e.g. Blender and Autodesk). They are more common than
differentiable ones [Li et al., 2018a, Liu et al., 2019, Kania et al., 2020], but they are also more
challenging to work with neural networks due to their discrete nature not easily integrated into the
network and the gradients w.r.t. the rendered images being inaccessible.

A common scheme for parsing images (e.g. CSG images) into programs (e.g. CFG programs)
for non-differentiable renderers involves two steps: first use synthetic images with ground-truth
programs for supervised pretraining, followed by REINFORCE fine-tuning [Sharma et al., 2018,
Ellis et al., 2019] on the target image dataset. Sampling programs from a grammar can provide
data suitable for supervision if the target images are restricted to combinations of geometric
primitives specified in the grammar. There are two limitations of supervised methods. Firstly,
it maximizes the likelihood of a single reference program while penalizing many other correct
programs [Bunel et al., 2018] using maximum likelihood estimation (MLE). This observation is
known as program aliasing and it adversely affects supervise learning’s performance. Secondly,
it does not generalize well to the test images not generated by the grammar. REINFORCE fine-
tuning is proposed to remedy the two limitations [Bunel et al., 2018, Sharma et al., 2018]. The
transition between the supervised pretraining and REINFORCE fine-tuning is delicate, however,
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because the model is sensitive to bad gradient updates that cause the grammar structure to collapse
among the generated programs. Additionally, the quality of the curated pretraining dataset can
limit the downstream model’s ability to generalize. In this thesis, however, we focus on the more
interesting and more challenging unsupervised task, when ground-truth programs of the images
are not available for training.

Because of the problem’s discrete nature, we rely on tools from reinforcement learning,
such as REINFORCE. However, the program space grows exponentially with the length of the
program and valid programs are too sparse in the search space to be sampled frequently enough to
learn. Training with the naive REINFORCE provides no performance gain in our experiments.
RL techniques such as Hindsight Experience Replay [Andrychowicz et al.] that mitigate the
sparse reward problem cannot be applied here due to the Markov assumption on the model.
We improve the sample efficiency of the REINFORCE algorithm and show that our improved
approach achieves competitive results to a two-step model. We further demonstrate that our
method generalizes better on a synthetic 2D CSG dataset than a supervised method. On a 2D
CAD dataset, which was NOT generated by CFG and thus cannot be captured sufficiently by a
synthetic dataset, our method exceeds the results of a pretrained model by a large margin and
performs competitively to the refined models.

Here we summarize the key ingredients that help successfully learn to parse an image without
program supervision while using a non-differentiable renderer without direct gradient propagation
w.r.t. the rendered images:

• We incorporate a grammar-encoded tree LSTM to impose a structure on the search space
such that the algorithm is sampling a path in the CFG syntax tree top-down. This guarantees
validity of the output program.

• We propose an entropy estimator suitable for sampling top-down from a syntax tree to
encourage exploration of the search space by entropy regularization.

• Instead of relying on naive Monte Carlo sampling, we adopt sampling without replacement
from the syntax tree to obtain better entropy estimates and REINFORCE objective for faster
convergence.

2.1 Related Work

Research on converting images to programs relates more closely to our work [Sharma et al., 2018,
Ellis et al., 2019, 2018, Liu et al., 2018b, Shin et al., 2019, Beltramelli, 2018, Kania et al., 2020].
Tian et al. [2019], Kania et al. [2020] incorporate differentiable renderers into the learning pipeline
while we treat our renderer as an external process independent from the learning process, thus
unable to propagate gradient through the renderer. Furthermore, Kania et al. [2020] construct
the parse tree bottom up and pre-determines the number of leaves, as opposed to top down
like ours which is more general. Ellis et al. [2018] use neural networks to extract shapes from
hand-drawn sketches, formulate the grammatical rules as constraints and obtain the final programs
by optimizing a constraint satisfaction problem. Similarly, Du et al. [2018] cast the problem
of parsing a 3D model into a CSG tree as a constraint satisfaction problem and solve by an
existing SAT solver. This process can be computationally expensive compared to neural network
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Figure 2.1: Each shape encoding is on top of the image it represents.

based solutions. More relevantly, Sharma et al. [2018] perform program synthesis by supervised
pretraining before RL fine-tuning to generalize to a CAD dataset. Ellis et al. [2019] pretrain a
policy with supervision from synthetic data and learns a value function with REINFORCE. Both
are used for pruning unpromising candidates during test time. Their reward function is binary and
cannot approximate images not generated by a grammar, as opposed to our model.

2.2 Proposed Algorithm
CSG Image and CFG Program. We use constructive solid geometry (CSG) [Hubbard, 1990]
to describe an image. The input of our model are images constructed from geometric shapes
(e.g. square, circle, ...) each with a designated size and location (see Figure 2.1). The outputs
of the model are context-free grammar (CFG) programs. In the CFG specification [Sharma
et al., 2018], S, T , and P are non-terminals for the start, operations, and shapes. The rest are
terminals, e.g. + (union), ∗ (intersection), − (subtraction), and c(48, 16, 8) stands for a circle with
radius 8 at location (48, 16) in the image. Figure 2.5 contains examples of CSG images and their
corresponding programs. Each line below is a production rule or just rule for simplicity:

S → E (2.1)
E → EET |P (2.2)
T → +| − |∗ (2.3)
P → SHAPE1|SHAPE2| · · · |SHAPEn. (2.4)

2.2.1 Learning with REINFORCE
A model trained with the REINFORCE objective only [Sharma et al., 2018] is unable to improve
beyond the lowest reward (Section 2.3.1). We propose three components to enable the RL
approach to learn in this setting: (i) a tree model entropy estimator to encourage exploration;
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Figure 2.2: This is an example of the grammar encoded tree LSTM at work. The top layer of images
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yellow and green colored LSTM cell generates grammatical tokens according to the CFG rule 2.1, 2.2, 2.3
and 2.4 respectively. In implementation, we can constrain the output space by adding a mask to the output
of the LSTM and render the invalid options with close to zero probability of being sampled.

(ii) sampling without replacement in the program space to facilitate optimization and further
encourage exploration; (iii) a grammar-encoded tree LSTM to ensure valid output sequences with
an image stack to provide intermediate feedback. We start this section by discussing objective and
reward function.

Objective Function Our model consists of a CNN encoder for input images, an embedding
layer for the actions, and an RNN for generating the program sequences (see Figure 2.2). The
model is trained with entropy regularized REINFORCE [Williams, 1992]. Here, letH(s) and f(s)
stand for the entropy (we will define this later) and reward function of sequence s, respectively,
and let θ denote the parameters of the model. The objective is optimized as follows

∆θ ∝ Es∼Pθ(s)[∇θ logP (s)f(s)] + α∇θH(s) (2.5)

Reward Function The output program s is converted to an image y by a non-differentiable
renderer. The image is compared to the target image x and receives a reward f(s) = R(x,y).
We use Chamfer Distance (CD) as part of the reward function. The CD calculates the average
matching distance to the nearest feature and is a greedy estimation of image similarity, unlike
Optimal Transport (OT). However, OT is not computationally feasible for RL purpose.

Formally, let x ∈ x and y ∈ y be pixels in each image respectively. Then the distance
Ch(x,y) is

Ch(x,y) =
1

|x|
∑
x∈x

min
y∈y
||x− y||2 +

1

∥y∥
∑
y∈y

min
x∈x
||x− y||2 (2.6)

The CD is scaled by the length of the image diagonal (ρ) [Sharma et al., 2018] such that the
final value is between 0 and 1. For this problem, the reward 1− Ch(x,y) mostly falls between
0.9 and 1. We exponentiate 1− Ch(x,y) to the power of γ = 20 to achieve smoother gradients
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[Laud, 2004]. We add another pixel intersection based component to differentiate shapes with
similar sizes and locations. The final reward function is defined as:

R(x,y) = max(δ, (1− Ch(x,y)

ρ
)γ +

∑
x∈x∩y 1∑
x∈x 1

) (2.7)

The first and second part of the reward function provide feedback on the physical distance and
similarity of the prediction respectively. We clip the reward below δ = 0.3 to simplify it when
the quality of the generated images are poor. A low reward value provides little insight on its
performance and is largely dependent on its target image. Similar reward clipping idea was used
in DQN [Mnih et al., 2013].

Algorithm 1 Sampling w/o Replacement Tree LSTM
Input: Target Image x, Number of samples k
Initialize: Grammar stack S, Image stack I , Sample set B

Encode the target image T̃ ← Encode(T )
B = {si0, Gsi0

, ϕi,0|si0 = ∅, Gsi0
= 0, ϕi,0 = 0}

for i ∈ 1, 2, · · · k + 1 and H(v) = 0
for j := 1 to n do

Φ:,j,Hi,j ← TreeLSTM(S, I,B,x) (Algorithm 3)
B← Sample_w/o_Replacement(Φ:,j,B, k) (See Algorithm 2 and [Kool et al., 2019b] )

ĤD ← ĤD +
∑n

j=1
1

Wj(S)

∑
si∈S

pθ(s
i
j)

qθ,κ(s
i
j)
Hi,j (Equation 2.16)

if sij ∈ G then Si.push(s
i
j) else Ii.push(s

i
j),∀si ∈ B

end for
yi = Render(si) for i ∈ 1, 2, · · · k
Maximize E[

∑k
i=1R(x,yi)] + αĤD

2.2.2 Exploration with Entropy Regularization
Entropy regularization in RL is a standard practice for encouraging exploration. Here we propose
an entropy estimation for sampling top-down from a syntax tree. Let S denote a random variable
of possible programs. Its entropy is defined by H(S) = E[− logP (S)] 1. Estimating H(S) is
challenging because the possible outcomes of S is exponentially large and we cannot enumerate
all of them. Given the distribution P , the naive entropy estimator is

Ĥ = − 1

K

K∑
i=1

logP (si), (2.8)

where {si}Ki=1 are iid samples from P . In practice, when K is not exponentially large, this
estimator has huge variance. We provide an improved estimator designed for our syntax tree:
First, we decompose the program S into S = X1 . . . Xn, where each Xj is the random variable

1Following Rule equation 2.1 and Rule equation 2.2 we overload S and P .
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Figure 2.3: The left most image demonstrates the entropy value increases over 700 iterations by sampling
20 distinct samples with and without replacement as well as sampling 40 samples with replacement. The
second image shows the initial distribution. The third and fourth images show the final distributions.

for the token at position j in the program. Under autoregressive models (e.g. RNN), we can access
the conditional probabilities, and this allows us to construct decomposed entropy estimator ĤD as

ĤD =
1

K

K∑
i=1

n∑
j=1

H(Xj|X1 = xi
1, · · · , Xj−1 = xi

j−1), (2.9)

where si = xi
1, . . . , x

i
n, and H(Xj|X1 = xi

1, · · · , Xj−1 = xi
j−1) is the conditional entropy. The

below lemma states that ĤD is indeed an improved estimator over Ĥ.
Lemma 2.2.1. The proposed decomposed entropy estimator ĤD is unbiased with lower variance,
that is E[ĤD] = H(S) and Var(ĤD) ≤ Var(Ĥ).

Proof. Entropy of a sequence can be decomposed into the sum of the conditional entropy at each
step conditioned on the previous values. This is also called the chain rule for entropy calculation.
Let X1, X2, · · · , Xn be drawn from P (X1, X2, · · · , Xn) [Cover and Thomas, 2012]:

H(X1, X2, · · · , Xn) =
n∑

j=1

H(Xj|X1, · · · , Xj−1) (2.10)

If we sum up the empirical entropy at each step after the softmax output, we can obtain an
unbiased estimator of the entropy. Let S be the set of sequences that we sampled and each
sampled sequence si consists of X1, X2, · · · , Xn:

EX1,...,Xj−1
(ĤD)

= EX1,...,Xj−1
(
1

|S|
∑
i∈|S|

n∑
j=1

H(Xj|X1 = xi
1, . . . , Xj−1 = xi

j−1))

=
1

|S|
· |S|

n∑
j=1

H(Xj|X1, · · · , Xj−1)

= H(X1, X2, · · · , Xn)

In order to incorporate the stepwise estimation of the entropy into the beam search, we use the
similar reweighting scheme as the REINFORCE objective. The difference is that the REINFORCE
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objective is reweighted after obtaining the full sequence because we only receive the reward at
the end and here we reweight the entropy at each step. We denote each time step by j and each
sequence by i, the set of sequences selected at time step j is Sj and the complete set of all possible
sequences of length j is Tj and Sj ∈ Tj . We are taking the expectation of the estimator over the
Gϕi,j

scores. As we discussed before, at each step, each potential beam receives a stochastic score
Gϕi,j

. The beams associated with the top-k+1 stochastic scores are chosen to be expanded further
and κ is the k + 1-th largest Gϕi,j

. κ can also be seen as a threshold in the branching selection
process and qθ,κ(s

i
j) = P (Gsij

> κ) = 1 − exp(− exp(ϕi,j − κ)). For details on the numerical
stable implementation of qθ,κ(sij), please refer to [Kool et al., 2019b].

EGϕ
(

n∑
j=1

∑
sij∈Sj

pθ(s
i
j)

qθ,κ(sij)
H(Xj|X1 = xi

1, X2 = xi
2, · · · , Xj−1 = xi

j−1))

=
n∑

j=1

EGϕ
(
∑
i∈|Tj |

pθ(s
i
j)

qθ,κ(sij)
H(Xj|X1 = xi

1, X2 = xi
2, · · · , Xj−1 = xi

j−1))1{xi
1,··· ,xi

j}∈Sj
)

=
n∑

j=1

∑
i∈|Tj |

pθ(s
i
j)H(Xj|X1 = xi

1, X2 = xi
2, · · · , Xj−1 = xi

j−1)EGϕ
(
1{sij=xi

1,··· ,xi
j}∈Sj

qθ,κ(sij)
)

=
n∑

j=1

H(Xj|X1, X2, · · · , Xj−1) · 1

= H(X1, X2, · · · , Xn)

For the proof of EGϕ
(
1{si

j
∈Sj

qθ,κ(s
i
j)
) = 1, please refer to [Kool et al., 2019b], appendix D.

We abuse EXj
to be EXj |X1,...,Xj−1

and VarXj
to be VarXj |X1,...,Xj−1

to simplify the notations.

VarX1,X2,··· ,Xn(
1

|S|
∑
i∈|S|

n∑
j=1

H(Xj|X1 = xi
1, . . . , Xj−1 = xi

j−1))

=
1

|S|2
∑
i∈|S|

n∑
j=1

VarX1,X2,··· ,Xn(H(Xj|X1 = xi
1, . . . , Xj−1 = xi

j−1))

=
1

|S|2
∑
i∈|S|

n∑
j=1

(E(H2(Xj|X1 = xi
1, . . . , Xj−1 = xi

j−1))− E2(H(Xj|X1 = xi
1, . . . , Xj−1 = xi

j−1)))

=
1

|S|2
∑
i∈|S|

n∑
j=1

(EX1,··· ,Xj−1
E2

Xj
(logP (Xj|X1 = xi

1, . . . , Xj−1 = xi
j−1))

− E2
X1,··· ,Xj−1

EXj
(logP (Xj|X1 = xi

1, . . . , Xj−1 = xi
j−1)))

=
1

|S|2
∑
si∈S

n∑
j=1

(EX1,··· ,Xj−1
(EXj

(log2 P (Xj|X1 = xi
1, . . . , Xj−1 = xi

j−1))

− VarXj
(logP (Xj|X1 = xi

1, . . . , Xj−1 = xi
j−1)))
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− E2
X1,··· ,Xj−1

EXj
(logP (Xj|X1 = xi

1, . . . , Xj−1 = xi
j−1)))

=
1

|S|2
∑
i∈|S|

n∑
j=1

(EX1,··· ,Xj
(log2 P (Xj|X1 = xi

1, . . . , Xj−1 = xi
j−1))

− E2
X1,··· ,Xj

(logP (Xj|X1 = xi
1, . . . , Xj−1 = xi

j−1)))

− EX1,··· ,Xj−1
VarXj

(logP (Xj|X1 = xi
1, . . . , Xj−1 = xi

j−1))

=
1

|S|2
∑
i∈|S|

n∑
j=1

(VarX1,··· ,Xj
(logP (Xj|X1 = xi

1, . . . , Xj−1 = xi
j−1))

− EX1,··· ,Xj−1
VarXj

(logP (Xj|X1 = xi
1, . . . , Xj−1 = xi

j−1))

≤ 1

|S|2
∑
i∈|S|

n∑
j=1

VarX1,··· ,Xj
(logP (Xj|X1 = xi

1, . . . , Xj−1 = xi
j−1))

= VarX1,X2,··· ,Xn(
1

|S|
∑
i∈|S|

logP (si))

The fifth equation from the low variance proof holds from the fact that E2
XEY |X [f(X, Y )] =

E2
X,Y [f(X, Y )]. The result still stands after applying reweighting for the beam search.

2.2.3 Effective Optimization By Sampling Without Replacement
After establishing our REINFORCE method with entropy regularization objective, now we
show the intuition behind choosing sampling without replacement (SWOR) over sampling with
replacement (SWR). For this explanation, we use a synthetic example (Figure 2.3).

We initialize a distribution of m = 100 variables with three of them having significantly
higher probability than the others (Figure 2.3 (2)). The loss function is entropy. Its estimator
is 1

m

∑m
i=1 log pi for SWR and

∑m
i=1

pi
qi
log pi for SWOR. In both cases, pi is the i-th variable’s

probability. qi is the re-normalized probability after SWOR. pi
qi

is the importance weighting. The
increase in entropy by sampling 20 variables without replacement is more rapid than 40 variables
with replacement. At the end of the 700 iterations, the distribution under SWOR is visibly more
uniform than the other. SWOR would achieve better exploration than SWR.

To apply SWOR to our objective, the REINFORCE objective and the entropy estimator require
importance weightings. Let sij denotes the first j elements of sequence si:

∇θEs∼pθ(s)[f(s)] ≈
∑
si∈S

∇θpθ(s
i)

qθ(si)
f(si) and, (2.11)

ĤD ≈
n∑

j=1

∑
si∈S

pθ(s
i
j)

qθ(sij)
H(Xj|X1 = xi

1, · · · , Xj−1 = xi
j−1) (2.12)

Implementing SWOR on a tree structure to obtain the appropriate set of programs S is
challenging. It is not practical to instantiate all paths and perform SWOR bottom-up. Instead, we
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adopt a form of stochastic beam search by combining top-down SWOR with Gumbel trick that
is equivalent to SWOR bottom-up [Kool et al., 2019b]. The sampling process is summarized in
Algorithm 2 and described below.

Algorithm 2 Sampling_w/o_Replacement
Input: Log probability at time j Φ:,j Beam Set B,

Number of beams k

function SAMPLING_W/O_REPLACEMENT(Φ:,j,B, k)
G̃j ← ∅
for sij−1, Gsij−1

∈ B and ϕ⃗i,j ∈ Φ:,j do
G⃗ϕi,j

∼ Gumbel(ϕ⃗i,j)

Zi,j ← max(G⃗ϕi,j
)

Aggregate the values in the vector G̃ϕi,j

G̃j ← G̃j ∪ G̃ϕi,j

end for
Choose top k + 1 values in G̃j ∈ R(k+1)·A and form the new beam set
B̃ = {sij, Gsij

, ϕi
j|sij = s̃ij−1 ∪ s̃ij, Gsij

= G̃i,j, ϕi,j = logP (sij)} where i ∈ 1, 2, · · · , k + 1

return B̃
end function

At each step of generation, the algorithm chooses the top-k + 1 beams to expand based on the
G⃗ϕi,j

score at time step j in order to find the top-k stochastic sequences at the end. The use for
the additional beam will be explained later. Let A be all possible actions at time step j, ϕ⃗i,j ∈ RA

is the log probability of each outcomes of sequence i at time j plus the log probability of the
previous j − 1 actions.

ϕ⃗i,j =
[
logP (a1), logP (a2), . . . , logP (aA)

]
+ ϕi,j−1 · 1⃗ (2.13)

For each beam, we sample a Gumbel random variable Gϕi,j,a
= Gumbel(ϕi,j,a) for each of the

element a of the vector ϕ⃗i,j . Then we need to adjust the Gumbel random variable by conditioning
on its parent’s adjusted stochastic score Gsij−1

being the largest (Equation 2.14) in relation to all

the descendant elements in G⃗ϕi,j
, the resulting value ⃗̃Gϕi,j

∈ RA is the adjusted stochastic score
for each of the potential expansions.

⃗̃Gϕi,j
=− log(exp (−1⃗ ·Gsij−1

)− exp (−1⃗ · Zi,j) + exp (−G⃗ϕi,j
)) (2.14)

Here Zi,j is the largest value in the vector G⃗ϕi,j
= [Gϕi,j,a1

, Gϕi,j,a2
, · · · , Gϕi,j,aA

] and Gsij−1

is the adjusted stochastic score of i-th beam at step j − 1 from the last iteration. Conditioning on
the parent stochastic score being the largest in this top-down sampling scheme makes sure that
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each leaf’s final stochastic score Gsi is independent, equivalent to sampling the sequences bottom
up without replacement [Kool et al., 2019b].

Once we have aggregated all the adjusted stochastic scores in ⃗̃Gϕi,j
from all previous k + 1

beams, we select the top-k+1 scored beams from (k+1) ∗A scores for expansions. The selected
k + 1 adjusted stochastic scores become the Gsij

∀i in the new iteration. Note that the reason that
we maintain one more beam than we intended to expand is that we need the k+1 largest stochastic
score to be the threshold during the estimation of the entropy and REINFORCE objective. This is
explained next. Please refer to Algorithm 2 for details on the branching process.

The sampling without replacement algorithm requires importance weighting of the objective
functions to ensure unbiasness. The weighting term is pθ(s

i)
qθ,κ(si)

. pθ(si) represents the probability of
the sequence si (si is the i-th completed sequence and pθ(s

i) = expϕi) and S represents the set of
all sampled sequences si for i = 1, 2, · · · , k. qθ,κ(sij) = P (Gsij

> κ) = 1−exp(− exp(ϕi,j−κ)),
where κ is the (k + 1)-th largest Gsij

score for all i and ϕi,j = logP (at1 , at2 , · · · , atj) is the
log likelihood of the first j actions of i-th sequence, can be calculated based on the CDF of
the Gumbel distribution. It acts as a threshold for branching selection. We can use the log
probability of the sequence here to calculate the CDF because the adjust stochastic scores Gsij

’s
are equivalent to the Gumbel scores of sequences sampled without replacement from bottom up.
During implementation, we need to keep an extra beam, thus k + 1 beams in total, to accurately
estimate κ in order to ensure the unbiasness of the estimator.

To reduce variance of our objective function, we introduce additional normalization terms as
well as a baseline. However, the objective function is biased with these terms. The normalization
terms are W (S) =

∑
si∈S

pθ(s
i)

qθ,κ(si)
and W i(S) = W (S)− pθ(s

i)
qθ,κ(si)

+ pθ(s
i).

Incorporating a baseline into the REINFORCE objective is a standard practice. A baseline
term is defined as B(S) =

∑
si∈S

pθ(s
i)

qθ,κ(si)
f(si) and f(si) should be the reward of the complete

i-th program si in this case.
To put everything together, the exact objective is as follows [Kool et al., 2019a]:

∇θEs∼pθ(s)[f(s)] ≈
∑
si∈S

1

W i(S)
· ∇θpθ(s

i)

qθ,κ(sin)
(f(si)− B(S)

W (S)
) (2.15)

Entropy estimation uses a similar scaling scheme as the REINFORCE objective:

ĤD(X1, X2, X3, · · · , Xn) ≈
n∑

j=1

1

Wj(S)

∑
si∈S

pθ(s
i
j)

qθ,κ(sij)
H(Xj|X1 = xi

1, · · · , Xj−1 = xi
j−1)

(2.16)

where Wj(S) =
∑

si∈S
pθ(s

i
j)

qθ,κ(s
i
j)

and sij denotes the first j elements of the sequence si. The estimator

is unbiased excluding the 1
Wj(S)

term.

2.2.4 Grammar Encoded Tree LSTM
We introduce a grammar-encoded tree LSTM which encodes the production rules into the model,
thus guaranteed to generate correct programs, and significantly reduce the search space during
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the training [Kusner et al., 2017, Alvarez-Melis and Jaakkola, 2016, Parisotto et al., 2016, Yin
and Neubig, 2017]. There are 3 types of production rules in the grammatical program generation
– shape selection (P ), operation selection (T ), and grammar selection (E). Grammar selection
in this problem setting includes E → EET , and E → P and they decide whether the program
would expand. We denote the set of shape, operations and non-terminal outcomes (e.g. EET in
Rule equation 2.2) to be P , T and G respectively. A naive parameterization is to let the candidate
set of the LSTM output to be {S, $} ∪ T ∪ P , where $ is the end token, and treat it as a standard
language model to generate the program [Sharma et al., 2018]. The model does not explicitly
encode grammar structures, and expect the model to capture it implicitly during the learning
process. The drawback is that the occurrence of valid programs is sparse during sampling and it
can prolong the training process significantly.

