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Abstract
Distribution shift remains a significant obstacle to successful and

reliable deployment of machine learning (ML) systems. Long-term
solutions to these vulnerabilities can only come with the understanding
that benchmarks fundamentally cannot capture all possible variation
which may occur; equally important, however, is careful experimenta-
tion with AI systems to understand their failures under shift in practice.

This thesis describes my work towards building a foundation for
trustworthy and reliable machine learning. The surveyed work falls
roughly into three major categories: (i) designing formal, practical char-
acterizations of the structure of real-world distribution shift; (ii) leverag-
ing this structure to develop provably correct and efficient learning algo-
rithms which handle such shifts robustly; and (iii) experimenting with
modern ML systems to to understand the practical implications of real-
world heavy tails and distribution shift, both average- and worst-case.

Part I describes work on scalably certifying the robustness of deep
neural networks to adversarial attacks. The proposed approach can
be used to certify robustness to attacks on test samples, training data,
or more generally any input which influences the model’s eventual
prediction. In Part II, we focus on latent variable models of shifts,
drawing on concepts from causality and other structured encodings of
real-world variation. We demonstrate how these models enable for-
mal analysis of methods that use multiple distributions for robust deep
learning, particularly through the new lens of environment/intervention
complexity—a core statistical measure for domain generalization and
causal representation learning which quantifies error and/or structured
identifiability conditions as a function of the number and diversity of
available training distributions. Finally, in Part III we broadly explore
ways to better understand and leverage the variation in natural data,
and we show how the resulting insights can facilitate the design of new
methods with more robust and reliable real-world behavior.
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Chapter 1

Introduction

Prediction algorithms are evaluated by—and valued for—their performance
on unseen test data. In classical machine learning (ML), it is common to assume
that such data are drawn independently from one another, and from an identical
distribution to that which gave rise to the dataset on which the learning algorithm
was trained (this is known as the IID assumption). In the real world, however, such a
condition is almost never satisfied. The IID assumption serves as a valuable abstrac-
tion for studying how to efficiently and reliably learn from data. But statisticians
have long understood that this assumption is an oversimplification, and that the un-
derlying distribution of real-world data is continuously undergoing shift: examples
include shift over time, shift across heterogenous subpopulations, shift induced as
a response to past actions, etc. Because of this discrepancy between reality and the
idealized assumption of IID data, algorithms which provide strong in-distribution
generalization guarantees, such as empirical risk minimization [Vapnik, 1999], fail
unexpectedly in the real world, often with high confidence and no prior warning.
In particular, while modern deep neural networks achieve superhuman performance
on many tasks, there is growing evidence that their incredible generalization abil-
ity is primarily limited to out-of-sample settings where the test data remains very
similar to what they were trained on. In particular, these models seem to rely on
statistically informative representations of the data which—for reasons not yet fully
understood—go well beyond simple memorization of the training data, yet which
will often not allow them to generalize to new domains or tasks. This is the case even
for seemingly trivial distribution shifts which pose little-to-no trouble to humans
[Beery et al., 2018, Geirhos et al., 2018]. As a result, modern state-of-the-art gen-
erative and discriminative deep networks are brittle in deployment and are prone to
errors under surprisingly minor distribution shift [Su et al., 2019, Recht et al., 2019].

In considering how to address this weakness, it is tempting to imagine that the
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methods which have enabled the aforementioned practical successes in deep learn-
ing will eventually solve this problem as well. The primary driving force behind
the incredible pace of the past decade of ML research has been the “benchmark
approach”: progression on one or more tasks via consistent, incremental improve-
ments on a collection of representative benchmark datasets. Though the success of
this strategy is undeniable, it has become clear that it is insufficient for achieving a
future of truly robust and reliable ML. Artificial intelligence (AI) is rapidly being
deployed in myriad new domains—and it will only become more widespread—but
it cannot yet be widely relied upon, while the looming costs of unexpected failures
continue to grow. Meanwhile, examples of the shifts which induce such failures in
the real world abound: they arise, for example, as simple changes in scenery and/or
weather encountered by a self-driving car, or when users adapt their behavior to
an ML system to increase the likelihood of their preferred outcome [Hardt et al.,
2016]. Even worse, AI is increasingly being used in safety-critical settings, which
presents serious security vulnerabilities in the face of a determined adversary [Sharif
et al., 2016]. This brittleness remains a significant obstacle to further trustworthy
deployment of ML systems.

Long-term solutions to these vulnerabilities can only come with the understand-
ing that benchmarks fundamentally cannot capture all possible variation which
may occur. But it is also clear that robustness to all distribution shifts is infeasible.
Instead, we must first design precise, realistic mathematical definitions of real-world
distribution shift: by formally specifying the “threat model” of shift to which we
wish to be robust, we will be able to make reliable progress towards formal ro-
bustness guarantees. At the same time, there is frequent mismatch between ML
theory and practice (especially in deep learning), and thus a mathematical definition
of shift alone is not sufficient. It is also necessary that we carefully experiment
with AI systems to understand their failure modes in practice—only through such
experimentation can we understand and reconcile the discrepancies between real-
world data and our mathematical understanding of it. In turn, this will enable the
development of new, more reliable and interpretable ML methods with practical
downstream benefits to performance.

This thesis describes progress towards a foundation for trustworthy and reliable
machine learning, achieved via a combination of these two core approaches. More
precisely, the surveyed work falls roughly into three major categories: (i) designing
formal, practical characterizations of the structure of real-world distribution shift,
both benign and adversarial; (ii) leveraging this structure to develop provably
correct and efficient learning algorithms which handle such shifts robustly; and (iii)
experimenting with modern ML systems to to understand the practical implications
of distribution shift, both average- and worst-case, so that future analysis might
better capture the kinds of difficulties we expect AI to encounter moving forward.
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1.1 Thesis Overview

Part I

The first part of this thesis describes work on scalably certifying the robustness
of deep neural networks to adversarial attacks. Chapter 2 shows how to turn any
classifier that classifies well under Gaussian noise into a new classifier that is
certifiably robust to adversarial perturbations under the ℓ2 norm. We prove a tight
robustness guarantee in ℓ2 norm for smoothing with Gaussian noise, obtaining an
ImageNet classifier with (e.g.) a certified top-1 accuracy of 49% under adversarial
perturbations with ℓ2 norm less than 0.5 (=127/255). In Chapter 3, we demonstrate
how the proposed approach can be used to certify robustness to attacks more
generally, such as adversarial modification to the training data, or more generally
any input which influences the model’s eventual prediction.

Part II

The second part focuses on latent variable models of shifts, taking inspiration
from causality and other proposed structured encodings of real-world variation. We
demonstrate the importance of these models and how they enable new approaches
formal analysis of methods that use multiple distributions for robust deep learning.
In particular, we study these algorithm’s behavior through the new lens of environ-
ment/intervention complexity—a core statistical measure for domain generalization
and Causal Representation Learning which quantifies error and/or latent feature
identifiability as a function of the number of environments seen. Chapter 4 presents
the first analysis of classification under various objectives proposed for these tasks
under a fairly natural and general model. We furthermore present the very first
results in the non-linear regime: demonstrating that these methods can fail catas-
trophically unless the test data are sufficiently similar to the training distribution.
This is followed by an improved analysis along with even stronger lower bounds
in Chapter 5. Chapter 6 considers the setting of online domain generalization,
formally quantifying for the first time a computational complexity gap between
domain “interpolation” and “extrapolation”.

Part III

The last part of this thesis broadly explores ways to better understand and
leverage the variation in natural data. First, in Chapter 7 we show that pretrained
features are sufficient for substantially more robust predictors than previously be-
lieved. Chapter 8 describes how this finding enables the use of unlabeled test data
to provably adapt neural networks to shifts just-in-time or to give (almost) provable
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non-vacuous bounds on their test error. Next, Chapter 9 develops a robust optimiza-
tion approach to strategic classification, enabling doubly robust prediction which
gracefully handles both strategic response and the inevitable uncertainty in users’
cost functions. Lastly, Chapter 10 presents findings on the significant influence of
outliers on neural network optimization—this result gives new insight into how the
heavy tails of natural data affect network behavior, and it suggests a more coherent
picture of the origin of a variety of phenomena in neural network optimization.
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Part I

Certifying Robustness to
Adversarial Attacks
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Chapter 2

Certified Adversarial Robustness
via Randomized Smoothing

This chapter is based on Cohen et al. [2019]:
Cohen, J. M., Rosenfeld, E., & Kolter, J. Z.
Certified Adversarial Robustness via Randomized Smoothing.
In Proceedings of the 36th International Conference on Machine Learning,
2019.

2.1 Introduction

Modern image classifiers achieve high accuracy on i.i.d. test sets but are not
robust to small, adversarially-chosen perturbations of their inputs [Szegedy et al.,
2013b, Biggio et al., 2013]. Given an image x correctly classified by, say, a neural
network, an adversary can usually engineer an adversarial perturbation δ so small
that x+ δ looks just like x to the human eye, yet the network classifies x+ δ as a
different, incorrect class. Many works have proposed heuristic methods for training
classifiers intended to be robust to adversarial perturbations. However, most of
these heuristics have been subsequently shown to fail against suitably powerful
adversaries [Carlini and Wagner, 2017, Athalye et al., 2018, Uesato et al., 2018]. In
response, a line of work on certifiable robustness studies classifiers whose prediction
at any point x is verifiably constant within some set around x [e.g. Wong and Kolter,
2018, Raghunathan et al., 2018a]. In most of these works, the robust classifier takes
the form of a neural network. Unfortunately, all existing approaches for certifying
the robustness of neural networks have trouble scaling to networks that are large
and expressive enough to solve problems like ImageNet.
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pA

pB

Figure 2.1: Evaluating the smoothed classifier at an input x. Left: the decision
regions of the base classifier f are drawn in different colors. The dotted lines are
the level sets of the distribution N (x, σ2I). Right: the distribution f(N (x, σ2I)).
As discussed below, pA is a lower bound on the probability of the top class and pB
is an upper bound on the probability of each other class. Here, g(x) is “blue.”

.
One workaround is to look for robust classifiers that are not neural networks.

Recently, two papers [Lecuyer et al., 2019, Li et al., 2018a] showed that an operation
we call randomized smoothing1 can transform any arbitrary base classifier f into
a new “smoothed classifier” g that is certifiably robust in ℓ2 norm. Let f be
an arbitrary classifier which maps inputs Rd to classes Y . For any input x, the
smoothed classifier’s prediction g(x) is defined to be the class which f is most
likely to classify the random variable N (x, σ2I) as. That is, g(x) returns the most
probable prediction by f of random Gaussian corruptions of x.

If the base classifier f is most likely to classify N (x, σ2I) as x’s correct class,
then the smoothed classifier g will be correct at x. But the smoothed classifier g
will also possess a desirable property that the base classifier may lack: one can
verify that g’s prediction is constant within an ℓ2 ball around any input x, simply by
estimating the probabilities with which f classifies N (x, σ2I) as each class. The
higher the probability with which f classifiesN (x, σ2I) as the most probable class,
the larger the ℓ2 radius around x in which g provably returns that class.

Lecuyer et al. [2019] proposed randomized smoothing as a provable adversarial
defense, and used it to train the first certifiably robust classifier for ImageNet.
Subsequently, Li et al. [2018a] proved a stronger robustness guarantee. However,
both of these guarantees are loose, in the sense that the smoothed classifier g is
provably always more robust than the guarantee indicates. In this paper, we prove
the first tight robustness guarantee for randomized smoothing. Our analysis reveals

1Smoothing was proposed under the name “PixelDP” (for differential privacy). We use a different
name since our improved analysis does not involve differential privacy.
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that smoothing with Gaussian noise naturally induces certifiable robustness under
the ℓ2 norm. We suspect that other, as-yet-unknown noise distributions might induce
robustness to other perturbation sets such as general ℓp norm balls.

Randomized smoothing has one major drawback. If f is a neural network, it is
not possible to exactly compute the probabilities with which f classifies N (x, σ2I)
as each class. Therefore, it is not possible to exactly evaluate g’s prediction at any
input x, or to exactly compute the radius in which this prediction is certifiably robust.
Instead, we present Monte Carlo algorithms for both tasks that are guaranteed to
succeed with arbitrarily high probability.

Despite this drawback, randomized smoothing enjoys several compelling ad-
vantages over other certifiably robust classifiers proposed in the literature: it makes
no assumptions about the base classifier’s architecture, it is simple to implement
and understand, and, most importantly, it permits the use of arbitrarily large neural
networks as the base classifier. In contrast, other certified defenses do not currently
scale to large networks. Indeed, smoothing is the only certified adversarial defense
which has been shown feasible on the full-resolution ImageNet classification task.

We use randomized smoothing to train state-of-the-art certifiably ℓ2-robust Ima-
geNet classifiers; for example, one of them achieves 49% provable top-1 accuracy
under adversarial perturbations with ℓ2 norm less than 127/255 (Table 2.1). We
also demonstrate that on smaller-scale datasets like CIFAR-10 and SHVN, where
competing approaches to certified ℓ2 robustness are feasible, randomized smoothing
can deliver better certified accuracies, both because it enables the use of larger
networks and because it does not constrain the expressivity of the base classifier.

2.2 Related Work

Many works have proposed classifiers intended to be robust to adversarial
perturbations. These approaches can be broadly divided into empirical defenses,
which empirically seem robust to known adversarial attacks, and certified defenses,
which are provably robust to certain kinds of adversarial perturbations.

Empirical defenses The most successful empirical defense to date is adversarial
training [Goodfellow et al., 2015, Kurakin et al., 2016, Madry et al., 2017], in which
adversarial examples are found during training (often using projected gradient
descent) and added to the training set. Unfortunately, it is typically impossible
to tell whether a prediction by an empirically robust classifier is truly robust to
adversarial perturbations; the most that can be said is that a specific attack was
unable to find any. In fact, many heuristic defenses proposed in the literature were
later “broken” by stronger adversaries [Carlini and Wagner, 2017, Athalye et al.,
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Figure 2.2: The smoothed classifier’s prediction at an input x (left) is defined as the
most likely prediction by the base classifier on random Gaussian corruptions of x
(right; σ = 0.5). Note that this Gaussian noise is much larger in magnitude than the
adversarial perturbations to which g is provably robust.

2018, Uesato et al., 2018, Athalye and Carlini, 2018]. Aiming to escape this cat-
and-mouse game, a growing body of work has focused on defenses with formal
guarantees.

Certified defenses A classifier is said to be certifiably robust if for any input x,
one can easily obtain a guarantee that the classifier’s prediction is constant within
some set around x, often an ℓ2 or ℓ∞ ball. In most work in this area, the certifiably
robust classifier is a neural network. Some works propose algorithms for certifying
the robustness of generically trained networks, while others [Wong and Kolter,
2018, Raghunathan et al., 2018a] propose both a robust training method and a
complementary certification mechanism.

Certification methods are either exact (a.k.a “complete”) or conservative (a.k.a
“sound but incomplete”). In the context of ℓp norm-bounded perturbations, exact
methods take a classifier g, input x, and radius r, and report whether or not there
exists a perturbation δ within ∥δ∥ ≤ r for which g(x) ̸= g(x + δ). In contrast,
conservative methods either certify that no such perturbation exists or decline to
make a certification; they may decline even when it is true that no such perturbation
exists. Exact methods are usually based on Satisfiability Modulo Theories [Katz
et al., 2017, Carlini et al., 2017, Ehlers, 2017, Huang et al., 2017b] or mixed integer
linear programming [Cheng et al., 2017, Lomuscio and Maganti, 2017, Dutta et al.,
2017, Fischetti and Jo, 2017, Bunel et al., 2018]. Unfortunately, no exact methods
have been shown to scale beyond moderate-sized (100,000 activations) networks
[Tjeng et al., 2017], and networks of that size can only be verified when they are
trained in a manner that impairs their expressivity.

Conservative certification is more scalable. Some conservative methods bound
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the global Lipschitz constant of the neural network [Gouk et al., 2018, Tsuzuku
et al., 2018, Anil et al., 2019, Cisse et al., 2017], but these approaches tend to be very
loose on expressive networks. Others measure the local smoothness of the network
in the vicinity of a particular input x. In theory, one could obtain a robustness
guarantee via an upper bound on the local Lipschitz constant of the network [Hein
and Andriushchenko, 2017], but computing this quantity is intractable for general
neural networks. Instead, a panoply of practical solutions have been proposed in
the literature [Wong and Kolter, 2018, Wang et al., 2018a,b, Raghunathan et al.,
2018a,b, Wong et al., 2018, Dvijotham et al., 2018b,a, Croce et al., 2019, Gehr et al.,
2018, Mirman et al., 2018, Singh et al., 2018, Gowal et al., 2018, Weng et al., 2018a,
Zhang et al., 2018]. Two themes stand out. Some approaches cast verification
as an optimization problem and import tools such as relaxation and duality from
the optimization literature to provide conservative guarantees [Wong and Kolter,
2018, Wong et al., 2018, Raghunathan et al., 2018a,b, Dvijotham et al., 2018b,a].
Others step through the network layer by layer, maintaining at each layer an outer
approximation of the set of activations reachable by a perturbed input [Mirman
et al., 2018, Singh et al., 2018, Gowal et al., 2018, Weng et al., 2018a, Zhang et al.,
2018]. None of these local certification methods have been shown to be feasible on
networks that are large and expressive enough to solve modern machine learning
problems like the ImageNet classification task. Also, all either assume specific
network architectures (e.g. ReLU activations or a layered feedforward structure) or
require extensive customization for new network architectures.

Related work involving noise Prior works have proposed using a network’s
robustness to Gaussian noise as a proxy for its robustness to adversarial perturba-
tions [Weng et al., 2018b, Ford et al., 2019], and have suggested that Gaussian
data augmentation could supplement or replace adversarial training [Zantedeschi
et al., 2017, Kannan et al., 2018]. Smilkov et al. [2017] observed that averaging
a classifier’s input gradients over Gaussian corruptions of an image yields very
interpretable saliency maps. The robustness of neural networks to random noise
has been analyzed both theoretically [Fawzi et al., 2016, Franceschi et al., 2018]
and empirically [Dodge and Karam, 2017]. Finally, Webb et al. [2018] proposed
a statistical technique for estimating the noise robustness of a classifier more effi-
ciently than naive Monte Carlo simulation; we did not use this technique since it
appears to lack formal high-probability guarantees. While these works hypothesized
relationships between a neural network’s robustness to random noise and the same
network’s robustness to adversarial perturbations, randomized smoothing instead
uses a classifier’s robustness to random noise to create a new classifier robust to
adversarial perturbations.
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Randomized smoothing Randomized smoothing has been studied previously
for adversarial robustness. Several works [Liu et al., 2018, Cao and Gong, 2017]
proposed similar techniques as heuristic defenses, but did not prove any guarantees.
Lecuyer et al. [2019] used inequalities from the differential privacy literature to
prove an ℓ2 and ℓ1 robustness guarantee for smoothing with Gaussian and Laplace
noise, respectively. Subsequently, Li et al. [2018a] used tools from information
theory to prove a stronger ℓ2 robustness guarantee for Gaussian noise. However, all
of these robustness guarantees are loose. In contrast, we prove a tight robustness
guarantee in ℓ2 norm for randomized smoothing with Gaussian noise.

2.3 Randomized Smoothing

Consider a classification problem from Rd to classes Y . As discussed above,
randomized smoothing is a method for constructing a new, “smoothed” classifier
g from an arbitrary base classifier f . When queried at x, the smoothed classifier
g returns whichever class the base classifier f is most likely to return when x is
perturbed by isotropic Gaussian noise:

g(x) = argmax
c∈Y

P(f(x+ ε) = c) (2.1)

where ε ∼ N (0, σ2I)

An equivalent definition is that g(x) returns the class c whose pre-image {x′ ∈ Rd :
f(x′) = c} has the largest probability measure under the distribution N (x, σ2I).
The noise level σ is a hyperparameter of the smoothed classifier g which controls
a robustness/accuracy tradeoff; it does not change with the input x. We leave
undefined the behavior of g when the argmax is not unique.

We will first present our robustness guarantee for the smoothed classifier g.
Then, since it is not possible to exactly evaluate the prediction of g at x or to certify
the robustness of g around x, we will give Monte Carlo algorithms for both tasks
that succeed with arbitrarily high probability.

2.3.1 Robustness Guarantee

Suppose that when the base classifier f classifies N (x, σ2I), the most probable
class cA is returned with probability pA, and the “runner-up” class is returned with
probability pB . Our main result is that smoothed classifier g is robust around x
within the ℓ2 radius R = σ

2 (Φ
−1(pA)− Φ−1(pB)), where Φ−1 is the inverse of the

standard Gaussian CDF. This result also holds if we replace pA with a lower bound
pA and we replace pB with an upper bound pB .
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Theorem 2.3.1. Let f : Rd → Y be any deterministic or random function, and let
ε ∼ N (0, σ2I). Let g be defined as in (2.1). Suppose cA ∈ Y and pA, pB ∈ [0, 1]
satisfy:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ ε) = c) (2.2)

Then g(x+ δ) = cA for all ∥δ∥2 < R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (2.3)

We now make several observations about Theorem 2.3.1:
• Theorem 2.3.1 assumes nothing about f . This is crucial since it is unclear

which well-behavedness assumptions, if any, are satisfied by modern deep
architectures.

• The certified radius R is large when: (1) the noise level σ is high, (2) the
probability of the top class cA is high, and (3) the probability of each other
class is low.

• The certified radius R goes to∞ as pA → 1 and pB → 0. This should sound
reasonable: the Gaussian distribution is supported on all of Rd, so the only
way that f(x+ ε) = cA with probability 1 is if f = cA almost everywhere.

Both Lecuyer et al. [2019] and Li et al. [2018a] proved ℓ2 robustness guarantees for
the same setting as Theorem 2.3.1, but with different, smaller expressions for the
certified radius. However, our ℓ2 robustness guarantee is tight: if (2.2) is all that is
known about f , then it is impossible to certify an ℓ2 ball with radius larger than R.
In fact, it is impossible to certify any superset of the ℓ2 ball with radius R:
Theorem 2.3.2. Assume pA + pB ≤ 1. For any perturbation δ with ∥δ∥2 > R,
there exists a base classifier f consistent with the class probabilities (2.2) for which
g(x+ δ) ̸= cA.

Theorem 2.3.2 shows that Gaussian smoothing naturally induces ℓ2 robustness:
if we make no assumptions on the base classifier beyond the class probabilities (2.2),
then the set of perturbations to which a Gaussian-smoothed classifier is provably
robust is exactly an ℓ2 ball.

The complete proofs of Theorems 2.3.1 and 2.3.2 are in Appendix A.1. We now
sketch the proofs in the special case when there are only two classes.

Theorem 1 (binary case). Suppose pA ∈ (12 , 1] satisfies P(f(x+ ε) = cA) ≥
pA. Then g(x+ δ) = cA for all ∥δ∥2 < σΦ−1(pA).

Proof sketch. Fix a perturbation δ ∈ Rd. To guarantee that g(x + δ) = cA, we
need to show that f classifies the translated Gaussian N (x + δ, σ2I) as cA with
probability > 1

2 . However, all we know about f is that f classifies N (x, σ2I)
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x+ δ

x

x+ δ

x

Figure 2.3: Illustration of f∗ in two dimensions. The concentric circles are the
density contours of N (x, σ2I) and N (x + δ, σ2I). Out of all base classifiers f
which classifyN (x, σ2I) as cA (blue) with probability≥ pA, such as both classifiers
depicted above, the “worst-case” f∗ — the one which classifies N (x+ δ, σ2I) as
cA with minimal probability — is depicted on the right: a linear classifier with
decision boundary normal to the perturbation δ.

as cA with probability ≥ pA. This raises the question: out of all possible base
classifiers f which classify N (x, σ2I) as cA with probability ≥ pA, which one f∗

classifies N (x+ δ, σ2I) as cA with the smallest probability? One can show using
an argument similar to the Neyman-Pearson lemma [Neyman and Pearson, 1933]
that this “worst-case” f∗ is a linear classifier whose decision boundary is normal to
the perturbation δ (Figure 2.3):

f∗(x′) =

{
cA if δT (x′ − x) ≤ σ∥δ∥2Φ−1(pA)

cB otherwise
(2.4)

This “worst-case” f∗ classifiesN (x+ δ, σ2I) as cA with probability Φ
(
Φ−1(pA)−

∥δ∥2
σ

)
. Therefore, to ensure that even the “worst-case” f∗ classifies N (x+ δ, σ2I)

as cA with probability > 1
2 , we solve for those δ for which

Φ

(
Φ−1(pA)−

∥δ∥2
σ

)
>

1

2

which is equivalent to the condition ∥δ∥2 < σΦ−1(pA).

Theorem 2.3.2 is a simple consequence: for any δ with ∥δ∥2 > R, the base
classifier f∗ defined in (2.4) is consistent with (2.2); yet if f∗ is the base classifier,
then g(x+ δ) = cB .

Figure 2.5 (left) plots our ℓ2 robustness guarantee against the guarantees derived
in prior work. Observe that our R is much larger than that of Lecuyer et al. [2019]
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and moderately larger than that of Li et al. [2018a]. Appendix A.9 derives the other
two guarantees using this paper’s notation.

Linear base classifier A two-class linear classifier f(x) = sign(wTx + b) is
already certifiable: the distance from any input x to the decision boundary is
|wTx + b|/∥w∥2, and no perturbation δ with ℓ2 norm less than this distance can
possibly change f ’s prediction. In Appendix A.2 we show that if f is linear, then
the smoothed classifier g is identical to the base classifier f . Moreover, we show
that our bound (2.3) will certify the true robust radius |wTx+ b|/∥w∥, rather than a
smaller, overconservative radius. Therefore, when f is linear, there always exists a
perturbation δ just beyond the certified radius which changes g’s prediction.

Noise level can scale with image resolution Since our expression (2.3) for the
certified radius does not depend explicitly on the data dimension d, one might
worry that randomized smoothing is less effective for images of higher resolution —
certifying a fixed ℓ2 radius is “less impressive” for, say, a 224×224 image than for a
56×56 image. However, as illustrated by Figure 2.4, images in higher resolution can
tolerate higher levels σ of isotropic Gaussian noise before their class-distinguishing
content gets destroyed. As a consequence, in high resolution, smoothing can be
performed with a larger σ, leading to larger certified radii. See Appendix A.7 for a
more rigorous version of this argument.

2.3.2 Practical Algorithms

We now present practical Monte Carlo algorithms for evaluating g(x) and
certifying the robustness of g around x. More details can be found in Appendix A.3.

Prediction

Evaluating the smoothed classifier’s prediction g(x) requires identifying the
class cA with maximal weight in the categorical distribution f(x+ε). The procedure
described in pseudocode as PREDICT draws n samples of f(x + ε) by running

Figure 2.4: Left to right: clean 56 x 56 image, clean 224 x 224 image, noisy 56 x
56 image (σ = 0.5), noisy 224 x 224 image (σ = 0.5).
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Algorithm 1 Pseudocode for Certification and Prediction
# evaluate g at x
function PREDICT(f , σ, x, n, α)
counts← SAMPLEUNDERNOISE(f , x, n, σ)
ĉA, ĉB ← top two indices in counts
nA, nB ← counts[ĉA], counts[ĉB]
if BINOMPVALUE(nA, nA + nB , 0.5) ≤ α return ĉA
else return ABSTAIN

# certify the robustness of g around x
function CERTIFY(f , σ, x, n0, n, α)
counts0← SAMPLEUNDERNOISE(f, x, n0, σ)
ĉA ← top index in counts0
counts← SAMPLEUNDERNOISE(f, x, n, σ)
pA ← LOWERCONFBOUND(counts[ĉA], n, 1− α)
if pA > 1

2 return prediction ĉA and radius σΦ−1(pA)
else return ABSTAIN

n noise-corrupted copies of x through the base classifier. Let ĉA be the class
which appeared the largest number of times. If ĉA appeared much more often than
any other class, then PREDICT returns ĉA. Otherwise, it abstains from making a
prediction. We use the hypothesis test from Hung and Fithian [2019] to calibrate the
abstention threshold so as to bound by α the probability of returning an incorrect
answer. PREDICT satisfies the following guarantee:

Proposition 2.3.3. With probability at least 1−α over the randomness in PREDICT,
PREDICT will either abstain or return g(x). (Equivalently: the probability that
PREDICT returns a class other than g(x) is at most α.)

The function SAMPLEUNDERNOISE(f , x, num, σ) in the pseudocode draws
num samples of noise, ε1 . . . εnum ∼ N (0, σ2I), runs each x+ εi through the base
classifier f , and returns a vector of class counts. BINOMPVALUE(nA, nA + nB ,
p) returns the p-value of the two-sided hypothesis test that nA ∼ Binomial(nA +
nB, p).

Even if the true smoothed classifier g is robust at radius R, PREDICT will be
vulnerable in a certain sense to adversarial perturbations with ℓ2 norm slightly less
than R. By engineering a perturbation δ for which f(x+ δ + ε) puts mass just over
1
2 on class cA and mass just under 1

2 on class cB , an adversary can force PREDICT

to abstain at a high rate. If this scenario is of concern, a variant of Theorem 2.3.1
could be proved to certify a radius in which P(f(x+ δ+ ε) = cA) is larger by some
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margin than maxc ̸=cA P(f(x+ δ + ε) = c).

Certification

Evaluating and certifying the robustness of g around an input x requires not
only identifying the class cA with maximal weight in f(x+ ε), but also estimating
a lower bound pA on the probability that f(x+ ε) = cA and an upper bound pB on
the probability that f(x+ ε) equals any other class. Doing all three of these at the
same time in a statistically correct manner requires some care. One simple solution
is presented in pseudocode as CERTIFY: first, use a small number of samples from
f(x+ ε) to take a guess at cA; then use a larger number of samples to estimate pA;
then simply take pB = 1− pA.
Proposition 2.3.4. With probability at least 1−α over the randomness in CERTIFY,
if CERTIFY returns a class ĉA and a radius R (i.e. does not abstain), then g predicts
ĉA within radius R around x: g(x+ δ) = ĉA ∀ ∥δ∥2 < R.

The function LOWERCONFBOUND(k, n, 1 − α) in the pseudocode returns a
one-sided (1− α) lower confidence interval for the Binomial parameter p given a
sample k ∼ Binomial(n, p).

Certifying large radii requires many samples Recall from Theorem 2.3.1 that
R approaches∞ as pA approaches 1. Unfortunately, it turns out that pA approaches
1 so slowly with n that R also approaches∞ very slowly with n. Consider the most
favorable situation: f(x) = cA everywhere. This means that g is robust at radius∞.
But after observing n samples of f(x+ ε) which all equal cA, the tightest (to our
knowledge) lower bound would say that with probability least 1− α, pA ≥ α(1/n).
Plugging pA = α(1/n) and pB = 1 − pA into (2.3) yields an expression for the
certified radius as a function of n: R = σΦ−1(α1/n). Figure 2.5 (right) plots this
function for α = 0.001, σ = 1. Observe that certifying a radius of 4σ with 99.9%
confidence would require ≈ 105 samples.

2.3.3 Training the Base Classifier

Theorem 2.3.1 holds regardless of how the base classifier f is trained. However,
in order for g to classify the labeled example (x, c) correctly and robustly, f needs
to consistently classifyN (x, σ2I) as c. In high dimension, the Gaussian distribution
N (x, σ2I) places almost no mass near its mode x. As a consequence, when σ is
moderately high, the distribution of natural images has virtually disjoint support
from the distribution of natural images corrupted by N (0, σ2I); see Figure 2.2 for
a visual demonstration. Therefore, if the base classifier f is trained via standard
supervised learning on the data distribution, it will see no noisy images during
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Figure 2.5: Left: Certified radius R as a function of pA (with pB = 1 − pA
and σ = 1) under all three randomized smoothing bounds. Right: A plot of
R = σΦ−1(α1/n) for α = 0.001 and σ = 1. The radius we can certify with high
probability grows slowly with the number of samples, even in the best case where
f(x) = cA everywhere.

training, and hence will not necessarily learn to classify N (x, σ2I) with x’s true
label. Therefore, in this paper we follow Lecuyer et al. [2019] and train the base
classifier with Gaussian data augmentation at variance σ2. A justification for this
procedure is provided in Appendix A.6. However, we suspect that there may be
room to improve upon this training scheme, perhaps by training the base classifier
so as to maximize the smoothed classifier’s certified accuracy at some tunable radius
r.

2.4 Experiments

In adversarially robust classification, one metric of interest is the certified test
set accuracy at radius r, defined as the fraction of the test set which g classifies
correctly with a prediction that is certifiably robust within an ℓ2 ball of radius r.
However, if g is a randomized smoothing classifier, computing this quantity exactly
is not possible, so we instead report the approximate certified test set accuracy,
defined as the fraction of the test set which CERTIFY classifies correctly (without
abstaining) and certifies robust with a radius R ≥ r. Appendix A.4 shows how to
convert the approximate certified accuracy into a lower bound on the true certified
accuracy that holds with high probability over the randomness in CERTIFY. However
Appendix A.8.2 demonstrates that when α is small, the difference between these
two quantities is negligible. Therefore, in our experiments we omit the step for
simplicity and report approximate certified accuracies.

In all experiments, unless otherwise stated, we ran CERTIFY with α = 0.001,
so there was at most a 0.1% chance that CERTIFY returned a radius in which g was
not truly robust. Unless otherwise stated, when running CERTIFY we used n0 =
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Figure 2.6: Approximate certified accuracy attained by randomized smoothing
on CIFAR-10 (top) and ImageNet (bottom). The hyperparameter σ controls a
robustness/accuracy tradeoff. The dashed black line is an upper bound on the
empirical robust accuracy of an undefended classifier with the base classifier’s
architecture.

100 Monte Carlo samples for selection and n = 100,000 samples for estimation.
In the figures above that plot certified accuracy as a function of radius r, the

certified accuracy always decreases gradually with r until reaching some point
where it plummets to zero. This drop occurs because for each noise level σ and
number of samples n, there is a hard upper limit to the radius we can certify with
high probability, achieved when all n samples are classified by f as the same class.

ImageNet and CIFAR-10 results We applied randomized smoothing to CIFAR-
10 [Krizhevsky and Hinton, 2009] and ImageNet [Deng et al., 2009]. On each
dataset we trained several smoothed classifiers, each with a different σ. On CIFAR-
10 our base classifier was a 110-layer residual network; certifying each example
took 15 seconds on an NVIDIA RTX 2080 Ti. On ImageNet our base classifier was
a ResNet-50; certifying each example took 110 seconds. We also trained a neural
network with the base classifier’s architecture on clean data, and subjected it to a
DeepFool ℓ2 adversarial attack [Moosavi-Dezfooli et al., 2016], in order to obtain
an empirical upper bound on its robust accuracy. We certified the full CIFAR-10
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Figure 2.7: Comparison betwen randomized smoothing and Wong et al. [2018].
Each green line is a small resnet classifier trained and certified using the method
of Wong et al. [2018] with a different setting of its hyperparameter ϵ. The purple
line is our method using the same small resnet architecture as the base classifier; the
blue line is our method with a larger neural network as the base classifier. Wong
et al. [2018] gives deterministic robustness guarantees, whereas smoothing gives
high-probability guaranatees; therefore, we plot here the certified accuracy of Wong
et al. [2018] against the “approximate” certified accuracy of smoothing.

test set and a subsample of 500 examples from the ImageNet test set.
Figure 2.6 plots the certified accuracy attained by smoothing with each σ. The

dashed black line is the empirical upper bound on the robust accuracy of the base
classifier architecture; observe that smoothing improves substantially upon the
robustness of the undefended base classifier architecture. We see that σ controls a
robustness/accuracy tradeoff. When σ is low, small radii can be certified with high
accuracy, but large radii cannot be certified. When σ is high, larger radii can be
certified, but smaller radii are certified at a lower accuracy. This observation echoes
the finding in Tsipras et al. [2018] that adversarially trained networks with higher
robust accuracy tend to have lower standard accuracy. Tables of these results are in
Appendix A.5.