The proposed model can be described as an RNN model with a masking mechanism by
maintaining a grammar stack to rule out invalid outputs. We increase the size of the total output
space from 2+ |P|+ |T | of the previous approach (e.g. [Sharma et al., 2018]) to 2+ |P|+ |T |+ |G|
by including the non-terminals. During the generation, we maintain a stack to trace the current
production rule. Based on the current non-terminal and its corresponding expansion rules, we use
the masking mechanism to weed out the invalid output candidates. Take the non-terminal T for
example, we mask the invalid outputs to reduce the candidate size from 2+ |P|+ |T |+ |G| to |T |
only. In this process, the model will produce a sequence of tokens, including grammatical, shape
and operation tokens. We only keep the terminals as the final output program and discard the rest.
The resulting programs are ensured to be grammatically correct. During the generation process,
grammatical tokens are pushed onto the grammar stack while intermediate images and operations
are pushed onto an image stack. Images in the image stack are part of the input to the LSTM to
aid the inference in the search space. Figure 2.2 is a visual representation of the process.

We provide a guide for the tree-LSTM illustration in Figure 2.2. This guide follows the arrows
in the illustration (Figure 2.2) from left to right:

• A grammar stack with a start token S and an end token $ as well as an empty image stack is
initialized.

• In the first iteration, the token S is popped out. Following Rule equation 2.1, all other
options will be masked except E, the only possible output. E token is added to the stack.

• In the second iteration, or any iteration where the token E is popped, the input for all
examples and all softmax outputs are masked except the entries representing EET and P
according to Rule equation 2.2. If EET is sampled, T , E and E tokens will be added to
the stack separately in that exact order to expand the program further. If P is sampled, it
will be added to the stack and the program cannot expand further.

• If T is popped out of the stack, the output space for that iteration will be limited to all the
operations (Rule equation 2.3). Similarly, if P is popped out, the output space is limited to
all the geometric shapes (Rule equation 2.4).

• When a shape token is sampled, it will not be added to the grammar stack as they do not
contribute to the program structure. Instead, the image of the shape will be pushed onto the
corresponding image stack.

• When an operation token is sampled, it also will not be added to the grammar stack. Instead,
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we pop out the top two images to apply the operation on them and push the final image onto
the image stack again.

• When the stack has popped out all the added tokens, the end token $ will be popped out in
the last iteration. We then finish the sampling as standard RNN language models.

In practice, we implement the masking mechanism by adding a vector to the output before passing
it into the logsoftmax layer to get the probability. The vector contains 0 for valid output and large
negative numbers for invalid ones. This makes sure that invalid options will have almost zero
probability of being sampled. The input of the RNN cell includes encoded target images and
intermediate images from the image stack, embedded pop-out tokens from the grammar stack,
and the hidden state from the RNN’s last iteration. The exact algorithm is in Algorithm 3.

2.3 Experiments
There are two datasets we used for experiments – a synthetic dataset generated by the CFG
specified in Section 2.2 and a 2D CAD furniture dataset. We compared the result of our algorithm
to that of the same neural network trained with supervision of ground-truth programs. We
observed that the supervised model shows poorer generalization in both datasets despite its access
to additional ground-truth programs. We provide qualitative and quantitative ablation study of
our algorithm on the synthetic dataset. We also showed that our algorithm can approximate the
CAD images with programs despite not having exact matches. On the CAD furniture dataset, it
outperforms the supervised pretrained model and achieves competitive result to the refined model.
Additionally, we verify empirically that the stepwise entropy estimator (Equation 2.9) indeed has
smaller variance than the naive estimator (Equation 2.8) as proven in Lemma 2.2.1.

Algorithm 3 TreeLSTM Model
Input: Grammar Stack S, Image Stack I , Target Image x, Sample Set B

function TREELSTM(S, I,B,x)
x̃← Encode(x)
for sij−1, ϕi,j−1 ∈ B do

gi ← Si.pop()
g̃i ← Embed(gi)
Ĩi ← Encode(Ii)
Hi,j ← LSTM(g̃i, Ĩi, x̃, Hi,j−1)
pi,j ← softmax(f(Hi,j) + Mask(gi))
Estimate entropy at this level:
Hi,j = p̃i,j · log p̃i,j

Update the log probabilities of partial sequences
ϕ⃗i,j = 1⃗ · ϕi,j−1 + logpi,j

end for
return Φ:,j,Hi,j

end function

18



0 2000 4000 6000 8000 10000
number of batches

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

tra
in

in
g 

re
wa

rd

Program Length 5

0 2000 4000 6000 8000 10000 12000 14000
number of batches

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

tra
in

in
g 

re
wa

rd

Program Length 7

Our algorithm
w/o entropy
w/o tree structure
w/ replacement

0 5000 10000 15000 20000 25000
number of batches

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

tra
in

in
g 

re
wa

rd

Program Length 9

Figure 2.4: From left to right, we have reward per batch for programs of length 5, 7 and 9. It demonstrates
the performance of our algorithm and controlled comparison in performance with alternative algorithms by
removing one component at a time.

2.3.1 Synthetic Dataset Study
We use three synthetic datasets to test our algorithm. The action space includes 27 shapes (Figure
2.1), 3 operations and 2 grammar non-terminals to create a 64 by 64 images. The search space
for an image up to 3 shapes (or program length 5) is around 1.8× 105 and it gets up to 1.1× 109

for 5 shapes (or program length 9). We separate our dataset by the length of the program to
differentiate images with increasing complexity. Our synthetic dataset is generated by filtering out
the duplicates and empty images in combinations of shape and operation actions in text. Images
are considered duplicates if only 120 pixels are different between the two and are considered
empty if there are no more than 120 pixels in the image. Table 2.1 contains the dataset size
information.

Ablation Study of Design Components For these 3 datasets, we sampled 19 programs without
replacement for each target image during training. The negative entropy coefficient is 0.05 and
the learning rate is 0.01. We use SGD with 0.9 momentum.

Removing either one of the three design components has reduced the performance of our
algorithm. Under sampling with replacement setting, the model is quickly stuck at a local optimum
(Figure 2.4 (yellow)). Without the entropy term in the objective function, the reward function is
only able to improve on the length 5 dataset but fails to do so on longer programs. Both techniques
have facilitated exploration that helps the model to escape local minimum. Without tree structure,
the reward stays around the lowest reward (Figure 2.4 (green)) because the program is unable to
generate valid programs. Grammar encoded tree LSTM effectively constraints the search space
such that the sampled programs are valid and can provide meaningful feedback to the model.

We allow variations in the generated programs as long as the target images can be recovered,
thus we evaluate the program quality in terms of the reconstructed image’s similarity to the target
image. We measure our converged algorithm’s performance (Table 2.2) on the three test sets with
Chamfer and IoU reward metrics (Equation 2.7 first and second term). The perfect match receives
1 in both metrics. Figure 2.5 provides some qualitative examples on the algorithms.

Comparison With Supervised Training We compare a supervised learning method’s train and
test results on the synthetic dataset, using the same neural network model as in the unsupervised
method. The input at each step is the concatenation of embedded ground truth program and the
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target program: c(32,40,20)c(40,16,12)-s(24,40,16)-s(8,16,8)+

target program: t(16,16,12)s(40,16,12)+t(32,40,20)+s(24,32,20)-s(24,40,16)+

Target

Our Algorithm w/o Entropy Sampling w/ 
Replacement

Reward: 2.0 Reward: 1.07 Reward: 0.58 Reward: 0.3 

w/o Tree

Reward: 1.82Target

target program: t(32,32,16)t(40,16,12)-t(24,40,16)-
Reward: 0.3 Reward: 0.78 Reward: 0.78

Reward: 0.42Reward: 2.0 Reward: 0.3 Reward: 1.1Target

Target Reward: 2.0   Reward: 2.0   Reward: 1.7   Reward: 2.0

Target   Reward: 1.7                Reward: 2.0     Reward: 2.0               Reward: 2.0

Target   Reward: 0.9                Reward: 1.0                Reward: 1.5               Reward: 0.9

Target   Reward: 1.6                Reward: 1.6                Reward: 1.6               Reward: 1.6

Target   Reward: 2.0                Reward: 2.0                Reward: 2.0               Reward: 2.0

Figure 2.5: a) We show a target image from each dataset and attach its correct program below. To the right
are the reconstructed output programs from our algorithm and three variants each removing one design
component. The reward is on top of the reconstructed images. (b) Some reconstructed example output
programs of our algorithm. Each row represents one data point. The leftmost images of the five columns
are the target images and the four columns to their right are the reconstructed outputs of four samples. The
final output highlighted in red has the highest reward.

Type Length 5 Length 7 Length 9 2D CAD
Training set size 3600 4800 12000 10000
Testing set size 586 789 4630 3000

Table 2.1: Dataset statistics.
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Figure 2.6: REINFORCE fine-tuning with pretrained model.

Test Metric Length 5 Length 7 Length 9
Chamfer Reward ↑ 0.98 0.96 0.96

IoU Reward ↑ 0.99 0.96 0.96

Table 2.2: The performance of the converged model of our algorithm on the test set measured with Chamfer
reward and IoU reward.

encoded final and intermediate images. We use the same Chamfer reward metric as in Table 2.2 to
measure the quality of the programs. The test results of the supervised method worsen with the
increasing complexity (program length) while the train results are almost perfect across all three
datasets. The unsupervised method receives consistently high scores and generalizes better to new
data in comparison to the supervised method (Table 2.3). This phenomenon can be explained by
program aliasing [Bunel et al., 2018]. The RL method treats all correct programs equally and
directly optimizes over the reward function in the image space while the supervised method is
limited to the content of the synthetic dataset and only optimizes over the loss function in the
program space.

Supervised Pretrained On Limited Data With REINFORCE Fine-tuning In this experiment
we pretrained the supervised model on a third of the synthetic training dataset till convergence.
We take the model and further fine-tune it with vanilla REINFORCE on the full training sets. We
report the reward throughout fine-tuning process (Figure 2.6) and it dropped sharply in all three
datasets. Our explanation is that while the output of the original supervised pretrained model
follow grammatical structures, they are not able to retain the structure consistently after updates
during the refinement process, which leads to the collapse.

2.3.2 2D CAD Furniture Dataset Study
The dataset used in this experiment is a 2D CAD dataset [Sharma et al., 2018] that contains
binary 64× 64 images of various furniture items. We apply our algorithm to this problem with
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Figure 2.7: The four examples on the right are from the test set, and the rest on the left are from the training
set. The target images are on top and the reconstruction from the output programs are at the bottom.

Chamfer Reward ↑ length 5 length 7 length 9
Training 1.00 1.00 0.99
Testing 0.99 0.91 0.83

Table 2.3: Supervised training results.
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Figure 2.8: Compare the entropy estimation following the Equation ?? as a weighted sum of stepwise
entropy versus taking the average of the sequence log probability. The number of samples varies from 2 to
80 on the x-axis. The shaded area represents the standard deviation of each estimator. From left to right,
we demonstrate the result on datasets of three program lengths.

an action space of 396 basic shapes plus the operations and grammatical terminals described
in Section 2.2. We limit the number of LSTM iterations to 24 steps, which corresponds to a
maximum of 6 shapes. For an image up to 6 shapes the search space is 9.4× 1017. If we remove
the grammar-encoded tree structure, the search space is 3.8× 1028. In order to scale up to such a
big search space from the synthetic experiment, we increase the number of programs sampled
without replacement to 550. The higher number usually corresponds to faster convergence and
better performance at convergence but the performance gain diminishes at around 500 for this
problem. The learning rate and entropy values used are 0.01 and 0.007 respectively. We train
the model with only the Chamfer reward (first part of the Equation 2.7) because these images
are not generated by CFG and exact matching solutions do not exist. During training, the reward
converges to 0.72. Qualitative results are reported from the train and test set (Figure 2.7). The
program reconstructions are able to capture the overall profile of the target images. However, the
cutouts and angles deviate from the original because the shape actions consist solely of unrotated
squares, perfect circles and equilateral triangles.
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Chamfer Distance ↓ k = 1 k =3 k = 5
30k Supervised Model 4.09 3.38 3.02
30k RL Refined Model 1.92 1.83 1.79

30k SWOR RL Refined Model 1.96 1.82 1.77
150k Supervised Model 3.64 2.89 2.63
150k RL Refined Model 1.91 1.79 1.73

150k SWOR RL Refined Model 1.93 1.79 1.73
300k Supervised Model 3.32 2.69 2.38
300k RL Refined Model 1.66 1.54 1.50

300k SWOR RL Refined Model 1.65 1.53 1.49
Unsupervised Model 1.51 1.48 1.47

Table 2.4: Empirical comparison of supervised model pre-trained on 30k, 150k and 300k programs, their
fine-tuned models and our model on 2D CAD dataset with Chamfer distance

Comparison With Supervised Pretraining In this section, we measure the image similarity
directly in Chamfer Distance (CD) (Equation 2.6) for comparison. We pretrained a model on
300k, 150k and 30k ground truth programs (including duplicates) each with learning rate of 0.001.
We selected the pretrained models that reaches the lowest CD (at 1.41, 2.00, 2.79 respectively) on
a synthetic validation set. We further fine-tuned the pretrained models on the CAD dataset with
learning rate 0.006. The transition between pretraining and fine-tuning is delicate. The grammar
structure of the output programs (Figure 2.6) collapses when we set the learning rate to be 0.01
(as opposed to 0.006) or fine-tune an unconverged pretrain model. Our model was trained directly
on the CAD dataset without supervision with learning rate of 0.01 and entropy coefficient (ec) of
0.009. Entropy coefficient trades off between exploitation and exploration. Higher ec leads to
slower convergence but the model is less likely to be stuck at local optimum. Setting ec in the
range between 0.005 and 0.012 for this problem has not impact the result significantly. We report
the result of the three pretrained models, vanilla RL fine-tuned models, SWOR RL fine-tuned
models as well as our model after beam search with k = 1, 3, 5 in Table 2.4.

The poor performance of the pre-trained model shows that it is not able to directly generalize
to the novel dataset due to the mismatch of the training dataset and the CAD dataset. The
unsupervised method exceeds the performance of a supervised model by a large margin because
it was trained directly on the target domain. It also removes the hyper-parameter tuning step
in the transition to the RL fine-tuning and reaches a result competitive to a refined model. The
unsupervised method performs better when k = 1, 3 than the fine-tuned models. At convergence,
the results of the fine-tuned model pre-trained on 300k synthetic data and the unsupervised model
become very close at k = 5. The two types of refined models reach similar results given the same
amount of pretraining synthetic data – poorer performance on less data – confirming that the
quality of the pretraining dataset is a limiting factor for the downstream models.

We include additional enlarged test outputs (Figure 2.9). We add the corresponding output
program below each target/output pair. We observe that the algorithm approximates thin lines with
triangles in some cases. Our hypothesis for the cause is the Chamfer Distance reward function
being a greedy algorithm and it finds the matching distance based on the nearest features.
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2.3.3 Variance Study of Entropy Estimation
This study (Figure 2.8) investigates the empirical relationship between the two variance estimators
and verifies Lemma 2.2.1 that ĤD achieves lower variance than Ĥ (Section 2.2.2).

We take a single model saved at epoch 40 during the training time of the length 5, 7, and 9
datasets and estimate the entropy with ĤD (Equation 2.9) and Ĥ (Equation 2.8). We consider
two sampling schemes: with and without replacement. We combine both entropy estimation
methods with the two sampling schemes creating four instances for comparisons. The x-axis of
the plot documents the number of samples to obtain a single estimation of the entropy. We further
repeat the estimation 100 times to get the mean and variance. The means of SWR method act as a
baseline for the means of the SWOR while we compare the standard deviations (the shaded area)
of the two entropy estimation methods.

Across all three datasets, ĤD (green) shows significantly smaller variance with the number
of samples ranging from 2 to 80. However, we notice that longer programs, or more complex
images, require much more samples to reduce variance. This makes sense because the search
space increases exponentially with the program length. The initial bias in the SWOR estimation
dissipates after the number of samples grows over 10 and is greater in datasets with longer program
lengths.

2.4 Discussion
Current program synthesis approaches for non-differentiable renderers employ a two-step scheme
that requires the user to first generate a synthetic dataset for pretraining and then use RL fine-
tuning with target images. A purely RL-driven approach does not require the curation of a
pretraining dataset and can learn directly from target images. Further, unlike approaches that rely
on supervised pretraining, the RL approach does not restrict the model to only the program(s) in
the synthetic dataset when multiple equal reconstructions exist. This limitation of the pretraining
dataset can further impact the downstream models’ ability to generalize. In this thesis, we
introduced the first unsupervised algorithm capable of parsing CSG images—created by a non-
differentiable renderer—into CFG programs without pretraining. We do so by combining three key
ingredients to improve the sample efficiency of a REINFORCE-based algorithm: (i) a grammar-
encoded tree LSTM to constrain the search space; (ii) entropy regularization for trading off
exploration and exploitation; (iii) sampling without replacement from the CFG syntax tree for
better estimation. Our ablation study emphasizes the qualitative and quantitative contributions
of each design component. Even though our RL approach does not have access to a pretraining
dataset it achieves stronger performance than a supervised method on the synthetic 2D CSG
dataset. It further outperforms the supervised pre-trained model on the novel 2D CAD dataset and
is competitive with the RL fine-tuned model.
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s(24,16,8)s(40,16,8)+s(32,32,20)+c(32,48,12)-s(32,40,12)-

s(32,32,20)t(48,56,8)-s(24,16,16)-s(32,40,12)-s(32,40,12)-

s(32,32,20)c(48,8,8)-c(32,40,12)-c(32,32,12)-

s(32,32,16)t(16,24,8)+t(48,24,8)+t(32,48,24)-c(32,32,8)-

t(40,48,8)t(24,48,8)+s(32,32,20)+s(32,32,16)-

s(32,32,12)s(24,8,8)-s(48,32,8)+s(16,32,8)+c(32,40,12)-

t(32,48,8)t(24,16,8)+t(40,16,8)+t(32,32,8)+s(32,40,8)+ t(24,48,8)s(40,48,8)t(40,32,8)++t(40,16,8)+s(32,40,12)+

s(32,32,20)t(56,8,8)-s(24,16,16)-s(32,40,8)-s(24,16,16)- s(32,32,20)t(48,56,12)-s(32,40,12)-s(24,16,16)-c(40,16,8)+

Target TargetOutput Output

Figure 2.9: Additional test output with corresponding programs. The odd-numbered columns contain the
target images and the images to their right are example outputs.
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Chapter 3

Variational Inference on Low-Dimensional
Data

3.1 Introduction

Variational autoencoders (VAEs) have recently enjoyed a revived interest, both due to architectural
choices that have led to improvements in sample quality [Oord et al., 2017, Razavi et al., 2019b,
Vahdat and Kautz, 2020] and due to algorithmic insights [Dai et al., 2017, Dai and Wipf, 2019].
Nevertheless, fine-grained understanding of the behavior of VAEs is lacking, both on the theoretical
and empirical level.

In our paper, we study a common setting of interest where the data is supported on a low-
dimensional manifold — often argued to be the setting relevant to real-world image and text data
due to the manifold hypothesis (see e.g. Goodfellow et al. [2016]). In this setting, Dai and Wipf
[2019] proposed a two-stage training process for VAEs, based on a combination of empirical and
theoretical arguments suggesting that for standard VAE training with such data distributions: (1)
the generator’s covariance will converge to 0, (2) the generator will learn the correct manifold,
but not the correct density on the manifold (3) the number of approximately 0 eigenvalues in
the encoder covariance will equal the intrinsic dimensionality of the manifold (see also Dai et al.
[2017]).

In this paper, we revisit this setting and explore the behaviour of both the VAE loss, and the
training dynamics. Through a combination of theory and experiments we show that:

• In the case of the data manifold being linear (i.e. the data is Gaussian, supported on a linear
subspace—equivalently, it is produced as the pushforward of a Gaussian through a linear
map), and the encoder/decoder being parametrized as linear maps, we show that: a) the set
of optima includes parameters for which the generator’s support is a strict superset of the
data manifold; b) the gradient descent dynamics are such that they converge to generators
with support equal to the support of the data manifold. This provides a full proof of the
conjecture in Dai and Wipf [2019], albeit we show the phenomenon is a combination of both
the location of the minima of the loss as well as an implicit bias of the training dynamics.

• In the case of the data manifold being nonlinear (i.e. the data distribution is the pushforward
of the Gaussian through a nonlinear map f : Rr → Rd, r ≤ d), the gradient descent
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dynamics from a random start often converges to generators G whose support strictly
contains the support of the underlying data distribution, while driving reconstruction
error to 0 and driving the VAE loss to −∞. This shows that the conjecture in Dai and
Wipf [2019] does not hold for general nonlinear data manifolds and architectures for the
generator/encoder.

3.1.1 Related work
Implicit regularization. Interestingly, the implicit bias towards low-rank solutions in the VAE
which we discover is consistent with theoretical and experimental results in other settings, such
as deep linear networks/matrix factorization (e.g. Gunasekar et al. [2018], Li et al. [2018b],
Arora et al. [2019], Li et al. [2020], Jacot et al. [2021]), although it seems to be for a different
mathematical reason — unlike those settings, initialization scale does not play a major role.
Similar to the setting of implicit margin maximization (see e.g. Ji and Telgarsky [2018], Schapire
and Freund [2013], Soudry et al. [2018]), in our VAE setting the optima are asymptotic (though
approaching a finite point, not off at infinity) and the loss goes to −∞. Kumar and Poole [2020],
Tang and Yang [2021] also explore some implicit regularization effects tied to the Jacobian of the
generator and the covariance of the Gaussian noise.

Architectural and Algorithmic Advances for VAEs. There has been a recent surge in activity
with the goal of understanding VAE training and improving its performance in practice. Much
of the work has been motivated by improving posterior modeling to avoid problems such as
“posterior collapse”, see e.g. [Dai et al., 2020, Razavi et al., 2019a, Pervez and Gavves, 2021,
Lucas et al., 2019, He et al., 2019, Oord et al., 2017, Razavi et al., 2019b, Vahdat and Kautz, 2020].
Most relevant to the current work are probably the works Dai and Wipf [2019] and Lucas et al.
[2019] discussed earlier. A relevant previous work to these is Dai et al. [2017]; one connection
to the current work is that they also performed experiments with a ground truth manifold, in
their case given as the pushforward of a Gaussian through a ReLU network. In their case, they
found that for a certain decoder and encoder architectures that they could recover the intrinsic
dimension using a heuristic related to the encoder covariance eigenvalues from Dai and Wipf
[2019]; our results are complementary in that they show that this phenomena is not universal and
does not hold for other natural datasets (e.g. manifold data on a sphere fit with a standard VAE
architecture).

3.2 Setup
We will study the behavior of VAE learning when data lies on a low-dimensional manifold—more
precisely, we study when the generator can recover the support of the underlying data distribution.
In order to have a well-defined “ground truth”, both for our theoretical and empirical results, we
will consider synthetic dataset that are generated by a “ground truth” generator as follows.

Data distribution: To generate a sample point x for the data distribution, we will sample
z ∼ N(0, Ir∗), and output x = f(z), for a suitably chosen f . In the linear case, f(z) = Az, for
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some matrix A ∈ Rd×r∗ . In the nonlinear case, f(z) will be a nonlinear function f : Rr∗ → Rd.
We will consider several choices for f .

Parameterization of the trained model: For the model we are training, the generator will
sample z ∼ N(0, Ir) and output x ∼ N(f(z), ϵI), for trainable f, ϵ; the encoder given input x
will output z ∼ N(g(x), D), where D ∈ Rr×r is a diagonal matrix, and g,D are trainable. In the
linear case, f, g will be parameterized as matrices Ã, B̃; in the nonlinear case, several different
parameterizations will be considered. In either case the VAE Loss will be denoted by L(·), see
equation 3.3.

3.3 Our Results
Linear VAEs: the correct distribution is not recovered. Recall in the linear case, we train a
linear encoder and decoder to learn a Gaussian distribution consisting of data points x ∼ N(0,Σ)
— equivalently, the data distribution is the pushforward of a standard Gaussian z ∼ N(0, Ir∗)
through a linear generator x = Az with AAT = Σ; see also Section 3.2 above. In Theorem 1
of Lucas et al. [2019], the authors proved that in a certain probabilistic PCA setting where Σ is
full-rank, the landscape of the VAE loss has no spurious local minima: at any global minima of
the loss, the VAE decoder exactly matches the ground truth distribution, i.e. ÃÃT + ϵ2I = Σ.

We revisit this problem in the setting where Σ has rank less than d so that the data lies on the
lower-dimensional manifold/subspace spanned by the columns of A or equivalently Σ, denoted
span(A). We show empirically (i.e. via simulations) in Section 3.6 that when Σ is rank-degenerate
the VAE actually fails to recover the correct distribution. More precisely, the recovered Ã has the
correct column span but fails to recover the correct density — confirming predictions made in Dai
and Wipf [2019]. We then explain theoretically why this happens, where it turns out we find some
surprises.

Landscape Analysis: Linear and Nonlinear VAE. Dai and Wipf [2019] made their predictions
on the basis of the following observation about the loss landscape: there can exist sequences of
VAE solutions whose objective value approaches −∞ (i.e. are asymptotic global minima), for
which the generator has the correct column span, but does not recover the correct density on the
subspace. They also informally argued that these are all of the asymptotic global minima of loss
landscape (Pg 7 and Appendix I in Dai and Wipf [2019]), but did not give a formal theorem or
proof of this claim.

We settle the question by showing this is not the case:1 namely, there exist many convergent
sequences of VAE solutions which still go to objective value −∞ but also do not recover the
correct column span — instead, the span of such Ã is a strictly larger subspace. More precisely,
we obtain a tight characterization of all asymptotic global minima of the loss landscape:
Theorem 3.3.1 (Informal Theorem on Optima of Linear VAE Loss). Suppose that Ã, B̃ are fixed
matrices such that A = ÃB̃A and suppose that #{i : Ãi = 0} > r − d, i.e. the number of zero

1They also argued this would hold in the nonlinear case, but our simulations show this is generally false in that
setting, even for the solutions chosen by gradient descent with a standard initialization — see Section 3.6.
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columns of Ã is strictly larger than r− d. Then there exists ϵ̃t → 0 and positive diagonal matrices
D̃t such that limt→∞ L(Ã, B̃, D̃t, ϵ̃t) = −∞. Also, these are all of the asymptotic global minima:
any convergent sequence of points (Ãt, B̃t, D̃t, ϵ̃t) along which the loss L goes to −∞ satisfies
Ãt → Ã, B̃t → B̃ with A = ÃB̃A such that #{i : Ãi = 0} > r − d.

To interpret the constraint #{i : Ãi = 0} > r − d, observe that if the data lies on a lower-
dimensional subspace of dimension r∗ < d (i.e. r∗ is the rank of Σ), then there exists a generator
which generates the distribution with r− r∗ > r− d zero columns by taking an arbitrary low-rank
factorization LLT = Σ with L : d× r∗ and defining A : d× r by A =

[
L 0d×r−r∗

]
. The larger

the gap is between the manifold/intrinsic dimension r∗ and the ambient dimension d, the more
flexibility we have in constructing asymptotic global minima of the landscape. Also, we note there
is no constraint in the Theorem that r − d ≥ 0: the assumption is automatically satisfied if r < d.

To summarize, the asymptotic global minima satisfy A = ÃB̃A, so the column span of Ã
contains that of A, but in general it can be a higher dimensional space. For example, if d, r ≥ r∗+2

and and the ground truth generator is A =

[
Ir∗ 0
0 0

]
, then Ã =

[
Ir∗+1 0
0 0

]
and B̃ =

[
Ir∗+1 0
0 0

]
is a perfectly valid asymptotic global optima of the landscape, even though decoder Ã generates

a different higher-dimensional Gaussian distribution N

(
0,

[
Ir∗+1 0
0 0

])
than the ground truth.

In the above result we showed that there are asymptotic global minima with higher dimensional
spans even with the common restriction that the encoder variance is diagonal; if we considered
the case where the encoder variance is unconstrained, as done in Dai and Wipf [2019], and/or can
depend on its input x, this can only increase the number of ways to drive the objective value to
−∞.

We also consider the analogous question in the nonlinear VAE setting where the data lies on a
low-dimensional manifold. We prove in Theorem 3.4.6 that even in a very simple example where
we fit a VAE to generate data produced by a 1-layer ground truth generator, there exists a bad
solution with strictly larger manifold dimension which drives the reconstruction error to zero (and
VAE loss to −∞). The proof of this result does not depend strongly on the details of this setup
and it can be adapted to construct bad solutions for other nonlinear VAE settings.

We note that the nature both of these result is asymptotic: that is, they consider sequences of
solutions whose loss converges to −∞— but not the rate at which they do so. In the next section,
we will consider the trajectories the optimization algorithm takes, when the loss is minimized
through gradient descent.

Linear VAE: implicit regularization of gradient flow. The above theorem indicates that
studying the minima of the loss landscape alone cannot explain the empirical phenomenon of
linear VAE training recovering the support of the ground truth manifold in experiments; the only
prediction that can be made is that the VAE will recover a possibly larger manifold containing the
data.

We resolve this tension by proving that gradient flow, the continuous time version of gradient
descent, has an implicit bias towards the low-rank global optima. Precisely, we measure the
effective rank quantitatively in terms of the singular values: namely, if σk(Ã) denotes the k-th
largest singular value of matrix Ã, we show that all but the largest dim(spanA) singular values
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of Ã decay at an exponential rate, as long as: (1) the gradient flow continues to exist2 , and (2)
the gradient flow does not go off to infinity, i.e. neither Ã or ϵ̃ go to infinity (in simulations, the
decoder Ã converges to a bounded point and ϵ̃→ 0 so the latter assumption is true). To simplify
the proof, we work with a slightly modified loss which “eliminates” the encoder variance by
setting it to its optimal value: L1(Ã, B̃, ϵ̃) := minD̃ L(Ã, B̃, ϵ̃, D̃); this loss has a simpler closed
form, and we believe the theorems should hold for the standard loss as well. (Generally, gradient
descent on the original loss L will try to optimize D̃ in terms of the other parameters, and if it
succeeds to keep D̃ well-tuned in terms of Ã, B̃, ϵ̃ then L will behave like the simplified loss L1.)
Theorem 3.3.2 (Informal Theorem on the Implicit Bias of Gradient Flow). Let A : d × r be
arbitrary and define W to be the span of the rows of A, let Θ̃(0) = (Ã(0), B̃(0), ϵ̃(0)) be an
arbitrary initialization and define the gradient flow Θ̃(t) = (Ã(t), B̃(t), ϵ̃(t)) by the ordinary
differential equation (ODE)

dΘ̃(t)

dt
= −∇L1(Θ̃(t)) (3.1)

with initial condition Θ0. If the solution to this equation exists on the time interval [0, T ] and
satisfies maxt∈[0,T ] maxj[∥(Ãt)j∥2 + ϵ̃2t ] ≤ K, then for all t ∈ [0, T ] we have

d∑
k=dim(W )+1

σ2
k(Ã(t)) ≤ C(A, Ã) e−t/K (3.2)

where C(A, Ã) := ∥PW⊥ÃT (0)∥2F and PW⊥ is the orthogonal projection onto the orthogonal
complement of W .

Together, our Theorem 3.3.1 and Theorem 3.3.2 show that if gradient descent converges
to a point while driving the loss to −∞, then it successfully recovers the ground truth sub-
space/manifold spanA. This shows that, in the linear case, the conjecture of Dai and Wipf [2019]
can indeed be validated provided we incorporate training dynamics into the picture. The prediction
of theirs we do not prove is that the number of zero entries of the encoder covariance D converges
to the intrinsic dimension; as shown in Table 3.1, in a few experimental runs this does not occur —
in contrast, Theorem 3.3.2 implies that Ã should have the right number of nonzero singular values
and our experiments agree with this.

Nonlinear VAE: Dynamics and Simulations. In the linear case, we showed that the implicit
bias of gradient descent leads the VAE training to converge to a distribution with the correct
support. In the nonlinear case, we show that this does not happen—even in simple cases.

Precisely, in the setup of the one-layer ground truth generator, where we proved (Theo-
rem 3.4.6) there exist bad global optima of the landscape, we verify experimentally (see Figure 3.1)
that gradient descent from a random start does indeed converge to such bad asymptotic minima.
In particular, this shows that whether or not gradient descent has a favorable implicit bias strongly
depends on the data distribution and VAE architecture.

2We remind the reader that the gradient flow on loss L(x) is a differential equation dx/dt = −∇L(x). Unlike
discrete-time gradient descent, gradient flow in some cases (e.g. dx/dt = x2) has solutions which exist only for a
finite time (e.g. x = 1/(1− t)), which “blows up” at t = 1), so we need to explicitly assume the solution exists up to
time T .
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More generally, by performing experiments with synthetic data of known manifold dimension,
we make the following conclusions: (1) gradient descent training recovers manifolds approx-
imately containing the data, (2) these manifolds are generally not the same dimension as the
ground truth manifold, but larger (this is in contrast to the conjecture in Dai and Wipf [2019]
that they should be equal) even when the decoder and encoder are large enough to represent the
ground truth and the reconstruction error is driven to 0 (VAE loss is driven to −∞), and (3) of all
manifolds containing the data, gradient descent still seems to favor those with relatively low (but
not always minimal) dimension. Further investigating the precise role of VAE architecture and
optimization algorithm, as well as the interplay with the data distribution is an exciting direction
for future work.

3.4 VAE Landscape Analysis

In this section, we analyze the landscape of a VAE, both in the linear and non-linear case.

Preliminaries and notation. We use a VAE to model a datapoint x ∈ Rd as the pushforward of
z ∼ N(0, Ir). We have the following standard VAE architecture:

p(x|z) = N(f(z), ϵ2I), q(z|x) = N(g(x), D)

where ϵ2 > 0 is the decoder variance, D is a diagonal matrix with nonnegative entries, and
f, g,D, ϵ are all trainable parameters. (For simplicity, our D does not depend on x; this is the
most common setup in the linear VAE case we will primarily focus on.) The VAE objective (see
Lemma ?? for explicit derivation) is to minimize:

L(f, g,D, ϵ) := Ex∼p∗Ez′∼N(0,Ir)

[ 1

2ϵ2
∥x− f(g(x) +D1/2z′)∥2 + ∥g(x)∥2/2

]
+ d log(ϵ) + Tr(D)/2− 1

2

∑
i

logDii. (3.3)

We also state a general fact about VAEs for the case that the objective value can be driven to
−∞, which was observed in [Dai and Wipf, 2019]: they must satisfy ϵ→ 0 and achieve perfect
limiting reconstruction error. The first claim in this Lemma is established in the proof of Theorem
4 and the second claim is Theorem 5 in Dai and Wipf [2019].
Lemma 3.4.1 (Theorems 4 and 5 of Dai and Wipf [2019]). Suppose ft, gt, Dt, ϵt for t ≥ 1
are a sequence such that limt→∞ L(ft, gt, Dt, ϵt) = −∞. Then: 1) limt→∞ ϵt = 0 and 2)
limt→∞ Ex∼p∗Ez′∼N(0,Ir)∥x− ft(gt(x) +D

1/2
t z′)∥2 = 0.

In fact, the reconstruction error and ϵ are closely linked in a simple way:
Lemma 3.4.2. If f, g,D are fixed, then the optimal value of ϵ to minimize L is given by

ϵ =

√
1

d
Ex∼p∗Ez′∼N(0,Ir) [∥x− f(g(x) +D1/2z′)∥2].
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Proof of Lemma 3.4.1. For completeness, we include the proof of these claims; they are similar
to the proofs of Theorems 4 and 5 in Dai and Wipf [2019].

First, consider the objective for fixed f, g,D, ϵ and omit the subscript t. We have

Ex∼p∗Ez′∼N(0,Ir)

[ 1

2ϵ2
∥x− f(g(x) +D1/2z′)∥2 + ∥g(x)∥2/2

]
≥ 0

and
Tr(D)/2− 1

2

∑
i

logDii =
1

2

∑
i

(Dii − logDii) ≥ r/2

from the inequality x− log x ≥ 1 for x ≥ 0. Since these terms are both bounded above, the only
way the objective goes to negative infinity is if d log ϵ→ −∞ which means ϵ→ 0.

Now that we know ϵt → 0, we claim that limt→∞ Ex∼p∗Ez′∼N(0,Ir)∥x−ft(gt(x)+D
1/2
t z′)∥2 =

0. Suppose otherwise: then this for infinitely many t this quantity is lower bounded by some
constant c > 0, hence the objective for those t is lower bounded by c/ϵ2 + d log(ϵ) + r/2 and this
goes to +∞ as ϵ→ 0, instead of −∞.

Proof of Lemma 3.4.2. Taking the partial derivative of equation 3.3 with respect to ϵ and setting
it to zero gives

0 = − 1

ϵ3
Ex∼p∗Ez′∼N(0,Ir)∥x− f(g(x) +D1/2z′)∥2 + d

ϵ

and solving for ϵ gives the result.

3.4.1 Linear VAE
Setup: In the linear VAE case, we assume the data is generated from the model x = Az with
A ∈ Rd×r∗ and z ∼ N (0, Ir∗). We will denote the training parameters by Ã ∈ Rd×r, B̃ ∈ Rr×d,
D̃ ∈ Rr×r, and ϵ̃ > 0, where r ≥ 1 is a fixed hyperparameter which corresponds to the latent
dimension in the trained generator, and we assume D̃ is a diagonal matrix. With this notation in
place, the implied VAE has generator/decoder x̃ ∼ N (Ãz, ϵ̃2Id) and encoder z̃ ∼ N (B̃x, D̃). By
Lemma 3.4.3, the VAE objective as a function of parameters Θ̃ = (Ã, B̃, D̃, ϵ̃) is:

L(Θ̃) =
1

2ϵ̃2
∥A− ÃB̃A∥2F +

1

2
∥B̃A∥2F + d log ϵ̃+

1

2

∑
i

(
D̃ii∥Ãi∥2/ϵ̃2 + D̃ii − log D̃ii

)
(3.4)

Lemma 3.4.3. For the linear VAE as described in Section 3.4.1, the VAE loss can be written as

L(Θ̃) =
1

2ϵ̃2
∥A− ÃB̃A∥2F +

1

2
∥B̃A∥2F + d log ϵ̃+

1

2

∑
i

(
D̃ii∥Ãi∥2/ϵ̃2 + D̃ii − log D̃ii

)
(3.5)

Proof. Plugging in the linear VAE parameters into the loss function, we get

L(Ã, B̃, D̃, ϵ̃) := Ex∼p∗Ez′∼N(0,Ir̃)

[ 1

2ϵ̃2
∥x− Ã(B̃x+ D̃1/2z′)∥2 + ∥B̃x∥2/2

]
(3.6)
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+ d log(ϵ̃) + Tr(D̃)/2− 1

2

∑
i

log D̃ii (3.7)

We can write out the expectation as:

Ez∼N(0,I)Ez′∼N(0,Ir̃)

[ 1

2ϵ̃2
∥Az − Ã(B̃Az + D̃1/2z′)∥2 + ∥B̃Az∥2/2

]
= Ez∼N(0,I)Ez′∼N(0,Ir̃)

[ 1

2ϵ̃2
∥(A− ÃB̃A)z − ÃD̃1/2z′∥2 + ∥B̃Az∥2/2

]
=

1

2ϵ̃2
∥A− ÃB̃A∥2F +

1

2ϵ̃2
∥ÃD̃1/2∥2F +

1

2
∥B̃A∥2F

where we used that z, z′ are independent and the identity Ez∼N(0,I)∥Mz∥2 = ⟨MMT , I⟩ = ∥M∥2F .
Next, we can observe that

∥ÃD̃1/2∥2F =
∑
i

D̃ii∥Ãi∥2

where Ãi is the i-th column of the matrix Ã. Therefore we recover equation 3.5.

Our analysis makes use of a simplified objective L1, which “eliminates” D out of the objective
by plugging in the optimal value of D for a choice of the other variables. We use this as a technical
tool when analyzing the landscape of the original loss L.
Lemma 3.4.4 (Deriving the simplified loss L1). Suppose that Ã, B̃, ϵ̃ are fixed. Then the objective
L is minimized by choosing for all i that D̃ii =

ϵ̃2

∥Ãi∥2+ϵ̃2
where Ãi is column i of Ã, and for

L1(Ã, B̃, ϵ̃) := minD̃ L(Ã, B̃, D̃, ϵ̃) it holds that

L1(Ã, B̃, ϵ̃) =
1

2ϵ̃2
∥A− ÃB̃A∥2F +

1

2
∥B̃A∥2F + (d− r) log ϵ̃+

∑
i

1 + log
(
∥Ãi∥2 + ϵ̃2

)
2

.

(3.8)

Proof. Taking the partial derivative with respect to D̃ii gives 0 = ∥Ãi∥2/ϵ̃2 + 1− 1/D̃ii which
means

D̃ii =
1

∥Ãi∥2/ϵ̃2 + 1
=

ϵ̃2

∥Ãi∥2 + ϵ̃2

hence

D̃ii∥Ãi∥2/ϵ̃2 + D̃ii − log D̃ii = 1− log
ϵ̃2

∥Ãi∥2 + ϵ̃2
.

It follows that the objective value at the optimal D is

L1(Ã, B̃, ϵ̃) =
1

2ϵ̃2
∥A− ÃB̃A∥2F +

1

2
∥B̃A∥2F + d log ϵ̃+

1

2

∑
i

(
1− log

ϵ̃2

∥Ãi∥2 + ϵ̃2

)
=

1

2ϵ̃2
∥A− ÃB̃A∥2F +

1

2
∥B̃A∥2F + (d− r) log ϵ̃+

1

2

∑
i

(
1− log

1

∥Ãi∥2 + ϵ̃2

)
.
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Taking advantage of this simplified formula, we can then identify (for the original loss L)
simple sufficient conditions on Ã, B̃ which ensure they can be used to approach the population
loss minimum by picking suitable ϵ̃t, D̃t and prove matching necessary conditions.
Theorem 3.4.5. First, suppose that Ã : d× r, B̃ : r × d are fixed matrices such that A = ÃB̃A
and suppose that #{i : Ãi = 0} > r − d, i.e. the number of zero columns of Ã is strictly larger
than r − d. Then for any sequence of positive ϵ̃t → 0 there exist a sequence of positive diagonal
matrices D̃t such that:

1. For every i such that Ãi ̸= 0, i.e. column i of Ã is nonzero, we have (D̃t)ii → 0.
2. limt→∞ L(Ã, B̃, D̃t, ϵ̃t) = −∞.

Conversely, suppose that that Ãt, B̃t, D̃t, ϵ̃t is an arbitrary sequence such that limt→∞ L(Ãt, B̃t, D̃t, ϵ̃t) =
−∞. Then as t→∞, we must have that:

1. ϵ̃t → 0 and ∥A− ÃtB̃tA∥2F → 0.
2. maxi(D̃t)ii∥(Ãt)i∥2F → 0 where (Ãt)i denotes the i-th column of Ãt.
3. For any δ > 0, lim inft→∞ #{i : ∥(Ãt)i∥22 < δ} > r − d, i.e. asymptotically Ãt has strictly

more than r − d columns arbitrarily close to zero.
In particular, if (Ãt, B̃t, D̃t, ϵ̃t) converge to a point (Ã, B̃, D̃, ϵ̃) then ϵ̃ = 0, A = ÃB̃A, D̃ii = 0
for every i such that Ãi ̸= 0, and #{i : Ãi = 0} > r − d.

Proof of Theorem 3.4.5. First we prove the sufficiency direction, i.e. that if A = ÃB̃A and there
exists i such that Ãi = 0 then we show how to drive the loss to −∞. By Lemma 3.4.4, if we make
the optimal choice of D (which clearly satisfies the conditions on D described in the Lemma) the
objective simplifies to

L1(Ã, B̃, ϵ̃) =
1

2ϵ̃2
∥A− ÃB̃A∥2F +

1

2
∥B̃A∥2F + (d− r) log ϵ̃+

1

2

∑
i

(
1 + log

(
∥Ãi∥2 + ϵ̃2

))
=

1

2
∥B̃A∥2F + (d− r) log ϵ̃+

1

2

∑
i

(
1 + log

(
∥Ãi∥2 + ϵ̃2

))
where in the second line we used the assumption A = ÃB̃A. Note that for each zero column
Ãi = 0 we have (1/2) log(∥Ãi∥2 + ϵ̃2) = log ϵ̃ so the objective will go to −∞ provided (d− r +
#{i : Ãi = 0}) log ϵ̃→ −∞. Since ϵ̃→ 0 this is equivalent to asking d−r+#{i : Ãi = 0} > 0,
which is exactly the assumption of the Theorem.

Next we prove the converse direction, i.e. the necessary conditions. Note: we split the first
item in the lemma into two conclusions in the proof below (so there are four conclusions instead
of three). The first conclusion follows from the first conclusion of Lemma 3.4.1. The second
conclusion of Lemma 3.4.1 tells us that

0 = lim
t→∞

Ez∼N(0,I)Ez′∼N(0,Ir̃)∥Az− Ãt(B̃tAz + D̃
1/2
t z′)∥2 = lim

t→∞
∥A− ÃtB̃tA∥2F + ∥ÃtD̃

1/2
t ∥2F

which gives us the second and third conclusions above. For the fourth conclusion, since
L1(Ãt, B̃t, D̃t) ≤ L(Ãt, B̃t, D̃t, ϵ̃t) we know that limt→∞ L1(Ãt, B̃t, D̃t) = −∞ and recalling

L1(Ã, B̃, ϵ̃) =
1

2ϵ̃2
∥A− ÃB̃A∥2F +

1

2
∥B̃A∥2F + (d− r) log ϵ̃+

1

2

∑
i

(
1 + log

(
∥Ãi∥2 + ϵ̃2

))
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we see that, because the first two terms are nonnegative, this is possible only if the sum of the last
two terms goes to −∞. Based on similar reasoning to the sufficiency case, this is only possible if
strictly more than r− d of the columns of (Ãt) become arbitrarily close to zero; precisely, if there
exists δ such that at most r − d of the columns of Ãt have norm less than δ, then

(d− r) log ϵ̃+
1

2

∑
i

(
1 + log

(
∥Ãi∥2 + ϵ̃2

))
≥ 1

2

∑
i:∥Ãi∥≥δ

(
1 + log

(
∥Ãi∥2 + ϵ̃2

))
≥ 1

2

∑
i:∥Ãi∥≥δ

(
1 + log

(
δ2 + ϵ̃2

))
which does not go to −∞ as ϵ̃→ 0 (and the other terms of L1 are nonnegative).

3.4.2 Nonlinear VAE
In this section, we give a simple example of a nonlinear VAE architecture which can represent
the ground truth distribution perfectly, but has another asymptotic global minimum where it
outputs data lying on a manifold of a larger dimension (r∗ + s instead of r∗ for any s ≥ 1).
The ground truth model is a one-layer network (“sigmoid dataset” in Section 3.6) and the bad
decoder we construct outputs a standard Gaussian in r∗ + s dimensions padded with zeros. (Note:
in the notation of Section 3.6 we are considering a∗ with 0/1 entries, but the proof generalizes
straightforwardly for arbitrary a∗ with the correct support.)

Setup: Suppose s ≥ 1 is arbitrary and the ground truth x ∈ Rd with d > r∗ + s is generated
in the following way: (x1, . . . , xr∗) ∼ N(0, Ir∗), xr∗+1 = σ(x1 + · · · + xr∗) for an arbitrary
nonlinearity σ, and xr∗+2 = · · · = xd = 0. Furthermore, suppose the architecture for the decoder
with latent dimension r > r∗ + 1 is

fÃ1,Ã2
(z) := Ã1z + σ

(
Ã2z

)
where σ(·) is applied as an entrywise nonlinearity, and the encoder is linear, g(x) := B̃x.

Observe that the ground truth decoder can be expressed by taking Ã2 to have a single nonzero
row in position r + 1 with entries (1, . . . , 1, 0, . . . , 0),

Ã1 =

[
Ir∗ 0
0 0

]
, B̃ =

[
Ir∗ 0
0 0

]
.

where B̃ is a ground truth encoder which achieves perfect reconstruction.
On the other hand, the following VAE different from the ground truth achieves perfect

reconstruction:

Ã1 =

[
Ir∗+s 0
0 0

]
, Ã2 = 0, B̃ =

[
Ir∗+1 0
0 0

]
(3.9)
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The output of this decoder is a Gaussian N

(
0,

[
Ir∗+s 0
0 0

])
, which means it is strictly higher-

dimensional than the ground truth dimension r∗. (This also means that if we drew the corre-
sponding plot of to Figure 3.1 (b) for this model, we would get something that looks just like the
experimentally obtained result.) We prove in the Appendix that it this is an asymptotic global
optima:
Theorem 3.4.6. Let s ≥ 1 be arbitrary and the ground truth and VAE architecture is as defined
as above. For any sequence ϵ̃t → 0, there exist diagonal matrices D̃t such that:

1. the VAE loss L(Ã1, Ã2, B̃, D̃t, ϵ̃t)→ −∞ where Ã1, Ã2, B̃ are defined by equation 3.9
2. The number of coordinates of D̃t which go to zero equals r∗ + s.