Figure 2.8 (left) plots the certified accuracy obtained using our Theorem 2.3.1
guarantee alongside the certified accuracy obtained using the analogous bounds of
Lecuyer et al. [2019] and Li et al. [2018a]. Since our expression for the certified
radius R is greater (and, in fact, tight), our bound delivers higher certified accuracies.
Figure 2.8 (middle) projects how the certified accuracy would have changed had
CERTIFY used more or fewer samples n (under the assumption that the relative
class proportions in counts would have remained constant). Finally, Figure 2.8
(right) plots the certified accuracy as the confidence parameter α is varied. Observe
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Figure 2.8: Experiments with randomized smoothing on ImageNet with σ = 0.25.
Left: certified accuracies obtained using our Theorem 2.3.1 versus those obtained
using the robustness guarantees derived in prior work. Middle: projections for the
certified accuracy if the number of samples n used by CERTIFY had been larger or
smaller. Right: certified accuracy as the failure probability α of CERTIFY is varied.

that the certified accuracy is not very sensitive to α.

Comparison to baselines We compared randomized smoothing to three baseline
approaches for certified ℓ2 robustness: the duality approach from Wong et al. [2018],
the Lipschitz approach from Tsuzuku et al. [2018], and the approach from Weng
et al. [2018a], Zhang et al. [2018]. The strongest baseline was Wong et al. [2018];
we defer the comparison to the other two baselines to Appendix A.8.

In Figure 2.7, we compare the largest publicly released model from Wong et al.
[2018], a small resnet, to two randomized smoothing classifiers: one which used the
same small resnet architecture for its base classifier, and one which used a larger
110-layer resnet for its base classifier. First, observe that smoothing with the large
110-layer resnet substantially outperforms the baseline (across all hyperparameter
settings) at all radii. Second, observe that smoothing with the small resnet also
outperformed the method of Wong et al. [2018] at all but the smallest radii. We
attribute this latter result to the fact that neural networks trained using the method
of Wong et al. [2018] are “typically overregularized to the point that many filter-
s/weights become identically zero,” per that paper. In contrast, the base classifier in
randomized smoothing is a fully expressive neural network.

Prediction It is computationally expensive to certify the robustness of g around
a point x, since the value of n in CERTIFY must be very large. However, it is far
cheaper to evaluate g at x using PREDICT, since n can be small. For example,
when we ran PREDICT on ImageNet (σ = 0.25) using n = 100, making each
prediction only took 0.15 seconds, and we attained a top-1 test accuracy of 65%
(Appendix A.5).
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As discussed earlier, an adversary can potentially force PREDICT to abstain
with high probability. However, it is relatively rare for PREDICT to abstain on the
actual data distribution. On ImageNet (σ = 0.25), PREDICT with failure probability
α = 0.001 abstained 12% of the time when n = 100, 4% when n = 1000, and 1%
when n = 10,000.

Empirical tightness of bound When f is linear, there always exists a class-
changing perturbation just beyond the certified radius. Since neural networks are
not linear, we empirically assessed the tightness of our bound by subjecting an
ImageNet smoothed classifier (σ = 0.25) to a projected gradient descent-style
adversarial attack (Appendix A.10.3). For each example, we ran CERTIFY with
α = 0.01, and, if the example was correctly classified and certified robust at radius
R, we tried finding an adversarial example for g within radius 1.5R and within
radius 2R. We succeeded 17% of the time at radius 1.5R and 53% of the time at
radius 2R.

2.5 Conclusion

Theorem 2.3.2 establishes that smoothing with Gaussian noise naturally confers
adversarial robustness in ℓ2 norm: if we have no knowledge about the base classifier
beyond the distribution of f(x + ε), then the set of perturbations to which the
smoothed classifier is provably robust is precisely an ℓ2 ball. We suspect that
smoothing with other noise distributions may lead to similarly natural robustness
guarantees for other perturbation sets such as general ℓp norm balls.

Our strong empirical results suggest that randomized smoothing is a promising
direction for future research into adversarially robust classification. Many empirical
approaches have been “broken,” and provable approaches based on certifying neural
network classifiers have not been shown to scale to networks of modern size. It
seems to be computationally infeasible to reason in any sophisticated way about the
decision boundaries of a large, expressive neural network. Randomized smoothing
circumvents this problem: the smoothed classifier is not itself a neural network,
though it leverages the discriminative ability of a neural network base classifier.
To make the smoothed classifier robust, one need simply make the base classifier
classify well under noise. In this way, randomized smoothing reduces the unsolved
problem of adversarially robust classification to the comparably solved domain of
supervised learning.
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Table 2.1: Approximate certified accuracy on ImageNet. Each row shows a radius
r, the best hyperparameter σ for that radius, the approximate certified accuracy at
radius r of the corresponding smoothed classifier, and the standard accuracy of the
corresponding smoothed classifier. To give a sense of scale, a perturbation with ℓ2
radius 1.0 could change one pixel by 255, ten pixels by 80, 100 pixels by 25, or
1000 pixels by 8. Random guessing on ImageNet would attain 0.1% accuracy.

ℓ2 RADIUS BEST σ CERT. ACC (%) STD. ACC(%)

0.5 0.25 49 67
1.0 0.50 37 57
2.0 0.50 19 57
3.0 1.00 12 44
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Chapter 3

Certified Robustness to
Label-Flipping Attacks via
Randomized Smoothing

This chapter is based on Rosenfeld et al. [2020]:
Rosenfeld, E., Winston, E., Ravikumar, P., & Kolter, J. Z.
Certified Robustness to Label-Flipping Attacks via Randomized Smoothing.
In Proceedings of the 37th International Conference on Machine Learning,
2020.

3.1 Introduction

Modern classifiers, despite their widespread empirical success, are known to be
susceptible to adversarial attacks. In this paper, we are specifically concerned with
so-called “data poisoning” attacks (formally, causative attacks [Barreno et al. 2006,
Papernot et al. 2018]), where the attacker manipulates some aspects of the training
data in order to cause the learning algorithm to output a faulty classifier. Automated
machine-learning systems which rely on large, user-generated datasets—e.g. email
spam filters, product recommendation engines, and fake review detectors—are
particularly susceptible to such attacks. For example, by maliciously flagging
legitimate emails as spam and mislabeling spam as innocuous, an adversary can
trick a spam filter into mistakenly letting through a particular email.

Data poisoning attacks in the literature include label-flipping attacks [Xiao et al.,
2012], where the labels of a training set can be adversarially manipulated to decrease
performance of the trained classifier; general data poisoning, where both the training
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inputs and labels can be manipulated [Steinhardt et al., 2017]; and backdoor attacks
[Chen et al., 2017, Tran et al., 2018], where the training set is corrupted so as to
cause the classifier to deviate from its expected behavior only when triggered by a
specific pattern. However, unlike the alternative test-time adversarial setting, where
reasonably effective provable defenses exist, comparatively little work has been
done on building classifiers that are certifiably robust to targeted data poisoning
attacks.

In this work we propose a framework for building classifiers that are certifiably
robust to a given class of data poisoning attacks, such as label-flipping or back-
door attacks. In particular, we propose what we refer to as a pointwise certified
defense—this means that with each prediction, the classifier includes a certificate
guaranteeing that its prediction would not be different had it been trained on adver-
sarially manipulated data up to some “radius of perturbation” (a formal definition
is presented in Section 3.3). We then demonstrate a specific instantiation of this
protocol, constructing linear classifiers that are pointwise-certifiably robust to label-
flipping attacks; i.e., each prediction is certified robust against a certain number of
training label flips.

Prior works on certified defenses make statistical guarantees over the entire test
distribution, but they make no guarantees as to the robustness of a prediction on any
particular test point; thus, a determined adversary could still cause a specific test
point to be misclassified. We therefore consider the threat of a worst-case adversary
that can make a training set perturbation to target each test point individually. This
motivates a defense that can certify each of its individual predictions, as we present
here. Compared to traditional robust classification, this framework is superior for
a task such as determining who receives a coveted resource (a loan, parole, etc.),
as it provides a guarantee for each individual, rather than at the population level.
This work represents the first such pointwise certified defense to any type of data
poisoning attack; we expect significant advances can be made on both attacks and
defenses within this threat model.

Our approach leverages randomized smoothing [Cohen et al., 2019], a technique
that has previously been used to guarantee test-time robustness to adversarial ma-
nipulation of the input to a deep network. However, where prior uses of randomized
smoothing randomize over the input to the classifier for test-time guarantees, we
instead randomize over the entire training procedure of the classifier. Specifically,
by randomizing over the labels during this training process, we obtain an overall
classification pipeline that is certified to not change its prediction when some num-
ber of labels are adversarially manipulated in the training set. Previous applications
of randomized smoothing perform sampling to provide probabilistic bounds, due to
the intractability of integrating the decision regions of a deep network. We instead
derive an analytical bound, providing truly guaranteed robustness. Although a naive
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implementation of this approach would not be tractable, we show how to obtain
these certified bounds with minimal additional runtime complexity over standard
classification, suffering only a linear cost in the number of training points.

A further distinction of our approach is that the applicability of our robustness
guarantees do not rely upon stringent model assumptions or the quality of the fea-
tures. Existing work on robust linear classification or regression provides certificates
that only hold under specific model assumptions, e.g., recovering the best-fit linear
coefficients, which is most useful when the data exhibit a linear relationship in the
feature space. In contrast, our classifier makes no assumptions about the separabil-
ity of the data or quality of the features; this means our certificates remain valid
when applying our classifier to arbitrary features, which in practice allows us to
leverage advances in unsupervised feature learning [Le, 2013, Chen et al., 2020]
and transfer learning [Donahue et al., 2014]. We apply our classifier to pre-trained
and unsupervised deep features to demonstrate its feasibility for classification of
highly non-linear data such as ImageNet.

We evaluate our proposed classifier on several benchmark datasets common
to the data poisoning literature. On the Dogfish binary classification challenge
from ImageNet, our classifier maintains 81.3% certified accuracy in the face of an
adversary who could reduce an undefended classifier to less than 1%. Additional
experiments on MNIST and CIFAR10 demonstrate our algorithm’s effectiveness
for multi-class classification. Moreover, our classifier maintains a reasonably com-
petitive non-robust accuracy (e.g., 94.5% on MNIST 1/7 versus 99.1% for the
undefended classifier).

3.2 Related Work

Data poisoning attacks A data poisoning attack [Muñoz González et al., 2017,
Yang et al., 2017] is an attack where an adversary corrupts some portion of the
training set or adds new inputs, with the goal of degrading the performance of
the learned model. The adversary is assumed to have perfect knowledge of the
learning algorithm, so security by design—as opposed to obscurity—is the only
viable defense against such attacks. The adversary is also typically assumed to have
access to the training set and, in some cases, the test set.

Previous work has investigated attacks and defenses for data poisoning attacks
applied to feature selection [Xiao et al., 2015], SVMs [Biggio et al., 2011, Xiao
et al., 2012], linear regression [Liu et al., 2017], and PCA [Rubinstein et al., 2009],
to name a few. Some attacks can even achieve success with “clean-label” attacks,
inserting adversarially perturbed, seemingly correctly labeled training examples
that cause the classifier to perform poorly [Shafahi et al., 2018, Zhu et al., 2019a].
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Interestingly, our defense can also be viewed as (the first) certified defense to such
attacks: perturbing an image such that the resulting features no longer match the
label is theoretically equivalent to changing the label such that it no longer matches
the image’s features. For an overview of data poisoning attacks and defenses in
machine learning, see Biggio et al. [2014].

Label-flipping attacks A label-flipping attack is a specific type of data poisoning
attack where the adversary is restricted to changing the training labels. The classifier
is then trained on the corrupted training set, with no knowledge of which labels
have been tampered with. For example, an adversary could mislabel spam emails as
innocuous, or flag real product reviews as fake.

Unlike random label noise, for which many robust learning algorithms have
been successfully developed [Natarajan et al., 2013, Liu and Tao, 2016, Patrini et al.,
2017], adversarial label-flipping attacks can be specifically targeted to exploit the
structure of the learning algorithm, significantly degrading performance. Robustness
to such attacks is therefore harder to achieve, both theoretically and empirically
[Xiao et al., 2012, Biggio et al., 2011]. A common defense technique is sanitization,
whereby a defender attempts to identify and remove or relabel training points that
may have had their labels corrupted [Paudice et al., 2019, Taheri et al., 2019].
Unfortunately, recent work has demonstrated that this is often not enough against
a sufficiently powerful adversary [Koh et al., 2018]. Further, no existing defenses
provide pointwise guarantees regarding their robustness.

Certified defenses Existing works on certified defenses to adversarial data poi-
soning attacks typically focus on the regression case and provide broad statistical
guarantees over the entire test distribution. A common approach to such certifica-
tions is to show that a particular algorithm recovers some close approximation to
the best linear fit coefficients [Diakonikolas et al., 2019, Prasad et al., 2018, Shen
and Sanghavi, 2019], or that the expected loss on the test distribution is bounded
[Klivans et al., 2018, Chen and Paschalidis, 2018]. These results generally rely on
assumptions on the data distribution: some assume sparsity in the coefficients [Kar-
malkar and Price, 2018, Chen et al., 2013] or corruption vector [Bhatia et al., 2015];
others require limited effects of outliers [Steinhardt et al., 2017]. As mentioned
above, all of these methods fail to provide guarantees for individual test points.
Additionally, these statistical guarantees are not as meaningful when their model
assumptions do not hold.

Randomized smoothing Since the discovery of adversarial examples [Szegedy
et al., 2013a, Goodfellow et al., 2015], the research community has been investigat-
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ing techniques for increasing the adversarial robustness of complex models such as
deep networks. After a series of heuristic defenses, followed by attacks breaking
them [Athalye et al., 2018, Carlini and Wagner, 2017], focus began to shift towards
the development of provable robustness.

One approach which has gained popularity in recent work is randomized smooth-
ing. Rather than certifying the original classifier f , randomized smoothing defines
a new classifier g whose prediction at an input x is the class assigned the most
probability when x is perturbed with noise from some distribution µ and passed
through f . That is, g(x) = argmaxc Pϵ∼µ(f(x+ ϵ) = c). This new classifier g is
then certified as robust, ideally without sacrificing too much accuracy compared to
f . The original formulation was presented by Lecuyer et al. [2019] and borrowed
ideas from differential privacy. The above definition is due to Li et al. [2018a] and
was popularized by Cohen et al. [2019], who derived a tight robustness guarantee.

3.3 A General View of Randomized Smoothing

Our first contribution is a general viewpoint of randomized smoothing, unify-
ing all existing applications of the framework. Under our notation, randomized
smoothing constructs an operator G(µ, ϕ) that maps a binary-valued1 function
ϕ : X → {0, 1} and a smoothing measure µ : X → R+, with

∫
X µ(x)dx = 1, to

the expected value of ϕ under µ (that is, G(µ, ϕ) represents the “vote” of ϕ weighted
by µ). For example, ϕ could be a binary image classifier and µ could be some small,
random pixel noise applied to the to-be-classified image. We also define a “hard
threshold” version g(µ, ϕ) that returns the most probable output (the majority vote
winner). Formally,

G(µ, ϕ) = Ex∼µ[ϕ(x)] =

∫
X
µ(x)ϕ(x)dx,

g(µ, ϕ) = 1{G(µ, ϕ) ≥ 1/2},

where 1{·} is the indicator function. Where it is clear from context, we will
omit the arguments, writing simply G or g. Intuitively, for two similar measures
µ, ρ, we would expect that for most ϕ, even though G(µ, ϕ) and G(ρ, ϕ) may not be
equal, the threshold function g should satisfy g(µ, ϕ) = g(ρ, ϕ). Further, the degree
to which µ and ρ can differ while still preserving this property should increase as
G(µ, ϕ) approaches either 0 or 1, because this increases the “margin” with which

1For simplicity, we present the methodology here with binary-valued functions, which will
correspond eventually to binary classification problems. The extension to the multi-class setting
requires additional notation, and thus is deferred to the appendix.
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the function ϕ is 0 or 1 respectively over the measure µ. More formally, we define a
general randomized smoothing guarantee as follows:
Definition 3.3.1. Let µ : X → R+ be a smoothing measure over X , with∫
X µ(x)dx = 1.2 Then a randomized smoothing robustness guarantee is a spec-

ification of a distance function over probability measures d(µ, ρ) and a function
f : [0, 1]→ R+ such that for all ϕ : X → {0, 1},

g(µ, ϕ) = g(ρ, ϕ) whenever d(µ, ρ) ≤ f(G(µ, ϕ)). (3.1)

Informally, equation 3.1 says that the majority vote winner of ϕ weighted by µ
and ρ will be the same, so long as µ and ρ are “close enough” as a function of the
margin with which the majority wins. We will sometimes use p in place of G(µ, ϕ),
representing the fraction of the vote that the majority class receives (analogous to
pA in Cohen et al. [2019]).

Instantiations of randomized smoothing This definition is rather abstract, so we
highlight concrete examples of how it can be applied to achieve certified guarantees
against adversarial attacks.
Example 3.3.2. The randomized smoothing guarantee of Cohen et al. [2019] uses
the smoothing measures µ = N (x0, σ

2I), a Gaussian aroound the point x0 to be
classified, and ρ = N (x0 + δ, σ2I), the same measure perturbed by δ. They prove
that (3.1) holds for all classifiers ϕ if we define

d(µ, ρ) =
1

σ
∥δ∥2 ≡

√
2KL(µ ∥ ρ), f(p) = |Φ−1(p)|,

where KL(·) denotes KL divergence and Φ−1 denotes the inverse CDF of the
Gaussian distribution.

Although this work focused on the case of randomized smoothing of continuous
data via Gaussian noise, this is by no means a requirement. Lee et al. [2019]
consider an alternative approach for dealing with discrete variables.
Example 3.3.3. The randomized smoothing guarantee of Lee et al. [2019] uses the
factorized smoothing measure in d dimensions µα,K(x) = Πd

i=1µα,K,i(xi), defined
with respect to parameters α ∈ [0, 1],K ∈ N, and a base input z ∈ {0, . . . ,K}d,
where

µα,K,i(xi) =

{
α, if xi = zi
1−α
K , if xi ∈ {0, . . . ,K}, xi ̸= zi,

2There is no theoretical reason to restrict µ to be a probability measure. While this and all previous
works only consider probability measures, the framework we present here could easily be extended to
allow for more general measures µ, ρ and functions ϕ.
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with xi being the ith dimension of x. ρα,K is similarly defined for a perturbed input
z′. They guarantee that (3.1) holds if we define

d(µ, ρ) = ∥z′ − z∥0, f(p) = Fα,K,d(max(p, 1− p)). (3.2)

In words, the smoothing distribution is such that each dimension is indepen-
dently perturbed to one of the other K values uniformly at random with probability
1− α. Fα,K,d(p) is a combinatorial function defined as the maximum number of
dimensions—out of d total—by which µα,K and ρα,K can differ such that a set with
measure p under µα,K is guaranteed to have measure at least 1

2 under ρα,K . Lee
et al. [2019] prove that this value depends only on ∥z′ − z∥0.

Finally, Dvijotham et al. [2020] consider a more general form of randomized
smoothing that doesn’t require strict assumptions on the distributions but is still able
to provide similar guarantees.
Example 3.3.4 (Generic bound). Given any two smoothing distributions µ, ρ, we
have the generic randomized smoothing robustness certificate, ensuring that (3.1)
holds with definitions

d(µ, ρ) = KL(ρ ∥ µ), f(p) = −1

2
log(4p(1− p)). (3.3)

Randomized smoothing in practice For deep classifiers, the expectation G
cannot be computed exactly, so we must resort to Monte Carlo approximation. This
is done by drawing samples from µ and using these to construct a high-probability
bound on G for certification. More precisely, this bound should be a lower bound
on G when the hard prediction g = 1 and an upper bound otherwise; this ensures in
both cases that we under-certify the true robustness of the classifier g. The procedure
is shown in Algorithm 8 in Appendix B.1. These estimates can then be plugged
into a randomized smoothing robustness guarantee to provide a high probability
certified robustness bound for the classifier.

3.4 Pointwise Data Poisoning Robustness

We now present the main contributions of this paper: we first describe a generic
strategy for applying randomized smoothing to certify a prediction function against
arbitrary classes of data poisoning attacks. We then propose a specific implementa-
tion of said strategy to certify a classifier against label-flipping attacks. We show
how this approach can be made tractable using linear least-squares classification,
and we use the Chernoff inequality to analytically bound the relevant probabilities
for the randomized smoothing certificate. Notably, although we are employing a ran-
domized approach, the final algorithm does not use any random sampling, but rather
relies upon a convex optimization problem to compute the certified robustness.
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General data poisoning robustness We begin by noting that in prior work,
randomized smoothing was applied at test time with the function ϕ : X → {0, 1}
being a (potentially deep) classifier that we wish to smooth. However, there is
no requirement that the function ϕ be a classifier at all; the theory holds for any
binary-valued function. Instead of treating ϕ as a trained classifier, we consider
ϕ to be an arbitrary learning algorithm which takes as input a training dataset
{xi, yi}ni=1 ∈ (X × {0, 1})n and additional test points without corresponding
labels, which we aim to predict.3 In other words, the combined goal of ϕ is to first
train a classifier and then predict the label of the new example. Thus, we consider
test time outputs to be a function of both the test time input and the training data
that produced the classifier. This perspective allows us to reason about how changes
to training data affect the classifier at test time, reminiscent of work on influence
functions of deep neural networks [Koh and Liang, 2017, Yeh et al., 2018].

This immediately suggests our protocol for pointwise robustness to general
data poisoning attacks: randomize over the elements of the input to which we
desire certified robustness, rather than over the test-time input to be classified. For
example, to induce robustness to backdoor attacks, we could randomly add noise
to the training points and/or their labels. Analogous to previous applications of
randomized smoothing, if the majority vote of the classifiers trained with these
randomly perturbed inputs has a large margin, it will confer a degree of robustness
within an appropriately-defined radius of adversarially perturbed training data (as
defined in Equation (3.1)).

Specific application to label-flipping robustness To demonstrate the effective-
ness of our proposed strategy, we now present a specific implementation, providing
an algorithm for tractable linear classification which is pointwise-certifiably robust
to label-flipping attacks. When applying randomized smoothing in this setting,
we randomize over the labels in the training set as described above—a suitably
large margin in the majority vote will therefore result in pointwise robustness to
adversarial label flips. In this scenario, the adversarial “radius” is defined as number
of labels on which two training sets differ.

To formalize this intuition, consider two different assignments of n training
labels Y1, Y2 ∈ {0, 1}n which differ on precisely r labels. Let µ (resp. ρ) be the
distribution resulting from independently flipping each of the labels in Y1 (resp.
Y2) with probability q. It is clear that as r increases, KL(µ ∥ ρ) will also increase.
In fact, it is simple to show (see Appendix B.2.3 for derivation) that the exact KL

3Note that our algorithm does not require access to the test data to do the necessary precomputation.
We present it here as such merely to give an intuitive idea of the procedure.
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divergence between these two distributions is

KL(µ ∥ ρ) = KL(ρ ∥ µ) = r(1− 2q) log

(
1− q

q

)
. (3.4)

Plugging in the robustness guarantee (3.3), we have that g(µ, ϕ) = g(ρ, ϕ) so long
as

r ≤ log(4p(1− p))

2(1− 2q) log
(

q
1−q

) , (3.5)

where p = G(µ, ϕ). This implies that for any test point, as long as (3.5) is satisfied,
g’s prediction (the majority vote weighted by the smoothing distribution) will not
change if an adversary corrupts the training set from Y1 to Y2, or indeed to any other
training set that differs on at most r labels. We can tune the noise hyperparameter q
to achieve the largest possible upper bound in (3.5); more noise will likely decrease
the margin of the majority vote p, but it will also decrease the divergence.

Computing a tight bound This approach has a simple closed form, but the bound
is not tight. We can derive a tight bound via a combinatorial approach as in Lee
et al. [2019]. By precomputing the quantities F−1

1−q,1,n(r) from Equation (3.2) for
each r, we can simply compare p to each of these and thereby certify robustness to
the highest possible number of label flips. This precomputation can be expensive,
but it provides a significantly tighter robustness guarantee, certifying approximately
twice as many label flips for a given bound on G (See Figure B.4 in the Appendix).

3.4.1 Efficient Implementation via Least Squares Classifiers

There may appear to be one major impracticality of the algorithm proposed in the
previous section, if considered naively: treating the function ϕ as an entire training-
plus-single-prediction process would require that we train multiple classifiers, over
multiple random draws of the labels y, all to make a prediction on a single example.
In this section, we describe a sequence of tools we employ to restrict the architecture
and training process in a manner that drastically reduces this cost, bringing it in line
with the traditional cost of standard classification. The full procedure, with all the
parts described below, can be found in Algorithm 2.

Linear least-squares classification The fundamental simplification we make in
this work is to restrict the “training” of the classifier ϕ to be done via the solution of
a least-squares problem. Given the training set {xi, yi}ni=1, we assume that there
exists some feature mapping h : Rd → Rk (where k < n). If existing linear
features are not available, this could instead consist of deep features learned from
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Algorithm 2 Randomized smoothing for label-flipping robustness

Input: feature mapping h : Rd → Rk; noise parameter q; regularization pa-
rameter λ; training set {(xi, yi) ∈ Rd × {0, 1}}ni=1 (with potentially adversarial
labels); additional inputs to predict {xj ∈ Rd}mj=1.
1. Pre-compute matrix M,

M = X
(
XTX + λI

)−1

where X ≡ h(x1:n).
for j = 1, . . . ,m do

1. Compute vector αj = Mh(xj)
T .

2. Compute optimal Chernoff parameter t via Newton’s method

t⋆ = argmin
t

{
t/2 +

∑
i:yi=1

log
(
q + (1− q)e−tαj

i

)
+
∑
i:yi=0

log
(
(1− q) + qe−tαj

i

)}

and let p⋆ = max(1 − B|t⋆|, 1/2) where B|t⋆| is the Chernoff bound (3.6)
evaluated at |t⋆|.
Output: Prediction ŷj = 1 {t⋆ ≥ 0} and certification that prediction will
remain constant for up to r training label flips, where

r =

 log(4p⋆(1− p⋆))

2(1− 2q) log
(

q
1−q

)
 .

end for

a similar task—the transferability of such features is well documented [Donahue
et al., 2014, Bo et al., 2010, Yosinski et al., 2014]—or features could be learned in
an unsupervised fashion on x1:n (learning the features from poisoned labels could
degrade performance). Given this feature mapping, let X = h(x1:n) ∈ Rn×k be
the training point features and let y = y1:n ∈ {0, 1}n be the labels. Our training
process consists of finding the least-squares fit to the training data, i.e., we find
parameters β̂ ∈ Rk via the normal equation β̂ =

(
XTX

)−1
XTy and then we

make a prediction on the new example via the linear function h(xn+1)β̂. Although it
may seem odd to fit a classification task with least-squares loss, binary classification
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with linear regression is equivalent to Fisher’s linear discriminant [Mika, 2003] and
works quite well in practice.

The real advantage of the least-squares approach is that it reduces the prediction
to a linear function of y, and thus randomizing over the labels is straightforward.
Specifically, letting

α = X
(
XTX

)−1
h(xn+1)

T ,

the prediction h(xn+1)β̂ can be equivalently given by αTy (this is effectively the
kernel representation of the linear classifier). Thus, we can simply compute α
one time and then randomly sample many different sets of labels in order to build
a standard randomized smoothing bound. Further, we can pre-compute just the
X
(
XTX

)−1 term and reuse it for each test point.

ℓ2 regularization for better conditioning It is unlikely to be the case that the
training points are well-behaved for linear classification in the feature space. To
address this, we instead solve an ℓ2 regularized version of least-squares. This is a
common tool for solving systems with ill-conditioned or random design matrices
[Hsu et al., 2014, Suggala et al., 2018]. Luckily, there still exists a pre-computable
closed-form solution to this problem, whereby we instead solve

α = X(XTX + λI)−1h(xn+1)
T .

The other parts of our algorithm remain unchanged. Following results in Suggala
et al. [2018], we set the regularization parameter λ = (1 + q) σ̂

2k
2n κ(XTX) for all

our experiments, where σ̂2 =
∥y−Xβ̂OLS∥22

n−k is an estimate of the variance [Dicker,
2014] and κ(·) is the condition number.

Efficient tail bounds via the Chernoff inequality Even more compelling, due
to the linear structure of this prediction, we can forego a sampling-based approach
entirely and directly bound the tail probabilities using Chernoff bounds. Because
the underlying binary prediction function ϕ will output the label 1 for the test point
whenever αTy ≥ 1/2 and 0 otherwise, we can derive an analytical upper bound
on the probability that g predicts one label or the other via the Chernoff bound. By
upper bounding the probability of the opposite prediction, we simultaneously derive
a lower bound on p which can be plugged in to (3.5) to determine the classifier’s
robustness. Concretely, we can upper bound the probability that the classifier outputs
the label 0 by
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P (αTy ≤ 1/2) ≤ min
t>0

{
et/2

n∏
i=1

E[e−tαiyi ]

}

= min
t>0

{
et/2

n∏
i=1

qe−tαi(1−yi) + (1− q)e−tαiyi

}
. (3.6)

Conversely, the probability that the classifier outputs the label 1 is upper bounded
by (3.6) but evaluated at −t. Thus, we can solve the minimization problem uncon-
strained over t, and then let the sign of t dictate which label to predict and the value
of t determine the bound. The objective (3.6) is log-convex in t and can be easily
solved by Newton’s method. Note that in some cases, neither Chernoff upper bound
will be less than 1/2, meaning we cannot determine the true value of g. In these
cases, we simply define the classifier’s prediction to be determined by the sign of t.
While we can’t guarantee that this classification will match the true majority vote,
our algorithm will certify a robustness to 0 flips, so the guarantee is still valid. We
avoid abstaining so as to assess our classifier’s non-robust accuracy.

The key property we emphasize is that, unlike previous randomized smoothing
applications, the final algorithm involves no randomness whatsoever. Instead, the
probabilities are bounded directly via the Chernoff bound, without any need for
Monte Carlo approximation. Thus, the method is able to generate truly certifi-
able robust predictions using approximately the same complexity as traditional
predictions.

3.5 Experiments

Following Koh and Liang [2017] and Steinhardt et al. [2017], we perform
experiments on MNIST 1/7, the IMDB review sentiment dataset [Maas et al., 2011],
and the Dogfish binary classification challenge taken from ImageNet. We run
additional experiments on multi-class MNIST and CIFAR10. For each dataset and
each noise level q we report the certified test set accuracy at r training label flips.
That is, for each possible number of flips r, we plot the fraction of the test set that
was both correctly classified and certified to not change under at least r flips.

As mentioned, our classifier suffers an additional linear cost in the number of
training points due to the kernel representation αTy. For most datasets there was
no discernible difference in the time required to certify an input via our technique
versus neural network classification. For larger training sets such as CIFAR10,
especially when doing pairwise comparisons for the multi-class case, the algorithm
is embarassingly parallel; this parallelism brings runtime back in line with standard
classification.
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(a) Binary MNIST (classes 1 and 7)
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(b) Full MNIST

Figure 3.1: MNIST 1/7 (n = 13007, top) and full MNIST (n = 60000, bottom)
test set certified accuracy to adversarial label flips as q is varied. The bottom axis
represents the number of adversarial label flips to which each individual prediction
is robust, while the top axis is the same value expressed as a percentage of the
training set size. The solid lines represent certified accuracy; dashed lines of the
same color are the overall non-robust accuracy of each classifier. The black dotted
line is the (infinitely robust) performance of a constant classifier, while the black
dash-dot line is the (uncertified) performance of our classifier with no label noise.

For binary classification, one could technically achieve a certified accuracy
of 50% at r = ∞ (or 10% for MNIST or CIFAR10) by letting g be constant—
a constant classifier would be infinitely robust. Though not a very meaningful
baseline, we include the accuracy of such a classifier in our plots (black dotted line)
as a reference. We also evaluated our classifier with q = 0 (black dash-dot line);
this cannot certify robustness, but it indicates the quality of the features.

To properly justify the need for such certified defenses, and to get a sense
of the scale of our certifications, we generated label-flipping attacks against the
undefended binary MNIST and Dogfish models. Following previous work, the
undefended models were implemented as convolutional neural networks, trained on
the clean data, with all but the top layer frozen—this is equivalent to multinomial
logistic regression on the learned features. For each test point we recorded how
many flips were required to change the network’s prediction. This number serves
as an upper bound for the robustness of the network on that test point, but we note
that our attacks were quite rudimentary and could almost certainly be improved
upon to tighten this upper bound. Appendix B.3.1 contains the details of our attack
implementations. Finally, we implemented attacks on our own defense to derive an
empirical upper bound and found that it reasonably tracks our lower bound. Plots
and details of this attack can be found in Appendix B.3.2.
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In all plots, the solid lines represent certified accuracy (except for the undefended
classifier, which is an upper bound), while the dashed lines of the same color are
the overall non-robust accuracy of each classifier.

Results on MNIST The MNIST 1/7 dataset [LeCun et al., 1998] consists of just
the classes 1 and 7, totalling 13,007 training points and 2,163 test points. We trained
a simple convolutional neural network on the other eight MNIST digits to learn
a 50-dimensional feature embedding and then calculated Chernoff bounds for G
as described in Section 3.4.1. Figure 3.1a displays the certified accuracy on the
test set for varying probabilities q. As in prior work on randomized smoothing,
the noise parameter q balances a trade-off; as q increases, the required margin
|G − 1

2 | to certify a given number of flips decreases. On the other hand, this
results in more noisy training labels, which reduces the margin and therefore results
in lower robustness and often lower accuracy. Figure 3.1b depicts the certified
accuracy for the full MNIST test set—see Appendix B.2 for derivations of the
bounds and optimization algorithm in the multi-class case. In addition to this being
a significantly more difficult classification task, our classifier could not rely on
features learned from other handwritten digits; instead, we extracted the top 30
components with ICA [Hyvarinen, 1999] independently of the labels. Despite the
lack of fine-tuned features, our algorithm still achieves significant certified accuracy
under a large number of adversarial label flips.

See Figure B.2 in the Appendix for the effect of ℓ2 regularization for the
binary case. At a moderate cost to non-robust accuracy, the regularization results
in substantially higher certified accuracy at almost all radii. We observed that
regularization did not make a large difference for the multi-class case, possibly due
to the inaccuracy of the residual term in the noise estimate.

Results on CIFAR10 To further demonstrate the effectiveness of our classifier
with unsupervised features, we used SimCLR [Chen et al., 2020] to learn unsuper-
vised features for CIFAR10. We used PCA to reduce the features to 128 dimensions
to reduce overfitting. Figure 3.2 shows the results: our classifier with q = 0.12
achieves 50% certified accuracy up to 175 labels flips (recall there are ten classes,
not two) and decays gracefully. Further, the classifier maintains better than random
chance certified accuracy up to 427 label flips, which is approximately 1% of the
training set.

Because the “votes” are changed by flipping so few labels, high values of q
reduce the models’ predictions to almost pure chance—this means we are unable to
achieve the margins necessary to certify a large number of flips. We therefore found
that smaller levels of noise achieved higher certified test accuracy. This suggests

38



0 100 200 300 400 500

Label Flips

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fi

ed
A

cc
ur

ac
y

q = 0.012

q = 0.025

q = 0.1

q = 0, uncertified

g constant

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Training Set

Figure 3.2: CIFAR10 (n = 50000) test set certified accuracy to adversarial label
flips as q is varied.

that the more susceptible the original, non-robust classifier is to label flips, the lower
q should be set for the corresponding randomized classifier.

For much smaller values of q, slight differences did not decrease the non-
robust accuracy—they did however have a large effect on certified robustness. This
indicates that the sign of t⋆ is relatively stable, but the margin of G is much less so.
This same pattern was observed with the IMDB and Dogfish datasets. We used a
high-precision arithmetic library [Johansson et al., 2013] to achieve the necessary
lower bounds, but the precision required for non-vacuous bounds grew extremely
fast for q < 10−4; optimizing (3.6) quickly became too computationally expensive.

Results on Dogfish The Dogfish dataset contains images from the ImageNet dog
and fish synsets, 900 training points and 300 test points from each. We trained a
ResNet-50 [He et al., 2016] on the standard ImageNet training set but removed all
images labeled dog or fish. Our pre-trained network therefore learned meaningful
image features but had no features specific to either class. We again used PCA
to reduce the feature space dimensionality. Figure 3.3 displays the results of our
poisoning attack along with our certified defense. Under the undefended model,
more than 99% of the test points can be successfully attacked with no more than
23 label flips, whereas our model with q = 10−4 can certifiably correctly classify
81.3% of the test points under the same threat model. It would take more than
four times as many flips—more than 5% of the training set—for each test point
individually to reduce our classifier to less than 50% certified accuracy.