Proof. We show how to pick D̃t as a function of ϵ̃t and that if ϵ̃t → 0, the loss goes to −∞. From
now on we drop the subscripts.

With these parameters, the VAE loss is

Ex∼p∗Ez′∼N(0,Ir)

[ 1

2ϵ̃2
∥x− f(g(x) + D̃1/2z′)∥2 + ∥g(x)∥2/2

]
+ d log(ϵ̃) + Tr(D̃)/2− 1

2

∑
i

log D̃ii

= (1/2ϵ̃2)
r∗+1∑
i=1

D̃ii + Ex∼p∗

[
∥x1:r∗+1∥2/2

]
+ d log(ϵ̃) + Tr(D̃)/2− 1

2

∑
i

log D̃ii.

Taking the partial derivative with respect to D̃ii for i ≤ r∗ + s and optimizing gives 0 =
(1/ϵ̃2) + 1− 1/D̃ii i.e.

D̃ii =
1

1 + 1/ϵ̃2
=

ϵ̃2

ϵ̃2 + 1

and plugging this into the objective gives

(1/2ϵ̃2)
r∗+1∑
i=1

D̃ii + Ex∼p∗

[
∥x1:r∗+1∥2/2

]
+ d log(ϵ̃) + Tr(D̃)/2− 1

2

∑
i

log D̃ii

= (1/2)
r∗+1∑
i=1

1

ϵ̃2 + 1
+ Ex∼p∗

[
∥x1:r∗+1∥2/2

]
+ (d− r∗ − s) log(ϵ̃)

+ Tr(D̃)/2 +
r∗ + 1

2
log(1 + ϵ2) +

1

2

r∑
i=r∗+2

log D̃ii.

Setting the remaining D̃ii to 1, we see that using d > r∗ + s that the loss goes to −∞ provided
ϵ̃→ 0, proving the result.

3.5 Implicit bias of gradient descent in Linear VAE
In this section, we prove that even though the landscape of the VAE loss contains generators
with strictly larger support than the ground truth, the gradient flow is implicitly biased towards
low-rank solutions. We prove this for the simplified loss L1(Ã, B̃, ϵ̃) = minD̃ L1(Ã, B̃, ϵ̃, D̃),
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which makes the calculations more tractable, though we believe our results should hold for the
original loss L as well. The main result we prove is as follows:
Theorem 3.5.1 (Implicit bias of gradient descent). Let A : d× r be arbitrary and define W to
be the span of the rows of A, let Θ̃(0) = (Ã(0), B̃(0), ϵ̃(0)) be an arbitrary initialization and
define the gradient flow Θ̃(t) = (Ã(t), B̃(t), ϵ̃(t)) by the differential equation equation 3.1. with
initial condition Θ̃0. If the solution to this equation exists on the time interval [0, T ] and satisfies
maxt∈[0,T ] maxj[∥(Ãt)j∥2 + ϵ̃2t ] ≤ K, then for all t ∈ [0, T ] we have

d∑
k=dim(W )+1

σ2
k(Ã(t)) ≤ ∥PW⊥ÃT (t)∥2F ≤ e−t/K∥PW⊥ÃT (0)∥2F (3.10)

where PW⊥ is the orthogonal projection onto the orthogonal complement of W .
Towards showing the above result, we first show how to reduce to matrices where A has

d− dim(rowspan(A)) rows that are all-zero. To do this, we observe that the linear VAE objective
is invariant to arbitrary rotations in the output space (i.e. x-space), so the gradient descent/flow
trajectories transform naturally under rotations. Thus, we can “rotate” the ground truth parameters
as well as the training parameters.

This is formally captured as Lemma 3.5.2. Recall that by the singular value decomposition
A = USV T for some orthogonal matrices U, V and diagonal matrix S, and rotation invariance in
the x-space lets us reduce to analyzing the case where U = I , i.e. A = SV T . This matrix has a
zero row for every zero singular value.
Lemma 3.5.2 (Rotational Invariance of Gradient Descent on Linear VAE). Let LA(Ã, B̃, D̃, ϵ̃)
denote the VAE population loss objective equation 3.4. Then for an arbitrary orthogonal matrix
U , we have

LA(Ã, B̃, D̃, ϵ̃) = LUA(UÃ, B̃UT , D̃, ϵ̃).

Furthermore,
U∇ÃLA(Ã, B̃, D̃, ϵ̃) = ∇UÃLUA(UÃ, B̃UT , D̃, ϵ̃)

and
(∇B̃LA(Ã, B̃, D̃, ϵ̃))UT = ∇UB̃LUA(UÃ, B̃UT , D̃, ϵ̃).

As a consequence, if for any η ≥ 0 we define (Ã1, B̃1, D̃1, ϵ̃1) = (Ã, B̃, D̃, ϵ̃)−η∇LA(Ã, B̃, D̃, ϵ̃)
then

(UÃ1, B̃1U
T , D̃1, ϵ̃1) = (UÃ, B̃UT , D̃, ϵ̃)− η∇(UÃ,B̃UT ,D̃,ϵ̃)LUA(UÃ, B̃UT , D̃, ϵ̃),

i.e. gradient descent preserves rotations by U . The same result holds for the gradient flow (i.e.
continuous time gradient descent), or replacing everywhere the loss L by the simplified loss L1.

Proof of Lemma 3.5.2. We give the proof for L as stated, but it is exactly the same for the
simplified loss L1.

From the objective function equation 3.4 and UT = U−1 observe that

LUA(UÃ, B̃UT , D̃, ϵ̃)
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=
1

2ϵ̃2
∥UA− UÃB̃U−1UA∥2F +

1

2
∥B̃U−1UA∥2F + d log ϵ̃+

1

2

∑
i

(
D̃ii∥UÃi∥2/ϵ̃2 + D̃ii − log D̃ii

)
=

1

2ϵ̃2
∥A− ÃB̃A∥2F +

1

2
∥B̃A∥2F + d log ϵ̃+

1

2

∑
i

(
D̃ii∥Ãi∥2/ϵ̃2 + D̃ii − log D̃ii

)
= LA(Ã, B̃, D̃, ϵ̃).

Then from the above and the multivariate chain rule have

∇ÃLA(Ã, B̃, D̃, ϵ̃) = ∇ÃLUA(UÃ, B̃UT , D̃, ϵ̃) = UT
(
∇UÃLUA(UÃ, B̃U−1, D̃, ϵ̃)

)
so multiplying both sides on the left by U and using UT = U−1 gives the second claim, and
similarly

∇B̃LA(Ã, B̃, D̃, ϵ̃) = ∇B̃LUA(UÃ, B̃UT , D̃, ϵ̃) = (∇B̃UTLUA(UÃ, B̃UT , D̃, ϵ̃))U

gives the third claim. Then the gradient descent claim follows immediately.

Analysis when A has zero rows. Having reduced our analysis to the case where A has zero
rows, the following key lemma shows that for every i such that row i of A (denoted A(i)) is zero,
the gradient descent step −∇L or −∇L1 will be negatively correlated with the corresponding row
Ã(i).
Lemma 3.5.3 (Gradient correlation). If row i of A is zero, then

r∑
j=1

Ãij
∂L

∂Ãij

≥
r∑

j=1

D̃jjÃ
2
ij/ϵ̃

2,
r∑

j=1

Ãij
∂L1

∂Ãij

≥
r∑

j=1

Ã2
ij

∥Ãj∥2 + ϵ̃2
.

Proof. First we prove the conclusion for the original loss L. Since (ÃB̃A)iℓ =
∑

j,k ÃijB̃jkAkℓ

we have that

∂∥A− ÃB̃A∥2F
∂Ãij

=
∂

∂Ãij

∑
ℓ

(
Aiℓ −

∑
j′,k

Ãij′B̃j′kAkℓ

)2

=
∑
ℓ

2

(
Aiℓ −

∑
j′,k

Ãij′B̃j′kAkℓ

)(
−
∑
k

B̃jkAkℓ

)

and if we know the corresponding row i in A is zero then this simplifies to

∂∥A− ÃB̃A∥2F
∂Ãij

=
∑
ℓ

2

(∑
j′,k

Ãij′B̃j′kAkℓ

)(∑
k

B̃jkAkℓ

)

which means that

∑
j

Ãij
∂∥A− ÃB̃A∥2F

∂Ãij

=
∑
ℓ

2

(∑
j,k

ÃijB̃jkAkℓ

)2

= 2∥(ÃB̃A)(i)∥2

where the notation A(i) denotes row i of matrix A. Thus, for this term the gradient with respect to
row Ã(i) has nonnegative dot product with row Ã(i).
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Also,
∂

∂Ãij

(1/2)
∑
i

D̃jj∥Ãj∥2/ϵ̃2 = D̃jjÃij/ϵ̃
2

and so ∑
j

Ãij
∂

∂Ãij

(1/2)
∑
j

D̃j∥Ãj∥2/ϵ̃2 =
∑
j

D̃jjÃ
2
ij/ϵ̃

2

which gives the first result.
For the second result with the simplified loss L1, observe that

∂

∂Ãij

∑
k

log(∥Ãk∥2 + ϵ̃2) =
2Ãij

∥Ãj∥2 + ϵ̃2

so ∑
j

Ãij
∂

∂Ãij

∑
k

log(∥Ãk∥2 + ϵ̃2) =
∑
j

2Ã2
ij

∥Ãj∥2 + ϵ̃2

and the other terms in the loss behave the same in the case of L. Including the factor of 1/2 from
the loss function gives the result.

The way we use it is to notice that since the negative gradient points towards zero, gradient
descent will shrink the size of Ã(i). Since the size of the matrix Ã stays bounded, this should
mean that for small step sizes the norm of row i of Ã shrinks by a constant factor at every step of
gradient descent on loss L1. We formalize this in continuous time for the gradient flow, i.e. the
limit of gradient descent as step size goes to zero: for the special case of Theorem 3.3.2 in the
zero row setting, the corresponding rows of Ã decay exponentially fast.
Lemma 3.5.4 (Exponential decay of extra rows). Let A be arbitrary, and let Θ̃(0) = (Ã(0), B̃(0), ϵ̃(0))
be an arbitrary initialization and define the gradient flow Θ̃(t) = (Ã(t), B̃(t), ϵ̃(t)) to be a solu-
tion of the differential equation equation 3.1 with initial condition Θ̃(0). If the solution exists on
the time interval [0, T ] and satisfies maxt∈[0,T ]maxj[∥(Ã(t))j∥2 + ϵ̃(t)2] ≤ K for some K > 0,
then for all i such that row i of A is zero we have ∥Ã(i)(t)∥2 ≤ e−t/K∥Ã(i)(0)∥2 for all t ∈ [0, T ].

Proof. From Lemma 3.5.3 we have that for any such row i,

d

dt
∥Ã(i)(t)∥2 = 2⟨Ã(i)(t),

d

dt
Ã(i)(t)⟩

= 2⟨Ã(i)(t),−∇Ã(t)(i)L1(Θt)⟩ ≤ −
r∑

j=1

(Ã(t))2ij

∥(Ã(t))j∥2 + ϵ̃2t
≤ −(1/K)∥Ã(i)(t)∥2

which by Gronwall’s inequality implies ∥Ã(i)(t)∥2 ≤ e−t/K∥Ã(i)(0)∥2 as desired.

Finally, we can use these lemmas to show Theorem 3.5.1.

Proof of Theorem 3.5.1. Before proceeding, we observe that the first inequality in equation 3.10
is a consequence of the general min-max characterization of singular values, see e.g. Horn and
Johnson [2012]. We now prove the rest of the statement.
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As explained at the beginning of the section, we start by taking the Singular Value Decompo-
sition A = USV T where S is the diagonal matrix of singular values and U, V are orthogonal. We
assume the diagonal matrix S is sorted so that its top-left entry is the largest singular value and its
bottom-right is the smallest. Note that this means the first dim(W ) rows of U are an orthonormal
basis for W . Note that for any time t, ∥PW⊥ÃT (t)∥2F =

∑d
i=dim(W )+1 ∥(UÃ(t)T )i∥2 because the

rows (Udim(W )+1, . . . , Ud) are an orthonormal basis for W⊥. Therefore we have that

∥PW⊥ÃT (t)∥2F =
d∑

i=dim(W )+1

∥(UÃ(t)T )i∥2

≤ e−t/K

d∑
i=dim(W )+1

∥(UÃ(0)T )i∥2 = e−t/K∥PW⊥ÃT (0)∥2F ,

proving the result, provided we justify the middle inequality. Define A∗ := UTA = SV T , which
has a zero row for every zero singular value of A, and apply Lemma 3.5.4 (using that the definition
of K is invariant to left-multiplication of Ã by an orthogonal matrix) and Lemma 3.5.2 to conclude
that the rows of UT Ã(t), i.e. the columns of UÃ(t)T , corresponding to zero rows of A∗ shrink by
a factor of e−t/K . This directly gives the desired inequality, completing the proof.

3.6 Simulations
In this section, we provide extensive empirical support for the questions we addressed theoretically.
In particular we investigate the kinds of minima VAEs converge to when optimized via gradient
descent over the course of training.

Linear VAEs: First, we investigate whether linear VAEs are able to find the correct support
for a distribution supported over a linear subspace. The setup is as follows. We choose a
ground truth linear transformation matrix A by concatenating an r∗ × r∗ matrix consisting of iid
standard Gaussian entries with a zero matrix of dimension (d− r∗)× r∗; the data is generated as
Az, z ∼ N (0, Ir∗). Thus the data lies in a r∗-dimensional subspace embedded in a d-dimensional
space. We ran the experiment with various choices for r∗, d as well as the latent dimension of the
trained decoder (Table 3.1). Every result is the mean over three experiments run with the same
dimensionality and setup but a different random seed.

Results: From Table 3.1 we can see that the optima found by gradient descent capture the
support of the manifold accurately across all choices of d, r∗, with the correct number of nonzero
decoder rows. We also almost always see the correct number of zero dimensions in the diagonal
matrix corresponding to the encoder variance.

However, gradient descent is unable to recover the density of the data on the learned manifold
in the linear setting — in sharp contrast to the full rank case [Lucas et al., 2019]. We conclude this
by comparing the eigenvalues of the data covariance matrix and the learned generator covariance
matrix. In order to understand whether the distribution on the linear subspace has the right
density, we compute the eigenvalue error by forming matrices X, X̂ with n rows, for which
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Intrinsic Dimension 3 3 6 6 9 9 12
Ambient Dimension 12 20 12 20 12 20 20

Mean #0’s in Encoder Variance 3.3 3.7 6 6 9.3 9 12
Mean # Decoder Rows Nonzero 3 3 6 6 9 9 12

Mean Normalized Eigenvalue Error 0.44 0.71 0.49 0.47 0.30 0.45 0.42

Table 3.1: Optima found by training a linear VAE on data generated by a linear generator (i.e. a linearly
transformed standard multivariate gaussian embedded in a larger ambient dimension by padding with
zeroes) via gradient descent. The results reflect the predictions of Theorem 3.5.1: the number of nonzero
rows of the decoder always match the dimensionality of the input data distribution with no variance
while the number of nonzero dimensions of encoder variance is greater than or equal to the nonzero rows.
All VAEs are trained with a 20-dimensional latent space. Clearly, the model fails to recover the correct
eigenvalues and therefore has a substantially wrong data density function.

each row is sampled from the ground truth and learned generator distribution respectively. We
then compute the vector of eigenvalues λ, λ̂ for the ground truth covariance matrix AAT and
empirical covariance matrix (1/n)X̂T X̂ respectively and compute the normalized eigenvalue
error ||λ̂ − λ||/||λ||. In no case does the density of the learned distribution come close to the
ground truth.

Eigenvalues of Linear Data. As we’ve discussed, in our linear setting the VAE does not
recover the ground truth data density. Since our generative process for ground-truth data is
x = Az for a matrix A and z normally distributed, we can characterize the density function by the
eigenvalues of the true or estimated covariance matrix. We give figures for the normalized error
of these eigenvalues between the learned generator and the ground truth in Table 3.1. A concrete
example of eigenvalue mismatch for a problem with 6 nonzero dimensions is a ground-truth set of
covariance eigenvalues

λ =
[
0.001 0.156 1.54 5.06 9.55 16.4

]
while the trained linear VAE distribution has covariance eigenvalues

λ̂ =
[
0.035 0.166 1.49 4.24 5.97 7.85

]
.

Here, the VAE was easily able to learn the support of the data but clearly is very off when it comes
to the structure of the covariances.

Nonlinear Dataset In this section, we investigate whether VAEs are able to find the correct
support in nonlinear settings. Unlike the linear setting, there is no “canonical” data distribution
suited for a nonlinear VAE, so we explore two setups:

• Sphere dataset: The data are generated from the unit sphere concatenated with zero padding
at the end. This can be interpreted as a unit sphere embedded in a higher dimensional space.
We used 3 layers of 200 hidden units to parameterize our encoder and decoder networks.
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To measure how well the VAE has learnt the support of the distribution, we evaluate the
average of (∥x̃:(r∗+1)∥2 − 1)2, where x̃ are generated by the learnt generator. We will call
this quantity manifold error. We have also evaluated the padding error, which is defined as
∥x̃r∗+2:∥22.

• Sigmoid Dataset: Let z ∼ N (0, Ir∗), the sigmoid dataset concatenates z with σ(⟨a∗, z⟩)
where a∗ ∈ Rr∗ is generated according to N (0, Ir∗). We add additional zero paddings
to embed the generated data in a higher dimensional ambient space. The decoder is
parameterized by a nonlinear function f(z) = Ãz+σ(C̃z) and the encoder is parameterized
by a linear function g(x) = B̃x . The intrinsic dimension of the dataset is r∗.
To measure how well the VAE has learnt the support of the distribution, we evaluate the
average of (σ(⟨a∗, x̃:r∗⟩)− x̃r∗+1)

2, where x̃ are generated by the learnt decoder. We will
call this quantity manifold error. The padding error is defined as similarly as the sphere
dataset.
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Figure 3.1: A demonstration that in the nonlinear setting (both types of data padded with zeroes to embed
in higher ambient dimension, see Setup in Section 3.6) VAE training does not always recover a distribution
with the correct support. Left figure: A histogram of the norms of samples generated from the VAE
restricted to the dimensions which are not zero, which shows many of the points have norm less than 1.
(The ground-truth distribution would output only samples of norm 1.) The particular example here is
Column 2 in Table 3.3. Right figure: Two-dimensional linear projection of data output by VAE generator
trained on our sigmoid dataset. The x-axis denotes ⟨a∗, x̃:r∗⟩ and the y-axis is x̃r∗+1, the blue points are
from the trained VAE and the orange points are from the ground truth. In contrast to the ground truth data,
which satisfies the sigmoidal constraint xr∗+1 = σ(⟨a∗, x:r∗⟩), the trained VAE points do not and instead
resemble a standard gaussian distribution. This is a case that closely resembles the example provided in
Theorem 3.4.6. Also similar to Theorem 3.4.6, the VAE model plotted here (from Column 6 in Table 3.2)
achieves nearly-perfect reconstruction error, approximately 0.001.

Results: In both of the nonlinear dataset experiments, we see that the number of zero entries
in the diagonal encoder variance is less reflective of the intrinsic dimension of the manifold than
the linear dataset. It is, however, at least as large as the intrinsic dimension (Table 3.3, 3.2). We
consider a coordinate to be 0 if it’s less than 0.1. We found that the magnitude of each coordinate
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Intrinsic Dimensions 3 3 5 5 7 7
Ambient Dimensions 7 17 11 22 15 28

VAE Latent Dimensions 6 8 10 16 13 24

Mean Manifold Error 0.09 0.13 0.23 0.24 0.18 0.28
Mean #0’s in Encoder Variance 3 3.6 6 6.3 7.3 8

Table 3.2: Optima found by training a VAE on the sigmoid dataset. The VAE training consistently yields
encoder variances with number of 0 entries greater than or equal to the intrinsic dimension.

to be well separated, i.e. the smaller coordinates tend to be smaller than 0.1 and the larger tend to
be bigger than 0.5. Thus the threshold selection is not crucial. We did not include padding error
in the tables because it reaches zero in all experiments

We show the progression of manifold error, decoder variance and VAE loss during training for
the sphere data in Figure 3.3 and for the sigmoid data in Figure 3.2. Datasets of all configurations
of dimensions reached close to zero decoder variances, meaning the VAE loss is approaching−∞.
To demonstrate Theorem 3.4.6, we took examples from both datasets to visualize their output.

For the sphere dataset, we visualize the data generated from the model, with 8 latent dimen-
sions, trained on unit sphere with 2 intrinsic dimensions and 16 ambient dimensions (Column 2
in Table 3.3). Its training progression is shown as the orange curve in Figure 3.3 . We create a
histogram of the norm of its first 3 dimensions (Figure 3.1 (a)) and found that more than half of
the generated data falls inside of the unit sphere. The generated data has one intrinsic dimension
higher than its training data, despite its decoder variance approaching zero, which is equivalent to
its reconstruction error approaching zero by Lemma 3.4.2.

In the sigmoid dataset, the featured model has 24 latent dimension, and is trained on a 7-
dimensional manifold embedded in a 28-dimensional ambient space. We produced a scatter plot
given 1000 generated data points x̃ from the decoder. The x-axis in the Figure 3.1(b) is ⟨a∗, x̃:r∗⟩
and the y-axis is x̃r∗+1. In contrast to the groundtruth data, whose scatter points roughly form a
sigmoid function, the scatter points of the generate data resemble a gaussian distribution. This
closely resembles the example provided in Theorem 3.4.6. Hence, despite its decoder variance
and reconstruction error both approaching zero and loss consistently decreasing, the generated
data do not recover the training data distribution and the data distribution recovered has higher
intrinsic dimensions than the training data. We also investigated the effect of lower bounding
the decoder variance as a possible way to improve the VAE performance (details are given in
Appendix 3.7). This enabled the VAE to recover the correct manifold dimension in the sigmoid
example, but not the sphere example; methods of improvements to the VAE’s manifold recovery
is an important direction for future work.

3.7 Experiments with Decoder Variance Clipping
As was suggested by an anonymous reviewer, one potential way to evade the results in our paper
is to restrict the decoder variance from converging to 0. In this section, we examine (empirically)
the impact of clipping the decoder variance during training. We caveat though, that our paper
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Figure 3.2: VAE training on 6 datasets with different choices of dimensions for sigmoidal dataset (see
Setup in Section 3.6). The x-axis represents every 5000 gradient updates during training. The left-most
figure is the manifold error (see Setup in Section 3.6), The middle and right figure confirms that the decoder
variance approaches zero and the VAE loss is steadily decreasing during the finite training time.
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Figure 3.3: VAE training on 5 datasets generated by appending zeros to uniformly random samples from a
unit sphere to embed in a higher dimensional ambient space. The x-axis represents each iteration of every
5000 gradient updates. The left-most figure is the manifold error ( see Setup in Section 3.6), The middle
and right figure confirms that the decoder variance approaches zero and the VAE loss is steadily decreasing
during the finite training time.

Intrinsic Dimensions 2 2 4 4 6
Ambient Dimensions 6 16 10 21 14

VAE Latent Dimensions 6 8 10 16 13

Mean Manifold Error 0.02 0.14 0.04 0.06 0.03
Mean #0’s in Encoder Variance 3 5 5 6 7

Table 3.3: Optima found by training a VAE on data generated by padding uniformly random samples from
a unit r∗-sphere with zeroes, so that the sphere is embedded in a higher ambient dimension. We evaluated
the manifold error as described in the setup. The VAE training on this dataset has consistently yielded
encoder variances with number of 0 entries greater than the number of intrinsic dimension.
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Figure 3.4: A demonstration of how the data points generated by the model trained with clipped decoder
variance is distributed. Left figure: A histogram of the norms of samples generated from the VAE restricted
to the dimensions which are not zero, which shows many of the points have norm less than 1. (The
ground-truth distribution would output only samples of norm 1.) The particular example here is Column 2
in Table 3.5. The data points that do not fall on the sphere tend to lie on both sides of it whereas the those
generated without decoder variance clipping tend to lie inside the sphere as in Figure 3.1. Right figure:
Two-dimensional linear projection of data output by VAE generator trained on our sigmoid dataset. The
x-axis denotes ⟨a∗, x̃:r∗⟩ and the y-axis is x̃r∗+1, the blue points are from the trained VAE and the orange
points are from the ground truth. The generated data points roughly capture the shape of the sigmoid
function.

does not analyze the landscape of the resulting constrained optimization problem, so our results
don’t imply anything about this regime.

We conduct the same nonlinear experiments described in Section 3.6 where we fit VAEs to
data generated from spheres and linear sigmoid functions. The only change is to clip the decoder
variance when it goes below a certain threshold. In the figures below, the featured threshold is
e−4 ≈ 0.018, though we tried also e−2, e−3, e−5, e−6, and e−8 with similar outcomes. We initialize
the decoder variance with e−3 for this set of experiments, so the optimization still can decrease it.

With this change, the optimization process on the sigmoid dataset does yield encoder variances
with their number of zeros reflective of their intrinsic dimensions as in Table 3.4. For the sphere
experiment, this still does not happen, as in Table 3.5. In fact, the model consistently recovers
one more dimension than the true intrinsic dimension of the manifold and the smaller encoder
variances can be as large as 0.1. We also provide a figure (Figure 3.4) in the same style as Figure
3.1. We see that training with a clipped decoder variance of e−4 allows the model to better capture
the general shape of the sigmoid function than training without clipping, though the variance of
the generated points is high for both of the sphere and sigmoid datasets. Additional experiments
with more thresholds are in Figure 3.7 and Figure 3.8. As we decrease the threshold from e−4

to e−8, the fit of the data points concentrate closer to the groundtruth data before getting further
away; at e−8, the data distributions for both dataset resemble the unclipped experiments again.
Other training details, such as the general trend of manifold error, encoder variance and VAE loss,
can be referred to in Figure 3.5 and 3.6.
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Figure 3.5: VAE training on 6 datasets with different choices of dimensions for sigmoidal dataset (see
Setup in Section 3.6). The x-axis represents every 5000 gradient updates during training. The left-most
figure is the manifold error (see Setup in Section 3.6), The middle and right figure shows that as the decoder
variance is bounded below, the VAE loss stops decreasing further.
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Figure 3.6: VAE training on 5 datasets generated by appending zeros to uniformly random samples from a
unit sphere to embed in a higher dimensional ambient space. The x-axis represents each iteration of every
5000 gradient updates. The left-most figure is the manifold error ( see Setup in Section 3.6), The middle
and right figure shows that as the decoder variance is bounded below, the VAE loss stops decreasing further.

Overall, the benefit of clipping the decoder variance during training is inconclusive as we see
inconsistent results in the sphere and sigmoid datasets. Designing more algorithms to improve
the ability of VAE’s to recover data supported on a low dimensional manifold is an important
direction for future work—both empirical and theoretical.

Intrinsic Dimensions 3 3 5 5 7 7
Ambient Dimensions 7 17 11 22 15 28

VAE Latent Dimensions 6 8 10 16 13 24

Mean Manifold Error 0.15 0.15 0.23 0.23 0.24 0.24
Mean #0’s in Encoder Variance 3 3 5 5 7 7

Table 3.4: Optima found by training a VAE on the sigmoid dataset. The VAE training yields encoder
variances with number of 0 entries equal to the intrinsic dimension.
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Intrinsic Dimensions 2 2 4 4 6
Ambient Dimensions 6 16 10 21 14

VAE Latent Dimensions 6 8 10 16 13

Mean Manifold Error 0.03 0.03 0.03 0.02 0.02
Mean #0.1’s in Encoder Variance 3 3 5 5 7

Table 3.5: Optima found by training a VAE on data generated by padding uniformly random samples from
a unit r∗-sphere with zeroes, so that the sphere is embedded in a higher ambient dimension. We evaluated
the manifold error as described in the setup. The VAE training on this dataset has consistently yielded
encoder variances with number of 0.1 entries greater than the number of intrinsic dimension.

Figure 3.7: From top left to right bottom are scattered points generated in the same way as in Figure
3.4(right) with the clipping threshold set at e−4, e−5, e−6 and e−8. We notice that the scattered points were
able to capture the sigmoidal shape with a threshold at e−4 and e−5. But as the threshold lowers further,
the resemblance disappears. Between e−4 and e−5, it is clear that the smaller threshold leads to a scatter
plot more concentrated around the sigmoid function.
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Figure 3.8: From left to right are histograms of generated points’ distance to the center of the sphere with
clipping threshold set at e−4, e−5, e−6 and e−8. As the threshold lowers, the number of points with a
distance larger than 1 decreases, but the points inside the sphere reach closer to center.

3.8 Additional Experiments with Multi-Stage VAE

In this section, we show the effect of multi-stage VAE’s on manifold recovery and data density
recovery.

The multi-stage VAE is trained with the latent variable of the previous stage to be the input of
the VAE in the next stage. The decoder variance is set to be tunable in all stages. During sampling,
the latent variable of the VAE in the last stage is sampled from a standard normal, the output of
the decoder of in one stage of VAE becomes the latent for the next stage.

We studied the effect of multi-stage VAE’s effect on manifold recovery on sphere dataset in
Figure 3.13 as described in the experiment section and mnist dataset in Figure 4.4 LeCun et al.
[1998], rotated mnist dataset in Figure 3.12, as well as a dsprite dataset Matthey et al. [2017]
in Figure 3.9. We demonstrate the output from VAE training from each stage in Figure. The
observation we made from these experiments is that, the manifold recovery improves significantly
on the second training stage, but the performance gain plateaus afterwards.

We perform additional experiments on density recovery on the sphere dataset Figure 3.11.
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(a) Stage 1 (b) Stage 2 (c) Stage 3

(d) Stage 4 (e) Stage 5 (f) Stage 6

Figure 3.9: Example outputs of the generator from learning the dsprites dataset.
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(a) Stage 1 (b) Stage 2 (c) Stage 3

(d) Stage 4 (e) Stage 5 (f) Stage 6

Figure 3.10: Example outputs of the generator from learning the mnist dataset across 6 stages.
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(a) VAE #1 (b) VAE #2

(c) VAE #3 (d) Supervised Generator

Figure 3.11: The sample covariance difference. VAE #1, #2 and #3 are trained on 3 dimensional unit
sphere with padding dimension of 3, 5, and 7 respectively. The x-axis represents the stage number. the
yellow line represents the baseline of the sample covariance difference by taking the norm of the difference
of two ground-truth sample covariances. The supervised generator takes on the exact same architecture
of the VAE decoder. Its input and output are the latent and output of the ground-truth generator. During
training, the sample covariance difference eventually reach the baseline level.
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(a) Stage 1 (b) Stage 2 (c) Stage 3

(d) Stage 4 (e) Stage 5 (f) Stage 6

Figure 3.12: Example outputs of the generator from learning the rotated mnist dataset across 6 stages.
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(a) Stage 1 (b) Stage 2

(c) Stage 3 (d) Stage 4

(e) Stage 5

Figure 3.13: A bar plot on the distribution of the generated data points’ norms. This model is trained on
data generated from a 2-dimensional unit sphere with 7 dimensional padding.
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For the experiments, the data is generated from a 2-dimensional unit sphere padded with 3, 5,
and 7-dimensional zero vectors respectively for three sets of datasets. We calculated the sample
covariance from the decoder during the generation process, and compared against the ground-truth
data’s covariance. We calculate the norm of the difference between the sample covariance and the
ground-truth data’s covariance as a metric for density recover. We also sample ground-truth data
twice to calculate two separate covariances, the norm of their difference is used as a baseline. We
found that none of the stages can recover the ground-truth sample covariance. And more stages
do not lead to better density recovery. To verify that the architecture is capable of recovering the
density of the dataset, we construct a supervised model with the same architecture as the VAE
decoder (4 layers of 500 neurons per layer). The input and output pair for the supervised model is
the latent variable sampled from the standard normal distribution and the VAE training data which
is normalized and padded from the latent variable. The result shows that the supervised model
is capable of eventually recovering the sample covariance as the sample covariance difference
approaches the baseline in Figure 3.11d

3.8.1 Conclusion
In this section, we investigated a one-stage VAE’s ability to recover data manifold and density. We
conducted synthetic experiments on linear and non-linear data and found that it is able to recover
the data manifold of linear data due to an implicit bias towards a low-rank solution but it is not
able to recover data density. On non-linear data, it is not guaranteed to recover the data manifold
or density. This has significant implications for the quality of the generated data as non-linear
data encompasses many data types in real life, such as images, languages, and molecular data. In
Figure 4.4, we can see the model trained on MNIST data is blurrier and harder to identify each
number than the ground-truth image. In the next section, we will present the application of VAE
in drug discovery and that poor recovery of data can lead to discrepancies in properties with the
training data among the generated data. This highlights the importance of improving the manifold
recovery ability of VAEs. Thus in the last two sections, we explored decoder variance clipping
and multi-stage VAE for improved manifold recovery. We found that decoder variance clipping
does not achieve satisfactory improvements in manifold recovery and training additional stages
does improve manifold recovery. However, more than 2 stages of VAE do not necessarily induce
substantial improvements. The multi-stage VAE training scheme also does not lead to data density
recovery, despite the fact that the decoder architecture is shown to be capable of density recovery.
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Chapter 4

Improving Molecule Generation via
Multi-Stage VAE

4.1 Introduction

The use of generative models in the domain of drug discovery has recently seen rapid progress.
These methods can leverage large-scale molecule archives to synthesize novel molecules with
similar properties as potential candidates for future drugs [Duvenaud et al., 2015, Liu et al.,
2018a, Segler et al., 2018, You et al., 2018, Jin et al., 2018, 2020a, Polykovskiy et al., 2020, Jin
et al., 2020b, Satorras et al., 2021, Maziarz et al., 2021, Hoogeboom et al., 2022]. Molecules can
be represented in Simplified Molecular Input Line Entry System (SMILES) format [Weininger,
1988] and as molecular graphs [Bonchev, 1991]. Graph neural networks (GNNs) can take into
account atoms, bonds, and other structural information in molecular graph representations while
conventional sequence models (e.g., RNNs) are more compatible with SMILES. Achieving
structural validity is the first step to AI-driven drug discovery. To do so, GNN methods [Liu et al.,
2018a, Simonovsky and Komodakis, 2018, Jin et al., 2020a, Maziarz et al., 2021] can constrain
the output space based on chemical rules and SMILES-based approaches [Gómez-Bombarelli
et al., 2018, Blaschke et al., 2018] benefit from large molecular data.

Besides structural validity, other chemical properties such as drug-likeness (QED) [Bickerton
et al., 2012], Synthetic Accessibility (SA) [Ertl and Schuffenhauer, 2009], LogP (The Octanol-
Water Partition Coefficient) [Wildman and Crippen, 1999] and molecular weight (MW) are also
critical factors determining whether candidate molecules can be synthesized in a laboratory or
be effective in real-world applications. A molecule’s activity level on protein targets, whether
to inhibit or to activate, is another very important property when treating specific diseases. A
molecule that interacts successfully with the protein target is considered active and an activity score
is measured by quantifying its ability to either activate or inhibit the protein target’s biological
function. Researchers collect and curate large molecule datasets, such as ChEMBL [Mendez et al.,
2019] and ZINC [Irwin and Shoichet, 2005], that contain an array of bioactive molecules together
with information about their properties and protein targets. By training generative models on a
curated set of molecules, the models can learn how to generate new molecules that are similar in
properties to those in the training set and potentially be able to produce novel drug candidates
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that satisfy multiple objectives, e.g. being drug-like and active against multiple protein targets.
Benchmark metrics [Polykovskiy et al., 2020, Brown et al., 2019] are created to measure how
similar the generated molecules are to the target dataset structurally and property-wise. The
state-of-the-art results, however, show that there is still room for improvements. Multi-objective
generation by incorporating property predictors in the training pipeline [Jin et al., 2020b, Maziarz
et al., 2021] is a promising avenue to address this problem, but there are also potential drawbacks.
As Winter et al. [2019] summarized, in drug discovery, the optimization objectives can be complex,
conflicting, ill-defined or evolving over time.

In this paper, we introduce an objective-agnostic and easy-to-implement technique to improve
existing VAE-based molecule generation models – training subsequent stages of VAE’s to generate
latent variables for the preceding-stage VAE. To illustrate how this approach can enhance the
manifold recovery of VAE models, we first study a simple MLP model trained on a synthetic
sphere dataset. We then evaluate our method in an unconstrained molecule generation task and a
fine-tuning task. In these experiments, we demonstrate the following claims:

• The multi-stage VAE is able to bring the properties of the generated molecules closer in
distribution to the test set when training on the ChEMBL dataset;

• Fine-tuning the multi-stage VAE on the curated active molecules of two protein targets
results in more active outputs than fine-tuning only the first-stage model;

• In both tasks, our method can achieve comparable or better results than specialized methods
that introduce property predictors into the training pipeline to optimize one or multiple
target objectives.

4.2 Related Work

Most prior works fall, based on employed molecule representation, into one of the following
families – namely, the SMILES string approach, the molecular graph approach, and the 3D point
set approach. Many methods have been proposed to generate molecules as SMILES strings [Segler
et al., 2018, Gómez-Bombarelli et al., 2018]. Kusner et al. [2017] and Dai et al. [2018] leverage
the syntax of the SMILES format to constrained the output of the VAE model and improve validity
of the generated molecules. GANs have also been proposed to generate SMILES [Kadurin et al.,
2017, Prykhodko et al., 2019, Guimaraes et al., 2017]. We include Prykhodko et al. [2019]’s work
as a baseline in the experiment (Section 4.4) but its performance on property statistics is worse
than the VAE approaches. Molecular graphs carry more information about molecular structure
than SMILES, and GNNs can effectively incorporate the additional information into the learning
process [Duvenaud et al., 2015, Liu et al., 2018a, Jin et al., 2018, Maziarz et al., 2021]. Jin
et al. [2020a] proposed to generate via substructures in a coarse-to-fine manner to adapt to larger
molecules, such as polymers. 3D representations of molecules are gaining traction in the research
community as they capture detailed spatial information of the molecules and autoregressive
models [Gebauer et al., 2019, 2022, Luo et al., 2021] and diffusion models [Hoogeboom et al.,
2022, Xu et al., 2022, Vignac et al., 2022] are common approaches to make use of this type of
representation. However, work in diffusion models so far has focused on generation of smaller
molecules such as in QM9 Ramakrishnan et al. [2014]. Our paper focuses on improving upon the
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Figure 4.1: Overview of multi-stage VAE. In the first stage, the VAE trains on the molecule data xi

and obtains the latent variables z1
i from xi. The later-stage VAE is trained on the latent variables of the

preceding-stage VAE. zs
i ’s from the s-th stage VAE become the input to the s+ 1-th stage VAE during

training. The later-stage VAE’s input dimension is equal to the output dimension. During sampling, we
sample z ∼ N (0, I) and obtain z′s

i from the decoder. The output of a subsequent-stage VAE decoder
is used as the input for the preceding-stage VAE decoder until the latent variable is decoded into a new
molecule x′

i in the first-stage VAE.

existing VAE-based approaches.

4.3 Method
The VAE [Kingma and Welling, 2013] has enabled great success in the image generation domain
and more recently it is also adopted for molecule generation. Prior work [Kusner et al., 2017, Dai
et al., 2018, Jin et al., 2019] has focused on perfecting underlying architectures, e.g. improving
generation of large molecules or enforcing syntax on SMILES output. However, perfecting
architectures does not necessarily improve the molecule’s properties, which could be a result of
VAE’s inherent learning deficiency in manifold recovery [Dai and Wipf, 2019, Koehler et al.,
2021]. The manifold hypothesis [Fefferman et al., 2016, Goodfellow et al., 2016] states that many
high-dimensional real life data lie on low-dimensional manifolds embedded in high-dimensional
ambient spaces. Koehler et al. [2021] found that the VAE is not guaranteed to recover the low-
dimensional manifold where a nonlinear dataset lie. We show that a multi-stage VAE method can
improve manifold recovery as demonstrated in a synthetic experiment (Figure 4.2), and further,
can enhance the performance of pre-existing VAE models.

4.3.1 Variational Autoencoder
The variational inference framework assumes that the data x ∈ Rd is generated from a latent
variable z ∈ Rr via a nonlinear transformation. In VAEs, the prior distribution p(z) = N (0, Ir).
The VAE model consists of a tractable encoder qϕ(z|x) and a decoder pθ(x|z). Here ϕ is the so-
called variational parameter, and θ denotes the generative model parameters. The VAE model seeks
to maximize the likelihood of the data, denoted as log pθ(x) = log

∫
p(z)pθ(x|z)dz. However, in

this model the marginalization is intractable due to the inherent complexity of the generator, or the
decoder, thus an approximation of the objective is needed. In VAE, the encoder and the decoder
work together to approximate a lower bound to the likelihood of the data. By optimizing this
lower bound we aim to increase the likelihood objective. This approximation, called variational
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approximation, enables efficient posterior inference of the latent variable z ∈ Rr given input xi

and for marginal inference of the output variable x ∈ Rd. The VAE objective function consists of
a KL divergence term DKL and a reconstruction term:

L(θ, ϕ;x) =−DKL(qϕ(z|x) || p(z))
+ Eqϕ(z|x)[log pθ(x|z)] ≤ log pθ(x) (4.1)

The encoder and the decoder are parameterized as:

qϕ(z|x) = N (µϕ,Σϕ) (4.2)
pθ(x|z) = N (µθ, σ

2
θId) (4.3)

4.3.2 Multi-Stage VAE
Dai and Wipf [2019] argued that training a continuous VAE with a fixed decoder variance, e.g.
σθ

2 = 11, could add unnecessary noise to the output. While training a VAE with a tunable
decoder variance, they observed that the decoder variance σ2

θ tends to approach zero as the loss,
−L(θ, ϕ;x) = Eq (4.4)+Eq (4.5) in the below equations, approaches negative infinity. However,
a second VAE trained on the encoded latent variables of the first VAE yielded crisper and more
realistic images than the stage-1 VAE. They hypothesized that the data manifold is recovered in
the first stage and the density is recovered in the second stage.

− log pθ(x|z) ∝
∥x− µθ∥22

σ2
θ

+ d log σ2
θ (4.4)

DKL(qϕ(z|x) || p(z)) ∝ trace(Σϕ) + ∥µϕ∥22 − log |Σϕ| (4.5)

Koehler et al. [2021] tested this hypothesis on linear and nonlinear data. The landscape analysis
of Eq (4.4) + Eq (4.5) is tractable with linear data, which is defined as x = Az where A ∈ Rd×r

and z ∼ N (0, Ir). They found that the optimum of the loss function can have a higher rank
than the rank of A but the eventual recovery of the linear manifold is due to an implicit bias
towards lower-ranked solutions in the training dynamics. Synthetic experiments on accessible
manifolds were conducted in place of a general loss landscape analysis for non-linear data due
to the complexity of loss functions with added nonlinearity (e.g., when encoder and decoder are
each parameterized with an MLP). The experiments revealed that the manifold of nonlinear data
is not guaranteed to be recovered by a one-stage VAE.

We extend the synthetic experiments conducted by Koehler et al. [2021] and demonstrate in
the following section that a multi-stage VAE can improve manifold recovery on non-linear data,
providing insights to the phenomenon observed in Dai and Wipf [2019].

Our main contribution is that we apply the multi-stage VAE to the challenging task of
molecule generation. To overcome the difficulties in this task, we use complex neural network
architectures such as graph neural networks in the proposed multi-stage VAE approach and show
that this method can reduce the Wasserstein distances between the property distributions of the
test set and the generated set – and thus, by improving on manifold recovery, it can provide better
results than its competitor methods.

1When σ2
θ = 1, − log pθ(x|z) can be simplified to ∥x− µθ∥22.
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(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure 4.2: Multi-stage VAE on synthetic data. The x-axis represents the norm of the data point and the
y-axis represents the number of data points that are of x distance away from the unit sphere center. The
histogram for an optimal manifold recovery should be a Dirac delta at location 1. The figure for stage 1
shows that most of the generated points fall inside of the sphere indicating poor manifold recovery. Training
additional VAE stages improves manifold recovery as demonstrated by the concentration of points with
norm of 1.

Synthetic Experiment We demonstrate that a multi-stage VAE setup improves the recovery
of a ground-truth manifold with data generated according to Eq (4.6) from the surface of a
3-dimensional unit ball [Koehler et al., 2021]. The generated data are 3-dimensional unit vectors
and form a 2-dimensional surface that we call sphere (because it has no volume). These vectors
are then padded with 16 dimensions of zeros to embed the data on the low-dimensional manifold
into an higher-dimensional ambient space:

xi = [v, 0⃗16] where v′ ∼ N (0, I3) and v =
v′

∥v′∥2
= 1 (4.6)

The intrinsic dimension of the data is 2 and the ambient dimension is 19. We trained on this
data in three VAE stages and sample 1000 data points to visualize the results in the histograms.
Theoretically, an optimal manifold recovery would only produce vectors of norm 1. Empirically,
we observe that the VAE in the first stage does not recover the manifold, and many of the generated
data points x̂i’s fall inside of the sphere, or ∥x̂i∥2 < 1, echoing the finding by Koehler et al. [2021].
In the second and third stage, however, we find that more data points fall close to the sphere (i.e.
∥x̂i∥2 ≈ 1), indicating a better recovery of the manifold (Figure 4.2). The third-stage has slightly
fewer points falling below the distance of 0.95 to the origin than the second in this experiment
indicating a ceiling effect.

Application on Molecule Generation One of the major difficulties in generating molecules,
is that while the latent space is distributed according to a Gaussian distribution, the observed
data is discrete. In a simple discrete setting, the generated data follow a categorical distribution.
Moreover, while the KL divergence term in the loss function is the same as for the above-discussed
continuous VAE, the log pθ(x|z) term in the discrete case is equivalent to the cross entropy loss.
We index the categorical distribution’s support with h:

log pθ(x = h|z) = log ph =
∑
k

tk log pk = −H(T ,P) (4.7)
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Algorithm 4 Training a Multi-Stage VAE
Given: moleculer dataset {xi|i = 1, 2, · · · , n}
Initialize: A VAE Model V1 = {ϕ1, θ1}
Train V1({xi|i = 1, 2, · · · , n})
Generate the corresponding latent z1i ∼ qϕs(z1|x = xi)
Let s denote the stage number, s = 2 and σ1

θ = 0
while σs

θ < 1 do
Initialize Vs = {ϕs, θs}
Train Vs({zs−1

i |i = 1, 2, · · · , n})
Generate latent zsi ∼ qϕs(zs|zs−1 = zs−1

i ) ∀i
s = s+ 1

end while

where ph is the output probability of the h-th element in the support and tk is the k-th entry
in the one-hot encoding of the true value. Though decoder variance is not a parameter in the
log-likelihood function, it can still be measured based on the diversity of the output x given
the same latent variable z. We measured the diversity of outputs of three common molecule
generation VAE methods and found that 0 for 2 of them have deterministic output, indicating that
their decoder variance is 0 (Table 4.2).

Dai and Wipf [2019] observe two conditions in the first-stage VAE enabling improvements in
later stage to occur: i) the decoder variance converges to 0; and, ii) the entries in the diagonal
of the encoder variance converge to either 0 or 1. The first condition can be satisfied naturally
despite the lack of variance parameter as discussed before. The continuous latent spaces of
molecular VAE models allows us to verify second condition as well (Table 4.2). In Section 4.4,
we provide empirical studies on the application of multi-stage VAE’s in the molecule generation
domain by evaluating the output quality using structural and property statistics [Polykovskiy et al.,
2020]. We find that the multi-stage VAE generate molecules that are more similar in property to
the test set. The precise steps to train and sample from a multi-stage VAE are described in Alg 4,
5 and as following:

In addition to Algorithm 4 and 5 in the main paper, we also include the following description
of the training and sampling procedure.

1. Train a VAE on the molecular dataset {xi | i = 1, 2, . . . n}, and upon convergence, save the
latent variables z1 ∼ qϕ1(z1|x = xi) for all the molecules in the dataset;

2. With {z1
i | i = 1, 2, . . . n} as input, train additional stages of VAE with tunable decoder

variance and the latent variable at stage s is denoted as zs. We use feed-forward architectures
for both the decoder pθs(zs|zs+1) and the encoder qϕs(zs+1|zs). They both follow Gaussian
distributions. The dimension of zs are the same across different stages. Repeat this step
until the final stage, and the last-stage latent variable is denoted as z.

3. During the sampling process, sample the latent representation of the last stage VAE, zN ∼
N (0, I). Obtain the output from the stage-s decoder zs ∼ pθs(z

s|zs+1 = z′s+1) as the input
to the stage-(s − 1) decoder. Repeat until we reach the first stage VAE and get the new
molecule sample x′

i from the first stage decoder via x ∼ pθ1(x|z1 = z′1).

62



Algorithm 5 Sampling from a Multi-Stage VAE
Given: {Vs = {ϕs, θs}|s = 1, 2, · · · , N}

1: Sampling z′Ni ∼ N (0, 1) ∀i
2: for s = N-1 to 1 do
3: z′s ∼ pθs(z

s|zs+1 = z′s+1
i )

4: end for
5: x ∼ pθ(x|z1 = z′1)
6: return x

We observe in our experiments that, for each additional stage of VAE we train, the decoder
variance converges to a larger value than the previous one (details in Section 4.4.2). Also when
the new stage’s decoder variance converges to 1, the same as the prior p(z)’s variance, the
improvements become minimal. In the next section, we experiment on three pre-existing VAE
models for general molecule generation tasks. We verify if they meet the two conditions outlined
for the continuous synthetic setting earlier. And the models that do are able to generate molecules
more similar to the test set by training additional stages of VAE. We also show that the multi-stage
VAE can increase the number of active molecules generated when fine-tuned for a protein target.