Here we observe the same pattern, where reducing q does not have a large effect
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Figure 3.3: Dogfish (n = 1800) test set certified accuracy to adversarial label flips
as q is varied.

on non-robust accuracy but does increase robustness significantly. This provides
further evidence for the hypothesis that more complex datasets/classifiers are more
susceptible to attacks and should be smoothed with less label noise.

Figure B.3 in the Appendix shows our classifier’s performance with unsu-
pervised features. Because Dogfish is such a small dataset (n = 1800), deep
unsupervised feature learning techniques were not feasible—we instead learned
overcomplete features on 16x16 image patches using RICA [Le, 2013].

Results on IMDB Figure 3.4 plots the result of our randomized smoothing proce-
dure on the IMDB review sentiment dataset. This dataset contains 25,000 training
examples and 25,000 test examples, evenly split between “positive” and “negative”.
To extract the features we applied the Google News pre-trained Word2Vec to all the
words in each review and averaged them. This feature embedding is considerably
noisier than that of an image dataset, as most of the words in a review are irrelevant
to sentiment classification. Indeed, Steinhardt et al. [2017] also found that the
IMDB dataset was much more susceptible to adversarial corruption than images
when using bag-of-words features. Consistent with this, we found smaller levels
of noise resulted in larger certified accuracy. We expect significant improvements
could be made with a more refined choice of feature embedding.
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Figure 3.4: IMDB Review Sentiment (n = 25000) test set certified accuracy. The
non-robust accuracy slightly decreases as q increases; for q = 0.01 the non-robust
accuracy is 79.11%, while for q = 0.1 it is 78.96%.

3.6 Conclusion

In this work we presented a unifying view of randomized smoothing, which
borrows from the literature of differential privacy in order to provide black-box
certificates of robustness. Based on the observation that this framework is applicable
more broadly than just defenses to adversarial examples, we used it to derive a
framework for certified defenses against arbitrary data poisoning attacks—we dub
such defenses “pointwise” because they provide a certificate of robustness for each
test point.

We next implemented this protocol as a specific classifier which is robust to a
strong class of label-flipping attacks, where an adversary can flip labels to target each
test point individually. This contrasts with previous data poisoning defenses which
have typically only considered an adversary who wishes to degrade the classifier’s
accuracy on the test distribution as a whole. Finally, we offered a tractable algorithm
for evaluating this classifier which, despite being rooted in randomization, can be
computed with no Monte Carlo sampling whatsoever, resulting in a truly certifiably
robust classifier. This work represents the first classification algorithm that is
pointwise-certifiably robust to any type of data poisoning attack; we anticipate many
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possible new directions within this framework.
A particular strength of this framework is when we specifically care about

robustly classifying each input individually. Compared to traditional robust classifi-
cation, this technique is superior for determining who receives a coveted resource
(a loan, parole, etc.) or for making some other sensitive classification, as it provides
a guarantee for each individual. Other works only ensure that they correctly classify
some fraction p of the population, which is often not acceptable as that still leaves
the 1 − p fraction who could be misclassified, with no indication of which ones
belong to the test set.

There are several avenues for improvements to this line of work. Most immedi-
ately, our protocol could be implemented with other types of smoothing distributions
applied to the training data, such as randomizing over the input data or features,
to derive specific algorithms that are pointwise-certifiably robust to other types of
data poisoning attacks. Additionally, the method for learning the input features in
an unsupervised, semi-supervised, or self-supervised manner could be improved.
Finally, we hope that our defense to this threat model will inspire the development
of more powerful (e.g., pointwise) train-time attacks, against which future defenses
can be evaluated.
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Part II

Learning Robust Classifiers
via Invariance
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Chapter 4

The Risks of Invariant Risk
Minimization

This chapter is based on [Rosenfeld et al., 2021]:
Rosenfeld, E., Ravikumar, P., & Risteski, A.
The Risks of Invariant Risk Minimization.
In International Conference on Learning Representations, 2021.

4.1 Introduction

Prediction algorithms are evaluated by their performance on unseen test data.
In classical machine learning, it is common to assume that such data are drawn
i.i.d. from the same distribution as the data set on which the learning algorithm was
trained—in the real world, however, this is often not the case. When this discrepancy
occurs, algorithms with strong in-distribution generalization guarantees, such as
Empirical Risk Minimization (ERM), can fail catastrophically. In particular, while
deep neural networks achieve superhuman performance on many tasks, there is
evidence that they rely on statistically informative but non-causal features in the
data [Beery et al., 2018, Geirhos et al., 2018, Ilyas et al., 2019]. As a result, such
models are prone to errors under surprisingly minor distribution shift [Su et al.,
2019, Recht et al., 2019]. To address this problem, researchers have investigated
alternative objectives for training predictors which are robust to possibly egregious
shifts in the test distribution.

The task of generalizing under such shifts, known as Out-of-Distribution (OOD)
Generalization, has led to many separate threads of research. One approach is
Bayesian deep learning, accounting for a classifier’s uncertainty at test time [Neal,
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2012]. Another technique that has shown promise is data augmentation—this in-
cludes both automated data modifications which help prevent overfitting [Shorten
and Khoshgoftaar, 2019] and specific counterfactual augmentations to ensure invari-
ance in the resulting features [Volpi et al., 2018, Kaushik et al., 2020].

A strategy which has recently gained particular traction is Invariant Causal
Prediction (ICP; Peters et al. 2016), which views the task of OOD generalization
through the lens of causality. This framework assumes that the data are generated
according to a Structural Equation Model (SEM; Bollen 2005), which consists
of a set of so-called mechanisms or structural equations that specify variables
given their parents. ICP assumes moreover that the data can be partitioned into
environments, where each environment corresponds to interventions on the SEM
[Pearl, 2009] on just the non-causal mechanisms, and without modifying those
mechanisms that are causal. The justification for this is that the causal mechanisms
of the data generating process are unchanging but other effects can vary. Therefore,
learning relationships that are invariant across environments ensures recovery of
the invariant features which generalize under arbitrary interventions. In this work,
we consider objectives that attempt to learn what we refer to as the “invariant
classifier”—this is the classifier which uses and is optimal with respect to only the
invariant features in the SEM. By definition, such a classifier does not overfit to
environment-specific properties of the data distribution, so it will generalize even
under major distribution shift at test time. In particular, we focus our analysis on
one of the more popular objectives, Invariant Risk Minimization (IRM; Arjovsky
et al. [2019]), but our results can easily be extended to similar recently proposed
alternatives (see Appendix Appendix C.5).

Various works on invariant prediction [Muandet et al., 2013, Ghassami et al.,
2017, Heinze-Deml et al., 2018, Rojas-Carulla et al., 2018, Subbaswamy et al.,
2019, Christiansen et al., 2020] consider regression in both the linear and non-linear
setting, but they exclusively focus on learning with partially observed covariates
or instrumental variables. Under such a condition, results from causal inference
[Maathuis et al., 2009, Peters et al., 2017] allow for formal guarantees of the
identification of the invariant features, or at least a strict subset of them. With the
rise of deep learning, more recent literature has developed objectives for learning
invariant representations when the data are a non-linear function of unobserved
latent factors, a common assumption when working with complex, high-dimensional
data such as images. Causal discovery and inference with unobserved confounders
or latents is a much harder problem [Peters et al., 2017], so while empirical results
seem encouraging, these objectives are presented with few formal guarantees.

IRM is one such objective for invariant representation learning. The goal of
IRM is to learn a feature embedder such that the optimal linear predictor on top
of these features is the same for every environment—the idea being that only
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the invariant features will have an optimal predictor that is invariant. Thus, IRM
hopes to “extrapolate” to new test environments, unlike ERM which excels at
“interpolating”. Recent works have pointed to shortcomings of IRM and have
suggested modifications which they claim prevent these failures. However, these
alternatives are compared in broad strokes, with little in the way of theory.

In this work, we present the first formal analysis of classification under the
IRM objective under a fairly natural and general model which is similar to the
original work. Our results show that despite being inspired by invariant prediction,
this objective can frequently be expected to perform no better than ERM. In the
linear setting, we present simple conditions under which solving to optimality
succeeds or, more often, breaks down in recovering the invariant classifier. We
additionally demonstrate a fundamental failure case—under mild conditions, there
exists a feasible point that uses only non-invariant features and achieves lower
empirical risk than the invariant classifier; thus it will appear as a more attractive
solution, yet its reliance on non-invariant features mean it will completely fail to
generalize. As corollaries, we present similar cases where Risk Extrapolation (REx;
Krueger et al. 2020) and similar objectives likewise fail. Futhermore, we present the
first results in the non-linear regime: we demonstrate the existence of a classifier
with exponentially small sub-optimality which nevertheless heavily relies on non-
invariant features on most test inputs, resulting in worse-than-chance performance
on distributions that are sufficiently dissimilar from the training environments. These
findings strongly suggest that existing approaches to ICP for high-dimensional latent
variable models do not cleanly achieve their stated objective and that future work
would benefit from a more formal treatment.

4.2 Related Work

Works on learning deep invariant representations vary considerably in their
model assumptions. Some works search for a domain-invariant representation
[Muandet et al., 2013, Ganin et al., 2016], i.e. invariance of the covariate distribution
p(Φ(x)), but this is typically used for domain adaptation [Ben-David et al., 2010a,
Ganin and Lempitsky, 2015, Zhang et al., 2015, Long et al., 2018], with assumed
access to labeled or unlabeled data from the target distribution. Further, there is
evidence that this condition may not be sufficient for effective domain adaptation or
OOD generalization [Zhao et al., 2019, Johansson et al., 2019]. Other works instead
hope to find representations that are conditionally domain-invariant, expecting
invariance of p(Φ(x) | y) [Gong et al., 2016, Li et al., 2018c].

More recent works, including the objectives discussed in this paper, suggest
invariance of the feature-conditioned label distribution. In particular, Arjovsky et al.
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[2019] only assume invariance of E[y | Φ(x)]; follow-up works rely on a stronger
assumption of invariance of p(y | Φ(x)) [Krueger et al., 2020, Xie et al., 2020, Jin
et al., 2020, Mahajan et al., 2020, Bellot and van der Schaar, 2020]. Though this
approach has become popular in the last year, it is somewhat similar to the existing
concept of covariate shift [Shimodaira, 2000, Bickel et al., 2009], which considers
the same setting. The main difference is that these more recent works assume that
the shifts in p(Φ(x)) occur between discrete, labeled environments, as opposed to
more generally from train to test distributions.

4.3 Our Results

We consider a structural causal model with explicit separation of invariant
features zc, whose joint distribution with the label is fixed for all environments,
and environmental features ze (“non-invariant”), whose distribution can vary across
different environments. We assume that data are drawn from a set of E training
environments E = {e1, e2, . . . , eE} and that we know from which environment
each sample is drawn. For a given environment e, the data are defined by the
following process: first, a label y ∈ {±1} is drawn according to a fixed probability:

y =

{
1, w.p. η
−1, otherwise.

(4.1)

Next, both invariant features and environmental features are drawn according to a
Gaussian1:

zc ∼ N (y · µc, σ
2
c I), ze ∼ N (y · µe, σ

2
eI), (4.2)

with µc ∈ Rdc , µe ∈ Rde—typically, for complex, high-dimensional data we would
expect E < dc ≪ de. Finally, the observation x is generated as a function of the
latent features:

x = f(zc, ze). (4.3)

1Note the deliberate choice to have ze depend on y. Much work on this problem models spurious
features which correlate with the label but are not causal. However, the term “spurious” is often
applied incongruously; historically, a spurious correlation is one which (a) appears by chance and
would disappear given enough samples or (b) is due to an unobserved confounder. In recent work, the
term has been co-opted to refer to any feature that correlates with the label but does not cause it. Thus
there is a subtle distinction: if we allow for the label to cause the features (e.g. as in natural images),
the resulting correlation is not spurious. We therefore avoid using the term “spurious” in this work,
opting instead for “non-invariant” or “environmental”.
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We assume f is injective, so that it is in principle possible to recover the latent
features from the observations, i.e. there exists a function Φ such that Φ(f(zc, ze)) =
[zc, ze]

⊤. We write the joint and marginal distributions as pe(x, y, zc, ze). Where it
is clear from context, we omit the specific arguments.

Remarks on the model. This model is natural and flexible; it generalizes several
existing models used to analyze learning under the existence of adversarial distribu-
tion shift or non-invariant correlations [Schmidt et al., 2018, Sagawa et al., 2020b].
The fundamental facet of this model is the constancy of the invariant parameters
η, µc, σ

2
c , f across environments—the dependence of µe, σe on the environment

allows for varying distributions, while the true causal process remains unchanged.
Here we make a few clarifying remarks:
• We do not impose any constraints on the model parameters—in particular, we do

not assume a prior. Observe that µc, σ
2
c are the same for all environments, hence

the subscript indicates the invariant (causal) relationship. In contrast, with some
abuse of notation, the environmental subscript is used to indicate both dependence
on the environment and the index of the environment itself (e.g., µi represents the
mean specific to environment i).

• While we have framed the model as y causing zc, the causation can just as easily
be viewed in the other direction. The log-odds of y are a linear function of zc—
this matches logistic regression with an invariant regression vector βc = 2µc/σ

2
c

and bias β0 = log η
1−η . We present the model as above to emphasize that the

causal relationships between y and the zc, ze are a priori indistinguishable, and
because we believe this direction is more intuitive.

• The assumption of a constant marginal is necessary—in logistic regression, the
optimal bias term is log p(y=1)

p(y=−1) . Thus the optimal classifier can only be invariant
if this value is the same for all environments.

• Modeling class-conditional means as direct opposites is made for clarity: it
matches existing models and it greatly simplifies the calculations and results.
None of our proofs require this condition, and it is straightforward to extend our
results to the general case of arbitrary means.

We consider the setting where we are given infinite samples from each environ-
ment; this allows us to isolate the behavior of the objectives themselves, rather than
finite-sample effects. Upon observing samples from this model, our objective is
thus to learn a feature embedder Φ and regression vector β̂ to minimize the risk on
an unseen environment e:

Re(Φ, β̂) := E(x,y)∼pe

[
ℓ(σ(β̂⊤Φ(x)), y)

]
.
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The function ℓ can be any loss appropriate to classification: in this work we consider
the logistic and the 0-1 loss. Note, however, that we are not hoping to minimize this
risk in expectation over the environments; this is already accomplished via ERM
or distributionally robust optimization (DRO; Bagnell 2005, Ben-Tal et al. 2009).
Rather, we hope to extract and regress on invariant features while ignoring envi-
ronmental features, such that our classifier generalizes to all unseen environments
regardless of their parameters. In other words, the focus is on minimizing risk for the
worst-case environment. We refer to the classifier which will minimize worst-case
risk under arbitrary distribution shift as the invariant classifier. To discuss this
formally, we define precisely what we mean by this term.
Definition 4.3.1. Assume the existence of a true set of “invariant features”, whose
joint or conditional distribution with the target variable is unchanging across envi-
ronments. Then, the invariant classifier consists of: (a) a feature embedder which
recovers exactly these features, and (b) the optimal predictor on top of these features.

This definition is intentionally broad; in this paper, we consider logistic regres-
sion and thus we assume the optimal predictor β̂ is a vector—note that Φ may be
non-linear. Thus, the invariant classifier comprises:

Φ(x) =

[
I 0
0 0

]
◦ f−1(x) = [zc], β̂ =

[
βc
β0

]
:=

[
2µc/σ

2
c

log η
1−η

]
.

This classifier is Bayes with respect to the invariant features and so it achieves the
minimum possible risk without using environmental features—it is therefore also
minimax optimal. Observe that the invariant classifier is distinct from the Bayes
classifier. The Bayes classifier uses informative but non-invariant features; the
invariant classifier does not.

4.3.1 Informal Results

With the model defined, we can informally present our results; we defer the
formal statements to first give a background on the IRM objective in the next
section. For the full theorem statements, see Section Section 4.5 (linear) and Section
Section 4.6 (non-linear). With a slight abuse of notation, we identify a classifier by
the tuple Φ, β̂ which parametrizes it.

First, we show that the usefulness of IRM exhibits a “threshold” behavior,
depending on whether E > de or E ≤ de:
Theorem 4.3.2 (Informal, Linear). For linear f , consider solving the IRM objective
to learn a linear Φ with invariant optimal coefficients β̂. If E > de, then Φ, β̂ is
precisely the invariant classifier; it uses only invariant features and generalizes
to all environments with minimax-optimal risk. If E ≤ de, then Φ, β̂ relies upon
non-invariant features.
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In fact, when E ≤ de it is even possible to learn a classifier solely relying on
environmental features that achieves lower risk on the training environments than
the invariant classifier:
Theorem 4.3.3 (Informal, Linear). For linear f and E ≤ de, under mild conditions
there exists a linear classifier Φ, β̂ which uses only environmental features, yet
achieves lower risk than the optimal invariant classifier.
Finally, in the non-linear case, we show that IRM fails unless the training environ-
ments approximately “cover” the space of possible environments, and therefore it
behaves similarly to ERM:
Theorem 4.3.4 (Informal, Non-linear). For non-linear f , there exists a non-linear
classifier Φ, β̂ which is nearly optimal under the penalized objective and furthermore
is nearly identical to the invariant classifier on the training distribution. However,
for any test environment with a mean sufficiently different from the training means,
this classifier will be equivalent to the ERM solution on nearly all test points. For
test distributions where the environmental feature correlations with the label are
reversed, this classifier has almost trivial performance.

Extensions to other objectives. Several follow-up works have suggested alterna-
tives to IRM (see Section 4.4). Though these objectives perform better on various
baselines, there are few formal guarantees and no results beyond the linear case.
Due to their collective similarities, it is straightforward to extend every theorem
in this paper to these objectives, demonstrating that they all suffer from the same
shortcomings. Appendix Appendix C.5 contains example corollaries for each of the
main results presented in this work.

4.4 Background on IRM and its Alternatives

During training, a classifier will learn to leverage correlations between features
and labels in the training data to make its predictions. If a correlation varies with the
environment, it may not be present in future test distributions—worse yet, it may be
reversed—harming the classifier’s predictive ability. IRM [Arjovsky et al., 2019] is
a recently proposed approach to learning environmentally invariant representations
to facilitate invariant prediction.

The IRM objective. IRM posits the existence of a feature embedder Φ such that
the optimal classifier on top of these features is the same for every environment.
The authors argue that such a function will use only invariant features, since non-
invariant features will have different conditional distributions with the label and
therefore a fixed linear classifier on top of them won’t be optimal in all environments.
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To learn this featurizer, the IRM objective is the following constrained optimization
problem:

min
Φ,β̂

1

|E|
∑
e∈E
Re(Φ, β̂) s.t. β̂ ∈ argmin

β
Re(Φ, β) ∀e ∈ E . (4.4)

This bilevel program is highly non-convex and difficult to solve. To find an approxi-
mate solution, the authors consider a Langrangian form, whereby the sub-optimality
with respect to the constraint is expressed as the squared norm of the gradients of
each of the inner optimization problems:

min
Φ,β̂

1

|E|
∑
e∈E

[
Re(Φ, β̂) + λ∥∇

β̂
Re(Φ, β̂)∥2

]
. (4.5)

Assuming the inner optimization problem is convex, achieving feasibility is equiv-
alent to the penalty term being equal to 0. Thus, Equations Equation (4.4) and
Equation (4.5) are equivalent if we set λ =∞.

Alternative objectives. IRM is motivated by the existence of a featurizer Φ such
that E[y | Φ(x)] is invariant. Follow-up works have proposed variations on this
objective, based instead on the strictly stronger desideratum of the invariance of
p(y | Φ(x)). Krueger et al. [2020] suggest penalizing the variance of the risks,
while Xie et al. [2020] give the same objective but taking the square root of the
variance. Many papers have suggested similar alternatives [Jin et al., 2020, Mahajan
et al., 2020, Bellot and van der Schaar, 2020]. These objectives are compelling—it
seems natural to expect that solving them will yield the desired invariance. Indeed,
it is easy to show that the invariant classifier constitutes a stationary point of each of
these objectives:
Proposition 4.4.1. Suppose the observed data are generated according to Equa-
tions Equation (4.1)-Equation (4.3). Then recovering the (parametrized) invariant
classifier Φ(x) = [zc] and β̂ = [βc, β0] is a stationary point for Equation (4.4).

The stationarity of the invariant classifier for the other objectives is a trivial
corollary. However, in the following sections we will demonstrate that such a result
is misleading and that a more careful investigation is necessary.

4.5 The Difficulty of IRM in the Linear Regime

In their work proposing IRM, Arjovsky et al. [2019] present specific conditions
for an upper bound on the number of training environments needed such that a
feasible linear featurizer Φ will have an invariant optimal regression vector β̂. Our
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first result is similar in spirit but presents a substantially stronger (and simplified)
upper bound in the classification setting, along with a matching lower bound: we
demonstrate that observing a large number of environments—linear in the number
of environmental features—is necessary for generalization in the linear regime.
Theorem 4.5.1 (Linear case). Assume f is linear. Suppose we observe E training
environments. Then the following hold:

1. Suppose E > de. Under mild non-degeneracy conditions, any linear featurizer
Φ with an invariant optimal regression vector β̂ uses only invariant features, and
it therefore has identical risk on all possible environments.

2. If E ≤ de and the environmental means µe are linearly independent, then there
exists a linear Φ with rank(Φ) = dc + de + 1 − E whose output depends on
the environmental features, yet the optimal classifier on top of Φ is invariant.
Further, both the logistic and 0-1 risks of this Φ and its corresponding β̂ are
strictly lower than those of the invariant classifier.

Similar to Arjovsky et al. [2019], the set of environments which do not satisfy
Theorem 4.5.1 has measure zero under any absolutely continuous density over
environmental parameters. Further details, and the full proof, can be found in
Appendix C.3.1. Since the invariant classifier is Bayes with respect to the invariant
features, by the data-processing inequality the only way a classifier can achieve
lower risk is by relying on environmental features. Thus, Theorem 4.5.1 directly
implies that when E ≤ de, the global minimum necessarily uses these non-invariant
features and therefore will not universally generalize to unseen environments. On
the other hand, in the (perhaps unlikely) case that E > de, any feasible solution will
generalize, and the invariant classifier has the minimum (and minimax) risk of all
such classifiers:
Corollary 4.5.2. For both logistic and 0-1 loss, the invariant classifier is a global
minimum of the IRM objective if and only if E > de.
Let us compare our theoretical findings to those of Arjovsky et al. [2019]. Suppose
the observations x lie in Rd. Roughly, their theorem says that for a learned Φ of
rank r with invariant optimal coefficient β̂, if the training set contains d− r + d/r
“non-degenerate” environments, then β̂ will be optimal for all environments. There
are several important issues with this result: first, they present no result tying the
rank of Φ to their actual objective; their theory thus motivates the objective, but
does not provide any performance guarantees for its solution. Next, observe when
x is high-dimensional (i.e. d ≫ de + dc)—in which case Φ will be low-rank
(i.e. r ≤ de + dc)—their result requires Ω(d) environments, which is extreme.
For example, think of images on a low-dimensional manifold embedded in very
high-dimensional space. Even when d = dc + de, the “ideal” Φ which recovers
precisely zc would have rank dc, and therefore their condition for invariance would
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require E > de+de/dc, a stronger requirement than ours; this inequality also seems
unlikely to hold in most real-world settings. Finally, they give no lower bound on
the number of required environments—prior to this work, there were no existing
results for the performance of the IRM objective when their conditions are not met.
We also run a simple synthetic experiment to verify our theoretical results, drawing
samples according to our model and learning a classifier with the IRM objective.
Details and results of this experiment can be found in Appendix Appendix C.3.2.

We now sketch a proof of part 2 of the theorem for when E = de; this involves
an explicit construction of a Φ of rank dc + 1 whose optimal β̂ is invariant:

Proof Sketch. Since f has an inverse over its range, we can define Φ as a linear
function directly over the latents [zc, ze]. Specifically, we define Φ(x) = [zc, p

⊤ze].
Here, p is a unit-norm vector such that ∀e ∈ E , p⊤µe = σ2

e µ̃, where µ̃ is a fixed
scalar that depends on the geometry of the µe, σ

2
e—such a vector exists so long

as the means are linearly independent. Observe that this Φ also has the desired
rank. Since this is a linear function of a multivariate Gaussian, the label-conditional
distribution of each environment’s non-invariant latents has a simple closed form:
p⊤ze | y ∼ N (y · p⊤µe, ∥p∥2σ2

e)
d
= N (y · σ2

e µ̃, σ
2
e).

For separating two Gaussians, the optimal linear classifier weights are Σ−1(µ1−
µ0)—here, the optimal classifier weight on p⊤ze is precisely 2µ̃, which does not
depend on the environment (and neither do the optimal coefficients for zc). Though
the distribution varies across environments, the optimal classifier is the same! Thus,
Φ directly depends on the environmental features, yet the optimal regression vector
β̂ for each environment is constant. To see that it has lower risk than the invariant
classifier, note that this classifier is Bayes with respect to its features and that the
invariant classifier uses a strict subset of these features, and therefore it has less
information for its predictions.

A purely environmental classifier. The precise value of µ̃ in the proof sketch
above represents how strongly this non-invariant feature is correlated with the label.
In theory, a classifier that achieves a lower objective value could do so by a very
small margin—incorporating an arbitrarily small amount of information from a
non-invariant feature would suffice. This result would be less surprising, since
achieving low empirical risk might still ensure that we are “close” to the invariant
classifier. Our next result shows that this is not the case: there exists a feasible
solution which uses only the environmental features yet performs better than the
invariant classifier on all environments for which µ̃ is large enough.
Theorem 4.5.3. Suppose we observe E ≤ de environments, such that all environ-
mental means are linearly independent. Then there exists a feasible Φ, β̂ which uses
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only environmental features and achieves lower 0-1 risk than the invariant classifier
on every environment e such that σeµ̃ > σ−1

c ∥µc∥ and 2σeµ̃σ
−1
c ∥µc∥ ≥ |β0|.

The latter of these two conditions is effectively trivial, requiring only a small
separation of the means and balance in class labels. From the construction of µ̃ in
the proof of Lemma C.3.1, we can see that the former condition is more likely to
be met when E ≪ de and in environments where some non-invariant features are
reasonably correlated with the label—both of which can be expected to hold in the
high-dimensional setting. Figure C.2 in the appendix plots the results for a few toy
examples for various dimensionalities and variances to see how often this condition
holds in practice. For all settings, the number of environments observed before the
condition ceases to hold is quite high—on the order of de − dc.

4.6 The Failure of IRM in the Non-Linear Regime

We’ve demonstrated that OOD generalization is quite difficult in the linear case,
but it is achievable given enough training environments. Our results—and those
of Arjovsky et al. [2019]—intuitively proceed by observing that each environment
reduces a “degree of freedom” of the invariant solution, such that only the invari-
ant features remain feasible if enough environments are seen. In contrast, in the
non-linear case, it’s not clear how to capture this idea of restricting the “degrees
of freedom”—and in fact our results imply that this intuition is simply wrong.
Instead, we show that the solution generalizes only to test environments that are
sufficiently similar to the training environments. Thus, these objectives present no
real improvement over ERM or DRO.

Non-linear transformations of the latent variables zc, ze make it hard to di-
rectly characterize the optimal linear classifier β̂, which makes reasoning about the
constrained solution to Equation (4.4) difficult. Instead, we turn our attention to
Equation (4.5), the penalized IRM objective used in practice. By analyzing this
objective we can reason about solutions that are sufficiently close to optimal, which
allows for concrete results on the resulting classifier. In this section we demonstrate
a foundational flaw of IRM and related objectives in the non-linear regime: unless
we observe enough environments to “cover” the space of non-invariant features,
a solution that appears to be invariant can still wildly underperform on a new test
distribution. We begin with a definition about the optimality of a coefficient vector
β̂:
Definition 4.6.1. For 0 < γ < 1, a coefficient vector β̂ is γ-close to optimal for a
label-conditional feature distribution z ∼ N (y · µ,Σ) if

β̂⊤µ ≥ (1− γ)2µ⊤Σ−1µ.

55



Since the optimal coefficient vector is precisely 2Σ−1µ, being γ-close implies that
β̂ is reasonably aligned with that optimum. Observe that the definition does not
account for magnitude—the set of vectors which is γ-close to optimal is therefore a
halfspace which is normal to the optimal vector. One of our results in the non-linear
case uses the following assumption, which says that the observed environmental
means are sufficiently similar to one another.
Assumption 4.6.2. There exists a 0 ≤ γ < 1 such that the ERM-optimal coefficients
for the non-invariant features,

βe;ERM := argmin
β̂e

1

|E|
∑
e∈E

Ezc,ze,y∼pe

[
ℓ(σ(β⊤

c zc + β̂⊤
e ze + β0), y)

]
, (4.6)

is γ-close to optimal for every environmental feature distribution in E .
This assumption says the environmental distributions are similar enough such that
the optimal “average classifier” is reasonably predictive for each environment
individually. This is a natural expectation: we are employing IRM precisely because
we expect the ERM classifier to do well on the training set but fail to generalize. If
the environmental parameters are sufficiently orthogonal, we might instead expect
ERM to ignore the features which are not at least moderately predictive across all
environments. Finally, we note that if this assumption only holds for a subset of
features, our result still applies by marginalizing out the dimensions for which it
does not hold.

We are now ready to give our main result in the non-linear regime. We present
a simplified version, assuming that that σ2

e = 1 ∀e. This is purely for clarity
of presentation; the full theorem, for which the result still holds, is presented in
Appendix Appendix C.4. We make use of two constants in the following proof—
the average squared norm of the environmental means, ∥µ∥2 := 1

E

∑
e∈E ∥µe∥2;

and the standard deviation of the response variable of the ERM-optimal classifier,
σERM :=

√
∥βc∥2σ2

c + ∥βe;ERM∥2σ2
e .

Theorem 4.6.3 (Non-linear case, simplified). Suppose we observe E environments
E = {e1, e2, . . . , eE}, where σ2

e = 1 ∀e. Then, for any ϵ > 1, there exists a fea-
turizer Φϵ which, combined with the ERM-optimal classifier β̂ = [βc, βe;ERM, β0]

⊤,
satisfies the following properties, with pϵ,de := exp{−demin((ϵ−1), (ϵ−1)2)/8}:

1. The regularization term of Φϵ, β̂ as in Equation (4.5) is bounded as

1

E

∑
e∈E
∥∇

β̂
Re(Φϵ, β̂)∥2 ∈ O

(
p2ϵ,de

(
cϵde + ∥µ∥2

))
,

for some constant cϵ that depends only on ϵ.
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2. Φϵ, β̂ exactly matches the invariant classifier on at least a 1− pϵ,de fraction
of the training set. On the remaining inputs, it matches the ERM-optimal
solution.

Further, for any test distribution, suppose its environmental mean µE+1 is sufficiently
far from the training means:

∀e ∈ E , min
y∈{±1}

∥µE+1 − y · µe∥ ≥ (
√
ϵ+ δ)

√
de (4.7)

for some δ > 0, and define q := 2E√
πδ

exp{−δ2}. Then the following holds:

3. Φϵ, β̂ is equivalent to the ERM-optimal classifier on at least a 1− q fraction
of the test distribution.

4. Under Assumption Assumption 4.6.2, suppose it holds that µE+1 =
−∑e∈E αeµe for some set of coefficients {αe}e∈E . Then so long as

∑
e∈E

αe∥µe∥2 ≥
∥µc∥2/σ2

c + |β0|/2 + σERM

1− γ
, (4.8)

the 0-1 risk of Φϵ, β̂ on the new environment is greater than .975− q.
Before giving a proof sketch, we give a brief intuition for each of the claims

made in this theorem:

1. The first claim says that the classifier we construct will have a gradient squared
norm penalty scaling as p2ϵ,de which is exponentially small in de. Thus, in
high dimensions, the penalty term for our classifier will shrink rapidly towards
0, meaning it will appear as a perfectly reasonable solution to the objective
(Equation (4.5)).

2. The second claim says that this “fake” invariant classifier is identical to the
true one on all but an exponentially small fraction of the training data; on the
remaining fraction, it matches the ERM-optimal solution, which has lower risk.
The correspondence between constrained and penalized optimization implies
that for large enough de, the “fake” classifier will often be a preferred solution.
In the finite-sample setting, we would need exponentially many samples to even
distinguish between the two!

3. The third claim is the crux of the theorem; it says that this classifier we’ve
constructed will completely fail to use invariant prediction on most environ-
ments. Recall, the intent of IRM is to perform well precisely when ERM breaks
down: when the test distribution differs greatly from the training distribution.
If we assume a Gaussian prior on the training environment means, they will
have an ℓ2-norm separation in O(

√
de) with high probability. Observe that q
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will be vanishingly small so long as δ ≥ polylog(E). Thus, part 3 says that
IRM fails to use invariant prediction on any environment that is even slightly
outside the high probability region of the training prior; even a separation of
Ω(
√
de logE) suffices. If we instead expect the new environments to be similar,

ERM already guarantees reasonable average performance at test-time; thus, IRM
fundamentally does not improve over ERM in the non-linear regime.

4. The final statement demonstrates a particularly egregious failure case of this
classifier: just like ERM, if the correlation between the non-invariant features
and the label reverses at test-time, our classifier will have significantly worse
than chance performance.

A back-of-the-envelope calculation for Equations Equation (4.7), Equation (4.8) and
Assumption Assumption 4.6.2 makes clear just how broadly we can expect them to
hold; for details, see Appendix Appendix C.4.2. With this intuition, we now present
a sketch of the proof—the full proof can be found in Appendix Appendix C.4.

Proof Sketch. The key is a construction of Φ which is almost identical to the invari-
ant classifier on the observed environments, yet behaves like the ERM solution at
test time. We partition the environmental feature space into two sets, B,Bc ⊂ Rde .
B is the union of balls centered at each µe, each with a large enough radius that it
contains the majority of samples from that environment; therefore B represents the
vast majority of the training distribution. On this set, define Φ(x) = [zc], so our
construction is equal to the invariant classifier. Now consider Bc = Rde \B. We use
standard concentration results to upper bound the measure of Bc under the training
distribution by pϵ,de . Next, we show how choosing Φ(x) = f−1(x) = [zc, ze]

⊤

on this set results in the gradient squared norm sub-optimality bound, which is of
order p2ϵ,de (part 1). It is also clear that our constructed classifier is equivalent to
the ERM-optimal solution on Bc (part 2). Thus, our classifier will have often have
lower empirical risk on Bc, counter-weighting the regularization penalty.

The second part of the proof is to demonstrate that while B has large measure un-
der the training environments, it will have very small measure (upper bounded by q)
under any moderately different test environment. We can see this by considering the
separation of means (Equation (4.7)); the measure of each ball in B can be bounded
by the measure of the halfspace containing it; if each ball is far enough away from
µE+1, then the total measure of these halfspaces must be small. At test time, our clas-
sifier will therefore match the ERM solution on all but q of the observations (part 3).
Finally, we lower bound the 0-1 risk of the ERM classifier under such a distribution
shift by analyzing the distribution of the response variable. The proof is completed
by observing that our classifier’s risk can differ from this by at most q.

Theorem 4.6.3 shows that it’s possible for the IRM solution to perform poorly on
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environments which differ even moderately from the training data. We can of course
guarantee generalization if the training distributions “cover” (or approximately
cover) the full space of environments in order to tie down the performance on future
distributions. But in such a scenario, there would no longer be a need for ICP; we
could expect ERM or DRO to perform just as well. Once more, we find that our
result trivially extends to the alternative objectives; we again refer to Appendix
Appendix C.5.

4.7 Conclusion

Out-of-distribution generalization is an important direction for future research,
and Invariant Causal Prediction remains a promising approach. However, formal
results for latent variable models are lacking, particularly in the non-linear setting.
This paper demonstrates that Invariant Risk Minimization and subsequent works
have significant under-explored risks and issues with their formulation. This raises
the question: what is the correct formulation for invariant prediction when the
observations are complex, non-linear functions of unobserved latent factors? It
would be interesting to investigate ours or similar models further; some possible
directions include (a) characterizing in which settings specifically an “invariance-
like” constraint can lead to improved performance over ERM and (b) formulating
an objective that encourages invariance in the non-linear setting in a way that can be
formally demonstrated and quantified. We hope that this work will inspire further
theoretical study on the effectiveness of IRM and similar objectives.
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Chapter 5

Iterative Feature Matching:
Toward Provable Domain
Generalization with Logarithmic
Environments

This chapter is based on Chen et al. [2022]:
Chen, Y., Rosenfeld, E., Sellke, M., Ma, T. & Risteski, A.
Iterative Feature Matching: Toward Provable Domain Generalization with
Logarithmic Environments.
In Thirty-fifth Conference on Neural Information Processing Systems, 2022.

5.1 Introduction

Domain generalization aims at performing well on unseen environments using
labeled data from a limited number of training environments [Blanchard et al., 2011].
In contrast to transfer learning or domain adaptation, domain generalization assumes
that neither labeled or unlabeled data from the test environments is available at
training time. For example, a medical diagnostic system may have access to training
datasets from only a few hospitals, but will be deployed on test cases from many
other hospitals [Choudhary et al., 2020]; a traffic scene semantic segmentation
system may be trained on data from some specific weather conditions, but will need
to perform well under other conditions [Yue et al., 2019].

There are many algorithms for domain generalization, including Invariant Risk
Minimization (IRM) [Arjovsky et al., 2019] and several variants. IRM is inspired
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by the principle of invariance of causal mechanisms [Pearl, 2009], which, under
sufficiently strong assumptions, allows for provable identifiability of the features
that achieve minimax domain generalization [Peters et al., 2016, Heinze-Deml et al.,
2018]. However, empirical results for these algorithms are mixed; Gulrajani and
Lopez-Paz [2021], Aubin et al. [2021] present experimental evidence that these
methods do not consistently outperform ERM for either realistic or simple linear
data models.

Recent theoretical works [Rosenfeld et al., 2021, Kamath et al., 2021] also
question the theoretical foundations of IRM and its variants, shedding light on
their failure conditions. These works study specific data generative models; a
common assumption is that, conditioned on the label, some invariant features have
identical distribution for all environments, and other spurious features have varying
distributions across environments. The goal of domain generalization is then to
obtain an invariant predictor, i.e. a classifier which uses only the invariant features.
These works also often assume each training environment contains infinite samples.
Thus, the central measure of domain generalization is the number of environments
needed to recover an invariant predictor—we refer to this measure as the environment
complexity of a learning algorithm. Rosenfeld et al. [2021] prove that even for a
simple generative model and linear classifiers, the environment complexity of IRM—
and other objectives based on the same principle of invariance—is at least as large
as the dimension of the spurious latent features, ds. Further results by Kamath et al.
[2021], Ahuja et al. [2021] also point to a linear environment complexity.

Such a linear environment complexity is prohibitive for realistic applications.
We usually expect there to be many more spurious dimensions than signal dimen-
sions, whereas the number of environments observed is presumed to be much fewer.
Thus, we aim to study whether it is possible to achieve an environment complexity
sub-linear or even logarithmic in dimension, at least for the structured cases studied
in prior theoretical works. Although the models in these works are simple, they
help elucidate why existing algorithms fail and can therefore help inform better
algorithmic design. Indeed, in this paper, our algorithm provably generalizes with
logarithmic environment complexity.

Rosenfeld et al. [2021] showed that in their linear data model with isotropic
spurious covariances, IRM has o(ds) environment complexity. We show that there
is a simple algorithm that achieves an upper bound of O(1) environment com-
plexity for this baseline model. Therefore we study a more natural “smoothed
covariance” extension of the data model which allows for dependence between
invariant and spurious coordinates. Instead of assuming that the spurious features
have isotropic covariances [Rosenfeld et al., 2021], we model their covariances
as generic random positive definite matrices with adversarial biases, i.e., the co-
variances can be arbitrary with added noise. Under this new model, we show that
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ERM and IRM still do not generalize after seeing fewer than ds environments
(Theorem 5.4.2, Theorem 5.4.3). On the other hand, we propose a conceptually
simple algorithm based on iterative feature matching (IFM) that is guaranteed with
high probability to recover only the invariant features with environment complexity
E = O(log ds). Our method therefore provably achieves generalization to the
worst-case test environment with a much more reasonable number of observed
environments (Theorem 5.4.1).

The main idea behind IFM is to iteratively project the features to a lower
dimension, in each round matching the label-conditioned feature distributions
on a small, disjoint subset of the training environments. As a projection which
induces invariance in the non-invariant features across one subset of environments is
unlikely to do so for a different subset, we can show that with high probability, each
projection removes only spurious feature dimensions. By avoiding an end-to-end
training scheme, we effectively prevent the different environments from “colluding”
to create a misleading solution which which depends on spurious features. As a
result, IFM recovers optimal invariant predictor after O(log ds) iterations, requiring
O(log ds) environments.

To corroborate the advantages of the proposed method, we perform experiments
on a Gaussian dataset and a semi-synthetic Noised MNIST [LeCun et al., 1998]
dataset, where the background noise spuriously correlates with the label. Our results
suggest that practitioners may benefit from feature matching algorithms when the
distinguishing property of the signal feature is indeed conditional distributional
invariance, and may get additional advantage via matching at multiple layers with
diminishing dimensions, echoing existing empirical observations [Long et al., 2015,
Luo et al., 2017].

5.1.1 Additional Related Works

For a domain generalization problem, it is crucial to make carefully reasoned
assumptions on what remains constant and what varies across environments, as
different domain shift assumptions call for different algorithms. One could consider
modeling the signal features Φ(x) as satisfying invariance of P (Φ(x) | y) (“label
shift”) or P (y | Φ(x)) (“covariate shift”), among other possibilities. The model we
consider allows for both of these invariances.

Distribution matching and conditional invariance. In the empirical literature,
invariance of the conditional signal feature distribution P (Φ(x) | y) is the un-
derlying assumption in widely adopted algorithms such as Correlation Alignment
(CORAL) [Sun et al., 2016a, Sun and Saenko, 2016], Maximum Mean Discrepancy
(MMD, Gretton et al. [2012]) [Li et al., 2018b], and (Conditional) Domain Adver-
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sarial Networks [Ganin et al., 2016, Long et al., 2018]. These algorithms are popular
and enjoy empirical success in both domain adaptation and generalization, but they
lack formal guarantees. Previous empirical works usually justify these algorithms
using the generalization bounds based onH-divergence [Ben-David et al., 2010a],
but those bounds are generally vacuous and thus cannot explain their success. We
instead study a specific data model, which is necessary for concrete guarantees on
environment complexity. Prior works attempting to theoretically characterize the
performance of feature matching algorithms emphasize lower bounds [Zhao et al.,
2019, Tachet des Combes et al., 2020]. In contrast, our work gives the first positive
theoretical justification for feature distribution matching algorithms.

The other major alternative assumption in the literature is invariance of the label
distribution conditioned on the signal features. Arjovsky et al. [2019] assume invari-
ant E[y | Φ(x)], and follow-up works assume invariance of higher moments [Xie
et al., 2020, Jin et al., 2020, Mahajan et al., 2020, Krueger et al., 2020, Bellot and
van der Schaar, 2020].

Broader theoretical study of domain generalization. Other works analyze the
task of domain generalization more generally in different settings. Blanchard et al.
[2011], Muandet et al. [2013] assume a fixed prior over environments and present
classification algorithms with generalization bounds that depend on properties of the
prior. Considering instead convex combinations of domain likelihoods, Albuquerque
et al. [2020] give a generalization bound for distributions with sufficiently small
H-divergence, while Rosenfeld et al. [2022c] model domain generalization as an
online game, showing that generalizing beyond the convex hull is NP-hard.

5.2 Preliminaries

5.2.1 Domain Generalization

In domain generalization, we are given a set of E training environments Etr
indexed by e ∈ [E],1 and a set of test environments Ets. For environment e we
have n examples {(Xe

i , Y
e
i )}ni=1 drawn from the distribution Pe. In this work

we study the infinite sample limit n → ∞ so as to separate the effect of limited
training environments from that of limited samples per environment, as is done in
previous theoretical works [Rosenfeld et al., 2021, Kamath et al., 2021]. Let X ,
P , Y denote the space of inputs, intermediate features, and labels. For a featurizer
Φ : X → P and classifier w : P → Y , their risk on environment e is denoted

1We define [n] = {1, . . . , n}; 0n×m ∈ Rn×m denotes an all-zero matrix; Sd is the unit sphere in
Rd+1; sign (c) ∈ {±1, 0} is the sign of scalar c ∈ R. † denotes the Moore-Penrose pseudo-inverse.
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by Re
Φ,w = E(X,Y )∼Pe

[l(w ◦ Φ(X), Y )] for any common loss function l. In this
paper we focus on Y = {±1}, linear featurizers Φ(X) = UX for U ∈ Rk×d,
and unit-norm predictors Ŷ = sign (w⊤Ux) where w ∈ Rk and ∥w⊤U∥2 = 1 for
some feature dimension k ≤ d chosen by the algorithm. A predictor’s 0-1 risk on
environment e is denoted by Re

U,w = Pr(X,Y )∼Pe
[sign (w⊤UX) ̸= Y ]. We focus

on unit-norm predictors because we evaluate on the 0-1 risk on test environments,
which are invariant to the scaling of w⊤U under our data model.

5.2.2 Baseline Algorithms

We analyze the performance of our proposed method and compare it to two
baseline algorithms, ERM and IRM.

ERM learns a classifier that minimizes the average loss over all training envi-
ronments, where l is any common training loss such as the logistic loss:

min
w∈Sd−1

1

E

∑
e∈[E]

E(X,Y )∼Pe
[l(w⊤X,Y )].

IRM learns a featurizer Φ(X) ∈ Rk such that the optimal classifier on top of the
featurizer is invariant across training environments. As we focus on linear classifier,
it is equivalent to learning a linear transformation U ∈ Rk×d such that it induces a
classifier w that is optimal for all e ∈ Etr:

min
U∈Rk×d,w∈Rk,∥w⊤U∥2=1

1

E

∑
e∈[E]

E(X,Y )∼Pe
l((w⊤UX), Y )

s.t. w ∈ argmin
w′∈Rk

E(X,Y )∼Pe
[l((w′⊤UX), Y )],∀e ∈ Etr.

Note that this is objective is not the same as feature distribution matching; IRM
only tries to match the first moment. Observe that this constrained objective is
intended to solve a minimax domain generalization problem, as opposed to ERM
which is typically viewed as minimizing the risk in expectation.

5.3 Problem Setup

We first recall the data model from Rosenfeld et al. [2021]. We assume without
loss of generality that the label Y is uniformly randomly drawn from {±1} (exten-
sion of our theorems to Y = 1 with probability η ̸= 0.5 is straightforward). Latent
variable Z consists of invariant features Z1 ∈ Rr and spurious features Z2 ∈ Rds
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where ds = d − r. The number of spurious features can be much larger than the
number of invariant features, i.e. ds ≫ r. The input X ∈ Rd is generated via a
linear transformation of latent variable Z, i.e. X = SZ for an invertible matrix
S ∈ Rd×d.

For each training environment indexed by e ∈ [E], the features conditioned on
Y are drawn from a Gaussian distribution with mean Y · µe ∈ Rr and nonsingular
covariance Σe ∈ Rd×d. The assumption of symmetric class center with respect to
the origin can also be relaxed. Define µe = [µ1, µ

e
2]. The invariant features have

constant means µ1 and covariances Σ1 for all environments. The overall data model
for training environments is summarized below:

Y ∼ unif{±1}
Z|Y ∼ N(Y · µe,Σe) ∈ Rd

X = SZ.

Since the goal of invariant feature learning is to learn a predictor that only uses the
invariant features, one reasonable measure for domain generalization is a predic-
tor’s performance on test environments where the spurious features Z2 are drawn
from a different distribution—in particular, they are usually chosen adversarially.
A classifier that predicts using the spurious features will perform badly on such
test environments. When modeling the test environments, we consider the diffi-
cult scenario where there is one corresponding test environment for each training
environment, whose parameters are the same except that the spurious means are
flipped. Formally, for each environment e ∈ Etr we construct a corresponding test
environment e′ ∈ Etest where

Z|Y ∼ N(Y · [µ1,−µe
2],Σe).

Crucially, in this setting where the observations X are a linear function of the
latents Z, Rosenfeld et al. [2021] assume that the covariances of spurious features
are isotropic and vary only in magnitude:
Assumption 5.3.1 (Data model for covariances in Rosenfeld et al. [2021]).

Σe =

[
Σ1 0
0 Σe

2

]
, Σe

2 = σ2
eIds , where σe is a different scalar for any environment

indexed by e.
Rosenfeld et al. [2021] proved that the environment complexity of IRM is o(ds)

in this data model. In fact, this data model is easy, as we show a simple algorithm
that finds the invariant predictor using only 2 environments (Theorem 5.4.4). To
study a more interesting setting with potentially higher environment complexity, we
generalize the above data model in two aspects: first, the covariance of spurious

66



features for each environment is a generic random PSD matrix, instead of only
random in scaling; second, the invariant and spurious features are dependent, even
though the covariance of invariant features remains constant.
Assumption 5.3.2 (Data model for covariances in this work).

Σe =

[
Σ1 Γ⊤

e

Γe Σe
2

]
, where Γe ∈ Rds×r differs for different e, Σe

2 ∼ Σe
2 +GeG

⊤
e ,

where Σe
2 ∈ Rds×ds is arbitrary (and can be adversarial), and [Ge]i,j

iid∼ N(0, 1)
for all i, j ∈ [ds]. Furthermore,maxe ∥Σe

2∥22 ≤ D.

Here Σe
2 can be arbitrary up to a small perturbation, which is almost always satis-

fied in practice. This form of assumption is common in smoothed analysis [Spielman
and Teng, 2004]. In the next section, we show that baseline algorithms ERM and
IRM still have o(ds) environment complexity for under Assumption 5.3.2. We
propose a new algorithm (Algorithm 3) that drastically reduces the required num-
ber of training environments from O(ds) to O(log ds). Note that the environment
complexity of our algorithm only depends logarithmically on the norm bound D.

5.4 Main Results

Armed with Assumption 5.3.2, we are now ready to present our main results.
We begin by presenting our algorithm based on iterative feature matching. In the
following subsections, we provide formal guarantees for its environment complexity
and compare it to ERM and IRM.

5.4.1 Iterative Feature Matching Algorithm

We hope to recover the invariant features by imposing constraints that are
satisfied by them but not the spurious ones. A natural idea is to match the feature
means and covariances across Etr. Since µ1,Σ1 are constant, any orthonormal
featurizer U ∈ Rr×d such that US has only non-zero entries in the first r rows
yields invariant means USµe and covariances USΣeS⊤U⊤. Thus we need E large
enough such that any U ′ ∈ Rr×d using spurious dimensions cannot match the
means and covariances. Informally, for each e ∈ [E] we get r × r equations from
matching covariances UΣeU⊤ = C, and we have r × d parameters to estimate
in U . Rough parameter counting suggests that if we match covariances of all E
environments jointly, we need at least E > d/r environments to find a unique
solution. Our key observation is that, due to the independence of randomness in Σe

2,
we can split E environments into disjoint groups E1, . . . , ET , and use Et to train an
orthonormal featurizer that shrinks the feature dimensions from rt−1 to rt. Thus, in
each round we shrink the dimension by a constant factor using a constant number of
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Algorithm 3 Iterative Feature Matching (IFM) algorithm

Require: Invariant feature dimension r, target feature dimensions r0 = d > r1 >
· · · > rT = r, number of training environments E = |Etr|, infinite samples
{(Xe

i , Y
e
i )}∞i=1 ∼ Pe from each environment e ∈ Etr.

Let {Et}Tt=1 be a partition of Etr such that for t < T , |Et| = Ω̃((rt−1− rt)/(rt−
r − 1)), and |ET | = 3.
for t = 1 to T do

Find orthonormal Ut ∈ Rrt×rt−1 and Ct ∈ Rrt×rt such that for all e ∈ Et
(letting Ū := UtUt−1 . . . U2U1),

E(X,Y )∼Pe
[ŪXX⊤Ū⊤|Y ] = Ct (5.1)

via minimizing∑
e,e′

[
Cove[ŪXX⊤Ū⊤|Y ]− Cove′ [ŪXX⊤Ū⊤|Y ]

]
+ ∥U⊤

t Ut − I∥2F .

end for
Return classifier ŵ = minw∈Sr−1

1
E

∑
e∈[E] E(X,Y )∼Pe

l(Ut . . . U1X,Y ).

environments. The main theoretical challenge that remains is to show that in each
iteration, with high probability, only spurious features are projected out.

This brings us to IFM (Algorithm 3), which proceeds in T = O(log ds) rounds.
Starting with an input dimension r0 = d, each round we learn an orthonormal matrix
Ut projecting features from rt−1 to rt dimensions so that the feature covariances
after projection match across a fresh set of training environments. Although IFM
requires the invariant dimension r to be known, in practice it can be treated as
a hyperparameter and selected via holding out some training environments for
validation.

CORAL [Sun et al., 2016a] also matches feature means and covariances. How-
ever, there are several salient differences between IFM and CORAL: first, CORAL
does not enforce that the featurizer is orthonormal; second, IFM learns to extract
features in an unsupervised manner, whereas CORAL jointly minimizes the su-
pervised loss and feature distribution discrepancy; third, IFM matches the feature
distributions at multiple layers and uses a disjoint set of environments for each
layer—this iterative process is necessary for the theoretical guarantees we provide.
Despite these differences, our theoretical results serve as a justification for using
feature matching algorithms in general, when the distinguishing attribute of signal
vs. spurious features is that the former have invariant distributions across all envi-
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ronments. In Section 5.6 we empirically evaluate whether bridging the gap between
IFM and CORAL may improve test accuracy.

The following theorem states that the environment complexity of IFM is loga-
rithmic in the spurious feature dimension. A proof sketch is given in Section 5.5.
Theorem 5.4.1 (IFM upper bound). Under Assumption 5.3.2, suppose IFM takes in
{rt}Tt=1 as inputs, where r0 = r + ds, rt − r = ⌊(rt−1 − r)/2⌋ for all t < T , and
rT = r. Suppose E = O(log ds). With probability 1− exp (−Ω(ds)), IFM outputs
ŵ = w∗.

5.4.2 ERM and IRM Still Have Linear Environment Complexity

We’ve demonstrated that IFM has low environment complexity thanks to the
additional structure assumed in our model. However, it could also be the case that
this assumption allows ERM and IRM to succeed as well; perhaps they only fail
because of the fixed covariance structure studied by Rosenfeld et al. [2021]. These
next two results demonstrate that this is not the case: even with this structure, these
algorithms are still unable to generalize to worst-case test environments.

ERM has low test accuracy In contrast to IFM, ERM still suffers from linear
environment complexity under Assumption 5.3.2. The first theorem says there are
hard instances where the ERM solution has worse-than-random performance on the
test environments.
Theorem 5.4.2 (ERM lower bound). Under Assumption 5.3.2, suppose E ≤ ds.

Then any unit-norm linear classifier which achieves accuracy ≥ Φ

(
2∥µ1∥√
σmin(Σe)

)
on all training environments will suffer 0-1 error at least 1

2 on every test environment
with flipped spurious mean, where Φ is the standard Normal CDF.

A complete proof of Theorem 5.4.2 is in Appendix D.2. Note that it is quite
reasonable to assume that the ERM solution satisfies the accuracy condition. In
particular, it is common to model the spurious features as having much greater
magnitude than the invariant features, since they have much greater dimensionality.
For example, with a unit-norm mean we would expect ∥µ1∥2 ≈ r/d, ∥µe

2∥2 ≈ ds/d.
Then for r ≪ d and σmin(Σ

e) = Ω(1/d) we have that 2∥µ1∥/
√

σmin(Σe) =

O(
√
r/d) is very close to 0, meaning the lower bound Φ

(
2∥µ1∥√
σmin(Σe)

)
is only

slightly larger than 1
2 .

IRM fails to learn invariant features Our next theorem proves that even under
Assumption 5.3.2, IRM is still not guaranteed to find an invariant predictor. We
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can show this by proving that when E ≤ ds, we can find a featurizer that only uses
spurious dimensions, i.e., us ∈ Rds , such that u⊤s Σ

e
2us = u⊤s µ

e
2 for all e ∈ Etr.

If so, the optimal predictor on top of features u⊤s Z2, ŵe = (u⊤s Σ
e
2us)

−1u⊤s µ
e is

invariant across all e, and can therefore be the preferred solution IRM when the
spurious features have larger margin on the training environments.

Theorem 5.4.3 (IRM lower bound). Suppose E ≤ ds. If µ1
2, . . . , µ

E
2 ∈ Rds are

linearly independent, then there exists us ∈ Rds , ∥us∥2 > 0, such that u⊤s Σ
e
2us =

u⊤s µ
e
2 for all e ∈ [E].

Observe that each environment provides an ellipsoidal constraint Ee = {us ∈
Rd
s : u⊤s Σ

e
2us − u⊤2 µ

e
2 = 0}. The origin is a trivial intersection. We prove the

existence of a non-trivial intersection using tools from differential topology. The
key lemma is that the total number of intersection points between two manifolds of
complementary dimensions k, d− k is even when certain tranversality conditions
hold. Using these techniques, we show that |⋂eEe| ≥ 2 for almost all matrices
Σ1
2, . . . ,Σ

E
2 , as long as the means are linearly independent. A complete proof of

Theorem 5.4.3 is in Appendix D.3.

5.4.3 A Simple Algorithm Achieves O(1) Environment Complexity for
the Isotropic Covariance Model in Rosenfeld et al. [2021]

We improve the upper bound of the environment complexities of the data model
in Rosenfeld et al. [2021] via a new and simple Algorithm 4. Intuitively, subtracting
the label-conditional covariances of any two environments yield the subspace of
spurious coordinates Q. Once we obtain Q, we can transform all observations
(Xe

i , Y
e
i ) to (Xe

i
′, Y e

i ) where Xe
i
′ = (I − QQ⊤)Xe

i is the projection of Xe
i onto

the orthogonal subspace of Q. The transformed inputs have no signals in any
spurious dimensions, so performing logistic regression on data (Xe

i
′, Y e

i )
∞
i=1 from

any environment e yields the optimal invariant predictor w∗.

The following theorem provides formal guarantees for the environment com-
plexity of Algorithm 4. The proof of is in Appendix D.4.

Theorem 5.4.4. Under Assumption 5.3.1, Algorithm 4 satisfies ŵ = w∗.

Even though Algorithm 4 achieves O(1) environment complexity when invariant
and spurious features are independent, it does not work under Assumption 5.3.2, as
subtracting the label-conditional covariances from two environments fails to yield
the subspace of spurious features.
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Algorithm 4 A simple algorithm when invariant and spurious features are indepen-
dent
Require: Invariant feature dimension r, spurious feature dimensions ds, 2 training

environments with infinite samples {(Xe
i , Y

e
i )}∞i=1 ∼ Pe.

1: Taking the difference between the covariances of class 1 examples from the two
environments B = Cove[X|Y = 1]− Cove′ [X|Y = 1].

2: Perform SVD B = QΓQ⊤ for orthonormal Q ∈ Rd×ds and diagonal Γ ∈
Rds×ds .

3: Project the mean of class 1 examples E[X|Y = 1] unto orthogonal subspace of
B: µ′ = (I −QQ⊤)E[X|Y = 1].

4: Project the covariance of class 1 examples Σ′ = (I − QQ⊤)Cove[X|Y =
1](I −QQ⊤).

5: Return classifier ŵ = Σ′†µ′.

5.5 Proof Sketch for the Main Upper Bound Theorem 5.4.1

To argue that IFM outputs a featurizer U1 . . . UT that does not use the spurious
features, we need to show that the right ds columns of matrix UT . . . U1S are all-
zero. The main lemma below says that this happens with high probability if we
match Ω̃(1) 2 environments at every iteration,

Lemma 5.5.1. If for all 1 ≤ t < T , |Et| = Et = Ω
( rt−1−rt

rt−1 max
{
1, log

(
D

(rt−1)ds

)
,

log
(

ds
rt−1

)})
, and ET ≥ 3, and U1, . . . , UT are the orthonormal matrices returned

by IFM, then with probability 1− exp (−Ω(ds)), if we write UT . . . U1S = [A,B],
where B ∈ Rr×ds , then B = 0r×ds .

Theorem 5.4.1 follows from Lemma 5.5.1 as follows: when we set rt = ⌊(rt−1+
r)/2⌋ for t < T , we have Et = Ω̃(1) for all t, and T = O(log ds). Therefore with
an environment complexity of O(log ds), we learn a feature extractor U = UT . . . U1

that does not use any spurious dimensions. Since U is orthonormal, it must contain
all signal dimensions. The predictor on top of this representation uses all and only
signal dimensions, so with high probability, IFM outputs ŵ = w∗.

The first step towards proving Lemma 5.5.1 is to show that with high probability,
any one-layer featurizer Q1 ∈ Rk1×ds that uses only spurious dimensions cannot
match feature covariances from Ω̃(ds/k1) environments. If a featurizer U1 ∈ Rr1×d

uses k1 spurious dimensions, there is a corresponding rank-k1 featurizer Q1 ∈
Rk1×ds that uses only spurious dimensions. So Lemma 5.5.2 implies that any U1

that matches covariances in E1 must use at most ds/E1 spurious dimensions. We

2Ω̃(·) hides logarithmic factors in D, r, ds.
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will then apply this argument recursively until we have 0 spurious dimensions.
Lemma 5.5.2 (Informal version of Lemma D.1.2). For any integer 2 ≤ k1 ≤
ds/2, when |E1| = E1 = Ω

(
ds−k1
k1−1 max

{
1, log

(
D

(k1−1)ds

)
, log

(
ds

k1−1

)})
, with

probability 1−O(exp (−ds)), no orthonormal Q ∈ Rk1×ds satisfies that for some
constant C1 ∈ Rk1×k1 .

∀e ∈ [E1], QΣe
2Q

⊤ = C1. (5.2)

The formal statement Lemma D.1.2 and its proof can be found in Appendix D.1.
On a high level, we discretize over the space of Q, and show that for fixed Q,
denoting by qi its i-th row, the probability that q⊤i G1G

⊤
1 qj − q⊤i G2G

⊤
2 qj = 0 for

all i ̸= j is small, so Equation (5.2) cannot be true for this fixed Q. Union bounding
over the covering, with high probability, no Q can satisfy Equation (5.2).

The next claim says that Lemma 5.5.2 can be applied iteratively, i.e. fixing a
featurizer from previous iterations that uses kt−1 spurious dimensions, with high
probability, any Ut that matches features from Ω (kt−1/kt) new environments uses
at most kt spurious dimensions.
Corollary 5.5.3 (Informal version of Corollary D.1.6). Suppose 2 ≤ kt ≤ kt−1/2 ≤
ds/2. When |Et| = Et = Ω

(
kt−1−kt
kt−1 max

{
1, log

(
D

(kt−1)ds

)
, log

(
ds

kt−1

)})
, for

fixed orthonormal P ∈ Rkt−1×ds , with probability 1−O(exp (−ds)), no orthonor-
mal Q ∈ Rkt×kt−1 satisfies ∀e ∈ [Et], QPΣe

2P
⊤Q⊤ = Ct for some constant

Ct ∈ Rrt×rt .
The formal statement Corollary D.1.6 and its proof can be found in Appendix D.1.

Lemma 5.5.1 follows from iterative application of Corollary 5.5.3, as shown below.

Proof of Lemma 5.5.1. We shall prove that for all t < T , if we write Ut . . . U1S =
[At, Bt] where At, Bt are the left r and right ds columns of Ut . . . U1S, then kt =
rank(Bt) = rt − r with probability 1 − O(t exp(−ds)). Since T = O(ds), for
t = T − 1, the probability 1−O(T exp(−ds)) = 1− exp (−Ω(ds)).

We prove by induction on t. For any matrix X , define PX = X(X⊤X)−1X⊤

as the projection unto the column span of X . For the base case t = 1, since
rank(B1) = k1, we have rank((I − PA1)B1) = rank(U1(I − PA0)B0) = k1.
Therefore matching the covariances implies

U1S

[
Σ1 Γ⊤

e

Γe Σe
2

]
S⊤U⊤

1 = C

=⇒ (I − PA1)
(
A1Σ1A

⊤
1 +A1ΓeB

⊤
1 +B1Γ

⊤
e A1 +B1Σ

e
2B

⊤
1

)
(I − PA1) = C ′

=⇒ (I − PA1)B1Σ
e
2B

⊤
1 (I − PA1) = C ′′

=⇒ Q1Σ
e
2Q

⊤
1 = C ′′′,
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where (I − PA1)B1 = L1Q1 for some orthonormal Q1 ∈ Rk1×ds . This event
happens with probability O(exp (−ds)) by Lemma 5.5.2.

For t ≥ 2, suppose to the contrary that there is orthonormal Ut ∈ Rrt×rt−1

satisfying equation 5.1 such that Ut . . . U1S = [At, Bt] where Bt ∈ Rrt×ds , and
rank(Bt) = kt > rt − r. By induction hypothesis, with probability 1 − O((t −
1) exp (−ds)), we can write Ut−1 . . . U1S = [At−1, Bt−1] where Bt−1 ∈ Rrt−1×ds

has rank kt−1 ≤ rt−1 − r. Below we condition on this event.
Suppose (I − PAt−1)Bt−1 = Pt−1Qt−1 for orthonomral Qt−1 ∈ Rkt−1×ds .

Therefore we can write (I − PAt)Bt = UtPt−1Qt−1 = PtQtQt−1 for some
orthonormal Qt ∈ Rkt×kt−1 .

Therefore matching covariances implies ∀e ∈ Et, QtQt−1Σ
e
2Q

⊤
t−1Q

⊤
t = C ′′

t .
Applying Corollary 5.5.3 with P = Qt−1, Q = Qt, with probability 1−O(exp (−ds)),
no Qt satisfies ∀e ∈ [E], QtQt−1Σ

e
2Q

⊤
t−1Q

⊤
t = Ct for some constant Ct ∈ Rrt×rt .

For the last iteration t = T , ET = 3. We assume without loss of generality
rank(BT−1) = kT−1 ∈ {1, 2}, since we can always half the spurious dimensions
rt − r ≤ (rt−1 − r)/2 until rt−1 − r = 2.

Lemma D.1.7 and Lemma D.1.8 in Appendix D.1 deal with the cases when
kT−1 = 2 and kT−1 = 1, respectively. Suppose rank(BT−1) = 2, its associated
orthonormal matrix QT−1 ∈ R2×ds . Lemma D.1.7 says that with yields that,
with probability 1, no vector on the unit circle qT ∈ S1 satisfies q⊤T QT−1(Σ

e
2 −

Σe+1
2 )Q⊤

T−1qT = 0 for e ∈ {1, 2}. Suppose rank(BT−1) = 1, its associated unit-
norm vector qT−1 ∈ Rds . Lemma D.1.8 says that with probability 1, no non-zero
scalar qT satisfies q2T q

⊤
T−1(Σ

1
2 − Σ2

2)qT−1 = 0. Combining the two cases, with
probability 1−O((T − 1) exp(−ds)), rank(BT ) = kT = 0.

5.6 Experiments

In light of the differences between IFM and CORAL discussed in Section 5.4.1,
we test several questions inspired by our theory: (Q1) Do feature matching algo-
rithms (IFM and CORAL) have much smaller environment complexity compared
to ERM and IRM, with finite samples drawn from data models similar to our
assumptions? (Q2) Can decoupling feature matching and supervised training of
the classifier (IFM) improve over joint training (CORAL)? (Q3) For neural net-
work featurizers, can matching feature distributions at multiple layers improve over
matching at only the last layer (naive CORAL)? (Q4) Can matching disjoint sets
of environments at each layer perform as well as matching all environments at all
layers? (Q5) Is it important to shrink feature dimensions? We use two tasks to
investigate those questions empirically. Appendix D.5 contains additional details.
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Figure 5.1: For Gaussian dataset, our al-
gorithm IFM achieves highest test accu-
racy with the same number of training
environments.

Figure 5.2: For Noised MNIST, matching
feature distributions from multiple layers
improves over naive CORAL across dif-
ferent architectures.

Gaussian dataset is a binary classification task that closely reflects our assump-
tions in Section 5.3. We take r = 3, ds = 32, µ1 = 1r, Σ1 = Ir, µe

2 ∼ N (0, 10Ids),
and Σe

2 = GeG
⊤
e . We use 1k samples per environment and vary the number of

training / test environments from E = 3 to E = 15.

Noised MNIST is a 10-way semi-synthetic classification task modified from Le-
Cun et al. [1998] to test generalization of our theory to multi-class classification and
different neural network architectures. The construction is inspired by the situation
where certain background features spuriously correlate with labels (“most cows
appear in grass and most camels appear in sand”) [Beery et al., 2018, Arjovsky et al.,
2019, Aubin et al., 2021], but the covariance of the background features changes
across environments. Concretely, we divide the 60k images into E = 12 groups.
Each group is further divided into a training and a test environment with ratio 9:1.
We add an additional row of noise (28 pixels) to the original grayscale digits of
dimension 28×28. In training environments, the added noise is the spurious feature
that, conditioned on the label, has identical mean but changing covariances across
environments. In test environments, the noise is uncorrelated with the label.

Algorithms and architectures. For Gaussian dataset we use linear predictors.
IRM follows the implementation in Arjovsky et al. [2019]; CORAL jointly min-
imizes average supervised loss on training environments and Lcoral, which is the
average of squared distances in conditonal feature means (in l2 norm) and covari-
ances (in Frobenius norm) between adjacent training environments; CORAL+ON
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adds orthonormal penalty loss Lon(U) = ∥UU⊤ − I∥2F where U is the featur-
izer; IFM is our Algorithm 3, where for each layer Ut, the training objective is
Lt(Ut) = λ1Lcoral + λ2Lon. We test IFM with 1 vs. 3-layer featurizers, either
matching all (match-all) or a disjoint set of training environments (match-disjoint)
at each layer.

For Noised MNIST we use ReLU networks with 1 to 6 layers. Here the unsuper-
vised feature matching stage of IFM would fail to extract features informative of the
label; nonetheless, our theory inspires us to test whether bridging the gap between
IFM and CORAL can improve test accuracy. Thus, we compare naive CORAL
which only matches feature distributions at the last layer, to variants that match at
all layers post-activation, using either all (match-all) or a disjoint subset of training
environments (match-disjoint) per layer.

Results. (Q1) Figures 5.1 and 5.2 show that IFM and CORAL have much smaller
environment complexity compared to ERM and IRM in both datasets. (Q2) In
Gaussian dataset, IFM improves over CORAL. (Q3) In Noised MNIST dataset,
matching feature distributions at multiple layers (CORAL match-all, CORAL match-
disjoint) improves over matching at only the last layer (CORAL). (Q4) In both
datasets, matching disjoint sets of environments at each layer (IFM match-disjoint,
CORAL match-disjoint) is almost as good as matching all environments at all layers
(IFM match-all, CORAL match-all) while saving computation. (Q5) In Noised
MNIST dataset (Table D.2 in Appendix D.5), shrinking feature dimensions is crucial
for the advantage of feature matching at multiple layers, e.g. matching features at 3
layers with widths [24, 24, 24] does not significantly improve over matching features
at the last layer (CORAL). Overall, our results suggest that practitioners may benefit
from feature matching algorithms when the data is similar to our assumed model,
and may get additional advantage via matching at multiple layers with diminishing
dimensions, echoing existing empirical works [Long et al., 2015, Luo et al., 2017].
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Chapter 6

An Online Learning Approach to
Interpolation and Extrapolation
in Domain Generalization

This chapter is based on Rosenfeld et al. [2022c]:
Rosenfeld, E., Ravikumar, P., & Risteski, A.
An Online Learning Approach to Interpolation and Extrapolation in Domain
Generalization.
In Proceedings of The 25th International Conference on Artificial Intelli-
gence and Statistics, 2022.