4.4 Experiments
In this section, we demonstrate the effectiveness of multi-stage VAE on two generation tasks.
First, our algorithm learns to generate molecules by training on a large molecular database (i.e.,
ChEMBL), and we show that a multi-stage VAE generates molecules more similar to the test set in
properties than a single stage VAE. Our baselines include a GNN model [Maziarz et al., 2021] that
minimizes the losses between the true property values of the input molecules and the predicted
property values of the output molecules for multiple targets during training and our method
shows consistent improvements across various properties. Second, our algorithm is fine-tuned
on two curated molecular datasets that are active against two different protein targets (JAK2 and
EGFR). The multi-stage VAE improves the activity rate among the generated molecules. In this
experiment, we compare our method against an RL-based fine-tuning method [Jin et al., 2020b]
that uses activity predictor as the reward function and show that we can achieve equivalent or
better results in much shorter time.

4.4.1 Unconstrained Generation

We adopt three existing VAE models as our first-stage VAE – hierarchical GNN [Jin et al., 2020a],
MoLeR [Maziarz et al., 2021], and character-level RNN [Polykovskiy et al., 2020] – to compare
the effects of multi-stage VAE on different model architectures featuring different molecule
representations. We also adopt a GAN-based model [Prykhodko et al., 2019] as an additional
comparison. We conduct experiments on the ChEMBL [Mendez et al., 2019] dataset consisting
of 1,625k bioactive molecules with drug-like properties. It is split into training, testing, and
validation datasets containing 1,463k, 81k, and 81k molecules respectively.
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Structural Statistics Property Statistics
Model SNN ↑ Frag ↑ Scaf ↑ LogP ↓ SA ↓ QED ↓ MW ↓
HGNN 0.42 0.97 0.46 0.920.016 0.0704.3e−3 0.0249.5e−4 68.80.83

Multi-Stage HGNN 0.41 1.0 0.43 0.0950.019 0.0695.8e−3 0.00671.0e−3 5.00.72

MoLeR 0.41 0.96 0.48 0.166.78e−3 0.0281.96e−3 0.0472.78e−3 9.60.70

Multi-Stage MoLeR 0.42 0.96 0.49 0.0876.16e−03 0.0312.81e−03 0.0282.31e−03 8.24.0e−01

RNN 0.38 1.0 0.38 0.0887.8e−3 0.25 7.8e−3 0.00881.6e−3 3.20.55

Multi-Stage RNN 0.38 1.0 0.36 0.0995.5e−3 0.277.7e−3 0.00991.5 e−3 2.80.29

LatentGan 0.34 0.68 0.21 0.690.019 0.637.3e−3 0.0472.0e−3 27.20.88

MoLeR + prop 0.43 0.97 0.49 0.111.03e−02 0.132.51e−03 0.0338.65e−04 6.64.80e−01

Table 4.1: Properties of the generated molecules trained on the ChEMBL dataset.

The metrics used for the experiments in Section 4.4.1. Property Statistics include LogP (The
Octanol-Water Partition Coefficient), SA (Synthetic Accessibility Score), QED (Quantitative Esti-
mation of Drug-Likeness) and MW (Molecular Weight). These metrics determine the practicality
of the generated molecules, for example, LogP measures the solubility of the molecules in water
or an organic solvent [Wildman and Crippen, 1999], SA estimates how easily the molecules can
be synthesized based on molecule structures [Ertl and Schuffenhauer, 2009], QED estimates how
likely it can be a viable candidate of drugs [Bickerton et al., 2012]. The values listed in the table
for each metric are the Wasserstein distances between the distributions of the property statistics in
the test set and the generate molecule set.

Structural statistics include SNN (Similarity to Nearest Neighbor), Frag (Fragment Similarity),
and Scaf (Scaffold Similarity). These statistics calculate two molecular datasets’ structural
similarity based on their extended-connectivity fingerprints [Rogers and Hahn, 2010], BRICS
fragments [Degen et al., 2008] and Bemis–Murcko scaffolds [Bemis and Murcko, 1996].

The sample quality metrics are a lot more intuitive. Valid calculates the percentage of valid
molecule outputs. Unique calculates the percentage of unique molecules in the first k molecules
where k = 1000 for the ChEMBL dataset. Novelty calculates the percentage of molecules
generated that are not present in the training set. FCD is the Fréchet ChemNet Distance [Preuer
et al., 2018].

Below we provide the details of the models considered in this study:
Hierarchical GNN: This method extracts chemically valid motifs, or substructures, from the

molecular graphs. The model consists of an encoder that encodes from atoms to motifs and a
coarse-to-fine decoder that selects motifs to create the molecules. We use the configuration from
the original model with a latent dimension of 20.

MoLeR GNN: Similarly to the hierarchical GNN, this method also extracts motifs in order
to generate molecules piece by piece. The method’s objective includes a term (Eq 4.8) that
simultaneously learns a regression function fp(·) to predict the ground-truth molecule properties
yp from the latent variables z during VAE training for each property p.

Lprop =
∑
p

λp∥fp(z)− yp∥22 (4.8)

In our experiment we examine whether the inclusion of the loss term Lprop can improve the
similarity of the generated molecules to the ground-truth data in properties (marked as "MoLeR +
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prop" in Table 4.1). We remove Lprop to create a first-stage model "MoLeR" and implement our
multi-stage method based on it. We use the original training configuration with a latent dimension
of 64.

Vanilla RNN: The inputs to the model are SMILES strings and the vocabulary consists of
the low-level symbols in the SMILES format. The encoder is a 1-layer GRU and the decoder is a
3-layer GRU. We use the original configuration with a latent dimension of 128.

Latent GAN: This is a 2-stage method. The first stage is a heteroencoder that takes SMILES
strings as input while the second stage is a Wasserstein GAN with gradient penalty (WGAN-GP)
that trains on the latent variables of the first stage encoder. We use the original parameters for
training.

Results We sample 10,000 molecules from each model to generate the results in Table 4.1,
which include structural and property statistics. Additional metrics such as validity are moved
to Appendix 4.4.3 due to similar performance across all models. The entries in the property
statistics section are the Wasserstein distances between the property distribution of the test set and
the generated set. A lower value in these statistics signals increased similarity to the test set in
these properties. All results are averaged over 6 sets of samples generated with different random
seeds from the model. We include the standard deviations only for property statistics as all others
exhibited small values (i.e., below 0.01).

The multi-stage HGNN improves upon HGNN by many folds on property statistics. The most
notable improvements from the ChEMBL dataset are QED (from 0.024 to 0.0067), MW (from
68.8 to 5.0) and LogP (0.92 to 0.059). Structural statistics generally did not change substantially.

Multi-stage MoLeR improves upon standard MoLeR in three property metrics: LogP, QED
and MW. Particularly in LogP and QED, the value goes down almost a half from 0.16 to 0.087
and from 0.047 to 0.028. The SA measure stays roughly the same, moving from 0.028 of MoLeR
to 0.031 of multi-stage MoLeR. The regression term in the "MoLeR + prop" optimizes over LogP,
SA and MW. For two of these three metrics, "MoLeR + prop" reaches lower statistics than MoLeR,
where such regression term is left out of the objective, but the SA metric of "MoLeR + prop" is
more than four times higher than without the regression term. This highlights the challenges of
directly matching multiple statistics at once during training – the objectives could be conflicting
with each other and lead to unexpected results. Eventually, the multi-stage MoLeR reaches lower
property statistics than "MoLeR + prop" in three (LogP, SA and QED) out of four metrics. For
the only property metric (MW) our algorithm performed worse (or bigger distance) in, the gap is
only 24% worse than "MoLeR + prop" while for metric such as SA, our outputs are more than
300% better than "MoLeR+prop".

Multi-stage RNN performs worse than RNN in three out of four metrics. The RNN VAE’s
training process does not follow a standard VAE training procedure – the SMILES strings are
input to both the encoder and decoder. This allows the decoder to rely less on the latent variables
during the decoding process and the model exhibits signs of posterior collapse [Razavi et al.,
2019a, Fu et al., 2019] during training. Our hypothesis for the poor performance of the multi-stage
VAE with first-stage RNN model is that the variance of the first-stage decoder did not fulfill the
condition of approaching 0 upon convergence (detailed analysis below).
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Verification of Encoder and Decoder Variance Conditions We investigate how well each of
the three first-stage models fulfills the two conditions (outlined in Section 4.3.2) hypothesized by
Dai and Wipf [2019] as necessary for improvements in the later stages to occur. This examination
can help explain their different behaviors. We present our findings in Table 4.2.

1. The decoder variance of the first-stage model converges to zero. Variance of a multinomial
distribution is defined on each element in the support. To simplify the procedure, we
substitute variance calculation with a simple experiment – input the same latent variable
to the trained decoder 1,000 times, the number of distinct molecules the model generates
can give us an indication on whether the decoder variance is approaching zero. We observe
that for both of the GNN models, all 1,000 identical latent variables generate 1000 identical
molecules (Table 4.2 column "Unique Outputs"). We can consider both models to have zero
decoder variance. In contrast, the RNN model generates 1,000 distinctive SMILES strings.
Thus, its decoder variance did not approach 0 and training multi-stage VAE did not improve
the properties of generated molecules.

2. Each entry of the encoder variance diagonal either converges to 0 or 1. Considering a
0.1 tolerance interval around 0 and 1 and we find the following: The HGNN model’s
20-dimensional encoder variance diagonal has all converged to 0; RNN’s 128-dimensional
encoder variance diagonal features 111 of 1’s and 15 of 0’s; and MoLeR’s 64 dimensions
of encoder variance diagonal has converged to 45 of 1’s and 6 of 0’s. The other of the
dimensions fall somewhere in between 0.1 and 0.9 shown in Table 4.2’s first three columns.

Model
Interval
x < 0.1

Interval
0.1 ≤ x ≤ 0.9

Interval
0.9 < x

Unique
Outputs

HGNN 20 0 0 1
MoLeR 6 13 45 1
RNN 15 2 111 1,000

Table 4.2: The first three columns examines whether the encoder variance Σϕ’s diagonal has converged to
0 or 1. The last column examines if the decoder variance σ2

θ converges to 0 based on the number of unique
SMILES outputs after inputting 1,000 identical latent vectors.

We observe that the HGNN model meets both conditions for the simple continuous settings.
As hypothesized, multi-stage HGNN improves significantly over HGNN on the second stage.
While the MoLeR model fulfills the conditions only partially, multi-stage MoLeR still yields
better results than single stage MoLeR. Its three stage variant achieves best performance. The
RNN model does not meet either of the two conditions and training multi-stage RNN yield
improvements. The detailed performances in each stage of the multi-stage VAE’s is in Appendix
4.4.3. Overall, these findings corroborate the required conditions postulated by Dai and Wipf
[2019].

4.4.2 Converged Decoder Variance in Different Stages
For HGNN model, the stage #2 model’s decoder variance converges to 0.067 and the stage #3
decoder variance converges to 1.0. For the RNN-VAE model, the stage #2 model’s decoder
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Figure 4.3: The decoder variance’s change over the course of training time.

variance converges to 1.
For the MoLeR model, the stage #2 model’s decoder variance converges to 0.00013, and the

stage #3 model’s decoder variance converges to 0.016. We train a stage #4 VAE and it converges
to 1.0. We include the plots of the decoder variance during training at each stage in Figure 4.3. For
both stage #2 and #3, the decoder variance briefly goes up in the beginning of the training before
converging to a much smaller value. In stage #4, the decoder variance reaches 1 very quickly and
the value stays unchanged. We include the results generated by a 4-stage VAE in Table 4.4’s #4
row.

4.4.3 Additional Multi-stage VAE Results

In this section, we include additional results on multi-stage VAE. In Table 4.3, we included the full
table of results on each stage of the multi-stage VAE as an extension to Table 4.1. It also includes
the sample quality information. In addition, we also trained a multi-stage VAE on a polymer
dataset [St. John et al., 2019] with HGNN as the first-stage. The first-stage result is included in
the HGNN paper [Jin et al., 2020a]. We present the results from the second and third-stage VAE
in relation to the first-stage in Table 4.5. We also trained two additional stages for MoLeR model
with property matching included in the objective function in Table 4.6. An example output of
2-stage VAE on MNIST dataset is in Figure 4.4.

The Polymer Dataset[St. John et al., 2019] contains 86,353 polymers and it’s divided into
training, test and validation set that contains 76,353, 5000 and 5000 molecules each. Polymers
generally have heavier weight than the molecules in the ChEMBL dataset and the dataset size
is smaller. Uniqueness is selected to be at top k = 500 for the polymer dataset. On the polymer
dataset, the second stage VAE improves significantly across all metrics – from 72.2 to 7.7 on MW,
0.020 to 0.0024 on QED, 0.089 to 0.031 on SA and 1.3 to 0.1 on LogP. In the third stage, 2 of the
metrics (SA and QED) improved while the other 2 degraded.

We train a multi-stage VAE on MoLeR with property matching as the first stage. Due to the
modification to the objective function, none of the analysis described in the main paper necessarily
apply here, but it is still interesting to see the results. In Table 4.6, we see that the second-stage
VAE is able to improve upon the first-stage on all metrics while the third-stage improves only
upon QED while the other 3 properties degraded.
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(a) Stage 1 (b) Stage 2

Figure 4.4: Output of 1- and 2-stage VAE on MNIST data.

0 2 4 6 8 10
Activity Score

0

50

100

150

200

Nu
m

be
r o

f M
ol

ec
ul

es

(a) MoLeR Fine-tuning

0 2 4 6 8 10
Activity Score

0

50

100

150

200

250

Nu
m

be
r o

f M
ol

ec
ul

es

(b) Outer-Layer Fine-tuning

0 2 4 6 8 10
Activity Score

0

50

100

150

200

250
Nu

m
be

r o
f M

ol
ec

ul
es

(c) Whole Model Fine-tuning

0 2 4 6 8 10
Activity Score

0

50

100

150

200

250

Nu
m

be
r o

f M
ol

ec
ul

es

(d) Inner-Layer Fine-tuning

0 2 4 6 8 10
Activity Score

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f M
ol

ec
ul

es

(e) Test Set

0 2 4 6 8 10
Activity Score

0

50

100

150

200

250

Nu
m

be
r o

f M
ol

ec
ul

es

(f) RL Fine-tuning.

Figure 4.5: The distributions of the generated molecules’ activity scores by the Chemprop model on the
JAK2 protein in six histograms.
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(f) RL Fine-tuning.

Figure 4.6: The distributions of the generated molecules’ activity scores by the Random Forest model on
the EGFR protein in six histograms.

4.4.4 Generation for a Protein Target
In addition to the unconstrained generation of molecules, we explore generating molecules for
specific protein targets. We pre-train a MoLeR model and a multi-stage MoLeR on the ChEMBL
dataset and fine-tune them on two curated, and much smaller, datasets [Korshunova et al., 2022]
consisting of molecules that are active inhibitors of Janus Kinas 2 (JAK2) and inhibitors of the
Epidermal Growth Factor (EGFR). For each of the protein targets, the regression dataset contains
the molecules and their corresponding activity scores (from 0 to 10). A score above 6 is considered
active. The dataset size is around 19k for JAK2, with about 15.6k active molecules, and around
15k for EGFR, with about 7.8k active molecules. Both active and non-active molecules are used
to train a regressor of the activity score while only the active ones are used to fine-tune the VAE.
We divide each dataset into 8:1:1 for training, validation, and testing for both VAE and predictor.
In addition, there is a separate classification dataset for each protein target – 60k for JAK2 and
50k for EGFR – containing only the binary activity information of each molecule. The dataset is
divided into 9:1 for training and testing of the classifiers.

Metrics We evaluate our method and baseline methods in three major categories: activity,
diversity, and novelty. All evaluations are reported with means and standard deviations across 5
datasets with 1,000 molecules each generated by different random seeds. Particularly for activity
scores, we report both the mean score and percentage of active molecules (6 as the cutoff point) in
a dataset by a Chemprop regressor [Yang et al., 2019], and the percentage of active molecules
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(f) RL Fine-tuning.

Figure 4.7: The distributions of the generated molecules’ activity scores by the Random Forest model on
the JAK2 protein in six histograms.

by a Chemprop classifier. The regressor reaches an RMSE of 0.5 for the JAK2 dataset and 0.6
for the EGFR dataset. As reference, performance metrics for all predictors on the active test set
split are provided by Tables 4.7a and 4.7b. Novelty is defined as the fraction of molecules with
nearest neighbor similarity in the active training set below 0.4. Diversity is calculated based on
the pairwise molecular distance sim(X, Y ) within the generated dataset. The function sim(·, ·) is
defined as the Tanimoto distance over Morgan fingerprints of two molecules. These two metrics
are defined as follows [Jin et al., 2020b]:

Diversity = 1− 2

n(n− 1)

∑
X,Y

sim(X, Y ) (4.9)

Novelty =
1

n

∑
G

1[sim(G,GSNN ) < 0.4] (4.10)

Methods We compare the generated molecules from the fine-tuned multi-stage MoLeR model
to the fine-tuned one-stage MoLeR model. We include RationaleRL [Jin et al., 2020b] as a
reinforcement learning-based baseline. We obtained the multi-stage MoLeR from training on
the full ChEMBL dataset as described in Section 4.3.2. The MoLeR model was fine-tuned on
the curated active molecules dataset after pretraining on the full ChEMBL dataset. Each stage
of the multi-stage MoLeR is initialized with the parameters from the corresponding stage of the
pre-trained model and fine-tuned on the encoded latent variables of the curated dataset from the
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(f) RationaleRL

Figure 4.8: The distributions of the generated molecules’ activity scores on the EGFR protein predicted
by the Chemprop model. We include 5 sets of molecules generated by different methods as well as the
ground-truth test set. The x-axis represents the activity score ranging from 0 to 10 and the y-axis is the
number of molecules in each bin.

fine-tuned previous-stage VAE. We fine-tuned the later-stage VAEs in three ways: fine-tuning the
entire model, fine-tuning only the two inner layers connecting to the latent sampling layer, and
fine-tuning only the two outer layers connecting to the input and output. We visually compare
the distributions of the activity scores for EGFR from the three types of fine-tuning methods
and baselines in Figure 4.8. The quantitative metrics are shown in Table 4.7a and 4.7b. Each
evaluation reports metrics for the active test set as a reference.

Results For both of the protein targets, fine-tuning the multi-stage MoLeR in either of the
three ways produces more active molecules and higher mean activity scores of the protein targets
than fine-tuning only the first-stage VAE (Table 4.7a and 4.7b) by both the classifier and the
regressor. The improvement is especially pronounced on the EGFR dataset, which is about half of
the JAK2 dataset’s size. Particularly, fine-tuning only the inner layers or outer layers produces
more active molecules than fine-tuning the whole model. Their activity score distributions are
also more similar to the test set’s (Figure 4.8). The peak of the activity score distribution around 7
is well-captured by the two fine-tuning methods of the VAE in Figure 4.8a and 4.8b. Fine-tuning
only two layers reduces the number of training parameters with the same amount of data, thus
leading to better results.

The RationaleRL model is initialized with a generative model trained on the ChEMBL dataset
and then fine-tuned with an RL algorithm. A Random-Forest classifier with Morgan fingerprint
features is used as its reward signal Jin et al. [2020b]. Evaluations by the random forest model are
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in Section 4.5. Our methods have higher mean activity scores than RationaleRL on both datasets.
On the EGFR dataset, the fine-tuned multi-stage MoLeR reaches a higher level of activity than
RationaleRL by both the regressor and the classifier. On the JAK2 dataset, the regressor has
predicted higher activity levels on the generated molecules from our methods than RationaleRL
but our methods have lower activity levels as predicted by the classifier. This discrepancy could
be attributed to a bias towards negative samples due to an imbalanced training size and poor out-
of-distribution generalization as evidenced by the high novelty scores of our methods. Fine-tuned
multi-stage MoLeRs are higher on novelty metric than RationaleRL with similar diversity levels.
In addition, our method is much more computationally efficient to fine-tune, taking only a few
hours as opposed to days for RationaleRL.

4.5 Experiment Results from Random Forest
The RationaleRL model is initialized with a generative model trained on the ChEMBL dataset
and then fine-tuned with an RL algorithm. A Random-Forest classifier with Morgan fingerprint
features is used as its reward signal [Jin et al., 2020b] in the fine-tuning process. We include
the prediction results by the Random Forest regressor (RFR) and classifier (RFC) in Table 4.8
and Table 4.9 as an extension to Table 4.7a and Table 4.7b. RationaleRL generally has a higher
percentage of active molecules when predicted by the two Random Forest models than Chemprop,
a sign of possible overfitting. No such pattern is observed for our methods which did not involve
property predictors in the fine-tuning process. On the EGFR dataset, RationaleRL reaches a higher
level of activity than fine-tuned multi-stage VAE as predicted by Random Forest models but a
lower level of activity when predicted by Chemprop. On the JAK2 dataset, our methods have
lower activity levels than RationaleRL as predicted by both classifiers but both regressors have
predicted similar or slightly higher activity levels on the generated molecules from our methods
than RationaleRL. Our method reaches slightly higher mean activity scores than RationaleRL on
both datasets predicted by both regressors.

4.6 Training details on multi-stage VAE
Each stage of the multi-stage VAE with HGNN as the first stage has three fully-connected layers
of size 512 for both encoders and decoders in addition to the input and output layer which are
of size 20 (latent dimensions). The initial decoder variance is set at 0.05. Learning rate is set at
0.0001.

Each stage of the multi-stage VAE with MoLeR as the first stage has five fully-connected
layers of size 1025 for both encoders and decoders in addition to the input and output layer which
are of size 64 (latent dimensions). The initial decoder variance is set at 0.007. Learning rate is set
at 0.0001. We trained our model for 10000 epochs but fewer epochs (e.g. 5000) can probably
achieve similar results. For fine-tuning, the decoder variance is held as constant during the process.
Fine-tuning either inner-layer or extra-layer is done by loading the pre-trained model and add two
extra layers either connecting to the latent layer or the output. The two extra layers are randomly

1Training on a single "NVIDIA GeForce RTX 2080 Ti" GPU.
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initialized. The pre-trained part of the model is frozen while only the additional layers are being
trained. Fine-tuning the whole model means to load the pre-trained model and only freeze the
decoder variance while training the rest of it without additional layers. During fine-tuning, we use
0.00001 as the learning rate and train for 50000 epochs.

4.7 Conclusion
In this chapter, we tackle the challenging problem of improving one or multiple molecular
properties from pre-existing VAE methods by presenting a multi-stage VAE model shown to
improve manifold recovery in a synthetic experiment. We demonstrate our contributions on i)
an unconstrained generation experiment on ChEMBL dataset in which the multi-stage VAEs
are able to improve upon their conventional stage-1 counterparts on property statistics such as
LogP or SA; and ii) a finetuning experiment that shows how refined multi-stage VAE’s yield more
active molecules for protein targets than their refined stage-1 counterparts. Our model achieves
improvements on various molecular properties while in training being agnostic to any particular
property objectives, meaning, no property specific optimization objectives are required during
training. Yet, it is able to achieve comparable, and sometimes better outcomes than specialized
approaches that directly optimize over one or multiple property objectives with the help of property
predictors.
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Model Type
Classifier
Activity ↑

Regressor
Activity ↑

Mean
Score ↑ Diversity ↑ Novelty ↑ Time ↓

Active Test set 0.93 0.92 7.4 0.85 0.016 -
MoLeR 0.441.18 e−02 0.571.21 e−02 6.32.94 e−02 0.872.26 e−03 0.631.81 e−02 4 min

RationaleRL 0.797.94 e−03 0.841.45 e−02 6.81.56 e−02 0.791.38 e−03 0.0555.24 e−03 4.5 d
Fine-tuned Multi-Stage Models

Whole-Model 0.536.43 e−03 0.636.65 e−03 6.43.18 e−02 0.859.95 e−04 0.549.65 e−03 1.5 h
Inner-Layer 0.791.61 e−02 0.871.31 e−02 7.43.92 e−02 0.714.41 e−03 0.172.03 e−02 1.25 h
Outer-Layer 0.851.30 e−02 0.895.31 e−03 7.23.17 e−02 0.715.30 e−03 0.228.78 e−03 1.5 h

(a) EGFR

Model Type
Classifier
Activity ↑

Regressor
Activity ↑

Mean
Score ↑ Diversity ↑ Novelty ↑ Time ↓

Active Test set 0.97 0.97 7.5 0.88 0.016 -
MoLeR 0.521.15e−02 0.746.89e−03 6.51.17e−02 0.905.62e−04 0.856.71e−03 7 min

RationaleRL 0.858.96e−03 0.791.67e−02 6.62.93e−02 0.872.58e−03 0.247.42e−03 8.5 d
Fine-tuned Multi-Stage Models

Whole-Model 0.548.31e−03 0.781.02e−02 6.62.22e−02 0.894.47e−04 0.827.80e−03 2.8 h
Inner-Layer 0.667.58e−03 0.881.11e−02 6.91.01e−02 0.888.39e−04 0.786.29e−03 2.8 h
Outer-Layer 0.622.27e−02 0.898.37e−03 6.93.72e−02 0.861.29e−03 0.695.37e−03 2.8 h

(b) JAK2

Table 4.7: Evaluation of the generated molecules targeting EGFR and JAK2 by three multi-stage MoLeR
fine-tuning methods: fine-tuning the whole model, fine-tuning only inner layers, and fine-tuning outer
layers. They are compared against baseline models such as fine-tuned MoLeR and RationaleRL. The
evaluation metrics include the percentage of active molecules, mean activity scores, diversity, and novelty.