6.1 Introduction

Modern machine learning algorithms excel when the training and test distri-
butions match but often fail under even moderate distribution shift [Beery et al.,
2018]; learning a predictor which generalizes to distributions which differ from
the training data is therefore an important task. This objective, broadly referred to
as out-of-distribution (OOD) generalization, was classically explored in a setting
where there is a single “source” training distribution and a different “target” test
distribution. Achieving good performance in this setting is impossible in general, so
researchers have formalized several possible frameworks to study. One common
choice is to make specific assumptions about covariate or label shift [Widmer and
Kubat, 1996, Bickel et al., 2009, Lipton et al., 2018]; another approach is Distribu-
tionally Robust Optimization (DRO), where the test distribution is assumed to lie in
some uncertainty set around the training distribution [Bagnell, 2005, Rahimian and
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Mehrotra, 2019].
There has been considerable recent interest in moving beyond a single source

distribution, instead assuming that the set of training data is comprised of a collection
of “environments” [Blanchard et al., 2011, Muandet et al., 2013, Peters et al., 2016]
or “groups” [Hu et al., 2018, Duchi et al., 2019, Sagawa et al., 2020a], each
representing a distinct distribution,1 where the group identity of each sample may
be known. Such a setting is referred to as domain generalization. The hope is that
by cleverly training on such a collection of groups, one can derive a robust predictor
which will better transfer to unseen test data. Previous literature has focused
exclusively on worst-case domain generalization, where the test environment is
chosen to be the worst choice among a constrained set of possible test environments.
It is useful to cast such a task as solving a one-shot min-max game, where the
learner selects the predictor and then an adversary selects the test environment. A
key specification for this game is how future test distributions depend on the training
domains (i.e., the action space for the adversary).

The most immediate choice for the set of possible test environments is simply
the set of training environments. More broadly, researchers have considered how
to perform well when the adversary is allowed to present test distributions which
“interpolate” the training distributions or “extrapolate” beyond them, but it is unclear
what is the ideal formalization of such interpolations and extrapolations. A popular
choice for modeling interpolation is to allow any convex combination of the training
environments—this is referred to as group/sub-population shift, and the resulting
objective is known as Group Distributionally Robust Optimization (DRO). Duchi
et al. [2019], Sagawa et al. [2020a] give efficient algorithms for solving the Group
DRO objective, but a key point is that the resulting min-max objective is exactly
equivalent to when the adversary is limited to playing only the training environments.
For modeling extrapolation, Krueger et al. [2020] consider “extrapolating” the
training likelihoods (we make this formal in Section 6.2), but in this game the
adversary’s choice will still always be a vertex of the playable region. Thus, solving
the one-shot min-max game under likelihood reweighting is always equivalent to
simply minimizing worst-case risk on a discrete set.

In addition to this, formal analyses of these games are sparse. A common
belief is that Empirical Risk Minimization (ERM) excels at interpolation but not
extrapolation; it is also generally held as folklore that extrapolation is a much harder
task, which is why generalization is so difficult—but these claims are understood
intuitively, rather than mathematically. Further, Sagawa et al. [2020a] find that when
using modern neural networks in the interpolation regime, explicitly solving the

1Throughout this work, we use the terms “domain”, “distribution”, and “environment” interchange-
ably.
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Group DRO objective does not yield better solutions than simple ERM with strong
regularization. Thus the relative optimality of ERM and other domain generalization
algorithms remains unclear. In light of these points, we begin by considering the
question: Is there an alternative to the single-round min-max game which might
allow for a more in-depth analysis of the statistical and algorithmic properties
of the task of domain generalization?

One final additional caveat with this line of research is its emphasis on worst-
case optimality over all possible test environments, which is often unnecessarily
conservative. This is exemplified by empirical evaluations in the OOD literature:
these works train a predictor on the source data and then evaluate it on a single
test set which is chosen adversarially with respect to the predictor. Such a protocol
often misses the mark for realistically comparing the expected performance of
different algorithms. For example, Gulrajani and Lopez-Paz [2021] point out that
many recent works deliberately evaluate on a single train/test environment split
with an unreasonably difficult distribution shift. When averaging performance over
multiple environment splits, they find that no algorithm outperforms ERM. This
adversarial analysis can indeed be appropriate for quantifying how an algorithm will
perform in the worst possible case (particularly in safety-critical applications), but
this frequently does not reflect a predictor’s quality in the real world: when the test
environments are not chosen adversarially, a reasonable learning algorithm should
be able to do significantly better. Thus the crucial distinction is that existing frame-
works are minimax because they demand good performance of an algorithm
even in the worst case, not because we actually expect the test environments
to be chosen adversarially.2 This suggests there is room for a more nuanced
measure of OOD generalization, one which adequately captures the purpose of
such algorithms—to achieve consistently good performance on all possible test
distributions—and allows for a formal comparison of their performances.

In this work, we aim to address the two main gaps identified above: formalizing
the difference, if any (statistical and computational), between ERM and other OOD
algorithms in both interpolation and extrapolation group shift settings; and doing so
in a framework that allows us to analyze a predictor’s performance on potentially
non-adversarial (e.g., stochastic) future test environments. To do this, we take
inspiration from the literature of online convex optimization [Hazan, 2016] and ask
what can be achieved in a game where the learner is allowed to repeatedly refine
their predictor upon observing new environments. Our analysis therefore captures
an algorithm’s ability to learn and adapt from multiple training distributions to
suffer less under distribution shift and consequently perform better, on average,
on future test sets. Our multi-round game generalizes existing work on domain

2This is a subtle point which we discuss in greater detail in Section 6.3.1.
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generalization, providing new insights into the quantifiable effects of observing dif-
ferent environments as a function of both their number and their geometric diversity.
Further, this new perspective allows for a theoretical analysis of the computational
and statistical complexity of interpolation versus extrapolation, formalizing and
verifying the answers to several outstanding questions which until now have only
been stated intuitively.

Concretely, this work makes the following contributions:
• We recast domain generalization as a repeated online game between an

adversary presenting test distributions and a player minimizing cumulative
regret. This framework enables meaningful analysis beyond the single-round
minimax setting, and we expect it can serve as a new approach to the formal
study of the efficacy of robust OOD generalization algorithms.

• Under an existing notion of inter- and extrapolation, we tightly characterize
their respective complexities. Specifically, we prove that i) extrapolation
is indeed exponentially more difficult than interpolation in a computational
sense, but ii) the statistical complexity of extrapolation is not significantly
higher.

• For both inter- and extrapolation, we show that ERM—or a noisy variant—is
provably minimax-optimal with respect to regret, as a function of the number
of environments observed. For minimizing regret over any time horizon, it
is impossible to improve over ERM without additional assumptions. This
result supplements recent works which support the same idea theoretically
[Rosenfeld et al., 2021] and empirically [Gulrajani and Lopez-Paz, 2021] for
the single-round setting.

6.2 The Single-Round Domain Generalization Game

The key assumption of domain generalization is that the training set comprises a
set of distinct domains E = {ei}Ei=1, each of which indexes a probability distribution
pe, and that the test environment will relate to these domains in some pre-specified
way. Let us denote the set of such possible test distributions by Etest. It’s common to
use a minimax formulation, wherein the learner’s goal is to minimize the worst-case
error over the possible test distributions Etest. For a set of predictors F and loss ℓ,
our goal is thus to solve the objective

min
f∈F

max
e∈Etest

Ee[ℓ(f)].

In an adversarial framework, Etest is the “playable region” of the adversary, similar
to the uncertainty set in traditional DRO. A critical ingredient of the game as noted
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earlier is how this set of test distributions Etest depends on the training domains E . It
is typically presented as belonging to one of two distinct settings: interpolation and
extrapolation. Intuitively, the interpolation setting should consist of environments
which do not vary “beyond” the observed training environments, while the extrapo-
lation setting should allow for such variation to some degree. However, these terms
do not have a single agreed-upon meaning.

Formally modeling interpolation. Given a collection of environments, there
are many possible ways to consider interpolating them. In this work, we limit our
analysis to the notion of likelihood reweighting which has been used previously in
several works [Duchi et al., 2019, Albuquerque et al., 2020, Sagawa et al., 2020a].3

We model the interpolation of a set of domains as all convex combinations (i.e.,
mixtures) of their likelihoods. Formally, an interpolation of the domains in E is any
distribution which is written

pλ :=
∑
e∈E

λep
e, (6.1)

where λ ∈ ∆E is a vector of convex coefficients (∆E is the (E − 1)-simplex). This
is a fairly natural definition, as the space of interpolations is defined as the convex
hull of the environments E in distribution-space. We will denote this convex hull
Conv(E).

Observe that this definition is mathematically equivalent to the set of environ-
ments which can be generated via group shift, and solving the above min-max
objective is precisely Group DRO. However, this notion of single-round interpola-
tion, while perhaps intuitive, does not actually induce a more meaningful playable
region for the adversary. This is because for any predictor, the optimal choice for
the adversary will be whichever training environment produces the highest risk; that
is, the adversary will always play a vertex of the simplex. Thus, these two games
are equivalent:
Proposition 6.2.1 (Equivalence of interpolation and the discrete one-shot game).

min
f∈F

max
e∈Conv(E)

Ee[ℓ(f)] = min
f∈F

max
e∈E

Ee[ℓ(f)].

We note that in some prior work on Group DRO, learning models that minimize
worst-case sub-population risk is indeed the goal—that is, they only care about test
domains that match one of the source domains. In the broader domain generalization

3As another possibility, we could directly interpolate between two samples, but this is unlikely
to be meaningful for highly complex data such as images. If we were to pose a generative model, it
would instead be natural to consider interpolations of the generative parameters.
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literature, however, it does not seem that this form of interpolation provides any
additional constraint on OOD learning without additional regularization [Hu et al.,
2018].

Generalizing to extrapolation. It is not immediately obvious how to extend
this concept to include extrapolation. Krueger et al. [2020] suggest allowing for
combinations in which the coefficients are still restricted to sum to 1, but may be
slightly negative, where the minimum coefficient is given as a hyperparameter α:∑

e∈E λe = 1, λe ≥ −α ∀e ∈ E . We refer to such combinations as “bounded
affine” combinations, and the objective they induce is equivalent to a fixed linear
combination of the average loss plus the worst-case loss. It is immediate that
the adversary’s optimal choice is still on a vertex, so this game also reduces to
minimizing over a discrete set:
Proposition 6.2.2 (Equivalence of constraint set for extrapolation and the discrete
one-shot game).

min
f∈F

max
e∈Extrα(E)

Ee[ℓ(f)] = min
f∈F

max
e∈E

[
(1 + Eα)Ee[ℓ(f)]− α

∑
e′∈E

Ee′ [ℓ(f)]

]
,

where Extrα(·) is all α-bounded affine combinations.
Thus we find that for a single round, the precise meaning of these objectives is

unclear: the adversary is still choosing from a discrete set, and this model does not
seem to capture the intuition that extrapolation should be fundamentally “harder”
than interpolation. This shortcoming motivates our modified approach based on
long-term regret, which we introduce shortly.

For extrapolating likelihoods, note that the resulting function is not guaranteed
to be a probability distribution, as it could result in negative measure—one can
instead frame it as reweighting of the environment risks (thus in Proposition 6.2.2
above, E[·] refers to general Lebesgue integration). We study this reweighting of
risks in Section 6.4.2, and we find that generalizing well over all such combinations
is NP-hard. This provable difficulty in extrapolating validates our proposed sequen-
tial game, but it also indicates that additional assumptions may be necessary for
modeling domain generalization. This raises interesting questions about what is the
correct or most useful model of “extrapolation”, which we do not address here.

6.3 The Sequential Domain Generalization Game

We consider recasting the task of domain generalization as a continuous game
of online learning in which the player is presented with sequential test domains and
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Algorithm 5 : Domain Generalization Game (likelihood reweighting)

Input: Convex parameter space B, distributions {pe}e∈E over X × Y ,
strongly convex loss ℓ : B × (X × Y)→ R, playable region ∆.

for t = 1 . . . T do
1. Player chooses parameters β̂t ∈ B.
2. Adversary chooses coefficients λt ∈ ∆.
3. Define

ft(β) := E(x,y)∼pλt [ℓ(β, (x, y))] =
∑
e∈E

λt,eE(x,y)∼pe [ℓ(β, (x, y))].

end for
Player suffers regret

RT =

T∑
t=1

ft(β̂t)−min
β∈B

T∑
t=1

ft(β).

must refine their predictor at each round. We’re therefore interested in the player’s
ability to learn continuously and improve in each round. We would expect that
any good learning algorithm will suffer less per distribution as we observe more of
them—that is, the per-round regret should decrease over time. Specifically, we’d
like to prove a rate at which our regret goes down as a function of the number of
distributions we’ve observed. Our game allows for an analysis of the average loss
(over time) of a learning algorithm across all possible test sequences—in order to
bound this performance, we consider the worst such sequence. In Section 6.3.1
we expound upon this idea, comparing in detail our game to existing single-round
minimax settings and discussing the benefits it affords.

We now describe the game which will allow a formal analysis of the efficacy
of various domain generalization strategies. The full game can be found in the box
titled Algorithm 5. Note we describe a specific instance where the adversary is
limited to group mixtures as described in Section 6.2; the general game allows for
any formally specified action space for the adversary and we expect this will enable
future analyses involving rich classes of distribution shift threat models such as
f -divergence orH-divergence balls [Bagnell, 2005, Ben-David et al., 2006].

Game Setup. Before the game begins, we define a family of predictors parameter-
ized by β lying in a convex set B. For some observation space X and label space
Y , nature provides a fixed loss function ℓ : B × (X × Y)→ R, strongly convex in
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the first argument, as well as a set of E environments E = {ei}Ei=1, each of which
indexes a distribution pe over X × Y . We assume that B is large enough such that
for any λ ∈ ∆E , the parameter which minimizes risk on pλ lies in B. We further
assume that for all β ∈ B and e ∈ E , the expected loss of β under pe is finite. The
game proceeds as follows:

On round t, the player chooses parameters β̂t ∈ B. Next, the adversary chooses
a set of coefficients λt := {λt,e}e∈E , which defines the distribution pλt as the
weighted combination of the likelihoods of environments in E with coefficients λt,
as in Equation (6.1). For now, we assume that every choice of λ by the adversary is
a set of convex coefficients—that is, an interpolation—which ensures that pλt is a
valid probability distribution; we will relax this restriction in Section 6.4.2. At the
end of the round, the player suffers loss ft(β̂t) = Rλt(β̂t), defined as the risk of
the predictor parameterized by β̂t on the adversary’s chosen distribution:

Rλt(β) := E(x,y)∼pλt [ℓ(β, (x, y))]

(we write fe = Re for the analogous risk on distribution pe). For clarity, when
using the above notation we will drop the subscript t when it is not necessary.

It’s important to note that in this game the player does not begin “training”
until the first round; the initial environments E serve only to define the playable
region for the adversary. Thus to recover the existing notion of single-round domain
generalization, where the estimator has already seen the source environments E
and next faces an unseen test environment, the online game would actually begin
with the adversary playing each of the environment distributions in E once. As in
standard online learning, our goal is to minimize regret with respect to the best fixed
predictor in hindsight after T rounds. That is, we hope to minimize

T∑
t=1

ft(β̂t)−min
β∈B

T∑
i=1

ft(β). (6.2)

Observe that this notion of regret straightforwardly generalizes previous work on
single-round domain generalization. By allowing T →∞, we have a meaningful
measure of success: each time we are presented with a new environment, we update
our predictor in the hopes of improving our average performance. Crucially, this
modification allows us to ask questions about the rate at which our regret decreases
as a function of the number of environments observed. It also better reflects the
idea that our algorithm’s performance should not be evaluated in a vacuum: we aim
to perform well relative to how we could have performed over all timesteps with a
single predictor.
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6.3.1 The Benefits of Online Regret vs. Single-Round Loss

Our focus on regret in the online setting as opposed to loss in a single round is
important; it will be instructive to carefully consider the benefits to such an analysis.

Significance of regret with respect to a fixed baseline. The second term in
Equation (6.2) is crucial; the comparison to the best fixed parameter prevents the
adversary from forcing constant regret at each round and reflects the idea that
we hope to eventually perform favorably compared to a single predictor which
does reasonably well on all environments. Without this baseline, the player’s
objective would be to simply minimize the sum of the risks on all environments:∑T

t=1 ft(β̂t). In the adversarial setting,4 the game therefore reduces to repeated,
independent instances of the single-round version; clearly, the best we can do
to minimize worst-case loss each single round is to play the minimax-optimal
parameters β∗ := argminβ∈B maxλ∈∆E

Rλ(β). In response, the adversary would
always choose λ∗ := argmaxλ∈∆E

Rλ(β∗). This game is uninteresting beyond
the first round and does not adequately capture an algorithm’s performance in a real-
world setting where the environments are not chosen adversarially. As mentioned
in the introduction, the key observation here is that the single-round minimax
framework is used to guarantee good performance even in the worst-case scenario,
but we do not actually expect future test environments to be chosen in this way.

As a simple example, if we were to repeatedly play β∗ and repeatedly face the
test distribution p∗, we should consider it more likely that this is representative of
future test environments (i.e., we will continue to encounter p∗) than that Nature is
actively trying to give us the largest possible loss. Consequently we should switch
strategies and play argminβ∈BRp∗(β), which will have better performance if the
pattern continues. Thus, existing frameworks overemphasize minimax performance
in individual rounds—even though in reality, distribution shift is rarely adversarial—
while ignoring possible improvements over time via adaptation to the changing
environments. In contrast, our longitudinal analysis allows for an algorithm to
occasionally suffer preventable loss in any given turn, so long as the per-turn regret
is guaranteed to decrease over time.

One particular setting where the benefits of this new framework are readily
apparent is under gradual distribution shift. The single-round minimax formulation
is intended for safety-critical applications where even a tiny mistake is fatal; however,
when this is not the case, such an approach is far too conservative, and regret-based
analyses provide a much clearer picture of expected performance. Our framework
is thus not intended to supplant the single-round setting, but rather to supplement

4By this we mean the setting where the next environment is always the one which maximizes risk
for the parameter chosen by the player.
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it with a new, more realistic method of formal analysis of domain generalization
algorithms.

Implications of sublinear regret. For any sequence of environments, there will
be some parameter β̃ which would have achieved the least possible cumulative loss.
Sublinear regret implies that as T →∞ we will eventually recover the per-round
loss of β̃, but without committing beforehand and with no prior knowledge of
the test environment sequence. Thus in the limit we are guaranteeing the lowest
possible average loss against a fixed sequence of environments—at the same time,
our analysis is minimax so as to guarantee our regret bound holds even against the
worst such sequence.

Further, sublinear regret is a very powerful guarantee when the environments
are stochastic, as might be expected in any real-world setting. For any prior over
environment distributions π(pe), it is easy to see that sublinear regret implies
convergence to the performance of the parameter which minimizes loss over the
marginal distribution:

argmin
β∈B

∫
P
π(pe) Epe [ℓ(β, (x, y))] dp

e,

where P is the set of all distributions over X × Y . This is because as T →∞, the
π-weighted average of the sum of losses will converge to the loss on the marginal
distribution—the baseline will then be whatever parameter minimizes this loss.
Observe that this is strictly stronger than the guarantee of ERM, which ensures the
same result only in the limit: sublinear regret implies that for every T , our regret
with respect to the best predictor so far is bounded as o(T ). Thus if by chance
the distributions we’ve seen are not representative of the prior π (an oft-stated
motivation for OOD generalization), we are still ensuring convergence to the loss
of the optimal fixed predictor in hindsight, whatever it may be. In particular, if the
sequence of environments is so unfavorable that the optimal predictor in hindsight
is an invariant predictor [Peters et al., 2016, Arjovsky et al., 2019, Rosenfeld et al.,
2021], which ignores meaningful signal to ensure broad generalization, sublinear
regret guarantees that our algorithm’s loss converges to this invariant predictor’s
loss.

We emphasize again that while the above example considers a stochastic ad-
versary, we do not in general assume a prior over environments. Instead, we
perform a minimax analysis to guard against the worst possible sequence of test
distributions. We are measuring average regret with respect to time.
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6.4 Theoretical Results

Before presenting our main theoretical results, we begin with a lemma which
greatly simplifies the analysis by recharacterizing the adversary’s playable region.
Lemma 6.4.1. RecallRe(β) is defined as the risk of β on the distribution pe. Then
for all λ ∈ ∆E , it holds thatRλ(β) =

∑
e∈E λeRe(β).

This reframing allows us to generalize our analysis to extrapolation without
worrying that the resulting measure is not a probability distribution. Lemma 6.4.1
implies that when the adversary chooses convex coefficients λt, they are equivalently
choosing a loss function ft which is a combination of {fe}Ee=1, the individual
environments’ risks. Each choice of λt uniquely defines the resulting loss function
ft; moving forward we will drop this explicit dependency in our notation.

6.4.1 Convex Combinations

Similar to Abernethy et al. [2008], we evaluate the performance of an algorithm
by defining the value of the game after T timesteps as the player’s regret under
optimal play by both player and adversary:

VT := min
β̂1∈B

max
λ1∈∆E

. . . min
β̂T∈B

max
λT∈∆E

(
T∑
t=1

ft(β̂t)−min
β∈B

T∑
t=1

ft(β)

)
.

For fixed T , this allows us to formalize minimax bounds on the regret. In the
traditional literature, the adversary is allowed to play losses ft from a much more
general class, such as all strongly convex functions. In this setting, the value of
the game in any given round t is known to be exactly Vt =

∑t
s=1

G2
s

2sσmin
, where

Gs is the Lipshitz constant of fs at the parameter chosen by the player and σmin is
the minimum curvature of f .5 This means the minimax-optimal rate for regret is
Θ(log t) [Hazan et al., 2007, Bartlett et al., 2007].

In contrast to traditional online learning, where the adversary is free to choose
its loss from a large non-parametric class such as all strongly convex functions, our
interpolation game severely restricts the adversary, allowing only convex combi-
nations of the risks of the E distributions. We might expect that such a restriction,
especially when known to the player, would allow for a faster convergence to zero
regret, even if the strategy which attains it is intractable. Our first result demonstrates
that this is not the case.
Theorem 6.4.2. Suppose σmax ≥ σmin > 0 such that ∀e ∈ E , σminI ⪯ ∇2fe ⪯
σmaxI . Define g as the minimum gradient norm that is guaranteed to be forceable

5We’ve omitted some details; see Abernethy et al. [2008] for the full result.
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by the adversary: g := minβ∈B maxλ∈∆E
∥∇f(β)∥2. Then for all t ∈ N it holds

that Vt >
g2σmin

16σ2
max

log t.

Proof Sketch. The general idea of the proof is to lower bound the regret on round t
by the optimal regret on round t− 1 plus some additional loss suffered on round
t. This loss depends on the distance from the chosen parameter on round t to the
regret minimizer for round t− 1, as well as the adversary’s choice on round t, and
it can be bounded as Ω(1/t). By unrolling the recursion we derive an overall lower
bound of order

∑t
i=1

1
i > log t. The full proof can be found in Appendix E.1.

Theorem 6.4.2 provides insight into how the statistical complexity of gener-
alizing to domain interpolations depends on the geometry of the source domains.
Observe that the minimum forceable gradient norm g encodes a sort of “radius” of
the convex hull of loss gradients—it is easy to see that if a ball of radius r can be
embedded in Conv({∇fe(β)}Ee=1) then g > r. Thus, the restriction of the adversary
to the convex hull of distributions entails a restriction on the geometry of the convex
hull of the corresponding loss gradients, which subsequently determines the regret
our player can be forced to suffer. The bound does not directly depend on the
number of training environments E; rather it scales quadratically with the size of
this region, which appropriately captures the intuition that a smaller regret should
be achievable for a collection of sub-distributions whose optimal parameters are
very similar to one another.

With respect to the asymptotic rate of regret, this theorem provides a somewhat
surprising conclusion. Even with full knowledge of the adversary’s limited selection,
Theorem 6.4.2 shows that no algorithm can do asymptotically better than if we were
playing against the more powerful adversary playing any strongly convex function.
Even more interesting, this rate can be achieved with a very simple algorithm known
as Follow-The-Leader (FTL), which just plays the minimizer of the sum of all
previously seen functions [Hazan et al., 2007]. In our game, this means playing the
predictor which minimizes risk over all environments seen so far—after observing t
environments, FTL would therefore play

βFTL = argmin
β

t∑
s=1

fs(β).

Observe that this strategy is precisely ERM! In other words, ERM is provably
minimax-optimal for interpolation. As the adversary’s playable region is a strict
subset of all strongly convex functions, it is immediate that the regret suffered
by playing ERM is upper bounded as

∑t
s=1G

2
s/2sσmin = O(log t). While The-

orem 6.4.2 applies to the multi-round game, it has useful implications for the
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single-round setting. A simple corollary provides a tight bound on the attainable
regret as a function of the number of environments seen. To our knowledge, this is
the first such bound for single-round domain generalization.
Corollary 6.4.3. Suppose we’ve seen t environments. Then under the same setting
as Theorem 6.4.2, the additional regret suffered due to one more round is Ω

(
1
t

)
.

This lower bound is attained by ERM.

6.4.2 Bounded Affine Combinations

One could argue that allowing the adversary only convex combinations of
domains is perhaps too good to hope for. Indeed, as we’ve seen, ERM is optimal
for such a setting, but it has been widely observed that ERM fails under minor
distribution shift. We might expect that future environments would fall outside of
this hull—if combinations within the hull represent a formal notion of “interpolating”
the training distributions, then it seems our goal instead should be to “extrapolate”
beyond them.

As discussed in Section 6.2, Krueger et al. [2020] consider allowing the adver-
sary to play bounded affine combinations of the environments; while they provide no
formal results for their proposed algorithm, this conceptualization of extrapolation
seems a natural extension. Clearly, this game is no easier for the player—in fact, we
will demonstrate that it is significantly harder. For general Lipschitz functions, it is
known that against the worst-case sequence, no deterministic strategy can guarantee
sublinear regret, and attaining sublinear regret with a randomized strategy is NP-
hard. Further, there is a regret lower bound of Ω(

√
T ) which was recently shown to

be achievable with Follow-The-Perturbed-Leader (FTPL), assuming access to an
optimization oracle for approximately minimizing a non-convex function [Suggala
and Netrapalli, 2020]. As in the previous subsection, we extend these results to the
task of domain generalization—that is, we demonstrate that despite the (seemingly
restrictive) requirement that the adversary play bounded affine combinations of
strongly convex losses that are fully known to the player, the game remains equally
hard. These results are also surprising, as an adversary that can play arbitrary
Lipschitz functions is significantly more powerful than the adversary in our game.
Theorem 6.4.4. No algorithm can guarantee sublinear regret against bounded
affine combinations of a finite set of strongly convex losses.

Proof. We’ll show that for any algorithm, there exists a sequence of loss functions
chosen in response by the adversary for which the regret is bounded as Ω(T ).
Assume the adversary can use coefficients greater than −α. Define

fe1(β) = β2, fe2(β) = β4 +
1

2α
β2.
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On round t, our player will choose to play β ∈ R. We now describe our construction
of the tth loss in the sequence: If |β| < 1, then we choose ft = (1 + α)fe1 − αfe2 ,
and if |β| ≥ 1, we choose ft = fe1 . In the first case, the player suffers loss
ft(β) ≥ 0, and in the second case, the player suffers loss ≥ 1. Suppose the player
plays the first option a times and the second option b times, for a total of a+ b = T
rounds, and suffers ≥ b loss.

Consider the possible best actions in hindsight. If a ≤ T
2 , then β∗ = 0 suffers 0

loss, meaning the player’s regret is at least b = T − a ≥ T
2 . If, on the other hand,

a > T
2 , then note that for any choice β the loss suffered is

−aαβ4 + (a/2 + aα+ b)β2 ≤ aα(β2 − β4) + (a+ b)β2

=
(
aα(1− β2) + T

)
β2.

Choosing β∗ =
√
1 + 3

α results in regret ≥ T
2 . In either case, the player suffers

Ω(T ) regret.
For completeness’s sake, in Appendix E.2 we also include a proof of the exis-

tence of a regression task and a set of environments which could give rise to such a
set of loss functions.

Thus we find that just as in the general non-convex case, a weaker adversary
is necessary. In the following we consider a relaxed version with an “oblivious”
adversary: this adversary is forced to select the entire sequence of loss functions
at the beginning of the game (our lower bounds hold despite this relaxation). We
might hope that against such a restricted adversary, the computational requirements
of achieving sublinear regret would be lessened—perhaps there would be no need
for an optimization oracle. However, Theorem 6.4.5 proves otherwise:
Theorem 6.4.5. Against an oblivious adversary playing bounded affine combina-
tions, achieving sublinear regret is NP-hard.

Proof. Consider the problem of identifying the maximum size of a stable set of a
graph on |V | vertices; such a problem is not approximable in polynomial time to
within a factor |V |(1/2−ϵ) for any ϵ > 0 unless NP = P [Håstad, 1999, De Klerk,
2008]. We will demonstrate that solving this problem up to a constant factor
reduces to achieving sublinear regret on an online strongly convex game with
bounded affine coefficients. Let −α represent the minimum negative coefficient
allowed for the adversary. Given the graph G on |V | > 1 vertices, denote by
A its adjacency matrix. Then the maximum stable set size γ(G) can be written

1
γ(G) = minβ∈∆|V | β

T (I + A)β by a result of Motzkin and Straus [1965]. We
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define a game where the adversary has two functions:

fe1(β) =
1

1 + α
βT (|V |I +A)β, fe2(β) =

|V | − 1

α
∥β∥22.

Note that fe1 is strongly convex because (|V | − 1)I + A is diagonally dominant
and therefore PSD. Each round, the player plays some β ∈ ∆|V |, and the (oblivious)
adversary chooses the loss

(1 + α)fe1 − αfe2 = βT (|V |I +A)β − (|V | − 1)∥β∥22 = βT (I +A)β.

Define LT as the loss suffered by the player after T rounds. Clearly, the optimal
choice would be to play β such that βT (I + A)β = 1

γ(G) each round, implying

that T
γ(G) ≤ LT and also that regret can be written LT − T

γ(G) . Suppose there
exists a polynomial-time strategy with regret growing sublinearly with T . Then by
definition, there exists a constant T0 ∈ poly(|V |) such that on all rounds T > T0,
the player’s regret is upper bounded as

LT −
T

γ(G)
≤ 1

|V |T ≤
T

γ(G)
=⇒ LT ≤

2T

γ(G)
.

Putting these inequalities together, we get 1
γ(G) ≤

LT
T ≤ 2

γ(G) , which implies
1
2γ(G) ≤ T

LT
≤ γ(G). Recall that this holds for all T > T0, so our polynomial-

time algorithm has attained a 2-approximation to the maximum stable set size.

Computationally, our game of extrapolation is just as difficult as achieving
sublinear regret on arbitrary Lipschitz functions. These results present, for the first
time, proof of an exponential computational complexity gap between interpolation
and extrapolation in the domain generalization setting, formally verifying existing
intuition.

We now turn our attention to the statistical complexity of regret minimization
under bounded affine combinations. Recall that for the case of convex combinations
(i.e. interpolations), Theorem 6.4.2 shows a minimax lower bound of Ω(log t)
which can be achieved with standard ERM. Before we consider the bounded affine
setting (i.e. extrapolations), we again note that for an adversary playing arbitrary
Lipschitz functions, Suggala and Netrapalli [2020] demonstrate that with access to
a non-convex optimization oracle, FTPL can achieve the minimax lower bound of
Ω(
√
T ). The FTPL strategy is to play the parameter which minimizes the sum of

the observed environments plus a noise term—specifically, FTPL takes the sum of
existing risks, samples a random linear function of the parameters, and solves for
the parameters which minimize this “perturbed” sum. In our game, then, FTPL is
just a noisy variant of ERM. Computational limitations notwithstanding, the natural
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next question is if playing against an oblivious adversary is enough of a relaxation
that we can surpass this lower bound. That is, can we outperform ERM in this
setting at all? Our final result answers this question in the negative:
Theorem 6.4.6. Against an oblivious adversary playing bounded affine combina-
tions, the achievable regret is lower bounded as Ω(

√
T ).

Proof. For a fixed, convex loss ℓ and convex parameter space Θ, predicting with
expert advice is known to have an information-theoretic minimax regret lower
bound of Ω(

√
T ) [Cesa-Bianchi and Lugosi, 2006, Theorem 3.7]. We will give a

reduction which demonstrates that the same lower bound holds for bounded affine
combinations of strongly convex losses.

Assume a fixed convex loss ℓ : Θ × Θ 7→ R over convex Θ and fix the
adversary’s coefficient lower bound as −α. Suppose on round t, we are presented
with E experts’ predictions, which we imagine as an E-dimensional vector θ̃t whose
ith entry is the prediction of the ith expert. Define the following functions over
elements δ ∈ ∆E :

fe1(δ, θ
∗) =

1

1 + α

[
ℓ(δT θ̃t, θ

∗) + ∥δ∥22
]
, fe2(δ, θ

∗) =
1

α
∥δ∥22.

Note that both these functions are both strongly convex in δ. Consider what happens
if the adversary plays (1+α)fe1 −αfe2 = ℓ. Suppose for the sake of contradiction
there exists an algorithm playing δ̂t which achieves o(

√
T ) regret with respect to δ∗,

defined as the best fixed δ ∈ ∆E in hindsight:

δ∗ := argmin
δ∈∆E

T∑
t=1

ℓ(δT θ̃t, θ
∗).

As this represents a convex combination of the experts’ predictions, it is clear that
the loss suffered by δ∗ will be less than or equal to the loss suffered by the best
expert. This implies that by taking this algorithm’s choice δ̂t each round and playing
δ̂Tt θ̃t, we will achieve o(

√
T ) regret with respect to the best expert, defying the

known lower bound. It follows that the lower bound of Ω(
√
T ) holds even for

bounded affine combinations of strongly convex functions.

This theorem implies two crucial points: firstly, that ERM remains minimax
optimal for this model of extrapolation; and secondly, that proper regularization is
essential for good OOD generalization. This provides theoretical justification for
the empirical findings of Sagawa et al. [2020a] and complements existing results on
the value of explicit regularization for group shift [Hu et al., 2018]. Additionally, we
find that even though there is an exponential computational complexity gap between
the two tasks, the statistical gap is not too large—Θ(log T ) versus Θ(

√
T ) regret.
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6.5 Related Work

Many works provide formal guarantees for OOD generalization by assuming
invariances in the causal structure of the data: a set of interventions is assumed to
result in separate fixed environments [Peters et al., 2016, Heinze-Deml et al., 2018,
Heinze-Deml and Meinshausen, 2020, Christiansen et al., 2020] or distribution shift
over time [Tian and Pearl, 2001, Didelez et al., 2006], and the test distribution will
likewise represent such an intervention. Under sufficiently strong conditions it is
then possible to identify which features have invariant relationships with the target
variable; recovery of these features ensures reasonable performance despite arbitrary
future interventions on the other variables. However, these works assume full or
partial observation of the covariates, and therefore they do not apply to the setting
where the data is a complex function of unobserved latent variables.

Works which eschew a direct causal formalization often still depend upon
the intuition of “invariance” within the context of causality. The IRM objective
[Arjovsky et al., 2019] was designed for such a setting assuming the target variables’
causal mechanisms remain invariant, but it lacked serious theoretical justification;
Krueger et al. [2020] likewise suggest an algorithm for extrapolation but similarly
fail to provide any formal guarantees. Rosenfeld et al. [2021] subsequently showed
that, while these and other similar objectives may work under strong conditions in
the linear setting, the same cannot be said for more complex data. Albuquerque
et al. [2020] theoretically analyze extrapolation beyond the convex hull of domain
likelihoods and give generalization bound viaH-divergences. Unfortunately, this
bound scales linearly with both the maximum discrepancy between pairs of training
distributions and between the test distribution and training environment hull.

This work relates the nascent study of domain generalization theory to prior
work on online and lifelong learning [Thrun, 1998, Mitchell et al., 2015, Hazan,
2016], for which there already exist provable regret bounds and efficiency guarantees
[Balcan et al., 2015, Alquier et al., 2017]. The main difference is that those works—
which are for more general online learning—present new algorithms and give upper
bounds, while this work focuses on OOD generalization and proves lower bounds
which match rates already known to be achievable for more general classes of losses
[Hazan et al., 2007, Abernethy et al., 2008, Suggala and Netrapalli, 2020] , implying
that existing algorithms (ERM and a noisy variant) are already optimal.

6.6 Conclusion and Future Directions

This work presents the first formal results demonstrating an exponential com-
putational gap between interpolation and extrapolation in domain generalization, a
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claim which has until now only been given vague intuitive justification. Perhaps
more importantly, we’ve shown that ERM remains statistically minimax-optimal
for both tasks—given the observed failure of ERM in practice, this suggests that
there is quite a bit more subtlety to distribution shift in the real world. Taken to-
gether, our results present strong evidence that the “likelihood reweighting” model
of distribution shift, while perhaps appropriate for specific settings involving sub-
populations, might not be appropriate for the more general study of extrapolation
to new domains. It could instead be beneficial to reconsider existing notions of
inter- and extrapolation—particularly those involving linearity or generic likelihood
reweighting—in the context of online learning, where the notions of regret and
stochastic adversaries allow for more a nuanced study of statistical and algorithmic
complexity.

We see two important directions for further research. First, the proposed domain
generalization game serves as a standalone framework for the theoretical analysis of
learning algorithms. As discussed in Section 6.3.1, considering regret in the online
setting provides a more nuanced signal of an algorithm’s expected performance,
especially when we are not too worried about the literal worst case test distribution.
We hope that this new perspective will better enable future work to provide formal
OOD generalization guarantees for their proposed methods. We note that this work
considers only strongly convex functions, but using the same techniques one could
extend the analysis to more general classes such as all convex losses; this setting
might eliminate the statistical complexity gap and could lead to additional insight
into the differences between inter- and extrapolation.

Second, there still remains significant flexibility in how we define “interpolation”
and “extrapolation” with respect to training environments; we consider one spe-
cific notion in this work, and we show that ERM remains optimal—implying that
alternative formulations may be preferable. However, it seems likely that different
restrictions on the adversary could allow for stronger generalization guarantees. Fur-
thermore, our analysis reveals that the geometry of the environmental loss functions
is a critical element for generalization. This suggests additional improvements can
be achieved with careful representation learning.
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Part III

Understanding Heavy-Tailed Data,
and How to Handle it
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Chapter 7

Domain-Adjusted Regression or:
ERM May Already Learn
Features Sufficient for
Out-of-Distribution
Generalization

This chapter is based on Rosenfeld et al. [2022b]:
Rosenfeld, E., Ravikumar, P., & Risteski, A.
Domain-Adjusted Regression or: ERM May Already Learn Features Suffi-
cient for Out-of-Distribution Generalization.
In NeurIPS 2022 Workshop on Distribution Shifts (DistShift).

7.1 Introduction

The historical motivation for deep learning focuses on the ability of deep neural
networks to automatically learn rich, hierarchical features of complex data [LeCun
et al., 2015, Goodfellow et al., 2016]. Simple Empirical Risk Minimization (ERM),
with appropriate regularization, results in high-quality representations which surpass
carefully hand-selected features on a wide variety of downstream tasks. Despite
these successes, or perhaps because of them, the dominant focus of late is on the
shortcomings of this approach: recent work points to the failure of networks trained
with ERM to generalize under even moderate distribution shift [Recht et al., 2019,
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Miller et al., 2020a]. A common explanation for this phenomenon is reliance on
“spurious correlations” or “shortcuts”, where a network makes predictions based on
structure in the data which generalizes on average in the training set but may not
persist in future test distributions [Poliak et al., 2018, Kaushik and Lipton, 2018,
Geirhos et al., 2019, Xiao et al., 2021].

Many proposed solutions implicitly assume that this problem is due to the entire
neural network: they suggest an alternate objective to be minimized over a deep
network in an end-to-end fashion [Sun et al., 2016a, Ganin et al., 2016, Arjovsky
et al., 2019]. These objectives are complex, poorly understood, and difficult to
optimize. Indeed, the efficacy of many such objectives was recently called into
serious question [Zhao et al., 2019, Rosenfeld et al., 2021, Gulrajani and Lopez-Paz,
2021]. Though a neural network is often viewed as a deep feature embedder with a
final linear predictor applied to the features, it is still unclear—and to our knowledge
has not been directly asked or tested—whether these issues are primarily because
of (i) learning the wrong features or (ii) learning good features but failing to find
the best-generalizing linear predictor on top of them.

We begin with a simple experiment (Figure 7.1) to try to distinguish between
these two possibilities: we train a deep network with ERM on several domain
generalization benchmarks, where the task is to learn a predictor using a collection
of distinct training domains and then perform well on a new, unseen domain. After
training, we freeze the features and separately learn a linear classifier on top of
them. Crucially, when training this classifier (i.e., retraining just the last linear
layer), we give it an unreasonable advantage by optimizing on both the train and
test domains—henceforth we refer to this as “cheating”. Since we use just a linear
classifier, this process establishes a lower bound on what performance we could
plausibly achieve using standard ERM features, with access to data from the target
distribution. We then separately cheat while training the full network end-to-end,
simulating the idealized setting with no distribution shift. Note that in neither case
do we train on the test points; our cheating entails training on (different) samples
from the test domain, which are assumed unavailable in domain generalization.

Notably, we find that simple (cheating) logistic regression on frozen deep
features learned via ERM results in enormous improvements over current state of
the art, on the order of 10-15%. In fact, it usually performs comparably to the
full cheating method—which learns both features and classifier end-to-end with
test domain access—sometimes even outperforming it. Put another way, cheating
while training the entire network rarely does significantly better than cheating while
training just the last linear layer. One possible explanation for this is that the
pretrained model is so overparametrized as to effectively be a kernel with universal
approximation power (such as the Neural Tangent Kernel [Jacot et al., 2018, Du
et al., 2019]); in this case, the outstanding performance of a cheating linear classifier
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Figure 7.1: Accuracy via “cheating”: (mean over 3 trials) dagger (†) denotes access
to test domain at train-time. Each letter is a domain. Dark blue is approximate
SOTA, orange is our proposed DARE objective, light grey represents cheating
while retraining the linear classifier only. All three methods use the same features,
attained without cheating. Dark grey is “ideal” accuracy, cheating while training
the entire deep network. Surprisingly, cheating only for the linear classifier rivals
cheating for the whole network. Cheating accuracy on pretrained features (light
blue) makes clear that this effect is due to finetuning on the train domains, and not
simply overparameterization (i.e., a very large number of features).

on top of these features would be unsurprising. However, we find that this cheating
method does not ensure good performance on pretrained features, which implies
that we are not yet in such a regime and that the effect we observe is indeed due
to finetuning via ERM. Collectively, these results suggest that training modern
deep architectures with established training and regularization practices may be
“good enough” for learning features which generalize out-of-distribution and that
the current bottleneck lies primarily in learning a simple, robust predictor.

Motivated by these findings, we propose a new objective, which we call Domain-
Adjusted Regression (DARE). The DARE objective is convex and it learns a linear
predictor on frozen features. Unlike invariant prediction [Peters et al., 2016], which
projects out feature variation such that a single predictor performs acceptably on
very different domains, DARE performs a domain-specific adjustment to unify
the environmental features in a canonical latent space. Based on the presumption
that standard ERM features are good enough (made formal in Section 7.4), DARE
enjoys strong theoretical guarantees: under a new model of distribution shift which
captures ideas from invariant/non-invariant latent variable models, we precisely
characterize the adversarial risk of the DARE solution against a natural perturbation
set, and we prove that this risk is minimax. The perturbation set consists of all
test distributions where the adversary can introduce any change in directions in
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which the training domains already vary but is allowed only limited variation in new
directions. We further provide the first finite-environment convergence guarantee
to the minimax risk, improving over existing results which merely demonstrate a
threshold in the number of observed environments at which the solution is discovered
[Rosenfeld et al., 2021, Chen et al., 2022, Wang et al., 2022a]. Finally, we show how
our objective can be modified to leverage access to unlabeled samples at test-time.
We use this to derive a method for provably effective “just-in-time” unsupervised
domain adaptation, for which we provide a finite-sample excess risk bound.

Evaluated on finetuned features, we find that DARE compares favorably to
existing methods, consistently achieving equal or better performance. We also
find that methods which previously underperformed on these benchmarks do much
better in this frozen feature setting, often besting ERM. This suggests that these
approaches are beneficial for linear prediction, and that when they do work, it
is primarily due to learning a better linear classifier. We hope these results will
encourage going “back to basics”, with future work focusing on simpler, easier to
understand methods for robust prediction.

7.2 ERM Learns Surprisingly Useful Features

Our experiments are motivated by a simple question: is the observed failure
of deep neural networks to generalize out-of-distribution more appropriately at-
tributed to inadequate feature learning or inadequate robust prediction? Both could
undoubtedly be improved, but we are concerned with which currently serves as
the primary bottleneck. It’s typical to train the entire network end-to-end and then
evaluate on a test distribution; in reality, this measures the quality of the interaction
of the features and the classifier, not of either one individually.

Using datasets and methodology from DOMAINBED [Gulrajani and Lopez-Paz,
2021], we finetune a ResNet-50 [He et al., 2016] with ERM on the training domains
to extract features. Next, we cheat while learning a linear classifier on top of these
frozen features by optimizing on both the train and test domains. We compare this
cheating linear classifier to a full cheating network trained on all domains end-to-end.
If it is the case that ERM learns features which do not generalize, we should expect
that the cheating linear classifier will not substantially improve over the current
state of the art and will perform significantly worse than cheating end-to-end, since
the latter method can adapt the features to better suit the test domain.

Instead, we find that simply giving the linear predictor access to all domains
while training makes up the vast majority of the gap between current state of the art
(ERM with heavy regularization) and the ideal setting where we train a network on
all domains. In other words, ERM produces features which are informative enough
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that a linear classifier on top of these frozen features is—in principle—capable of
generalizing almost as well as if we had access to the test domain when training the
entire network.1 These features can also substantially outperform current state of the
art given a small amount of labeled test data for retraining the last layer. Figure F.1
in the Appendix depicts the evaluation methodology described above, along with a
more detailed explanation.

We conjecture that this phenomenon occurs more broadly: our findings suggest
that for many applications, existing features learned via ERM may be “good enough”
for out-of-distribution generalization in deep learning. That is, ERM may already
“undo” a large component of the non-linearities we observe in complex data, even
for unseen distributions. This also implies that in settings where we have access to
a small amount of data from the target distribution, simply retraining the last linear
layer on this data will suffice for excellent performance.

Two immediate questions are in which other settings this holds and if, instead of
using more elaborate approaches such as complex regularization, the remaining gap
could be closed using simpler methods. Based on this idea, we posit that future work
would benefit from modularity, working to improve representation learning and
robust classification/regression separately.2 There are several distinct advantages to
this approach:

• More robust comparisons and better reproducibility: Current methods
have myriad degrees of freedom which makes informative comparisons diffi-
cult; evaluating feature learning and robust regression separately eliminates
many of these sources of experimental variation.

• Less compute overhead: Training large networks to learn both features and
a classifier is expensive. Benchmarks could include files with the weights for
ready-to-use deep feature embedders trained with various objectives—these
models can be much larger and trained on much more data than would be
feasible for many. Using these features, academic researchers could thus
make faster progress on better classifiers with less compute.

• Modular theoretical guarantees: Conditioning on the frozen features, we
can use more classical analyses to provide guarantees for the simpler para-
metric classifiers learned on top of these features. For example, Bansal et al.

1On a few domains the linear method sees a gap of ∼5% accuracy from the idealized setting. We
emphasize that our use of a simple linear predictor serves as a lower bound on the achievable error
using ERM features. The end-to-end result represents ideal performance that would a priori seem
totally out of reach with current methods.

2We are not suggesting an abandonment of the end-to-end framework; we believe both methods
have merit. For example, the fact that the representation suffices does not imply that it corresponds
to meaningful semantic features, and encouraging such a correspondence may depend on learning a
system end-to-end.
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[2021] derive a generalization bound for simpler classifiers which is agnostic
to the complexity of the features on which they are trained.

We conclude by emphasizing that while the predictor in our experiments is
linear, future methods need not be. Rather, we are highlighting that there may
be no need for complex, expensive, highly variable regularization of a deep
network when much simpler approaches suffice.

7.3 The Domain-Adjusted Regression Objective

The goal of many prior methods in deep domain adaptation or generalization is
to learn a single network which does well on all environments simultaneously, often
by throwing away non-invariant components [Peng et al., 2019a, Arjovsky et al.,
2019]. While invariance is a powerful framework, there are some clear drawbacks,
such as the need to throw away possibly informative features. In settings where we
expect the distribution shift to be less than worst-case, this would be unnecessarily
conservative. Furthermore, Zhao et al. [2019] show that marginal feature invariance
cannot ensure generalization, and Stojanov et al. [2021] develop a toy setting where
no single feature embedder can be sufficient.

Instead, we reframe the problem by thinking of each training domain as a dis-
tinct transformation from a shared canonical representation space. In this framing,
we can “adjust” each domain in order to undo these transformations, aligning the
representations to learn a single robust predictor in this unified space. Specifically,
we propose to whiten each domain’s features to have zero mean and identity co-
variance, which can be thought of as a “domain-specific batchnorm” but using the
full feature covariance. This idea is not totally new: some prior works align the
moments between domains to improve generalization. The difference is that DARE
does not learn a single featurizer which aligns the moments, but rather aligns the
moments of already learned features; the latter approach maintains useful variation
between domains which would be eliminated by the former.

DARE is closer to methods which learn separate batchnorm parameters per
domain over a deep network, possibly adjusting at test-time [Seo et al., 2019, Chang
et al., 2019, Segù et al., 2020]—these methods perform well, but they are entirely
heuristic based, difficult to optimize, and come with no formal guarantees. Our
theoretical analysis thus serves as preliminary justification for the observed benefits
of such methods, which have so far lacked serious grounding.

To begin, define E as the set of observed training environments, each of which
is defined by a distribution pe(x, y) over features x ∈ Rd and class labels y ∈ [k].
For each e ∈ E , denote the mean and covariance of the features as µe,Σe. Our first
step is to adjust the features via the whitening transformation Σ

−1/2
e (x − µe). If
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we believe that ERM is sufficient to recover a linear transformation of a ground-
truth representation, whitening the data will then “undo” each domain’s unique
transformation. Unfortunately, we cannot undo the test transformation because
we have no way of knowing what the test mean will be. Interestingly, this is not
a problem provided the predictor satisfies a simple constraint. Suppose that the
predictor’s output on the mean representation of each environment is a multiple of
the all-ones vector. As softmax is invariant to a constant offset, this enforces that the
environment mean has no effect on the final probability distribution, and thus there
is no need to adjust for the test-time mean. We therefore enforce this constraint
during training, with the hope that the same invariance will approximately hold at
test-time. Formally, the DARE objective finds a matrix β ∈ Rd×k which solves

min
β

∑
e∈E

Epe [ℓ(β
⊤Σ−1/2

e x, y)] subject to softmax
(
β⊤Σ−1/2

e µe

)
=

1

k
1. ∀e ∈ E ,

(7.1)

where ℓ is the multinomial logistic loss and we omit the bias β0 for brevity. For
binary classification, β is a vector and the softmax is replaced with the logistic
function—the constraint is then equivalent to requiring the mean of the logits to
be 0. Thus, the DARE objective explicitly regresses on the adjusted features,
while the constraint enforces that each environment mean has no effect on the
output distribution to encourage predictions to also be invariant to test-time trans-
formations. The astute reader will point out that we also do not know the correct
whitening matrix for the test data—instead, we adjust using our best guess for the
test covariance: denoting this estimate as Σ̄, our prediction on a new sample x is
f(x;β) = softmax

(
β⊤Σ̄−1/2x

)
. We prove that this prediction is minimax so long

as our guess is “sufficiently close”, and in practice we find that simply averaging the
training domain adjustments performs well. Table F.1 in the Appendix shows this
average is actually quite close to the sample covariance of the (unseen) test domain,
explaining the good performance.

Note that unlike many prior methods, DARE does not enforce invariance of the
features themselves. Rather, it aligns the representations such that different domains
share similar optimal predictors. To support this claim, Table F.2 displays the cosine
similarity between optimal linear classifiers for individual domains—we observe a
large increase in average similarity as a result of the feature adjustment. Further,
in Section 7.5 we demonstrate that the DARE objective is in fact minimizing the
worst-case risk under a constrained set of possible distribution shifts, and it is
therefore less conservative than methods which require complete feature invariance.

Implementation in practice. Due to its convexity, the DARE objective is ex-
tremely simple to optimize. In practice, we finetune a deep network over the training
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data with ERM and then extract the features. Next, treating the frozen features of
the training data as direct observations x, we minimize the empirical Lagrangian
form:

L̂λcls(β) :=
1

|E|
∑
e∈E

[
1

ne

ne∑
i=1

ℓ(β⊤Σ̂−1/2
e xi, yi) + λℓ(β⊤Σ̂−1/2

e µ̂e, k
−11)

]
,

where µ̂e, Σ̂e are the usual sample estimates and ne is the number of samples in
environment e. We find that the solution is incredibly robust to the choice of λ, but
it is natural to wonder whether each of the components above is necessary for the
performance gains we observe. We ablate both the whitening operation and the use
of the constraint (Appendix F.5) and see performance drops in both cases. We also
consider estimating the test-time mean rather than enforcing invariance, but this
results in substantially worse accuracy—the environment feature means vary quite
a bit, so the estimate is usually inaccurate.

For regression, we consider the same setup but minimize mean squared error on
targets y ∈ R. Here, the DARE solution is constrained such that the mean output
has no effect on the prediction, meaning each domain’s mean prediction should be
zero. We discuss this in more detail in Appendix F.1.1, along with an interesting
connection to anchor regression [Rothenhäusler et al., 2021].

Leveraging unlabeled test samples. Another benefit to our approach is that the
adjustments for each domain do not depend on labels, so given unlabeled samples
from the test domain we can often do even better. In this case, it is preferable to
solve equation 7.1 without the constraint and use the empirical test covariance for
Σ̄. Such access occurs in the setting of unsupervised domain adaptation, but unlike
methods which use those samples while training (or even for test-time training), this
adjustment can be done just-in-time, without any retraining! We name this task Just-
in-Time Unsupervised Domain Adaptation (JIT-UDA), and we provide finite-sample
risk bounds for the DARE objective in this setting. We believe JIT-UDA presents a
promising direction for future theoretical research: it is much weaker—and arguably
more realistic—to assume access to unlabeled samples only at test-time. JIT-UDA
is also amenable to analyses beyond worst-case, such as minimizing regret when
observing test data sequentially [Rosenfeld et al., 2022c].

7.4 A New Model of Distribution Shift

The DARE objective is based on the intuition that all domains jointly share a
representation space and that they arise as unique transformations from this space.
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To capture this notion mathematically, we model the joint distribution pe(ϵ, y)
over latents ϵ ∈ Rd and label y ∈ {0, 1}, along with an environment-specific
transformation to observations x ∈ Rd for each domain. In the fully general case,
this transformation can take an arbitrary form and can be written as x = Te(ϵ, y).

Our primary assumption is that pe(y | ϵ) is constant for all domains. Our
goal is thus to invert each transformation Te such that we are learning an invariant
conditional p(y | T−1

e (x)) (throughout we assume Te is invertible). One can also
view this model as a generalization of covariate shift: where the usual assumption
is constancy of p(y | x), the inverse transformation gives a richer model which
can more realistically capture real-world variation across domains. It is important
to note that this model generalizes (and has strictly weaker requirements than)
both IRM and domain-invariant representation learning, which can be recovered by
assuming Te is the same for all environments. For example, the Te could correspond
to different image “styles”; we then would hope to learn to eliminate individual
style variations.

For a typical deep learning analysis we would model Te as a non-linear gen-
erative map from latents to high-dimensional observations. However, our finding
that ERM features are good enough suggests that modeling the learned features as a
simple function of the “true latents” ϵ is not unreasonable. In other words, we now
consider x to represent the frozen features of the trained network, and we expect
this network to have already “undone” the majority of the complexity, resulting
in observations which are a simple function of the ground truth. Accordingly, we
consider the following model:

ϵ = ϵ0 + be, y = 1{β∗T ϵ+ η ≥ 0}, x = Aeϵ. (7.2)

Here, ϵ0 ∼ pe(ϵ0), which we allow to be any domain-specific distribution; we
assume only that its mean is zero (such that E[ϵ] = be) and that its covariance
exists. We fix β∗ ∈ Rd for all domains and model η as logistic noise. Finally,
Ae ∈ Rd×d, be ∈ Rd are domain-specific. For regression, we model the same
generative process for x, ϵ, while for the response, we have y ∈ R and η is zero-
mean independent noise: y = β∗T ϵ + η. We remark that the reason for separate
definitions of pe(ϵ0) and be is that our robustness guarantees are agnostic to the
distribution of latent residuals pe(ϵ0)—the only aspect of the latent distribution p(ϵ)
which affects our bounds is the environment mean be.

Connection to Invariant Prediction. Statistical models of varying and invariant
(latent) features have recently become a popular tool for analyzing the behavior
of deep representation learning algorithms [Rosenfeld et al., 2021, Chen et al.,
2022, Wald et al., 2021]. We see that Equation (7.2) can model such a setting by
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assuming, e.g., that a subspace of the columnspan of Ae is constant for all e, while
the remaining subspace can vary. In such a case, the features x are expressed as
the sum of a varying and an invariant component, and any minimax representation
must remove the varying component, throwing away potentially useful information.
Instead, DARE realigns these components so that we can use them at test-time. We
illustrate this with the following running example:
Example 7.4.1 (Invariant Latent Subspace Recovery). Consider the model (Equa-

tion (7.2)) with ϵ ∼ N (0, Id1+d2). Define Π :=

[
Id1 0
0 0d2

]
and assume Ae =[

Σ1/2 0

0 Σ
1/2
e

]
for all e, where Σ ∈ Rd1×d1 is constant for all domains but Σe ∈

Rd2×d2 varies.
Here we have a simple latent variable model: the features have the decompo-

sition x = Aeϵ = Σ1/2Πϵ+Σ
1/2
e (I −Π)ϵ, where the first component is constant

across environments and the second varies. It will be instructive at this point to
analyze what an invariant prediction algorithm such as IRM would do in this setting.
Here, the IRM constraint would enforce learning a featurizer Φ such that Φ(x)
has an invariant relationship with the target. Under the above model, the solution
is Φ(x) = ΠA−1

e x = Σ1/2Πϵ, retainining only the component lying in span(Π).
Crucially, removing these features actually results in worse performance on the
training environments—IRM only does so because using these features could harm
test performance in the worst case. However, projecting out the varying component
in this manner is unnecessarily conservative, as we may expect that for a future
distribution, Σe′ will not be too different from what we have seen before. Instead
of projecting out this component, DARE performs a more nuanced alignment of
environment subspaces, and it is thus able to take advantage of this additional
informaton. We will see shortly the resulting benefits. This would imply that the
minimax-optimal prediction must throw away the varying subspace. Instead, DARE
realigns the subspaces so that we can use them at test-time.

7.5 Theoretical Analysis

Before we can analyze the DARE objective, we observe that there is a possi-
ble degeneracy in Equation (7.2), since two identical observational distributions
p(x, y) can have different regression vectors β∗. We therefore begin with a simple
assumption:
Assumption 7.5.1. Write the SVD of Ae as UeSeV

⊤
e . We assume Ve = V ∀e.

One special case where this holds is when Ae is constant for all domains; this
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is very similar to the “additive intervention” setting of Rothenhäusler et al. [2021],
since only pe, be can vary. We assume WLOG that V = I , as any other value can
be subsumed by the other parameters. We further let E[ϵ0ϵ⊤0 ] = I WLOG by the
same reasoning. With Assumption 7.5.1, we can uniquely recover Ae = UeSe via
the eigendecomposition of the covariance Σe = AeA

⊤
e = UeS

2
eU

⊤
e . We therefore

use the notation Σ
1/2
e to refer to Ae recovered in this way. We allow covariances

to have zero eigenvalues, in which case we write the matrix inverse to implicitly
refer to the pseudoinverse. As is standard in domain generalization analysis, unless
stated otherwise we assume full distribution access to the training domains, though
standard concentration inequalities could easily be applied.

A remark on our assumptions. Assumption 7.5.1 and the constraint in Equa-
tion (7.1) are not trivial. Domain generalization is an exceptionally difficult problem,
and showing anything meaningful requires some assumption of consistency between
train and test. Our assumptions are only as strong as necessary to prove our results,
but future work could relax them, resulting in weaker but possibly still reasonable
performance guarantees. In Appendix F.1.2, we discuss in greater detail the neces-
sity of Assumption 7.5.1, as well as the additional conditions we assume without
loss of generality and their implications for the DARE objective. Additionally,
experiments in Appendix F.5 demonstrate that our covariance estimation is indeed
accurate, and the fact that our method exceeds state of the art even with this strong
constraint (and does worse without the constraint, see Figure F.3) is further evidence
that our assumptions are reasonable.

We begin by deriving the solution to Equations (Equation (7.1)) and (Equa-
tion (F.1)). Recall that the DARE constraint requires that the mean representation
of each domain has no effect on our prediction. To enforce this, the DARE so-
lution must project out the subspace in which the means vary. Given a set of E
training environments, define B as the d × E matrix whose columns are the en-
vironmental mean parameters be. Throughout this section, we make use of the
matrix Π̂, which is defined as the orthogonal projection onto the nullspace of
B⊤: Π̂ := I − BB† = U

Π̂
S
Π̂
U⊤
Π̂
∈ Rd×d. This matrix projects onto the DARE

constraint set, and it turns out to be all that is necessary to state the solution:
Theorem 7.5.2. (Closed-form solution to the DARE population objective). Under
model (Equation (7.2)), the solution to the DARE population objective (Equa-
tion (F.1)) for linear regression is Π̂β∗. If ϵ is Gaussian, then the solution for
logistic regression (Equation (7.1)) is αΠ̂β∗ for some α ∈ (0, 1].

The intuition behind the proof is as follows: due to the constraint, the centered
DARE objective is equivalent to the uncentered objective—for the latter, the excess
risk of a vector β̂ is E[(β̂⊤ϵ− β∗T ϵ)2] = ∥β̂ − β∗∥22. Therefore, the solution is the
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ℓ2-projection of β∗ onto the constraint set, which is precisely Π̂β∗.
In Example 7.4.1, we saw how invariant prediction will discard a large subspace

of the representation and why this is undesirable. Instead, DARE undoes the
environment transformation and regresses directly on ϵ = T−1

e (x). Because we
are performing a separate transformation for each environment, we are aligning
the varying subspaces rather than throwing them away, allowing us to make use
of additional information. Though the DARE solution also recovers β∗ up to a
projection, it is using the adjusted features; DARE therefore only removes what
cannot be aligned. In particular, whereas Π has rank d1 in Example 7.4.1, Π̂ = I
would have full rank—this retains strictly more information: if we expect worst-case
distribution shift we can still project to the invariant subspace, but if not then we
can often perform much better. Indeed, in the ideal setting where we have a good
estimate of Σe′ (e.g., under mild distribution shift or when solving JIT-UDA), we
can make the Bayes-optimal prediction as E[y | x] = β∗TA−1

e′ x. Thus we see a
clear advantage that DARE enjoys over invariant prediction.

The second result of Theorem 7.5.2 depends on a key lemma (Lemma F.2.1 in
the Appendix) about the closed-form solution to a projection-constrained logistic
regression problem. The result is somewhat general and we expect it could be of
independent interest, yet we found surprisingly few related results in the literature.
Though we prove this lemma only for Gaussian z, we found empirically that
the result approximately holds whenever z is dimension-wise independent and
symmetric about the origin., likely as a consequence of the Central Limit Theorem
(see discussion in the Appendix).

7.5.1 The Adversarial Risk of DARE

Moving forward, we denote the DARE solution β∗
Π̂
:= Π̂β∗, with β∗

I−Π̂
defined

analogously. We next study the behavior of the DARE solution under worst-case
distribution shift. We consider the setting where an adversary directly observes
our choices of Σ̄, β̂ and chooses new environmental parameters Ae′ , be′ so as to
cause the greatest possible loss. Specifically, we study the square loss, defining
the excess test risk of a predictor as Re′(β̂) := Epe′ [(β̂

⊤Σ̄−1/2x − β∗T ϵ)2] (we
leave the dependence on Σ̄ implicit). For logistic regression we therefore analyze
the squared error with respect to the log-odds. With some abuse of notation, we
also reference excess risk when only using a particular subspace, i.e. RΠ

e′(β̂) :=

Epe′ [(β̂
⊤
Π Σ̄

−1/2x− β∗T
Π ϵ)2].

Because we guess Σ̄ before observing any data from this new distribution,
ensuring success is impossible in the general case. Instead, we consider a set of
restrictions on the adversary which will make the problem tractable. Define the error
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in our test domain adjustment as ∆ := Σ
1/2
e′ Σ̄−1/2 − I; observe that if Σ̄ = Σe′ ,

then ∆ = 0. Our first assumption3 says that the effect of our adjustment error with
respect to the interaction between subspaces Π̂ and (I − Π̂) is bounded:
Assumption 7.5.3 (Approximate recovery of subspaces). For a fixed constant
B ≥ 0, ∥(I − Π̂)∆Π̂β̂∥2 ≤ B∥Π̂β∗∥2.
Remark 7.5.4. To see specific cases when this would hold, consider the decomposi-
tion of ∆ according to its components in the subspaces Π̂ and I − Π̂: U⊤

Π̂
∆U

Π̂
=[

∆1 ∆12

∆21 ∆2

]
, where ∆1 ∈ Rrank(Π̂)×rank(Π̂). A few settings automatically satisfy

Assumption 7.5.3 with B = 0, due to the fact that U⊤
Π̂
∆U

Π̂
will be block-diagonal.

In particular, this will be the case if all domains share an invariant subspace—e.g.,
if ΠAeΠ is constant as in Example 7.4.1. Below, we show that in this setting, exact
recovery of this subspace occurs once we observe rank(I −Π) environments—this
matches (actually, it is one less than) the linear environment complexity of most
invariant predictors [Rosenfeld et al., 2021], and therefore Assumption 7.5.3 with
B = 0 is no stronger than assuming a linear number of environments. This will
similarly occur if Ue is shared across all environments (e.g., under fixed Ae as
described above) and we use any sort of “averaging” guess of Σ̄.

Our second assumption concerns the magnitude of our error in the non-varying
subspace:
Assumption 7.5.5 (Bound on adjustment error in non-varying subspace). Using
only covariates in the non-varying subspace, the risk of the ground truth regressor
β∗ is less than that of the trivial zero predictor: RΠ̂

pe′
(β∗) < RΠ̂

pe′
(0).

The need for this restriction should be immediate—if our adjustment error were
so large that this did not hold, even the oracle regression vector would do worse
than simply always predicting ŷ = 0. Assumption 7.5.5 is satisfied for example if
∥∆Π̂∥ < 1, which again is guaranteed if there is an invariant subspace. Note that
we make no restriction on the risk in the subspace I − Π̂—the adversary is allowed
any amount of variation in directions where we have already seen variation in the
mean terms be, but introduction of new variation is assumed bounded. This is a
no-free-lunch necessity: if we have never seen a particular type of variation, we
cannot possibly know how to use it at test-time.

With these restrictions on the adversary, our main result derives the supremum
of the excess test risk of the DARE solution under adversarial distribution shift.
Furthermore, we prove that this risk is minimax: making no more restrictions on the
adversary other than a global bound on the mean, the DARE solution achieves the

3Though we label these as assumptions, they are properly interpreted as restrictions on an
adversary—we consider an “uncertainty set” comprising all possible domains subject to these require-
ments.
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best performance we could possibly hope for at test-time:
Theorem 7.5.6 (DARE risk and minimaxity). For any ρ ≥ 0, denote the set of
possible test environments Aρ which contains all parameters (Ae′ , be′) subject to
Assumptions Assumption 7.5.3 and Assumption 7.5.5 and a bound on the mean:
∥be′∥2 ≤ ρ. For logistic or linear regression, let β̂ be the minimizer of the corre-
sponding DARE objective as in Theorem 7.5.2. Then,

sup
(Ae′ ,be′ )∈Aρ

Re′(β̂) = (1 + ρ2)(∥β∗∥22 + 2B∥β∗
Π̂
∥2∥β∗

I−Π̂
∥2).

Furthermore, the DARE solution is minimax:

β̂ ∈ argmin
β∈Rd

sup
(Ae′ ,be′ )∈Aρ

Re′(β)

Proof sketch. We decompose the excess risk into error on the the target mean
β∗T be′ and error on the residuals β∗T ϵ0, bounding the two separately. To show β̂ is
minimax, we construct a series of adversarial choices of Ae′ , be′ which force larger
risk for any predictor which does not satisfy certain properties. These properties
progressively eliminate possible predictors until all those which remain have the
same adversarial risk as β̂.

A special case when our assumptions hold is when all domains share an invariant
subspace and we only predict using that subspace, but this is often too conservative.
There are settings where allowing for (limited) new variation can improve our
predictions, and Theorem 7.5.6 shows that DARE should outperform invariant
prediction in such settings.

7.5.2 The Environment Complexity of DARE

An important new measure of domain generalization algorithms is their envi-
ronment complexity, which describes how the test risk behaves as a function of the
number of (possibly random) domains we observe. In contrast to Example 7.4.1, for
this analysis we assume an invariant subspace Π outside of which both Ae and be
can vary arbitrarily—we formalize this as a prior over the be whose covariance has
the same span as I −Π. Thus the minimax vector is Πβ∗ even after adjustment, so
we can directly compare DARE to existing invariant prediction methods. Our next
result demonstrates that DARE achieves the same threshold as prior methods, but
we also prove the first finite-environment convergence guarantee, quantifying how
quickly the risk of the DARE predictor approaches that of the minimax-optimal
predictor. We begin by defining two quantities which appear in our bound.
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Definition 7.5.7. The effective rank of a matrix Σ is defined as r(Σ) := Tr(Σ)
∥Σ∥2 and

satisfies 1 ≤ r(Σ) ≤ rank(Σ).
Definition 7.5.8. Denote the eigenvalues in descending order as λ1 ≥ . . . ≥ λd. We
define the smallest gap between consecutive eigenvalues: ξ(Σ) := mini∈[d−1] λi −
λi+1.
Theorem 7.5.9 (Environment complexity of DARE). Fix test parameters Ae′ , be′

and guess Σ̄. Suppose we minimize the DARE regression objective (Equation (F.1))
on environments whose means be are Gaussian vectors with covariance Σb, with
span(Σb) = span(I −Π). After seeing E training domains:

1. If E ≥ rank(Σb) then DARE recovers the minimax-optimal predictor almost
surely: β̂ = β∗

Π.
2. Otherwise, if E ≥ r(Σb) then with probability ≥ 1− δ,

Re′(β̂) ≤ Re′(β
∗
Π)

+O
(
∥Σb∥2
ξ(Σb)

(√
r(Σb)

E
+max

{√
log 1/δ

E
,
log 1/δ

E

}))
,

where O(·) hides dependence on ∥∆∥2.
For coherence we present the first item as a probabilistic statement, but it holds

deterministically so long as there are rank(Σb) linearly independent observations
of be.

Proof sketch. The proof analyzes the error in our recovery of the correct subspace
∥Π − Π̂∥2. Item 1 is immediate, as under this condition we have ∥Π − Π̂∥2 = 0.
For item 2, we show how to boundRe′(β̂)−Re′(β

∗
Π) as O(∥Π− Π̂∥2). We then

invoke a variant of the Davis-Kahan theorem plus a spectral concentration inequality
to derive the result.

Remark 7.5.10. Prior analyses of invariant prediction methods only show a discon-
tinuous threshold where the minimax predictor is discovered after seeing a fixed
number of environments—usually linear in the non-invariant latent dimension—and
DARE achieves a slightly better threshold. But one should expect that if the varia-
tion of environmental parameters is not too large then we can do better, and indeed
Theorem 7.5.9 shows that if the effective rank of Σb is sufficiently small, the risk of
the DARE predictor will approach that of the minimax predictor as O(E−1/2).