Model Type Activity (RFC) Activity (RFR) Mean (RFR)
Active Test set 0.98 0.89 7.1

MoLeR 0.411.14 e−02 0.601.46 e−02 6.32.16 e−02

RationaleRL 0.881.23 e−02 0.944.50 e−03 6.71.42 e−02

Whole-Model 0.501.38 e−02 0.694.31 e−03 6.51.91 e−02

Inner-Layer 0.881.27 e−02 0.908.40 e−03 7.02.04 e−02

Outer-Layer 0.861.75 e−02 0.891.17 e−02 6.92.61 e−02

Table 4.8: Evaluation of the generated molecules targeting EGFR by the random forest method with three
multi-stage VAE fine-tuning methods: fine-tuning the whole model, fine-tuning only the inner-layers and
fine-tuning the outer-layers. They are compared against baseline models such as fine-tuned one-stage
MoLeR and RationaleRL.
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Model Type Activity (RFC) Activity (RFR) Mean (RFR)
Active Test set 0.99 0.98 7.4

MoLeR 0.441.73e−02 0.891.24e−02 6.72.44e−02

RationaleRL 0.924.93e−03 0.967.26e−03 6.81.67e−02

Whole-Model 0.461.13e−02 0.915.90e−03 6.71.16e−02

Inner-Layer 0.566.68e−03 0.942.28e−03 6.81.36e−02

Outer-Layer 0.651.23e−02 0.951.96e−03 6.91.53e−02

Table 4.9: Evaluation of the generated molecules targeting JAK2 by the random forest method with three
multi-stage VAE fine-tuning methods: fine-tuning the whole model, fine-tuning only the inner-layers and
fine-tuning the outer-layers. They are compared against baseline models such as fine-tuned one-stage
MoLeR and RationaleRL.
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Chapter 5

Non-Differentiable Diffusion Guidance for
Improved Molecular Geometry

5.1 Introduction

Applications of generative models in feature-rich geometries have the potential to accelerate
scientific discoveries in chemistry, biology, and materials science. For example, the in silico
generation of 3D geometries for molecules and proteins can help screen novel drug candidates and
model the protein-molecule interaction to accelerate drug discovery Corso et al. [2022], Jumper
et al. [2021], Xu et al. [2023], Hoogeboom et al. [2022].

In particular, molecules can be modeled with a graph, each node of the graph representing an
atom and containing feature information such as 3D coordinates and atom types. The geometries
of the generation results have domain-specific implications – a molecule’s stability and proper-
ties depend significantly on its preferred quantum geometric states, i.e., atomic and molecular
geometries. For example, polarity is closely related to molecular geometry. A water molecule
H2O has a stable V-shaped H-O-H geometry of 104.5 degrees and is thus polar. A generated H2O
molecule with a linear H-O-H geometry would instead be nonpolar but unstable (as demonstrated
in Figure 5.1). Therefore, when we discuss molecules and their properties, it is essential to start
from their preferred stable geometries. In this chapter, we propose to improve generated molecular
geometries by incorporating a non-differentiable black-box predictor in the diffusion sampling
process.

Many diffusion model approaches have been applied to 3D molecular structures [Hoogeboom
et al., 2022, Xu et al., 2023, Bao et al., 2022, Vignac et al., 2022]. The generation results are
evaluated on general stability and validity as well as on the performance of property-conditioned
generation, all of which depend on the geometry of the resulting molecules. To better control the
generation results, Hoogeboom et al. [2022], Xu et al. [2023] have proposed to train conditional
generative models where they input the property values as conditions into the model during
training and sampling to obtain novel molecules fulfilling the requirement. [Han et al., 2023]
applied the training-free regressor-guided diffusion sampling method, which has been shown to
improve image conditional generation quality [Bansal et al., 2023, Dhariwal and Nichol, 2021], to
the task of molecule conditional generation and has seen remarkable improvements. The guidance
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Figure 5.1: Left: A water molecule in real life that forms a 104.5 degree angle between the two HO bond.
The molecule is polar and stable. Right: A linear water molecule that is nonpolar and nonstable. Our goal
is to optimize the molecular geometry during the sampling process as optimising the molecular geometry
after generation could change the properties of the generated molecules.

method uses the gradient of classifier or regressor loss between the conditioned value and the
generated result’s predicted value to perform "correction" during the sampling process to guide
the trajectory toward a result that fulfills the conditioned.

We propose to generalize the use of a neural predictor for guiding the diffusion model
generation to a non-differentiable expert oracle that we can query from. To improve the generated
molecule geometries, we use an external quantum chemistry package xTB with the GFN2-
xTB method [Bannwarth et al., 2019] that conducts accurate and efficient quantum chemistry
calculation of atom forces and we use a two-point method [Nesterov and Spokoiny, 2017] to
estimate the gradient of the data point in the chemical property value landscape. By guiding the
sampling process towards an output that minimizes forces on each atom, we naturally achieve
geometry refinement as an end result. Directly incorporating an expert oracle removes the
estimation error of a predictor. Even in the unlikely event that the predictor achieves perfect
accuracy on the test set, it is not guaranteed to achieve good accuracy on an unseen dataset with
a different distribution. For example, the molecules from QM9 [Ramakrishnan et al., 2014] are
already stable molecules with optimal energies and minimized force on each atom, which is
generally not the truth for the molecules generated during the denoising process of a diffusion
model. In this chapter, we present our non-differentiable diffusion guidance method and apply it
to the problem of molecule generation for the purpose of geometry optimization. To evaluate the
effectiveness of our proposed approach, we show that our non-differentiable oracle guidance can
improve validity and stability among the generated molecules. When used alongside other neural
property regressors for multi-objective conditional generation, our method yields molecules with
more on-point property values, while maintaining small net forces and high validity.

5.2 Related Work
This chapter lies in the intersection of predictor-guided diffusion generation and molecule gen-
eration for drug discovery. Various types of generative models have been proposed to model
molecular data, including VAE [Jin et al., 2018, 2019, Kusner et al., 2017, Maziarz et al., 2021]
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Figure 5.2: Visualization of molecule generation with and without force regularization. Guidance is
estimated with the non-differentiable chemistry oracle xTB package. We only started to add guidance from
timestep t to 0 and t is selected as 400 based on experiment results as well as prior literature [Han et al.,
2024]. With force guidance, we are able to generate molecules with smaller net force on each atom and are

and GAN [Prykhodko et al., 2019, De Cao and Kipf, 2018]. However, these models focus on
generating molecules as 2D graphs without 3D coordinate information. The autoregressive model
is one approach to learning to generate 3D molecules including G-Schnet [Gebauer et al., 2019]
and G-SphereNet [Luo and Ji, 2022], however, they are less effective and powerful compared
to diffusion models [Hoogeboom et al., 2022]. The equivariant diffusion model EDM for 3D
molecule generation was first proposed by Hoogeboom et al. [2022], which utilizes an equivariant
graph neural network to model the molecules as graphs with coordinates and atom types as node
features. GeoLDM [Xu et al., 2023] further extends EDM to a latent diffusion architecture and
has shown improvements in stability and validity. Han et al. [2023] proposed a guided diffusion
model but they assume dependency on different properties, which is usually hard to define ahead
of guidance, and unlike our method, their method requires differentiable neural models to provide
guidance, which can not deal with non-differentiable oracles and needs extra training to achieve
good guidance. However, to achieve conditional generation, both EDM and GeoLDM need to be
re-trained, where the target property value is appended to the feature space to generate molecules
that fulfill certain property requirements.

Guided diffusion generation has shown promising results in the domain of image [Dhariwal
and Nichol, 2021, Bansal et al., 2023, Zhang et al., 2023, Rombach et al., 2022], where its
generation can be conditioned on texts [Rombach et al., 2022], poses and edges [Zhang et al.,
2023], and classifiers [Dhariwal and Nichol, 2021]. A similar approach is adopted for property-
guided molecule generation [Vignac et al., 2022, Bao et al., 2022, Han et al., 2023]. Without
re-training a conditional model from scratch, Vignac et al. [2022], Han et al. [2023] trained
additional differentiable neural regressors of properties, and use the gradients as guidance during
the sampling process of an unconditional diffusion model. Bao et al. [2022] proposed to train
time-dependent regressors of properties as guidance during sampling. This chapter differs from
the previous work by introducing an approach to directly estimate the guidance signal (e.g., the
gradient) from a non-differentiable expert oracle without training additional neural predictors.
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5.3 Preliminary
In this section, we will introduce the diffusion model, explain how to achieve equivariance among
the generated molecules using diffusion models, and discuss the architecture we use. We will
also discuss the semi-empirical quantum mechanic method GFN2-xTB used as guidance in this
chapter.

Diffusion Models In general, a diffusion model [Ho et al., 2020, Song et al., 2020a, Dhariwal
and Nichol, 2021, Sohl-Dickstein et al., 2015] consists of a forward diffusion process and a reverse
denoising process. The diffusion process is a Markov chain that gradually adds Gaussian noises
with a variance schedule β1:T from timestep 1 to T to the original datapoint x0. The schedule is
chosen such that xT ∼ N (0, I). The forward diffusion process q is usually defined as a fixed
schedule by the following:

q(x1:T | x0) =
T∏
t=1

q(xt | xt−1) q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI) (5.1)

where β1:T is pre-defined ahead of training. The reverse denoising process starts with xT and
recovers the original datapoint x0 by predicting the mean of xt−1 given xt, denoted as µθ(xt, t)
where θ is the parameter. We can model the reverse process as:

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1 | xt) pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (5.2)

In practice, Σθ is set to be σ2
t I for all t for simplicy, and σt =

√
1− α2

t and αt =
√∏t

i=1(1− βi).
Ho et al. [2020] further simplified the objective from predicting mean µθ(xt, t) to predict the
noise at each step, which is denoted by ϵθ(xt, t), as xt = αtx0 + σtϵ , and ϵ ∼ N (0, I). The
training objective is minimize Ex0,ϵ∼N (0,I),t [∥ϵ− ϵθ(xt, t)∥2], and the original µθ(xt, t) can be
parameterized as 1

1−βt
(xt − βt√

1−α2
t

ϵθ(xt, t)). Consequently, we have

xt−1 ∼ N (
1

1− βt

(xt −
βt√
1− α2

t

ϵθ(xt, t)), ρ
2
t I) (5.3)

We follow the implementation by Xu et al. [2023] where ρt =
√

σt−1

σt
βt is a predefined

variance.

Latent Diffusion Architecture for 3D Molecule Generation An N -atom molecule can be
represented as a point cloud G = [x,h] ∈ RN×(3+d), with x ∈ RN×3 being the N atom’s 3D
coordinates and h ∈ RN×d as the atom features such as types. A latent diffusion architecture
[Rombach et al., 2022, Xu et al., 2023] consists of a VAE and a diffusion model, and are trained
consecutively. Particularly, the geometric latent diffusion model [Xu et al., 2023] uses the encoder
of the VAE to project discrete molecules to a continuous latent space, on which the diffusion
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model is then trained. Denote the encoder as E and the latent variable by z ∈ RN×(3+dz), then
[zx,0, zh,0] = E([x,h]), with zh,0 ∈ RN×dz and dz < d. Let zt = [zx,t, zh,t], the latent forward
diffusion process and reverse denoising process are defined as:

q(zt | zt−1) = N (zt;
√
1− βtzt−1, βtI) (5.4)

pθ(zt−1 | zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)) (5.5)

We denote the decoder of the VAE as D, which maps z0 back to the original molecular space,
such that D([zx,0, zh,0]) = [x,h] ∈ RN×(3+d).

The encoder E and the decoder D are parameterized with an equivariant graph neural network
(EGNN) [Satorras et al., 2021] to translate between discrete molecular data and latent variables,
such that the atom types are invariant and the positions are equivariant to transformations as
follows:

Rzx,t + T, zh,t = E(Rxt + T,ht) Rxt + T,ht = D(Rzx,t + T, zh,t) (5.6)

for any rotation matrix R and translation matrix T , where zx,t ∈ RN×3 are required to satisfy
zero center gravity and have zero-mean over N atoms for each position. In addition, the latent
diffusion model is also parameterized by EGNN such that transitions between each timestep in
the denoising process also respect the same characteristics.

GFN2-xTB Method According to the laws of physics and thermodynamics, matter such as
electrons, atoms, and molecules, interacts with matter inherently to reach configurations with lower
potential energies for better stability. To formulate this as a molecular geometry optimization
problem, let h1, · · · , hN be the N atoms in a given molecule and x1, · · · ,xN ∈ R3 be their
corresponding coordinates in the 3D space, then each atom hi is subject to a force

fi(G) = −
∂Ep (x1, · · · ,xN | h1, · · · , hN)

∂xi

, ∀i ∈ [N ] (5.7)

where Ep represents the potential energy of the conformation. The force here manifests valid
physical interpretations: an atom is pushed accordingly by the exerted force until the force
reduces to zero and an equilibrium is achieved. One necessary (but not sufficient) condition
for a stable molecular geometry is that all forces on the atoms should be (close to) zero, i.e.,
∀i ∈ [N ], fi(G) = 0.

However, the exact mathematical potential energy evaluation, i.e., the solution to the Schrödinger
equation, is still a black box to us [Cao et al.]. Over the years, different levels of theories and meth-
ods have been developed to evaluate the potential energy, such as force field (FF), semi-empirical
methods (e.g., xTB), and density functional theory (DFT) methods (e.g., B3LYP/6-31G(2df,p)).
The methods are listed in order of increased accuracy and cost. After trading-off between accuracy
and efficiency within a feasible computation cost, we selected GFN2-xTB, a more recent and
advanced semi-empirical method [Bannwarth et al., 2019], to calculate the forces of the generated
molecular geometry in the diffusion process.

GFN stands for, respectively, geometry optimization, vibrational frequencies, and non-covalent
interactions. xTB refers to extended tight binding, and 2 refers to the version. In the GFN2-xTB
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method, the total energy expression is given by Bannwarth et al., 2019]

EGFN2-xTB = Erep + Edisp + EEHT + EIES+IXC

+ EAES + EAXC +GFermi

, where Erep is the repulsive energy contribution from short-range interactions, Edisp is the disper-
sion energy contribution from long-range interactions, EEHT is the energy contribution from the
extended Hückel theory (EHT), EIES+IXC is the isotropic electrostatic (IES) energy contribution
and the isotropic exchange-correlation (IXC) energy contribution, EAES is the anisotropic elec-
trostatic (AES) energy contribution, EAXC is the anisotropic exchange-correlation (AXC) energy
contribution, and GFermi is the entropic contribution of an electronic free energy at finite electronic
temperature Tel due to Fermi smearing.

Its accuracy and efficiency come strictly from the element-specific and global parameters
for all elements up to radon (Z = 86) Bannwarth et al. [2019], hence the semi-empiricism. The
pre-computed tight-binding parameters and empirical corrections are utilized to approximate the
electronic structure and calculate energy contributions efficiently.

5.4 Methodology
Given molecular data represented in the form of a point cloud G = [x,h] ∈ RN×(3+d), with
x ∈ RN×3 being the N atom’s 3D coordinates and h ∈ RN×d as the atom features such as atom
types, e.g., atomic numbers, we denote the generated molecule by the diffusion model as G0. We
introduce a training-free guided denoising process by incorporating the GFN2-xTB method at
inference time to minimize the net force acting on each atom and optimize the molecular geometry
towards a more stable atom configuration. We denote the molecule generated by such process as
G ′ and we aim to achieve 1

N

∑N
i fi(G ′0) < 1

N

∑N
i fi(G0) for i ∈ [N ], with fi(G) defined as Eq. 5.7.

Up next, we will first describe how to perform neural regressor guidance [Vignac et al., 2022,
Han et al., 2023, Bao et al., 2022], then introduce how to use a non-differentiable oracle in place
of a differentiable regressor to obtain the gradient for diffusion guidance. We also introduce a
bi-level optimization framework that incorporates both guidance from the neural regressor and the
non-differentiable oracle.

5.4.1 Guidance From Neural Regressor
The goal of neural guidance is to direct the denoising process towards a target property value
y. [Dhariwal and Nichol, 2021] proposed a way to modify the denoising process to achieve
conditional generation with an unconditional diffusion model, with a scalar s controlling the
guidance strength:

xt−1 ∼ N (
1

1− βt

(xt −
βt√
1− α2

t

ϵθ(xt, t)) + sρ2t∇xt log pϕ(y|xt), ρ
2
t I) (5.8)

In their case, pϕ(y|xt) is parameterized by a classifier and y is a categorical label, where the
modification sρ2t∇xt log pϕ(y|xt) shifts the mean of the sampling distribution to provide guidance.
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However, we are interested in the case of y ∈ R. Let fη : G → R be the neural regressor for the
property of interest, where we follow [Vignac et al., 2022] and assume y|xt ∼ N (fη(xt), σ

2
ηI)

and σ2
η = 1 for simplicity, we can estimate that:

∇xt log pϕ(y | xt) ∝ −∇xt∥y − fη(xt)∥22 = −∇xtL(y, fη(xt)) (5.9)

where L(y, fη(xt)) is the MSE between the target and predicted value by the regressor fη(·).
However, in the early stage of the denoising process, xt = αtx0+σtϵ might not be informative

enough to predict y as it consists mostly of Gaussian noise. For more effective prediction during
the denoising process, we can estimate the denoised version of xt as [Kawar et al., 2022, Song
et al., 2020a]:

x̂0 =
xt −

√
1− αtϵθ(xt, t)√

αt

(5.10)

And x̂0 can be used in place of xt when calculating the guidance, such that

∇xt log pϕ(y|xt) ≈ ∇xt log pϕ(y|x̂0) (5.11)

5.4.2 Guidance From a Non-Differentiable Oracle
In this section, we aim to tackle a more challenging problem where the guidance is specified by a
non-differentiable oracle. Since we adopted the latent diffusion architecture such that the diffusion
model is trained on the continuous latent space encoded by VAE, we change our notation xt for
each state in the diffusion model in Section 5.4.1 to zt as in Section 5.3. To precisely formulate our
problem, which aims to refine the geometry and improve the stability of the generated molecules
by minimizing the net force acting on each atom, our non-differentiable function f for guidance
can be defined as the following:

f(G) = 1

N

N∑
i

fi(G) (5.12)

where the molecular graph G is obtained by decoding the continuous latent variable through
the decoder G = D(ẑ0), ẑ0 is estimated by Eq. 5.10 and fi is our non-differentiable oracle defined
in Eq. 5.7 that yields the net force on each atom i, and our target value y in this case is 0.

When f is non-differentiable, we can no longer conduct analytical differentiation and plug
it into Eq. 5.9 to obtain the gradient as guidance. Thus, we use numerical differentiation in
place of it. For ease of discussion, we define the one-step estimation of the original datapoint z0,
introduced in Eq 5.10, as the function t0(·):

ẑ0 = t0(zt) =
zt −

√
1− αtϵθ(zt, t)√

αt

(5.13)

Recall that L(y, f(G)) is the MSE loss function, f : G → R is the non-differentiable oracle, and D
is the decoder. We denote F as the composition f ◦ D ◦ t0, the gradient is estimated numerically
by

∇̂zt log pϕ(y|zt) ∝ −∇F(zt)L(y,F(zt))∇ztF(zt) (5.14)
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≈ −∇F(zt)L(y,F(zt))∇̂ztF(zt) (5.15)

where each element at location i-th row and j-th column in ∇̂ztF(zt) is estimated with

∇̂i,j
zt F(zt) = lim

ζ→0

F([zx,t + ζei,jN×3, zh,t])−F([zx,t − ζei,jN×3, zh,t])

2ζ

and ei,jN×3 represents a N by 3 zero matrix with 1 in location i-th row and j-th column.
This approximation is possible because zt is continuous after the projection of the VAE

encoder. The formulation allows for guidance from a non-differentiable oracle such as quantum
chemical method GFN2-xTB [Bannwarth et al., 2019]. Estimating the gradient directly from an
expert oracle eliminates the need to train additional neural regressors for properties such as the
force on each atom, which comes with approximation error [Gasteiger et al., 2020]. In addition,
these regressors are often trained on stable molecules from QM9 instead of the potentially unstable
molecules as byproducts of the denoising process, making them dubious options for property
guidance.

However, directly adding ±ζ1i,j
N×3 to zx,t would break the equivariance requirement in Eq.

5.6 on the latent variables, as it shifts the mean of the coordinates by ζ. To maintain zero center
gravity of input to the F(·), we construct a perturbation matrix U ∈ RN×3 where each element is
sampled from N (0, 1), and apply Simultaneous Perturbation Stochastic Approximation (SPSA)
[Spall, 1992, Nesterov and Spokoiny, 2017, Malladi et al., 2023] to estimate the gradient; thus,
Eq. 5.15 becomes

∇̂zt log pϕ(y|zt) ∝ −∇F(zt)L(y,F(zt))
F([zx,t + ζU, zh,t])−F([zx,t + ζU, zh,t])

2ζ
U (5.16)

where ζ is a small perturbation scale (e.g., 10−6). The perturbed representations [zx,t ± ζU, zh,t]

approximately achieves zero center gravity as 1
3N

∑3
j=1

∑N
i=1Uij ≈ 0. Note that, unlike neural

regressor guidance, we only add guidance to the positions, i.e., zx,t, and apply no gradient to the
atom types, i.e., zh,t. This is because the force definition (Eq. 5.7) is only physically grounded
when the set of atoms stays constant, i.e., no matter/mass is created from or reduced to void.
According to Einstein’s mass-energy equivalence (E = mc2), any change in atom type would
change the mass and create a tremendous potential energy change, which is not within the topics
of this work.

5.4.3 Combine Guidance from Neural Regressor and Non-Differentiable
Oracle

Apart from guided generation conditioned on one single property with a regressor neural network
(e.g., static polarizability α) or a non-differentiable oracle (e.g., force), we can perform multi-
property optimization with the guidance specified by both the differentiable regressor and the non-
differentiable oracle. We encapsulate it under the framework of bi-level optimization. Formally,
recall that fη represents the regressor andF = f◦D◦t0 is the composition of the non-differentiable
oracle f , the VAE decoder is denoted asD, the multi-property optimization can be formulated as:

min
zx,t

F([zx,t, z∗h,t]) (5.17)
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Algorithm 6 Denoising Diffusion Guidance with Non-Differentiable Oracle
Input: A latent diffusion model θ, a VAE decoder D, a non-differentiable composition function
F , guidance scale s, SPSA perturbation ζ , and the target property y
zT ← N (0, I)
for t from T − 1 to 0 do

µt−1 ← 1
1−βt

(zt − βt√
1−α2

t

ϵθ(zt, t))

Sample Ui ∼ N (0, 1) for each i-th element of U
gt−1 ∝ −∇F(zt)L(y,F(zt))

F(zt+ζU)−F(zt−ζU)
2ζ

U ▷ Gradient Estimation
zt−1 ← N (µt−1 + sρ2tgt−1, ρ

2
t I) ▷ Guided Sampling

end for
x,h← D(z0)
return x,h

s.t. [z∗x,t, z
∗
h,t] = argmin

[zx,t,zh,t]

∥fη ◦ D([zx,t, zh,t])− y∥2 (5.18)

where y is the target property value (e.g., we hope the static polarizability α→ y after optimiza-
tion). As detailed in Algorithm 6, we apply self-recurrence steps (Eq. ??) to optimize the property
scores given by fη, and obtain the optimal atom positions z∗x,t and features z∗h,t, as shown in
Eq. 5.18; we then optimize atom stability given by F by fixing z∗h,t and initializing zx,t in Eq. 5.17
as z∗x,t from Eq. 5.18.