7.5.3 Applying DARE to JIT-UDA

So far, we have only considered a setting with no knowledge of the test domain.
As discussed in Section 7.3, we’d expect that estimating the adjustment via unlabeled
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samples will improve performance. Prior works have extensively explored how to
leverage access to unlabeled test samples for improved generalization—but while
some suggest ways of using unlabeled samples at test-time, they are not truly
“just-in time”, in that they still require updating the network parameters using the
unlabeled data, with cost scaling with the size of the network. Furthermore, the
advantages of access to such data at test time has not yet been formally quantified.
Our final theorem investigates the provable benefits of using the empirical moments
instead of enforcing invariance, giving a finite-sample convergence guarantee for
the unconstrained DARE objective in the JIT-UDA setting:
Theorem 7.5.11 (JIT-UDA, shortened). Assume the data follows the model equa-
tion 7.2 and that we observe ns = Ω(m(ΣS)d

2) samples from source distribution
N (µS ,ΣS) and nT = Ω(m(ΣT )d

2) samples from target distribution N (µT ,ΣT ).
Suppose we solve for β̂ which minimizes the unconstrained, uncentered objective
L̂0reg over the source data and predict β̂⊤Σ̂

−1/2
T x on the target data. Then with

probability at least 1− 3d−1, the excess squared risk of our predictor on the new
environment is bounded as

RT (β̂) = O
(
d2∥µT ∥22

(
m(ΣS)

nS
+

m(ΣT )

nT

))
.

The full theorem statement can be found in the Appendix. Experimentally, we
found that DARE does not outperform methods specifically intended for UDA,
possibly due to the fact that n≪ d2—but we believe this is a promising direction for
future theoretical research, since it doesn’t require unlabeled samples at train-time
and it can incorporate new data in a streaming fashion.

7.6 Experiments

Most algorithms implemented in the DOMAINBED benchmark are only appli-
cable to deep networks; many apply complex regularization to either the learned
features or the network itself. We instead compare to three popular algorithms which
work for linear classifiers: ERM [Vapnik, 1999], IRM [Arjovsky et al., 2019], and
GroupDRO [Sagawa et al., 2020a]. We also discovered that simply rescaling ERM
by downweighting each domain proportionally to its size serves as a strong baseline.
Concurrent work makes a similar observation, exploring this baseline when training
the whole network rather than just the last layer [Idrissi et al., 2021]. We denote this
method “Reweighted ERM” and we include it in our reported results in Table 7.1.
We evaluate all approaches on four datasets: Office-Home [Venkateswara et al.,
2017a], PACS [Li et al., 2017], VLCS [Fang et al., 2013], and DomainNet [Peng
et al., 2019a]. The features for each trial are the default hyperparameter sweep of
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Dataset / Algorithm Mean Accuracy by Domain (± 90% CI)

Office-Home A C P R

ERM 61.4 ± 1.9 52.1 ± 1.6 74.6 ± 0.7 75.8 ± 1.9
IRM 62.1 ± 1.5 53.2 ± 1.7 75.2 ± 0.9 77.3 ± 0.8
GroupDRO 62.5 ± 0.5 53.1 ± 1.7 75.7 ± 0.5 77.7 ± 1.1
Reweighted ERM 62.5 ± 0.8 52.5 ± 2.3 75.7 ± 0.5 77.4 ± 0.8

DARE 64.7 ± 0.8 55.4 ± 1.1 77.5 ± 0.3 79.2 ± 0.5

PACS A C P S

ERM 84.3 ± 1.5 79.5 ± 1.9 96.7 ± 0.5 74.9 ± 3.7
IRM 83.6 ± 0.4 79.2 ± 0.5 97.1 ± 0.2 76.4 ± 2.3
GroupDRO 83.6 ± 1.0 79.1 ± 0.2 96.9 ± 0.3 76.8 ± 2.8
Reweighted ERM 83.6 ± 1.0 78.8 ± 0.2 97.1 ± 0.3 76.5 ± 2.3

DARE 85.6 ± 0.6 80.5 ± 1.0 96.6 ± 0.4 76.7 ± 2.0

Dataset / Algorithm Mean Accuracy by Domain (± 90% CI)

VLCS C L S V

ERM 97.6 ± 0.7 66.1 ± 0.6 71.9 ± 1.9 76.1 ± 2.3
IRM 98.6 ± 0.6 64.9 ± 0.9 72.9 ± 0.7 74.1 ± 2.1
GroupDRO 98.5 ± 0.7 65.0 ± 0.5 73.9 ± 1.0 75.1 ± 1.8
Reweighted ERM 98.6 ± 0.7 65.5 ± 0.5 73.4 ± 0.3 74.9 ± 1.7

DARE 98.5 ± 0.2 62.5 ± 1.6 74.3 ± 1.4 75.5 ± 1.4

DomainNet c i p q r s

ERM 57.6 ± 0.6 17.9 ± 0.6 44.7 ± 0.7 12.6 ± 0.9 59.0 ± 0.7 48.6 ± 0.3
IRM 60.9 ± 0.4 19.3 ± 0.2 47.6 ± 0.4 12.4 ± 0.4 61.9 ± 1.0 49.8 ± 0.6
GroupDRO 57.8 ± 0.7 18.8 ± 0.4 45.3 ± 0.4 11.9 ± 0.8 59.5 ± 1.0 47.9 ± 0.9
Reweighted ERM 61.0 ± 0.4 19.1 ± 0.4 47.4 ± 0.4 12.3 ± 0.6 61.8 ± 1.1 49.9 ± 0.5

DARE 61.7 ± 0.2 19.3 ± 0.1 47.4 ± 0.5 13.1 ± 0.7 61.2 ± 1.3 51.4 ± 0.3

Table 7.1: Performance of linear predictors on top of fixed features learned via
ERM. Each letter is a domain. Because all algorithms use the same set of features
for each trial, results are not independent. Therefore, bold indicates highest mean
according to one-sided paired t-tests at p = 0.1 significance. If not the overall
highest, underline indicates higher mean than ERM under the same test.

DOMAINBED; for computational reasons, we used fewer random hyperparame-
ter choices per trial, meaning the reported accuracies are not directly comparable.
Nevertheless, our results are significant because they are consistently evaluated
according to the same methodology. Additional comparisons to other end-to-end
methods can be found in Appendix F.5.

We find that DARE consistently matches or surpasses prior methods. All
algorithms use the same set of features for each trial, so their performances are
highly dependent. To account for this, we perform a one-sided paired t-test between
algorithms to determine the best performers. The fact that DARE consistently
bests ERM is somewhat surprising: it is intended to guard against a worst-case
distribution shift and depends on the quality of our guess Σ̄, so we would in general
expect worse performance on some datasets.

Prior methods now consistently outperform ERM. It is interesting that the
previously observed gap between ERM and alternatives disappears in this setting
with a linear predictor. For example, Gulrajani and Lopez-Paz [2021] report IRM
and GroupDRO performing much worse on DomainNet—5-10% lower accuracy on
some domains—but they surpass ERM when using frozen features. This could be
because they learn worse features, or perhaps they are just more difficult to optimize
over a deep network. This also implies that when these methods do work, it is
most likely due to learning a better linear classifier. This further motivates work on
methods for learning simpler robust predictors.
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7.7 Related Work

A popular approach to domain generalization matches the domains in fea-
ture space, either by aligning moments [Sun et al., 2016a] or with an adversarial
loss [Ganin et al., 2016], though these methods are known to be inadequate in
general [Zhao et al., 2019]. DARE differs from these approaches in that the con-
straint requires only that the feature mean projection onto the vector β be invariant.
Domain-invariant projections [Baktashmotlagh et al., 2013] were recently analyzed
by Chen and Bühlmann [2021], though notably under fully observed features and
only for domain adaptation. They analyze other invariances as well, and we expect
combining these methods with domain adjustment can serve as a direction for future
study.

There has been intense recent focus on invariant prediction, based on ideas from
causality [Peters et al., 2016] and catalyzed by IRM [Arjovsky et al., 2019]. Though
the goal of such methods is minimax-optimality under major distribution shift, later
work identifies critical failure modes of this approach [Rosenfeld et al., 2021, Ka-
math et al., 2021]. As discussed in Example 7.4.1, these methods eliminate features
whose information is not invariant, which is often overly conservative. DARE
instead allows for limited new variation by aligning the non-invariant subspaces,
enabling stronger theoretical guarantees.

Some prior works “normalize” each domain by learning separate batchnorm
parameters but sharing the rest of the network. This was initially suggested for UDA
[Li et al., 2016, Bousmalis et al., 2016, Chang et al., 2019], which is not directly
comparable to DARE since it requires unlabeled test data. This idea has also been
applied to domain generalization [Seo et al., 2019, Segù et al., 2020] but in an
ad-hoc manner. Because of the difficulty in training the network end-to-end, there
is no consistent method for optimizing or validating the objective—in particular,
all deep domain generalization methods were recently called into question when
Gulrajani and Lopez-Paz [2021] gave convincing evidence that nothing beats ERM
when evaluated fairly. Nevertheless, our analysis provides an initial justification for
these methods, suggesting that this idea is worth exploring further.
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Chapter 8

(Almost) Provable Error Bounds
Under Distribution Shift via
Disagreement Discrepancy

This chapter is based on Rosenfeld et al. [2022b]:
Rosenfeld, E. & Garg, S.
(Almost) Provable Error Bounds Under Distribution Shift via Disagreement
Discrepancy.
In Thirty-sixth Conference on Neural Information Processing Systems, 2023.

8.1 Introduction

When deploying a model, it is important to be confident in how it will perform
under inevitable distribution shift. Standard methods for achieving this include
data dependent uniform convergence bounds [Mansour et al., 2009, Ben-David
et al., 2006] (typically vacuous in practice) or assuming a precise model of how the
distribution can shift [Rahimian and Mehrotra, 2019, Chen et al., 2022, Rosenfeld
et al., 2021]. Unfortunately, it is difficult or impossible to determine how severely
these assumptions are violated by real data (“all models are wrong”), so practitioners
usually cannot trust such bounds with confidence.

To better estimate test performance in the wild, some recent work instead
tries to directly predict accuracy of neural networks using unlabeled data from
the test distribution of interest, [Garg et al., 2022, Baek et al., 2022, Lu et al.,
2023]. While these methods predict the test performance surprisingly well, they
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lack pointwise trustworthiness and verifiability: their estimates are good on average
over all distribution shifts, but they provide no guarantee or signal of the quality of
any individual prediction (here, each point is a single test distribution, for which a
method predicts a classifier’s average accuracy). Because of the opaque conditions
under which these methods work, it is also difficult to anticipate their failure
cases—indeed, it is reasonably common for them to substantially overestimate test
accuracy for a particular shift, which is problematic when optimistic deployment
can be costly or catastrophic. Worse yet, we find that this gap grows with test
error (Figure 8.1), making these predictions least reliable under large distribution
shift, which is precisely when their reliability is most important. Although it is
clearly impossible to guarantee upper bounds on test error for all shifts, there is still
potential for error bounds that are intuitive and reasonably trustworthy.

In this work, we develop a method for (almost) provably bounding test error
of classifiers under distribution shift using unlabeled test points. Our bound’s
only requirement is a simple, intuitive, condition which describes the ability of a
hypothesis class to achieve small loss on a particular objective defined over the
(unlabeled) train and test distributions. Inspired byH∆H-divergence [Ben-David
et al., 2010b], our method requires training a critic to maximize agreement with the
classifier of interest on the source distribution while simultaneously maximizing
disagreement on the target distribution; we refer to this joint objective as the
disagreement discrepancy, and so we name the method DIS2. We optimize this
discrepancy over linear classifiers using deep features—or linear functions thereof—
finetuned on only the training set. Recent evidence suggests that such representations
are sufficient for highly expressive classifiers even under large distribution shift
[Rosenfeld et al., 2022b]. Experimentally, we find that our bound is valid effectively
100% of the time,1 consistently giving non-trivial lower bounds on test accuracy
which are reasonably comparable to competitive baselines.

Additionally, we empirically show that it is even possible to approximately test
this bound’s likelihood of being satisfied with only unlabeled data: the optimization
process itself provides useful information about the bound’s validity, and we use
this to construct a score which linearly correlates with the tightness of the bound.
This score can then be used to relax the original bound into a sequence of suc-
cessively tighter-yet-less-conservative estimates, interpolating between robustness
and accuracy and allowing a user to make estimates according to their specific risk
tolerance.

While maximizing agreement is statistically well understood, our method also

1The few violations are expected a priori, have an obvious explanation, and only occur for a
specific type of learned representation. We defer a more detailed discussion of this until after we
present the bound.
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Figure 8.1: Our bound vs. three prior methods for estimation across a wide
variety of distribution shift benchmarks (e.g., WILDs, BREEDs, DomainNet)
and training methods (e.g., ERM, FixMatch, BN-adapt). Prior methods are accurate
on average, but it is difficult or impossible to know when a given prediction is
reliable and why. Worse yet, they usually overestimate accuracy, with the gap
growing as test accuracy decreases—this is precisely when a reliable, conservative
estimate is most desirable. Instead, DIS2 maximizes the disagreement discrepancy
to give a reliable error upper bound which holds effectively 100% of the time.

calls for maximizing disagreement on the target distribution. This is not so straight-
forward in the multiclass setting, and we observe that prior works use unsuitable
losses which do not correspond to minimizing the 0-1 loss of interest and are non-
convex (or even concave) in the model logits [Chuang et al., 2020, Pagliardini et al.,
2023]. To rectify this, we derive a new “disagreement loss” which serves as an
effective proxy loss for maximizing multiclass disagreement. Experimentally, we
find that minimizing this loss results in lower risk (that is, higher disagreement) com-
pared to prior methods, and we believe it can serve as a useful drop-in replacement
for any future methods which require maximizing multiclass disagreement.

Experiments across numerous vision datasets (BREEDs [Santurkar et al., 2020],
FMoW-WILDs [Koh et al., 2021], Visda [Peng et al., 2017], Domainnet [Peng et al.,
2019b], CIFAR10, CIFAR100 [Krizhevsky and Hinton, 2009] and OfficeHome
[Venkateswara et al., 2017b]) demonstrate the effectiveness of our bound. Though
DIS2 is competitive with prior methods for error estimation, we emphasize that
our focus is not on improving raw predictive accuracy—rather, we hope to obtain
reliable (i.e., conservative), reasonably tight bounds on the test error of a given
classifier under distribution shift. In particular, while existing methods tend to
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severely overestimate accuracy as the true accuracy drops, our bound maintains
its validity while remaining non-vacuous, even for drops in accuracy as large as
70%. In addition to source-only training, we experiment with unsupervised domain
adaptation methods that use unlabeled target data and show that our observations
continue to hold.

8.2 Related Work

Estimating test error with unlabeled data. The generalization capabilities of
overparameterized models on in-distribution data have been extensively studied
using conventional machine learning tools [Neyshabur et al., 2015, 2017, Neyshabur,
2017, Neyshabur et al., 2018, Dziugaite and Roy, 2017, Bartlett et al., 2017, Zhou
et al., 2018, Long and Sedghi, 2019, Nagarajan and Kolter, 2019a]. This research
aims to bound the generalization gap by evaluating complexity measures of the
trained model. However, these bounds tend to be numerically loose compared
to actual generalization error [Zhang et al., 2016, Nagarajan and Kolter, 2019b].
Another line of work instead explores the use of unlabeled data for predicting in-
distribution generalization [Platanios et al., 2016, 2017, Garg et al., 2021, Nakkiran
and Bansal, 2019, Jiang et al., 2022b]. More relevant to our work, there are
several methods that predict the error of a classifier under distribution shift with
unlabeled test data: (i) methods that explicitly predict the correctness of the model
on individual unlabeled points [Deng and Zheng, 2021, Deng et al., 2021, Chen
et al., 2021a]; and (ii) methods that directly estimate the overall error without
making a pointwise prediction [Chen et al., 2021b, Guillory et al., 2021, Chuang
et al., 2020, Garg et al., 2022, Baek et al., 2022].

To achieve a consistent estimate of the target accuracy, several works require
calibration on the target domain [Jiang et al., 2022b, Guillory et al., 2021]. However,
these methods often yield poor estimates because deep models trained and calibrated
on a source domain are not typically calibrated on previously unseen domains
[Ovadia et al., 2019]. Additionally, Deng and Zheng [2021], Guillory et al. [2021]
require a subset of labeled target domains to learn a regression function that predicts
model performance—but thus requires significant a priori knowledge about the
nature of shift that, in practice, might not be available before models are deployed
in the wild.

Closest to our work is Chuang et al. [2020], where the authors use domain-
invariant predictors as a proxy for unknown target labels. However, there are several
crucial differences. First, like other works, their method only estimates the target
accuracy—the error bounds they derive are not reasonably computable in practice.
Second, their method relies on multiple approximations and the tuning of numerous
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hyperparameters, e.g. a threshold term and multiple lagrangian multipliers which
trade off strengths of different regularizers. Their approach is also computationally
demanding; as a result, proper tuning is difficult and the method does not scale to
modern deep networks. Finally, they suggest minimizing the (concave) negative
cross-entropy loss, but we show that this can be a poor proxy for maximizing
disagreement, and we propose a more suitable replacement which performs much
better in practice.

Uniform convergence bounds. Our bound is inspired by classic analyses usingH-
andH∆H-divergence [Mansour et al., 2009, Ben-David et al., 2006, 2010b]. These
provide error bounds via a complexity measure that is both data- and hypothesis-
class-dependent. This motivated a long line of work on training classifiers with
small corresponding complexity, such as restricting classifiers’ discriminative power
between source and target data [Ganin et al., 2016, Sun et al., 2016b, Long et al.,
2018, Zhang et al., 2019]. Unfortunately, such bounds are often intractable to
evaluate and are usually vacuous in real world settings. We provide a more detailed
comparison between such bounds and our approach in Section 8.3.1.

8.3 Deriving an (Almost) Provable Error Bound

Notation. Let S, T denote the source and target (train and test) distributions,
respectively, over labeled inputs (x, y) ∈ X × Y , and let Ŝ, T̂ denote sets of
samples from them with cardinalities nS and nT (they also denote the corresponding
empirical distributions). Recall that we observe only the covariates x without the
label y when a sample is drawn from T . We consider classifiers h : X → R|Y|

which output a vector of logits, and we let ĥ denote the particular classifier whose
error we aim to bound. Generally, we use H to denote a hypothesis class of such
classifiers. Occasionally, where clear from context, we use h(x) to refer to the
argmax logit, i.e. the predicted class. We treat these classifiers as deterministic
throughout, though our analysis can easily be extended to probabilistic classifiers and
labels. For a distribution D on X × Y , let ϵD(h, h′) := ED[1{argmaxy h(x)y ̸=
argmaxy h

′(x)y}] denote the one-hot disagreement between classifiers h and h′ on
D. Let y∗ represent the true labeling function such that y∗(x) = y for all samples
(x, y); with some abuse of notation, we write ϵD(h) to mean ϵD(h, y

∗), i.e. the 0-1
error of classifier h on distribution D.

The bound we derive in this work is extremely simple and relies on one new
concept:
Definition 8.3.1. The disagreement discrepancy ∆(h, h′) is the disagreement be-
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tween h and h′ on T minus their disagreement on S:

∆(h, h′) := ϵT (h, h
′)− ϵS(h, h

′).

We leave the dependence on S, T implicit. Note that this term is symmetric and
signed—it can be negative. With this definition, we now have the following lemma:

Lemma 8.3.2. For any classifier h, ϵT (h) = ϵS(h) + ∆(h, y∗).

Proof. By definition, ϵT (h) = ϵS(h)+ (ϵT (h)− ϵS(h)) = ϵS(h)+∆(h, y∗).

We cannot directly use Lemma 8.3.2 to estimate ϵT (ĥ) because the second term
is unknown. However, observe that y∗ is fixed. That is, while a learned ĥ will depend
on y∗—and therefore ∆(ĥ, y∗) may be large under large distribution shift—y∗ is
not chosen to maximize ∆(ĥ, y∗) in response to the ĥ we have learned. This
means that for a sufficiently expressive hypothesis class H, it should be possible
to identify an alternative labeling function h′ ∈ H for which ∆(ĥ, h′) ≥ ∆(ĥ, y∗)
(we refer to such h′ as the critic). In other words, we should be able to find an
h′ ∈ H for which its implied error gap ϵT (ĥ, h

′) − ϵS(ĥ, h
′)—i.e., the error gap

if we assume h′ is the true labeling function—is at least as large as the true error
gap ϵT (ĥ)− ϵS(ĥ). This key observation serves as the basis for our bound, and we
discuss it in greater detail in Section 8.3.1.

In this work we consider the classH of linear critics, with X defined as source-
finetuned deep neural representations or the resulting logits output by ĥ. Prior work
provides strong evidence that this class has surprising capacity under distribution
shift, including the possibility that functions very similar to y∗ lie inH [Rosenfeld
et al., 2022b, Kirichenko et al., 2022, Kang et al., 2020]. We formalize this intuition
with the following assumption:
Assumption 8.3.3. Define h∗ := argmaxh′∈H∆(ĥ, h′). We assume

∆(ĥ, y∗) ≤ ∆(ĥ, h∗).

Note that this statement is only meaningful when considering restricted H
which may not contain y∗, as we do here. Note also that this assumption is made
specifically for ĥ, i.e. on a per-classifier basis. This is important because while
the above may not hold for every classifier ĥ, it need only hold for the classifiers
whose error we would hope to bound, which is in practice a very small subset of
classifiers (such as those which can be found by approximately minimizing the
empirical training risk via SGD). From Lemma 8.3.2, we immediately have the
following result:
Proposition 8.3.4. Under Assumption 8.3.3, ϵT (ĥ) ≤ ϵS(ĥ) + ∆(ĥ, h∗).
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Unfortunately, identifying the optimal critic h∗ is intractable, meaning this
bound is still not estimable—we present it as an intermediate result for clarity of
presentation. To derive the practical bound we report in our experiments, we need
one additional step. In Section 8.4, we derive a “disagreement loss” which we
use to approximately maximize the empirical disagreement discrepancy ∆̂(ĥ, ·) =
ϵT̂ (ĥ, ·)− ϵŜ(ĥ, ·). Relying on this loss, we instead make the assumption:
Assumption 8.3.5. Suppose we identify the critic h′ ∈ H which maximizes a con-
cave surrogate to the empirical disagreement discrepancy. We assume ∆(ĥ, y∗) ≤
∆(ĥ, h′).

This assumption is slightly stronger than Assumption 8.3.3—in particular, As-
sumption 8.3.3 implies with high probability a weaker version of Assumption 8.3.5
with additional terms that decrease with increasing sample size and a tighter proxy
loss.2 Thus, the difference in strength between these two assumptions shrinks as the
number of available samples grows and as the quality of our surrogate objective im-
proves. Ultimately, our bound holds without these terms, implying that the stronger
assumption is reasonable in practice. We can now present our main bound:
Theorem 8.3.6 (Main Bound). Under Assumption 8.3.5, with probability ≥ 1− δ,

ϵT (ĥ) ≤ ϵŜ(ĥ) + ∆̂(ĥ, h′) +

√
(nS + 4nT ) log 1/δ

2nSnT
.

Proof. Assumption 8.3.5 implies ϵT (ĥ) ≤ ϵS(ĥ)+∆(ĥ, h′) = ϵS(ĥ, y
∗)+ϵT (ĥ, h

′)
−ϵS(ĥ, h′), so the problem reduces to upper bounding these three terms. We define
the random variables

rS,i =


1/nS, h′(xi) = ĥ(xi) ̸= yi,

−1/nS, h′(xi) ̸= ĥ(xi) = yi,

0, otherwise

rT ,i =
1{ĥ(xi) ̸= h′(xi)}

nT

for source and target samples, respectively. By construction, the sum of all of these
variables is precisely ϵŜ(ĥ, y

∗)+ ϵT̂ (ĥ, h
′)− ϵŜ(ĥ, h

′) (note these are the empirical
terms). Further, observe that

E

[∑
S

rS,i

]
= ES [1{ĥ(xi) ̸= yi} − 1{ĥ(xi) ̸= h′(xi)}] = ϵS(ĥ, y

∗)− ϵS(ĥ, h
′),

E

[∑
T

rT ,i

]
= ET [1{ĥ(xi) ̸= h′(xi)}] = ϵT (ĥ, h

′),

2Roughly, Assumption 8.3.3 implies ∆(ĥ, y∗) ≤ ∆(ĥ, h′) +O
(√

log 1/δ
min(nS ,nT )

)
+ γ, where γ

is a data-dependent measure of how tightly the surrogate loss bounds the 0-1 loss in expectation.
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and thus the expectation of their sum is ϵS(ĥ, y
∗) + ϵT (ĥ, h

′) − ϵS(ĥ, h
′) (the

population terms). Now we apply Hoeffding’s inequality: the probability that the
expectation exceeds their sum by t is no more than exp

(
− 2t2

nS(2/nS)
2+nT (1/nT )2

)
.

Solving for t completes the proof.

Remark 8.3.7. While we state Theorem 8.3.6 as an implication, Assumption 8.3.5 is
equivalent to the stated bound up to finite-sample terms. Our empirical findings
(and prior work) suggest that Assumption 8.3.5 is reasonable in general, but this
equivalence allows us to actually prove that it holds in practice for some shifts. We
elaborate on this in Appendix G.5.

The high-level statement of Theorem 8.3.6 is that if there is a simple (e.g.,
linear) critic h′ ∈ H with large disagreement discrepancy, ĥ could have high error—
likewise, if no critic achieves large discrepancy, we should expect low error. Here
we gain a deeper understanding of the conceptual idea behind Assumption 8.3.5
and what it allows us to say via Theorem 8.3.6 about error under distribution shift.
We distill this into the following core principle:

Principle 8.3.8. Consider the set of labeling functions which are approximately

consistent with the labels on the source data. If all “reasonably simple” functions

in this set would imply a classifier has low error on the target data, we should

consider it more likely that the classifier indeed has low error than that the true

labeling function is very complex.

In particular, if we accept the premise that existing representations are good
enough that a simple function can achieve high accuracy under distribution shift
[Rosenfeld et al., 2022b], it follows—up to some approximation—that the only
labeling functions we need consider are the ones which are simple and agree with
y∗ on S.
Remark 8.3.9. Bounding error under distribution shift is fundamentally impossible
without assumptions. Prior works which estimate accuracy using unlabeled data
rely on experiments, suggesting that whatever condition allows their method to
work holds in a variety of settings [Garg et al., 2022, Baek et al., 2022, Lu et al.,
2023, Jiang et al., 2022b, Guillory et al., 2021]; using these methods is equivalent to
implicitly assuming that it will hold for future shifts. Understanding these conditions
is thus crucial for assessing in a given scenario whether they can be expected to be
satisfied.3 It is therefore of great practical value that Assumption 8.3.5 is a simple,

3Whether and when to trust a black-box estimate that is consistently accurate in all observed settings
is a centuries-old philosophical problem [Hume, 2000] which we do not address here. Regardless,
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(a) (b) (c)

Figure 8.2: The advantage of DIS2 over bounds based on H- and H∆H-
divergence. Consider the task of classifying circles and squares (triangles are
unlabeled). (a): Because h1 and h2 ⊕ h3 perfectly discriminate between S (blue)
and T (red), H- and H∆H-divergence bounds are always vacuous. In contrast,
DIS2 is only vacuous when 0% accuracy is induced by a reasonably likely ground
truth (such as y∗3 in (c), but not y∗1 in (b)), and can often give non-vacuous bounds
(such as y∗2 in (b)).

intuitive requirement: below we demonstrate that this simplicity allows us to a
identify a potential failure case a priori.

8.3.1 How Does DIS2 Improve overH- andH∆H-Divergence?

To verifiably bound a classifier’s error under distribution shift, one must develop
a meaningful notion of distance between distributions. One early attempt at this was
H-divergence [Ben-David et al., 2006, Mansour et al., 2009] which measures the
ability of a binary hypothesis classH to discriminate between S and T in feature
space. This was later refined toH∆H-divergence [Ben-David et al., 2010b], which
is equal toH-divergence where the discriminator class comprises all exclusive-ors
between pairs of functions from the original classH. Though these measures can in
principle provide non-vacuous bounds, they usually do not, and evaluating them is
often intractable (particularlyH∆H, because it requires maximizing an objective
over all pairs of hypotheses). Furthermore, these bounds are overly conservative
even for simple function classes and distribution shifts because they rely on uniform
convergence. In practice, we do not care about bounding the error of all classifiers
inH—we only care to bound the error of ĥ. This is a clear advantage of DIS2 over
H∆H.

The true labeling function is never worst-case.4 More importantly, as

Figure 8.1 shows that these estimates are not consistently accurate, making interpretability that much
more important.

4If it were, we’d see exactly 0% test accuracy—and when does that ever happen?
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Principle 8.3.8 exemplifies, one should not expect the distribution shift to be truly
worst-case, because the test distribution T and ground truth y∗ are not chosen
adversarially with respect to ĥ [Rosenfeld et al., 2022c]. Figure 8.2 gives a simple
demonstration of this point. Consider the task of learning a linear classifier to
discriminate between squares and circles on the source distribution S (blue) and
then bounding the error of this classifier on the target distribution T (red), whose true
labels are unknown and are therefore depicted as triangles. Figure 8.2a demonstrates
that bothH- andH∆H-divergence achieve their maximal value of 1, because both
h1 and h2 ⊕ h3 perfectly discriminate between S and T . Thus both bounds would
be vacuous.

Now, suppose we were to learn the max-margin ĥ on the source distribution
(Figure 8.2b). It is possible that the true labels are given by the worst-case boundary
as depicted by y∗1 (pink), thus “flipping” the labels and causing ĥ to have 0 accuracy
on T . In this setting, a vacuous bound is correct. However, this seems rather unlikely
to occur in practice—instead, recent experimental evidence [Rosenfeld et al., 2022b,
Kirichenko et al., 2022, Kang et al., 2020] suggests that the true y∗ will be much
simpler. The maximum disagreement discrepancy here would be approximately
0.5, giving a test accuracy lower bound of 0.5—this is consistent with plausible
alternative labeling functions such as y∗2 (orange). Even if y∗ is not linear, we may
still expect that some linear function will induce larger discrepancy; this is precisely
Assumption 8.3.3. Suppose instead we learn ĥ as depicted in Figure 8.2c. Then
a simple ground truth such as y∗3 (green) is plausible, which would mean ĥ has 0
accuracy on T . In this case, y∗3 is also a critic with disagreement discrepancy equal
to 1, and so DIS2 would correctly output an error upper bound of 1.

A setting where DIS2 may be invalid. There is one setting where it should be
clear that Assumption 8.3.5 is less likely to be satisfied: when the representation we
are using is explicitly regularized to keep maxh′∈H∆(ĥ, h′) small. This occurs for
domain-adversarial representation learning methods such as DANN [Ganin et al.,
2016] and CDAN [Long et al., 2018], which penalize the ability to discriminate
between S and T in feature space. Given a critic h′ with large disagreement
discrepancy, the discriminator D(x) = 1{argmaxy ĥ(x)y = argmaxy h

′(x)y}
will achieve high accuracy on this task (precisely, 1+∆(ĥ,h′)

2 ). By contrapositive,
enforcing low discriminatory power means that the max discrepancy must also
be small. It follows that for these methods DIS2 should not be expected to hold
universally, and in practice we see that this is the case (Figure 8.3). Nevertheless,
when DIS2 does overestimate accuracy, it does so by significantly less than prior
methods.
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Figure 8.3: DIS2 may be invalid when the features are explicitly learned to
violate Assumption 8.3.5. Domain-adversarial representation learning algorithms
such as DANN and CDAN indirectly minimize maxh′∈H∆(ĥ, h′), meaning the
necessary condition is less likely to be satisfied. Nevertheless, when DIS2 does
overestimate accuracy, it almost always does so by less than prior methods.

8.4 Efficiently Maximizing the Disagreement Discrepancy

For a classifier ĥ, Theorem 8.3.6 clearly prescribes how to bound its test error:
first, train a critic h′ on the chosen X to approximately maximize ∆(ĥ, h′), then
evaluate ϵŜ(ĥ) and ∆̂(ĥ, h′) using a holdout set. The remaining difficulty is in
identifying the maximizing h′ ∈ H—that is, the one which minimizes ϵS(ĥ, h′) and
maximizes ϵT (ĥ, h′). We can approximately minimize ϵS(ĥ, h′) by minimizing the
sample average of the convex surrogate ℓlogistic := − 1

log |Y| log softmax(h(x))y as
justified by statistical learning theory. However, it is less clear how to maximize
ϵT (ĥ, h

′).
A few prior works suggest proxy losses for multiclass disagreement [Chuang

et al., 2020, Pagliardini et al., 2023]. We observe that these losses are not theoret-
ically justified, as they do not upper bound the 0-1 disagreement loss we hope to
minimize and are non-convex (or even concave) in the model logits. Indeed, it is
easy to identify simple settings in which minimizing these losses will result in a
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degenerate classifier with arbitrarily small loss but high agreement. Instead, we
derive a new loss which satisfies the above desiderata and thus serves as a more
principled approach to maximizing disagreement.
Definition 8.4.1. The disagreement logistic loss of a classifier h on a labeled sample
(x, y) is defined as

ℓdis(h, x, y) :=
1

log 2
log

1 + exp

h(x)y −
1

|Y| − 1

∑
ŷ ̸=y

h(x)ŷ

 .

Fact 8.4.2. The disagreement logistic loss is convex in h(x) and upper bounds the
0-1 disagreement loss (i.e., 1{argmaxŷ h(x)ŷ = y}). For binary classification, the
disagreement logistic loss is equivalent to the logistic loss with the label flipped.

We expect that ℓdis can serve as a useful drop-in replacement for any future algo-
rithm which requires maximizing disagreement in a principled manner. We combine
ℓlogistic and ℓdis to arrive at the empirical disagreement discrepancy objective:

L̂∆(h′) :=
1

|Ŝ|
∑
x∈Ŝ

ℓlogistic(h
′, x, ĥ(x)) +

1

|T̂ |
∑
x∈T̂

ℓdis(h
′, x, ĥ(x)).

By construction, 1− L̂∆(h′) is concave and bounds ∆̂(ĥ, h′) from below. However,
note that the representations are already optimized for accuracy on S , which suggests
that predictions will have low entropy and that the 1/log |Y| scaling is unnecessary for
balancing the two terms. We therefore drop the scaling factor, simply using standard
cross-entropy; this often leads to higher discrepancy. In practice we optimize this
objective with multiple initializations and hyperparameters and select the solution
with the largest empirical discrepancy on a holdout set to ensure a conservative
bound. Experimentally, we find that replacing ℓdis with either of the surrogate losses
from Chuang et al. [2020], Pagliardini et al. [2023] results in smaller discrepancy;
we present these results in Appendix G.2.

Tightening the bound by optimizing over the logits. Looking at Theorem 8.3.6,
it is clear that the value of the bound will decrease as the capacity of the hypothesis
class is restricted. Since the number of features is large, one may expect that
Assumption 8.3.5 holds even for a reduced feature set. In particular, it is well
documented that deep networks optimized with stochastic gradient descent learn
representations with small effective rank, often not much more than the number
of classes [Arora et al., 2018, 2019, Pezeshki et al., 2021, Huh et al., 2022]. This
suggests that the logits themselves should contain most of the features’ information
about S and T and that using the full feature space is unnecessarily conservative.
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To test this, we evaluate DIS2 on the full features, the logits output by ĥ, and various
fractions of the top principal components (PCs) of the features. We observe that
using logits indeed results in tighter error bounds while still remaining valid—in
contrast, using fewer top PCs also results in smaller error bounds, but at some
point they become invalid (Figure G.2). The bounds we report in this work are
thus evaluated on the logits of ĥ, except where we provide explicit comparisons in
Section 8.5.

Identifying the ideal number of PCs via a “validity score”. Even though reduc-
ing the feature dimensionality eventually results in an invalid bound, it is tempting
to consider how we may identify approximately when this occurs, which could give
a more accurate (though less conservative) prediction. We find that the optimization
trajectory itself provides meaningful signal about this change. Specifically, Fig-
ure G.3 shows that for feature sets which are not overly restrictive, the critic very
rapidly ascends to the maximum source agreement, then slowly begins overfitting.
For much more restrictive feature sets (i.e., fewer PCs), the critic optimizes much
more slowly, suggesting that we have reached the point where we are artificially re-
strictingH and therefore underestimating the disagreement discrepancy. We design
a “validity score” which captures this phenomenon, and we observe that it is roughly
linearly correlated with the tightness of the eventual bound (Figure G.4). Though
the score is by no means perfect, we can evaluate DIS2 with successively fewer
PCs and only retain those above a certain score threshold, reducing the average
prediction error while remaining reasonably conservative (Figure G.5). For further
details, see Appendix G.3.