Chemistry Intuition The task of generating molecules with target properties is closely related
to the field of rational chemical design such as drug design. Domain knowledge is widely used to
guide the design process. For example, benzene rings that contain oxygen (e.g., dioxins) and sulfur
(e.g., thiophenes) are typically known to be toxic and carcinogenic. Therefore, when designing
drugs, it is typical to stay away from such species prior to performing further property analysis
such as bind-affinity to a specific protein or DNA. In such design processes, the overall structures
are examined by experts before further target property analysis.

The conflict behind generating stable molecules with target properties is that properties are
closely related to both atom types h and atom coordinates x. We are mostly concerned with the
properties of a stable molecule with an optimized geometry but it is not known a priori given
the atom types. In the diffusion process to generate molecules, the atom types are generated and
stabilized during earlier steps, and their coordinates are further optimized in later steps. Since
our target is to generate stable molecules with desired properties, there is a conflict between
stability-first and property-first in the generation process.

The bi-level property optimization proposed here takes inspiration from the rational design
process: higher-level overall structure before lower-level property detail analysis. An overall
molecular structure is generated with desired properties in earlier steps, where the diffusion model
is considered as chemistry/biology/etc. experts performing the initial structure-property analysis.
In the later steps, the geometries are further optimized.
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5.5 Experiments

In this section, we present two sets of experiments: 1) experiment on QM9 [Ramakrishnan et al.,
2014] and GEOM [Axelrod and Gómez-Bombarelli] dataset to check if using an estimated gradient
of the net force on each atom for reverse diffusion sampling can increase the rate of stability
among the generated molecules; 2) combining the estimated gradient from the non-differentiable
oracle and a gradient from a differentiable property predictor, we can obtain molecules with
improved properties for both criteria. In the following, we will briefly introduce the datasets,
properties, baselines, and our evaluation metrics.

Dataset The models in our experiment are trained on the QM9 dataset [Ramakrishnan et al.,
2014] and the GEOM dataset [Axelrod and Gómez-Bombarelli]. The QM9 dataset [Ramakrishnan
et al., 2014] is a catalog with 133,885 small organic molecules consisting of up to nine heavy (non-
hydrogen) atoms. The dataset also includes quantum chemical properties calculated by DFT. The
Geometric Ensemble Of Molecules (GEOM) dataset [Axelrod and Gómez-Bombarelli] includes
450K molecules with up to 91 heavy atoms (on average, 24.9), where 37 million molecular
conformations are generated and reported with their geometries, energies, and statistical weight.
Guidance Property We study guided generation for optimized geometries on both QM9 and
GEOM datasets. For neural regressor guidance, we evaluate on QM9 as there are no property
labels for the regressor to be trained on GEOM. We consider the following 6 properties on QM9:

• the norm of static polarizability (α),
• the norm of dipole moment (µ),
• heat capacity at room temperature (Cv),
• the energy of the electron in the highest occupied molecular orbital (ϵHOMO),
• the energy of the electron in the lowest unoccupied molecular orbital (ϵLUMO),
• the HOMO-LUMO energy gap (∆ϵ).

Baseline We apply our method on GeoLDM, which shows improved performance compared
with EDM, and compare to different versions of EDM and GeoLDM. For non-differentiable
guidance on forces, we compare our method to unconditional EDM [Hoogeboom et al., 2022] and
GeoLDM [Xu et al., 2023], as there are no available ground-truth forces to train a conditional
model. For neural regressor guidance and combined guidance, we choose conditionally trained
EDM and GeoLDM as the baselines.
Evaluation Metric For non-differentiable guidance on forces, We report the Root Mean Square
(MSE) of the forces calculated using xTB as the evaluation metric. We also report results computed
using DFT at the B3LYP/6-31G(2df,p) level of theory for QM9, a method that is more accurate
but exponentially more demanding in computation than GFN2-xTB. For differentiable neural
guidance on the 6 properties (α, µ, Cv, ϵHOMO, ϵLUMO,∆ϵ), we follow Xu et al. [2023] and use
the Mean Absolute Error (MAE) between the target property y and the predicted value ŷ by the
regressor of the generated molecule as the metric.
Computation & Implementation The acceleration hardware we used is an NVIDIA RTX A6000
with 48 GiB RAM and the AMD EPYC 7513 32-Core Processor, where 1 diffusion step with
xTB guidance takes up ∼ 20 seconds on QM9 for 300 molecules. We use pre-trained EDM and
GeoLDM provided by the authors as our baselines.
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Figure 5.3: L-1 norm (left) and average RMS (middle) of forces and validity (right) of 300 generated
molecules on QM9 with an unconditional GeoLDM guided by xTB, across different guidance steps (200,
400 and 600 steps) and scales (0.0001, 0.001, 0.01, 0.1, and 1) and we show their performances on l1 norm
and RMS of forces on all atoms as well as general validity.

5.5.1 Non-Differentiable Oracle Guidance

The first question we want to investigate is at which point in the denoising process should we start
adding in the force regularization. We conduct experiments with varying numbers of timestep
where the force guidance is conducted and represent our results in Figure 5.3, where step number
t stands for adding guidance from step t to 0. It is observed that over different guidance steps and
scales, our non-differentiable oracle guidance can achieve lower forces while generating more
valid molecules. Specifically, when the guidance steps begin from the last 400 steps, our method
performs the best in terms of low RMS and L-1 norm net forces and high validity rate, which is
consistent with the findings of Han et al. [2024].

To gain further insights, we also report the numerical results on 400 guidance steps in Table 5.1
computed by the xTB method as well as in Table 5.3 computed using DFT, a more accurate but
computationally costly method. As evaluated by xTB method, which is also the method we use
to estimate the gradient for guidance, the force-guided denoising process achieves lower force
RMS with all scales and a higher level of stability than the GeoLDM method with all but one
scale. The trend indicates that scales of 0.0001 and 0.001 generally achieve lower force RMS
and high validity. Our sampling method also outperforms the force RMS and validity results by
sampling from EDM. This shows the effectiveness of our method. The evaluation by the DFT
method shows similar improvements from our baseline GeoLDM method with validity going from
93.67% to 96.67% and force RMS going down from 0.0061 to 0.0051, even though our sampling
method is not guided by it due to computational constraints. This shows that guidance by xTB has
generalizable improvements in the quality of the output molecules, even though it is considered a
less accurate quantum mechanic method. A similar trend can observed on the GEOM dataset in
Table 5.2. Because the GEOM dataset includes molecules that can be significantly larger than
in QM9, our results are averaged over 100 molecules. With force guidance, validity improves
from 50% of the GeoLDM baseline to 56% and force RMS reduces from 0.0427 of the baseline
to 0.0398.

5.5.2 Neural Regressor Guidance

In this section, we present the results of multiple differentiable regressor-guided denoising
processes. This is in preparation for combining differentiable neural guidance with the non-
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Guidance Scale 0.0001 0.001 0.01 0.1 1.0
Force RMS 0.0104 0.0105 0.0108 0.0105 0.0117

Validity 91.00% 91.33% 90.67% 89.67% 88.33%
EDM Force RMS 0.0115 / Validity 85.33%

GeoLDM Force RMS 0.0121 / Validity 88.67%

Table 5.1: Force RMS and validity over 300 generated molecules on QM9 using xTB calculation.

Guidance Scale 0.0001 0.001 0.01 0.1 1.0
Force RMS 0.0398 0.0432 0.0451 0.0417 0.0477

Validity 47.0% 48.0% 51.0% 56.0% 48.0%
EDM Force RMS 0.0787 / Validity 45.0%

GeoLDM Force RMS 0.0427 / Validity 50.0%

Table 5.2: Force RMS and validity over 100 generated molecules on GEOM using xTB calculation

differentiable oracle guidance in the next section. The regressors are used to predict the quantum
mechanical properties of the molecules.

We present our neural regressor-guided results in Table 5.4, where we apply guidance at each
diffusion step t. When comparing to our baseline GeoLDM, Our method achieves the best MAE
in terms of α, µ, Cv and slightly worse on the rest 3 properties. Overall, higher scales have yielded
better results but a scale of size 40 or 50 only yields invalid results. Recent work Equivariant
Energy Guided SDE (EEGSDE) by Bao et al. [2022] and MuDM by Han et al. [2023] also studied
similar property-guided denoising processes for molecule generation and adopted an SDE-based
diffusion model. We include their results in Table 5.4 as well. Notice that we are unfortunately
not able to recover their results, possibly due to implementation differences as we are working
with a DDPM-styled latent diffusion model. We chose the latent diffusion model initially because
it would provide a continuous representation of the molecules, this is particularly useful because
atom types are usually represented as discrete. However, we discovered that applying guidance
on the atom types can cause the calculation to explode, so we constrained the force guidance
strictly to the dimensions of the coordinate. This way, applying the diffusion model directly to
this problem without the VAE would also work. Trying a non-latent diffusion architecture would
be a promising future work.

5.5.3 Combined Guidance

For this section, we want to generate molecules with a lower net force on each atom conditioned on
a target property value. We present our results on multi-objective generation in Table 5.5 and 5.6.
Particularly, Table 5.5 evaluates the mean absolute error between the generated molecules’ property
values and each target property, and Table 5.6 evaluates the L1 norm of the net force on generated
molecules. We experimented with two types of guidance methods, one applies xTB guidance to a
conditional GeoLDM every {1, 3, 5} step(s), and another applies both neural regressor guidance
and non-differentiable xTB guidance at each step to an unconditioned GeoLDM.
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Guidance Scale 0.0001 0.001 0.01 0.1 1.0
Force RMS 0.0051∗ 0.0052 0.0054 0.0052 0.0061

Validity 96.33% 96.67%∗ 96.33% 96.0% 94.0%
EDM Force RMS 0.0051 / Validity 89.33%

GeoLDM Force RMS 0.0061 / Validity 93.67%

Table 5.3: Force RMS and validity of 300 generated molecules on QM9 using DFT calculation. ∗ and
bold denote the overall best and the best within different scales, respectively.

Property α µ Cv ϵHOMO ϵLUMO ∆ϵ

Units Bohr3 D cal
molK meV meV meV

GeoLDM 6.5535 1.3873 2.8644 0.6475 1.2095 1.2298
Conditional EDM 3.0564 1.1514 1.1081 0.3737∗ 0.5997∗ 0.6389∗

Conditional GeoLDM 3.4111 1.2298 1.2194 0.4278 0.6579 0.7536
EEGSDE 2.50 0.777 0.941 0.302 0.447 0.487
MuDM 0.43 0.333 0.290 0.072 0.133 0.085

Ours

10−4 5.7699 1.5315 3.0478 0.6601 1.2369 1.1810
10−3 5.7886 1.5237 3.0603 0.6610 1.2374 1.1789
10−2 5.7690 1.5402 3.0680 0.6540 1.2273 1.1718
10−1 5.4502 1.5309 2.8668 0.6458 1.2277 1.1663

1 4.2645 1.3900 2.3090 0.6429 1.1830 1.1080
2 3.9743 1.3950 2.0536 0.6317 1.1180 1.0893
5 3.7323 1.3616 1.5969 0.6498 1.1254 1.0325

10 3.4368 1.1631 1.4279 0.6024 1.0732 0.9786
20 2.7576∗ 0.9831∗ 1.1085 0.5551 0.9166 0.9534
25 2.8115 ✗ 1.1184 0.5662 0.8953 0.9634
30 ✗ ✗ 1.0640∗ 0.5644 0.8541 0.8949
40 ✗ ✗ ✗ ✗ ✗ ✗

Table 5.4: MAE of conditional EDM, conditional GeoLDM, and our regressor guided generation with
various guidance scales. ∗ and bold denote the overall best and the best within different scales, respectively.
✗ marks the settings that caused NaN outputs, and we omit the results with scale ≥ 40 as the guidance fails
for all properties.

Overall, xTB-guided conditional GeoLDM performs better than the Bi-Level framework in
Table 5.5. This is probably due to the weak performance of this particular implementation of
neural regressor guidance as seen in the last section. The xTB guidance with conditional GeoLDM
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achieves the best performance in α (10.0% improvement) and ϵHOMO (5.0% improvement) com-
pared to all other methods. Particularly, it outperforms conditional GeoLDM for all properties,
signaling that an improved geometry could also improve property compliance. The bi-level
framework beats the conditional GeoLDM in α and µ, where we see improvements of 3.0% and
2.5% respectively, but performs worse in other properties.

For Table 5.6, as each property requires training separate conditional model, we present the
results on average net force on the atom for each model. We notice that conditional GeoLDM
with xTB guidance significantly outperforms conditional GeoLDM in all property models except
ϵHOMO and ∆ϵ. For those two properties, the results are only slightly worse. The lowest net force
is from the Bi-Level framework for every property. Another interesting finding is that conditional
EDM has a lower average net force on each atom than the conditional GeoLDM for all these
models.

For conditional GeoLDM with xTB guidance, we see that applying xTB every 3 steps seems
to be the optimum as opposed to every step or every five steps. It achieves the lower MAE of
properties in 4 out of 6 properties and lower l1 norm of force in also 4 out of 6 property models.
Achieving target property values and minimizing net force on each atom could potentially be
competing objectives, as more frequent xTB guidance could move the generated molecules away
from the target properties.

Property α µ Cv ϵHOMO ϵLUMO ∆ϵ
Units Bohr3 D cal

molK meV meV meV
Conditional EDM 3.0564 1.1514∗ 1.1081∗ 0.3737 0.5997∗ 0.6389∗

Conditional GeoLDM 3.4111 1.2298 1.2194 0.4278 0.6579 0.7536
Unconditional GeoLDM 6.5535 1.3873 2.8644 0.6475 1.2095 1.2298

Bi-Level 3.2762 1.1942 ✗ 0.6132 0.9617 0.9777

Conditional GeoLDM
with xTB Guidance

Every Step 3.0394∗ 1.1842 1.2341 0.3898 0.6431 0.6973
Every 2 Steps 2.5654 1.1618 1.2607 0.3878 0.6266 0.6735
Every 3 Steps 2.8449 1.1709 1.2053 0.3577∗ 0.6307 0.7037

Table 5.5: MAE of properties of 300 sampled molecules from conditional GeoLDM with xTB guidance
and bi-level optimization framework. ∗ and bold denote the overall best and the best within different scales,
respectively. ✗ marks the settings that caused NaN outputs.

5.5.4 Study on Skipped Guidance

As the xTB runs on CPU and is time-consuming, we propose a skip-step acceleration method
for xTB-guided optimization. Specifically, let the skip-step be k, we only calculate gradients
from xTB every k step and use historical gradients for the steps with no xTB calculation. The
results are shown in Table 5.7. For skip steps = 2 and 3, we form combinations of guidance
steps (t = 200, 400, 600) and scales (s = 0.001, 0.0001), we measure the performance in the L-1
norm of force, avg. RMS force, and validity. We show that the results are competitive with our
previous method without skip-step. Particularly, the highest validity 94.00%, generated by the
hyperparameter combinations skip step = 2, guidance step = 400, and guidance scale = 0.0001, is
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Property α µ Cv ϵHOMO ϵLUMO ∆ϵ
Conditional EDM 0.2536 0.2465 0.2484∗ 0.2330 0.2432 0.2366

Conditional GeoLDM 0.3606 0.3472 0.3728 0.3437 0.3972 0.2907
Bi-Level 0.2167∗ 0.2191∗ ✗ 0.2061∗ 0.2208∗ 0.2089∗

Conditional GeoLDM
with xTB Guidance

Every Step 0.3228 0.3743 0.3561 0.3506 0.3470 0.2993
Every 3 Steps 0.3357 0.3243 0.3278 0.3466 0.3268 0.3064
Every 5 Steps 0.3418 0.3292 0.3462 0.3580 0.3471 0.3032

Table 5.6: L1 norm of force of 300 sampled molecules from conditional GeoLDM with xTB guidance and
bi-level optimization framework. ∗ and bold denote the overall best and the best within different scales,
respectively. ✗ marks the settings that caused NaN outputs.

Skip Step Guidance Step Guidance Scale L1 Force Norm Force RMS Validity

2

200
0.0001 0.2374 0.0114 90.33%
0.001 0.2306 0.0108 90.0%

400
0.0001 0.2283 0.0110 94.0%∗

0.001 0.2273∗ 0.0109 93.33%

600
0.0001 0.2347 0.0113 92.67%
0.001 0.2426 0.0119 93.67%

3

200
0.0001 0.2274 0.0107∗ 88.67%
0.001 0.2273∗ 0.0107∗ 88.67%

400
0.0001 0.2293 0.0109 91.33%
0.001 0.2297 0.0110 91.33%

600
0.0001 0.2401 0.0119 92.0%
0.001 0.2379 0.0116 92.33%

Table 5.7: L-1 norm of force, avg. force RMS, and validity from 300 generated molecules sampled from
the QM9 dataset using GeoLDM with xTB guidance and various skip-step acceleration schedules. ∗ and
bold denote the overall best and the best within different scales, respectively. ✗ marks the situation where
the guidance collapses.

even higher than our best validity without skipping steps from Table 5.1 at 91.33%. The highest
force RMS from the skip step approach is 0.0107 is only slightly higher than the best results in
Table 5.1.

5.5.5 Conclusion & Limitation

In this work, we study conditional generation for 3D diffusion models on molecules, where we
steer the generation process of a diffusion model trained unconditionally with a non-differentiable
chemistry oracle. By estimating the guidance gradient with an analytic solution while respecting
the equivariance requirements for 3D diffusion models, we can generate molecules with low net
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force and high validity. Further experiments on incorporating both non-differentiable guidance
and neural guidance demonstrate the effectiveness of our method. However, since the xTB runs
on CPU and neural guidance requires gradients that can take up a lot of GPU resources, our
method can be ineffective where the computational resources are insufficient, and future works
can explore the possibility of speeding up the guidance steps while reducing computational costs
and maintains good performance.
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Chapter 6

Conclusion

In this thesis, we present a collection of work on applying generative models to the domain of
generation of discrete structured data such as program synthesis and drug discovery as well as a
study on the mechanism of VAE, a type of generative model.

In Section 2, we studied the application of autoregressive models for the task of program
synthesis, particularly, parsing geometric images into context-free grammar programs. Due to
the non-differentiable renderer used to evaluate the programs in the generation pipeline, we use
REINFORCE as our objective. The biggest challenge of the problem is scaling up to a search
space exponential to the program length. For that, we proposed three techniques to overcome
the challenge: 1) a grammar-encoded tree LSTM to limit the output space to only the valid ones;
2) entropy regularization for better exploration; 3) stochastic beam search during training that
achieves sampling without replacement from the CFG syntax tree. These techniques enable
effective identification of the correct program in the large search space and we show dramatically
improved results on a synthetic data set and a 2D CAD dataset in comparison to the vanilla
REINFORCE approach.

In Section 3, we studied the manifold recovery ability of VAEs, and found that for non-linear
data, VAEs are not guaranteed to recover the manifold or the data density on the manifold.
However, in further experiments, we found that multi-stages of VAEs trained sequentially can
improve data manifold recovery. Thus, in Section 4, we apply the findings to discrete structured
data for the problem of molecule generation. We tested on the ChEMBL dataset [Mendez
et al., 2019] and two curated smaller molecular datasets targeting two proteins, and found that
the resulting generated molecules are much more similar to the training set as measured by
Wasserstein distance of specific chemical properties and activity rate towards the protein targets.

In section 5, we study diffusion models for molecule generation. Particularly, how we can
incorporate chemistry methods to improve the stability of the output molecules, we select the
chemistry package xTB with the GFN2-xTB method [Bannwarth et al., 2019] to conduct quantum
chemistry calculation of atom forces in molecules. We treat the chemistry package as a non-
differentiable oracle and use a two-point method to estimate the gradient of the data point in the
chemical property value landscape. We extend the guidance for denoising diffusion models using
a differentiable regressor or classifier to non-differentiable oracles by applying guidance with the
estimated gradient during the sampling process. When testing on the QM9 [Ramakrishnan et al.,
2014] dataset and GEOM dataset [Axelrod and Gómez-Bombarelli], the resulting outputs have a
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lower average net force on each atom and a higher percentage of stable molecules than without
applying xTB guidance.

Throughout this thesis, our approaches to improving generation quality and achieving certain
objectives among the generated samples can be divided into two ways – improving the underlying
generative models’ ability to recover the original data distribution (Chapter 3 and 4) and incor-
porating domain knowledge of the discrete structured data in the training and sampling process
(Chapter 2 and 5). In Chapter 3 and 4, our objective is to generate data similar to the training in
certain criteria – for synthetic data, our goal was to generate data with similar manifold and density
as the ground-truth data and for molecular data, we want to generate data with similar property
distribution as the ground-truth data. Here, the property distribution can be viewed as a proxy
for the manifold and density of the original training molecular data. By introducing a "better"
generative model to train on a sufficient amount of data reflective of the desired properties, the
model already yields results that roughly satisfy the objectives. In Chapter 2 and 5, the problem
settings are different in that the generative model or the training data is insufficient to replicate
the desired properties in the generated data, thus we introduce hard constraints based on domain
knowledge to reduce the degree of freedom during the training or sampling process in order to
guide the generation process to fulfill the objective. Overall, this thesis leverages soft constraints
(training data distribution) and hard constraints (domain-specific knowledge) to achieve generation
objectives.

Here, we also would like to draw parallel between Chapter 2 and Chapter 5. An interesting
follow-up on applying non-differentiable guidance during diffusion sampling is to use RL fine-
tuning for the sampling process as proposed by Clark et al. [2023]. This method involves
fine-tuning additional parameters to the diffusion model using a reward function calculated based
on the final sampling results and how well they satisfy the desired objective. The advantage of this
method is removing the need to estimate the clean data point at every step in order to calculate
the gradient for guidance, as the reward is calculated based on the final diffusion sampling result.
The gradient updates to the additional parameters serve to guide the sampling process similar to
the diffusion guidance methods. In the case where the reward function is non-differentiable, its
solution also relates to the program synthesis problem via non-differentiable renderer in Chapter
2.

Discussion Fully recovering the original data distribution is an immensely difficult task to
achieve. Particularly, the evaluation for manifold and density recovery of high-dimensional
real-life data, such as image and language, is difficult to conduct as the underlying distribution is
unknown. The commonly used evaluation metrics such as BLEU score [Papineni et al., 2002] and
FID [Heusel et al., 2017] can only approximate the similarity between the true distribution and
the generated distribution. Thus, it is necessary to conduct experiments on synthetic data with a
known distribution, such as the ones in Chapter 3 where we found that VAE is not guaranteed to
recover nonlinear data’s manifold. Pidstrigach [2022] conducted a similar study on a score-based
generative model (SGM) and outlined the theoretical conditions for the full support of data
distribution to be recovered. However, the density is not guaranteed to be recovered by SGM
either.

Under the limitations of current generative models, integrating domain knowledge into the
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generation process is a great way to induce outputs with the intended properties and features.
For example, for the program synthesis project, simply keeping track of a grammar stack during
generation and filtering out the invalid options according to CFG in each iteration can reduce
the search space exponentially, making a problem that would need a large amount of computing
resources to achieve achievable on one GPU node. Without encoding domain knowledge during
the generation process, we would often require more data and computational resources. In the
research space of drug discovery and molecule generation, available molecules for training are
generally not as abundant as language and image data. Incorporating domain knowledge is an
essential way to improve generation quality when bringing in more data is not an option. For
example, in DiffDock [Corso et al., 2022], limiting the degree of freedom of the relevant molecule
poses allows the diffusion model to generate state-of-the-art ligand poses for protein docking,
significantly improving upon the previous approaches. This is the most successful deep learning
approach, as other regression-based deep learning approaches do not perform as well as the
traditional search-based approaches. In Chapter 5, we incorporate a chemistry package that
calculates net forces on each atom to enable guided sampling that leads to more stable molecular
configurations. This is another way to infuse domain knowledge into a machine learning system
to improve generation results. However, the downside of this approach is the computational cost
of accurately calculating the desired properties using quantum mechanical methods. Though the
package xTB we used can infer an output within a second or so, the speed does come with a lower
level of accuracy while the more accurate methods can take hours to calculate, especially with
larger molecules.

Looking ahead, as people’s understanding of machine learning models deepens and their
interests in scientific applications grow, I believe we will see an increasing number of approaches
that combine machine learning models with domain knowledge guidance in order to achieve
objectives constrained by factors such as data or computational resources. Machine learning
has seen fast development in model and computational capabilities. Similar developments in
scientific computations, whether in computational speed or accuracy, are critical for the scientific
communities to reap the benefits of the maturing machine learning capabilities. The collaboration
between a scientific community and a machine learning community, like any other interdisciplinary
research, requires a mutual understanding of each other’s domain knowledge. This could be
challenging as researchers in each field have very different educational backgrounds. A lack of
understanding in the machine learning techniques or the underlying scientific problems could
all produce misguided research. Despite these challenges, many successful collaborations are
happening across industry and academia and I am positive that machine learning will continue to
revolutionize scientific discovery in the coming years.
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