8.5 Experiments

Datasets. We conduct experiments across 11 vision benchmark datasets for dis-
tribution shift on datasets that span applications in object classification, satellite
imagery, and medicine. We use four BREEDs datasets: [Santurkar et al., 2020]
Entity13, Entity30, Nonliving26, and Living17; FMoW [Christie et al., 2018]
and Camelyon [Bandi et al., 2018] from WILDS [Koh et al., 2021]; Officehome
[Venkateswara et al., 2017b]; Visda [Peng et al., 2018, 2017]; CIFAR10, CIFAR100
[Krizhevsky and Hinton, 2009]; and Domainet [Peng et al., 2019b]. Each of these
datasets consists of multiple domains with different types of natural and synthetic
shifts. We consider subpopulation shift and natural shifts induced due to differences
in the data collection process of ImageNet, i.e., ImageNetv2 [Recht et al., 2019]
and a combination of both. For CIFAR10 and CIFAR100 we evaluate natural shifts
due to variations in replication studies [Recht et al., 2018b] and common corrup-
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tions [Hendrycks and Dietterich, 2019]. For all datasets, we use the same source
and target domains commonly used in previous studies [Garg et al., 2023, Sagawa
et al., 2021]. We provide precise details about the distribution shifts considered in
Appendix G.1. Because distribution shifts vary widely in scope, prior evaluations
which focus on only one specific type of shift (e.g., corruptions) often do not con-
vey the full story. We therefore emphasize the need for more comprehensive
evaluations across many different types of shifts and training methods, as we
present here.

Experimental setup and protocols. Along with source-only training with ERM,
we experiment with Unsupervised Domain Adaptation (UDA) methods that aim
to improve target performance with unlabeled target data (FixMatch [Sohn et al.,
2020], DANN [Ganin et al., 2016], CDAN [Long et al., 2018], and BN-adapt
[Li et al., 2016]). We experiment with Densenet121 [Huang et al., 2017a] and
Resnet18/Resnet50 [He et al., 2016] pretrained on ImageNet. For source-only
ERM, as with other methods, we default to using strong augmentations: random
horizontal flips, random crops, as well as Cutout [DeVries and Taylor, 2017] and
RandAugment [Cubuk et al., 2020]. Unless otherwise specified, we default to
full finetuning for source-only ERM and UDA methods. We use source hold-out
performance to pick the best hyperparameters for the UDA methods, since we lack
labeled validation data from the target distribution. For all of these methods, we fix
the algorithm-specific hyperparameters to their original recommendations following
the experimental protocol in [Garg et al., 2023]. For more details, see Appendix G.1.

Methods evaluated. We compare DIS2 to four competitive baselines: Average
Confidence (AC; [Guo et al., 2017]), Difference of Confidences (DoC; [Guillory
et al., 2021]), Average Thresholded Confidence (ATC; [Garg et al., 2022]), and Con-
fidence Optimal Transport (COT; [Lu et al., 2023]). We give detailed descriptions of
these methods in Appendix G.1. For all methods, we implement post-hoc calibration
on validation source data with temperature scaling [Guo et al., 2017], which has
been shown to improve performance. For DIS2, we report bounds evaluated both on
the full features and on the logits of ĥ as described in Section 8.4. Unless specified
otherwise, we set δ = .01 everywhere. We also experiment with dropping the lower
order concentration term in Theorem 8.3.6, using only the sample average. Though
this is of course no longer a conservative bound, we find it is an excellent predictor
of test error.

Metrics for evaluation. We report the standard prediction metric, mean absolute
error (MAE). As our emphasis is on conservative error bounds, we also report the
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MAE (↓) Coverage (↑) Overest. (↓)
DA? ✗ ✓ ✗ ✓ ✗ ✓

Prediction Method

AC [Guo et al., 2017] 0.1055 0.1077 0.1222 0.0167 0.1178 0.1089
DoC [Guillory et al., 2021] 0.1046 0.1091 0.1667 0.0167 0.1224 0.1104
ATC NE [Garg et al., 2022] 0.0670 0.0838 0.3000 0.1833 0.0842 0.0999
COT [Lu et al., 2023] 0.0689 0.0812 0.2556 0.1833 0.0851 0.0973

DIS2 (Features) 0.2807 0.1918 1.0000 1.0000 0.0000 0.0000
DIS2 (Logits) 0.1504 0.0935 0.9889 0.7500 0.0011 0.0534
DIS2 (Logits w/o δ) 0.0829 0.0639 0.7556 0.4167 0.0724 0.0888

Table 8.1: Comparing the DIS2 bound to prior methods for predicting accuracy.
DA denotes if the representations were learned via a domain-adversarial algorithm.
In addition to mean absolute error (MAE), we report what fraction of predictions
correctly bound the true error (Coverage), and the average prediction error among
shifts whose accuracy is overestimated (Overest.). DIS2 has reasonably competitive
MAE but substantially higher coverage. By dropping the concentration term in
Theorem 8.3.6 we can do even better, at some cost to coverage.

coverage, i.e. the fraction of predictions for which the true error does not exceed the
predicted error. Finally, we measure the conditional average overestimation: this is
the MAE among predictions which overestimate the accuracy.

Results. Reported metrics for all methods can be found in Table 8.1. We ag-
gregate results over all datasets, shifts, and training methods—we stratify only
by whether the training method is domain-adversarial, as this affects the validity
of Assumption 8.3.5. We find that DIS2 achieves competitive MAE while main-
taining substantially higher coverage, even for domain-adversarial features. When
it does overestimate accuracy, it does so by much less, implying that it is ideal
for conservative estimation even when any given error bound is not technically
satisfied. Dropping the concentration term performs even better (sometimes beating
the baselines), at the cost of some coverage. This suggests that efforts to better
estimate the true maximum discrepancy may yield even better predictors. We also
show scatter plots to visualize performance on individual distribution shifts, plotting
each source-target pair as a single point. For these too we report separately the
results for domain-adversarial (Figure 8.3) and non-domain-adversarial methods
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Figure 8.4: (a): Scatter plots depicting DIS2 estimated bound vs. true error for
a variety of shifts. “w/o δ” indicates that the lower-order term of Theorem 8.3.6
has been dropped. (b): Observed bound violation rate vs. desired probability δ.
Observe that the true rate lies at or below y = x across a range of values.

(Figure 8.1). To avoid clutter, these two plots do not include DoC, as it performed
comparably to AC. Some of the BREEDS shifts contain as few as 68 test samples,
which explains why accuracy is heavily underestimated for some shifts, as the lower
order term in the bound dominates at this sample size.

Figure 8.4a displays additional scatter plots which allow for a direct comparison
of the variants of DIS2. Finally, Figure 8.4b plots the observed violation rate (i.e.
1−coverage) of DIS2 on non-domain-adversarial methods for varying δ. We observe
that it lies at or below the line y = x, meaning the probabilistic bound provided by
Theorem 8.3.6 holds across a range of failure probabilities. Thus we see that our
probabilistic bound is empirically valid all of the time—not in the sense that each
individual shift’s error is upper bounded, but rather that the desired violation rate is
always satisfied.

Strengthening the baselines to improve coverage. Since the baselines we con-
sider in this work prioritize predictive accuracy over conservative estimates, their
coverage can possibly be improved without too much increase in error. We explore
this option using LOOCV: for a desired coverage, we learn a parameter to either
scale or shift a method’s prediction to achieve that level of coverage on all but one
of the datasets. We then evaluate the method on all shifts of the remaining dataset,
and we repeat this for each dataset. Appendix G.4 reports the results for varying
coverage levels. We find that (i) the baselines do not achieve the desired coverage
on the held out data, though they get somewhat close; and (ii) the adjustment causes
them to suffer higher MAE than DIS2. Thus DIS2 is on the Pareto frontier of MAE
and coverage, and is preferable when conservative bounds are desirable. We believe
identifying alternative methods of post-hoc prediction adjustment is a promising
future direction.
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8.6 Conclusion

The ability to evaluate trustworthy, non-vacuous error bounds for deep neural
networks under distribution shift remains an extremely important open problem.
Due to the wide variety of real-world shifts and the complexity of modern data,
restrictive a priori assumptions on the distribution (i.e., before observing any data
from the shift of interest) seem unlikely to be fruitful. On the other hand, prior
methods which estimate accuracy using extra information—such as unlabeled test
samples—often rely on opaque conditions whose likelihood of being satisfied
is difficult to predict, and so they sometimes provide large overestimates of test
accuracy with no warning signs.

This work attempts to bridge this gap with a simple, intuitive condition and a
new disagreement loss which together result in competitive error prediction, while
simultaneously providing an (almost) provable probabilistic error bound. We also
study how the process of evaluating the bound (e.g., the optimization landscape)
can provide even more useful signal, enabling better predictive accuracy. We expect
there is potential to push further in each of these directions, hopefully extending the
current accuracy-reliability Pareto frontier for test error bounds under distribution
shift.

131



132



Chapter 9

One-Shot Strategic Classification
Under Unknown Costs

This chapter is based on Rosenfeld and Rosenfeld [2024]:
Rosenfeld, E. & Rosenfeld, N.
One-Shot Strategic Classification Under Unknown Costs.
(In Submission) arXiv preprint arXiv:2311.02761, 2023.

9.1 Introduction

Across a multitude of domains, machine learning is increasingly being used to
inform decisions about human users. But when users stand to gain from certain
predictive outcomes, they may act to obtain favorable predictions by modifying their
features. Since this can harm predictive performance, learning becomes susceptible
to Goodhart’s law, which states that “when a measure becomes a target, it ceases to
be a good measure” [Goodhart, 1975]. This natural tension between learning sys-
tems and their users applies broadly: loan approvals, admissions, hiring, insurance,
and welfare benefits are all examples in which the system seeks predictions that are
accurate, whereas users—irrespective of their true label—wish to be classified as
positive.

The field of strategic classification [Brückner et al., 2012, Hardt et al., 2016]
studies learning in such settings, with the principal aim of learning classifiers that
are robust to strategic user behavior. However, most works in this field rely on
the key assumption that the learner knows precisely how users would respond to
any given classifier. This is typically modeled as knowledge of the underlying cost
function c(x, x′) which defines the cost users incur for modifying features x to
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become x′. This assumption enables tractable learning, but it is unrealistic and it
effectively takes the “sting” out of Goodhart’s law: in a statistical sense, the power
to anticipate user responses completely nullifies the effect of users’ gaming behavior
on predictive performance (for radial basis cost functions; see Appendix H.7).

Indeed, if we survey some well-known examples of Goodhart’s law [e.g. Chrys-
tal et al., 2003, Elton, 2004, Fire and Guestrin, 2019, Teney et al., 2020], it becomes
apparent that much of the policy challenge arises precisely from not knowing how
users would respond. This motivates us to instead focus on learning strategically
robust classifiers under an unknown cost function. To cope with this uncertainty, we
take a conservative approach and model the system as aiming to learn a classifier
that is robust to all cost functions c in some uncertainty set C, which we think of
as including all cost functions which are believed to be plausible (alternatively, it is
a set which we can be confident will contain the true, unknown c). Our approach is
therefore doubly robust, providing guarantees under both the manipulation of inputs
by strategic behavior and an adversarial choice of cost function. We argue this is
necessary: we prove that if one optimizes for strategic classification under a single,
fixed cost, then any discrepancy between that cost and the true cost can result in
dramatically reduced accuracy.

While some works have studied strategic learning under unknown responses
[Dong et al., 2018, Ahmadi et al., 2021, Shao et al., 2023, Lechner et al., 2023, Har-
ris et al., 2023], their focus is entirely on sequential learning settings. This allows
them to cope with response uncertainty via exploration: deploying a series of models
over time, observing how users respond, and adapting accordingly. Algorithms for
such online settings are designed to ensure that regret decays sufficiently fast with
the number of rounds—but they provide no guarantees on worst-case outcomes
for any single deployment. We observe that there are many realistic settings in
which multiple deployments are too costly or technically impossible (e.g. financial
regulation); in which arbitrary exploration is unrealistic or unethical (e.g. testing in
education); in which there is need for immediately beneficial short-term outcomes
(e.g. epidemic vaccination); or in which even a single bad round could be very
harmful (e.g. environmental conservation).

Motivated by such examples, this work studies robust strategic learning in a
“one-shot” setting where the learner must commit to one single model at deployment.
In this setting, we recast our objective as optimizing for a classifier that minimizes
the worst-case strategic risk over an uncertainty set C. We devise two efficient
algorithms, for the full-batch and stochastic settings, which provably converge to the
minimax solution at the rate Õ(T−1/2). Notably, this rate is dimension independent
for the typical cost functions—including ℓ1 and ℓ2 norms—and it is achieved despite
the inner maximization being non-concave. A key step in our approach is to adapt
the strategic hinge loss [Levanon and Rosenfeld, 2022] to properly handle a large
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set of possible costs beyond the ℓ2 norm. As the strategic hinge loss is non-convex,
we apply a regularization term that accounts for the unique structure of strategic
response: our analysis uncovers that the “correct” form of regularization is in fact
the dual norm of β with respect to the cost. We complement this with an updated
generalization bound for this loss which corrects a previous error.

More broadly, our approach relies on the observation that strategic responses
induce a shift in the data distribution [Perdomo et al., 2020]. Because different costs
induce different shifts, uncertainty over cost functions translates to uncertainty over
test distributions. This allows us to formulate our problem as one of distributionally
robust optimization (DRO) [Namkoong and Duchi, 2016, Duchi and Namkoong,
2021], where the goal is to predict well on the worst-case distribution within
some given set. Whereas the typical DRO formulation defines the uncertainty set
with respect to a more traditional probability divergence, in our case the set of
distributions is inherited from the structure of strategic responses and includes all
shifts that can result from strategic behavior under any c ∈ C. This means that the
entire set of possible distributions becomes dependent on the classifier, which is one
of the primary challenges our work addresses.

9.1.1 Related Work

Strategic classification. Introduced in Hardt et al. [2016], and based on earlier
works [Brückner and Scheffer, 2009, Brückner et al., 2012, Großhans et al., 2013],
the literature on strategic classification has since been growing steadily. Focusing
on supervised classification in the batch (offline) setting, here we list a relevant
subset. Advances have been made on both statistical [Zhang and Conitzer, 2021,
Sundaram et al., 2021] and algorithmic aspects of learning [Levanon and Rosenfeld,
2021], but the latter lacks guarantees. In contrast, our work provides efficient
algorithms that are provably correct. Efforts have also been made to extend learning
beyond the basic setting of Hardt et al. [2016]. These include: accounting for users
with noisy estimates [Jagadeesan et al., 2021], missing information [Ghalme et al.,
2021, Bechavod et al., 2022], more general preferences [Sundaram et al., 2021,
Levanon and Rosenfeld, 2022, Eilat et al., 2023]; incorporating causal elements into
learning [Miller et al., 2020b, Chen et al., 2023b, Horowitz and Rosenfeld, 2023,
Mendler-Dünner et al., 2022], and considering societal implications [Milli et al.,
2019, Levanon and Rosenfeld, 2021, Lechner and Urner, 2022].

(Initially) unknown user responses. Several works have considered the case of
inferring unknown user responses under different forms of strategic learning, but
in online or sequential settings. Dong et al. [2018] bound the Stackelberg regret
of online learning when both costs and features are adversarial, but when only
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negatively-labeled users respond; Harris et al. [2023] bound a stronger form of re-
gret when responses only come from positively-labeled users. Ahmadi et al. [2021]
propose a strategic variant of the perceptron and provide mistake bounds for ℓ1
norm with unknown diagonal scaling or ℓ2 norm multiplied by an unknown constant.
Shao et al. [2023] study learning under unknown ball manipulations with person-
alized radii, and give mistake bounds and (interactive) sample complexity bounds
for different informational structures. Lechner et al. [2023] bound the sample and
iteration complexity of learning under general, non-best response manipulation
sets via repeated model deployments to infer the manipulation graph. Lin and
Zrnic [2023] learn under a misspecified response model, inferred in a (nonadaptive)
exploration phase from some class of models. The analyses in these works better
reflect reality in that the exact response cannot be known. But online deployment
and long-term regret minimization are not appropriate for many natural use cases
of strategic classification, which motivates our investigation of the one-shot setting.

9.2 Preliminaries

Notation. We study the problem of linear strategic classification on inputs x ∈
X ⊆ Rd and labels y ∈ Y := {±1} where the exact response of the test popula-
tion is unknown. We consider linear classifiers sign(β⊤x), optimized over some
bounded set B ⊂ Rd+1 (this includes a bias term which we leave implicit and which
is not included in the vector norm). To model users’ responses, we consider the typi-
cal setup of a cost function c(x, x′) which defines the cost for an agent to change their
features from x to x′. Together with a utility u ≥ 0 gained from a positive classifica-
tion, this cost determines the strategic response of a rational agent to a classifier β via

x(β) := argmaxx′

[
1{β⊤x′ ≥ 0} · u− c(x, x′)

]
. (9.1)

Thus, an agent will move only if it would change their classification from negative
to positive, and only if c(x, x′) < u. We handle non-uniqueness of the argmax by
breaking ties arbitrarily, but we follow convention by assuming no strategic response
if the net utility is exactly 0. We let δ(x;β) := x(β)− x denote the movement of
an agent, and we suppress dependence of δ on x, β where clear from context.

Form of the cost function. We study cost functions that can be written as
c(x, x′) = ϕ(∥x′−x∥) for a norm ∥·∥ and non-decreasing function ϕ : R≥0 → R≥0.
This includes the ℓ2-norm (by far the most common cost, sometimes squared), but it
is also much more general: it allows for different non-linear transformations which
may better reflect real-world costs, such as ϕ(r) = ln(1 + r), and we allow ∥ · ∥ to
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denote any differentiable and monotonic norm, which includes all p-norms with p ∈
[1,∞]. This significantly expands upon the costs discussed in the literature thus far.

Parameterizing the space of costs. Recall that we are interested in robust pre-
diction when we cannot know the exact strategic response. Keeping the assumption
of rational behavior, this naturally points to an unknown cost function as a pri-
mary source of this uncertainty. We parameterize this uncertainty via an unknown
positive definite (PD) matrix Σ ≻ 0 in Rd×d which scales the relative costs per
input dimension, denoting the induced norm as ∥ · ∥Σ. For the 2-norm, this is the
standard PD norm given by ∥x∥Σ :=

√
x⊤Σx, but we define it for general norms

as ∥x∥Σ := ∥Σ1/2x∥. Hence, for our purposes, any cost function c is uniquely de-
termined by its parameterization Σ; we will use these two variables interchangeably.
The other two factors in strategic response are the positive utility u and the monotone
transform ϕ: for reasons that will soon be made clear, we only require knowledge
of the maximum value u∗ such that ϕ(u∗) ≤ u (this is clearly satisfied for known ϕ
and u, as is typically assumed). Note this value need not be shared among users, and
it suffices to know an interval in which it lies—but for simplicity we treat it as fixed.

Encoding uncertainty. Since the true cost is not known, and since we cannot
estimate it in an online fashion, we instead assume a system-specified uncertainty
set C, defined as a compact, convex set of possible costs c which is expected to
contain the true cost. The goal of our analysis will be to derive strategies for
efficiently identifying a classifier which ensures optimal (and boundable) worst-case
test performance over all costs c ∈ C, and therefore also bounded error under the
true cost. Notably, this also means that even if the true cost changes over time, our
error bound will hold so long as the cost remains within C. In practice we want C to
be broad enough that we can be confident it contains the test-time cost—but we will
also see that our convergence guarantees scale inversely with the diameter of this
set, so it should be selected to be no larger than necessary.

9.2.1 Strategic Learning Under a Single, Known Cost

As a first step towards learning robustly under all costs in C, it will be use-
ful to first consider learning under a single fixed cost. For a known cost c, the
typical goal would be to minimize the 0-1 loss under strategic response with this
cost: ℓc0−1(β

⊤x, y) := 1{sign(β⊤(x + δ)) ̸= y}. It is common to instead con-
sider a more easily optimized surrogate such as the hinge loss ℓhinge(β

⊤x, y) :=
max{0, 1−yβ⊤(x+δ)}, but the discontinuous nature of δ(x;β) w.r.t. β means that
optimization is still intractable. Instead, we make use of the recently proposed strate-
gic hinge loss [Levanon and Rosenfeld, 2022] which augments the standard hinge
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loss with an additional term to account for this discontinuity: ℓs-hinge(β
⊤x, y) :=

max{0, 1− y(β⊤x+ 2∥β∥2)} (note this does not explicitly include δ).
Unfortunately, even this relaxation poses difficulties. Firstly, the objective is

non-convex—though Levanon and Rosenfeld [2022] show that for known costs it
often learns reasonable classifiers in practice, once we transition to unknown costs it
will become clear that having a guaranteed sub-optimality bound is important (such
a bound is impossible in general for non-convex objectives). Second, the additional
term 2∥β∥2 captures the effect of strategic response only under the standard ℓ2-norm
cost.1

Cost-aware strategic hinge. For our setting, we derive a more general strategic
hinge loss that applies to the broader class of costs. This loss admits a natural form
which relies on the dual norm of β with respect to the cost function:
Definition 9.2.1. The Σ-transformed dual norm of β is denoted ∥β∥∗,Σ−1 :=

sup∥v∥Σ=1 β
⊤v and is equal to ∥Σ−1/2β∥∗. We may leave dependence on Σ implicit,

writing simply ∥β∥∗.
Definition 9.2.2. The cost-dependent strategic hinge loss is:

ℓcs-hinge(β
⊤x, y) := max{0, 1− y(β⊤x+ u∗∥β∥∗)}. (9.2)

Note our proposed ℓcs-hinge generalizes the previous ℓs-hinge since the ℓ2-norm is
its own dual. The appearance of the dual norm here is not by chance. This quantity
captures the dimension-wise sensitivity of our decision rule to changes in x, scaled
inversely proportionally to the cost an agent incurs for moving in that dimension.
This should be intuitive: for any given direction, the less it costs a user to modify
their features, the more they can afford to move, and thus the greater the importance
of reducing our classifier’s sensitivity to it. We make this formal with the following
lemma which bounds the maximal strategic change to inputs.
Lemma 9.2.3. Fix β and let c(x, x′) = ϕ(∥x − x′∥Σ). The maximum possible
change to a user’s score due to strategic behavior is u∗∥β∥∗.

Proofs of all lemmas can be found in Appendix H.3. Thus we see how aug-
menting the hinge loss with the dual norm serves as a natural approach to ro-
bust strategic classification, and we use this loss throughout. More generally, it
will also be useful to define the k-shifted strategic hinge loss as ℓs-hinge(β; k) :=
max{0, 1− y(β⊤x+ k)}.

Though ℓcs-hinge allows for more general costs, it remains non-convex—we will
return to this point in Section 9.4.2. Also note that the “correct” transformation to use

1While Levanon and Rosenfeld [2022] do discuss more general costs, they give only a generic
description.
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depends on the true cost. In our case this is unknown, but we show that it suffices for
the dual norm to be bounded by a constant B: ∀c ∈ C, ∥β∥∗ ≤ B. We also let X ∈
R denote the maximum of ∥x∥, ∥x∥2 over the training examples. Finally, we denote
by L the Lipschitz constant of the loss gradient, which appears in the convergence
rates of the algorithms we derive. This can be generically bounded as L ≤ X+u∗L∗,
where L∗ is the Lipschitz constant of the dual norm. For the common setting where
∥ · ∥ is a p-norm, we have L∗ = max

(
1, d1/2−1/p

)
. Notably, this quantity is

independent of the dimension d for p ≤ 2 and scales no worse than
√
d otherwise.

Risk and generalization. Denote the overall strategic hinge risk by Rc
s-hinge(β) :=

E[ℓcs-hinge(β
⊤x, y)], with the strategic 0-1 risk defined analogously as Rc

0−1. By
design, the former upper bounds the latter:
Lemma 9.2.4. For any cost c ∈ C, Rc

0−1(β) ≤ Rc
s-hinge(β).

Thus, our cost-dependent strategic hinge loss is an effective proxy for the 0-1
loss. We next establish its generalization.
Theorem 9.2.5. With probability ≥ 1 − δ, for all β ∈ B and all cost functions
c ∈ C,

Rc
0−1(β) ≤ R̂c

s-hinge(β) +
B(4X + u∗) + 3

√
ln 1/δ√

n
,

where R̂ is the empirical risk over a training set of size n.
This result extends (and fixes an error in) the bound for ℓ2-norm cost from

Levanon and Rosenfeld [2022]. The proof, found in Appendix H.4, applies standard
Rademacher bounds by decomposing the strategic hinge loss and bounding the
terms separately while accounting for general strategic responses. The fact that this
bound holds uniformly for all cost functions is critical, as it allows us to apply it to
the worst case cost even when that cost is unknown.

9.3 The Perils of Using a Wrong Cost Function

As the agents’ movement depends intricately on the precise cost function,
correctly anticipating strategic response requires a good estimate of that cost. In the
one-shot setting, this is further complicated by the fact that we have no access to a
mechanism by which to infer the cost (e.g., via online interaction): we must pick a
single classifier and commit to it, without knowing the true cost function a priori.
A natural approach would be to make use of existing machinery for single-cost
strategic learning, as described above, using some reasonable choice for the cost.
For example, one idea would be to simply pick a cost which we believe is reasonably
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“close” to the true cost, in the hope that predictive performance degrades gracefully
with our error. Certainly, this is better than blindly proceeding with the default
ℓ2-norm. Unfortunately we find that the task of cost-robust strategic learning is
much more difficult (learning theoretically) than is first apparent—it turns out that
without more explicit assumptions on our guess’s distance to the true cost and on
the data distribution itself, providing any sort of robustness guarantee is impossible.

Hardness results. Our first result proves that if we must to commit to a single
fixed cost, unless that cost is exactly correct, minimizing the empirical risk can
never provide a non-trivial data-independent guarantee:
Theorem 9.3.1. Consider the task of learning a norm-bounded binary linear classi-
fier. Fix any two costs c1, c2 with non-equal cost matrices, and let 0 ≤ ϵ ≤ 1

2 . There
exists a distribution q over X × Y such that:

1. For each of c1 and c2, there is a (different) classifier which achieves 0 error
on q when facing strategic response under that cost; and

2. Any classifier which achieves 0 error on q under c1 suffers error ϵ under c2,
and any classifier which achieves 0 error on q under c2 suffers error 1 − ϵ
under c2.

Theorem 9.3.1 says that if there is any error at all in estimating Σ, then any
classifier which achieves perfect accuracy under our assumed cost might do no
better than random (or even worse than random) when deployed. The proof (see
Appendix H.1) constructs a worst-case distribution that is chosen adversarially with
respect to the error in cost estimation. This construction is quite robust in that there
exists an entire space of such solutions and the lower bound decays smoothly for
distributions which are close to the one we define (especially for larger error in the
estimate of Σ). However, there is hope that perhaps for non-adversarial distributions,
estimating a fixed cost may be reasonable. To investigate this possibility, we also
study the more natural setting of isotropic Gaussian q(x | y). We find once again
that, even in the limit of infinite data, guessing the wrong cost can be quite harmful:

Theorem 9.3.2. Define the distribution q over X × Y as q(y)
d
= Unif({±1}),

q(x | y) d
= N (y · µ0, σ

2I). Denote by Φ the standard Normal CDF. Let the true
cost be defined as ∥x−x′∥Σ with unknown cost matrix Σ, and let β∗ be the classifier
which minimizes the strategic 0-1 risk under this cost.

Suppose one instead learns a classifier β̂ by assuming an incorrect cost Σ̂ and
minimizing the population strategic 0-1 risk under that cost: β̂ := argminβ
Eq[ℓ

ĉ
0−1(β)]. Then the excess 0-1 risk suffered by β̂ is

Φ

(∥µ0∥
σ

)
− 1

2

(
Φ

(∥µ0∥ − ϵ

σ

)
+Φ

(∥µ0∥+ ϵ

σ

))
,
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Figure 9.1: Visualizing the excess 0-1 risk from Theorem 9.3.2. Left: A toy
illustration of the excess risk as a function of ∥µ0∥ and ϵ and where they lie on
the Gaussian CDF. Right: Excess risk curves as a function of the dimension d,
where µ0 = 1√

d
1 and σ2 = 1/d. Color indicates the function which generates

the spectrum of Σ, where λk is the k-largest eigenvalue in the series. Line style
indicates the error ε in estimating the eigenvalue in each dimension—precisely, we
define Σ̂ = (1− ε)Σ. Even with all eigenvalues estimated to error 1− e−10, excess
risk grows rapidly with d towards 1

2 .

where ϵ = ϵ(Σ, Σ̂, µ0) :=
u∗|∥µ0∥∗,Σ̂−1−∥µ0∥∗,Σ−1 |

∥µ0∥ is the normalized estimation
error of the Σ-transformed dual norm of µ0.

Theorem 9.3.2 demonstrates that even for much more benign distributions,
choosing a classifier based on a slightly incorrect cost can be very non-robust.
Roughly, we should expect ϵ = Θ(Trace(Σ̂−1 − Σ−1)), scaling as our error grows
along directions where µ0 is large. Crucially, this is with respect to the inverse
cost matrix Σ−1, which means that a tiny estimation error in the lower end of
the eigen-spectrum can have a large effect. For example, imagine that the classes
are sufficiently separated so that the optimal classifier absent strategic behavior
can get accuracy close to 1 (which is trivial in high dimensions). Then under
strategic behavior, the error in guessing the smallest eigenvalue of Σ need only be
Ω(∥µ0∥λmin(Σ)λmin(Σ̂)) to induce excess risk of approximately 1/4, and it will
rapidly approach 1/2 as d grows. To give a bit more intuition for these factors,
Figure 9.1 visualizes a few simple examples of how the excess risk behaves as
dimension increases, depending on the distribution of eigenvalues of Σ and our
error in estimating them. More abstractly, we can see that if we only slightly err
in estimating the cost of movement in a direction, it could cause a very large error
in estimating how much agents will move in that direction.
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Intentionally conservative guesses can still fail. It is not immediately obvious
why guessing a single cost should always have poor worst-case performance. For ex-
ample, it might appear that we could just select a cost function which underestimates
the cost to move in any given direction, and therefore overestimates the movement
of any given point. In being intentionally conservative, this choice seems like it
should be reasonably robust to misspecification, even if not optimally so. However,
this ignores the key fact that in strategic classification there is also the potential for
beneficial strategic response: a point with true label y = 1 but incorrect prediction
ŷ = −1 has the potential to correct this error—to the learner’s benefit—by changing
its features.

The above results show that it is not enough in strategic classification to be
aware of the fact that users will move in response to the classifier, nor to have an
educated guess for how they will move: it is essential to account for uncertainty
in how they will move by anticipating the ways in which the true, unknown cost
function may differ from what we expect. Our lower bounds thus motivate robustly
learning a classifier based not on a single cost, but on a set in which the true cost
is expected to lie—this reduces potential misspecification of the response model
[Lin and Zrnic, 2023] while remaining applicable in the one-shot setting.

9.4 Maximizing Risk for a Fixed Classifier and Minimizing
Risk for a Fixed Cost

To identify a robust classifier when the true cost is unknown, we will optimize
the worst-case strategic risk with respect to the learner-specified uncertainty set C.
Our objective is therefore to solve the min-max problem

min
β

max
c∈C

Rc
s-hinge(β). (9.3)

As we noted in the introduction, if we consider the cost function to be inducing a
classifier-specific distribution, then Equation (9.3) becomes an instance of distribu-
tionally robust optimization. A typical approach to this type of problem would be to
use a gradient-based method which converges to a Nash equilibrium between the
learner and an adversary (who “chooses” the cost). To apply this in our setting, we
must recast Equation (9.3) as two separate objectives: one for the learner minimizing
β and the other for the adversary maximizing c. However, the idiosyncrasies of the
strategic learning setting give rise to unique challenges which must be addressed for
this approach to be successful.
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Algorithm 6 Pseudocode for MAXLOSSCOST

input: Dataset D = {(xi, yi)}ni=1, Classifier β, Cost uncertainty set C, Upper
bound u∗.
define: ∥β∥min

∗ := min
Σ∈C
∥β∥∗, ∥β∥max

∗ := max
Σ∈C
∥β∥∗

initialize: k ← ∥β∥min
∗ , r ← R̂s-hinge(β;u∗k)

Sort training points in increasing order by vi := yi(1− yiβ
⊤xi).

Set j as first index where vj − u∗k > 0.
for entry vi in sorted list, starting from j do

Set k = vi/u∗.
If k > ∥β∥max

∗ , break.
Update new risk r = R̂s-hinge(β;u∗k). Maintain maximum rmax and kmax

which induced it.
end for
If R̂s-hinge(β;u∗∥β∥max

∗ )>rmax, return argmax
Σ∈C

∥β∥∗
Otherwise, return Σ ∈ C such that ∥β∥∗,Σ−1 = kmax.

9.4.1 Solving the Inner Max for a Fixed Classifier

The first step to solving Equation (9.3) is determining a way to solve the inner
maximization problem, which will serve as an important subroutine for our eventual
algorithm which solves the full min-max objective. However, the max objective is
non-concave. We thus begin with an efficient algorithm to address this. Algorithm 6
gives pseudocode2 for MAXLOSSCOST which, for a given classifier β, maximizes
the strategic hinge loss over costs c ∈ C. Due to Equation (9.2), this amounts to
finding the maximizing k-shift for k = u∗∥β∥∗ where ∥β∥∗ is achievable by some
c ∈ C. We next prove correctness and runtime:

Lemma 9.4.1. For any classifier β, dataset (X × Y)n, and uncertainty set C,
MAXLOSSCOST runs in O(nd + n lnn) time and returns a cost function c ∈ C
which maximizes the cost-dependent strategic hinge risk R̂c

s-hinge(β).

MAXLOSSCOST takes advantage of the fact that the loss is piecewise linear in
the scalar value ∥β∥∗, carefully constructing a list of the training samples which
are sorted according to a particular intermediate value and traversing this list while
updating the risk at the boundary of each linear component. For a full description
of the algorithm see Appendix H.5.

2The code calls for identifying ∥β∥min
∗ and ∥β∥max

∗ . The specific way we parameterize C makes
this simple (see Section 9.5.1).
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Bounding the adversarial risk of any classifier. Independent of our main objec-
tive, MAXLOSSCOST already allows us to derive adversarial strategic risk bounds
for any classifier: simply evaluate its worst-case empirical strategic hinge loss and
then apply Theorem 9.2.5. In principle, this means we could try minimizing the
strategic hinge loss for a single cost and we would technically be able to derive an
error bound for the solution. However, this approach is not ideal for two reasons:
first, as noted earlier, the strategic hinge loss is non-convex in β, so direct optimiza-
tion may be unsuccessful. Second, as shown in Section 9.3 there is little reason
to believe that optimizing an objective which does not account for the min-max
structure will achieve good adversarial risk, making the generalization bound correct
but usually unhelpful (e.g., trivial). Still, it is useful to be able to give a valid bound
on the adversarial risk of whatever classifier we may hope to evaluate.

9.4.2 Solving the Outer Min for a Fixed Cost

We now switch to the task of finding a classifier which minimizes worst-case
risk. Note Equation (9.3) poses two key challenges: (i) the strategic hinge loss is
non-convex, and (ii) optimization is further complicated by the inner max operator.
Hence, we begin with the case of a single fixed cost, which will serve us as an
intermediary step towards optimizing over the set of all costs. Even for a single
cost, the non-convexity of the strategic hinge means that we would only be able to
guarantee convergence to a stationary point. We address this via regularization.

Convexification via regularization. Regularization is a standard means to intro-
duce (strong) convexity: for the hinge loss, applying (squared) ℓ2 regularization
makes the objective strongly convex, improving optimization while simultaneously
preventing overfitting. Since we would want to regularize our objective anyways,
one possible solution would be to add just enough ℓ2 regularization to convexify
it. While sound in principle, this is inappropriate for our setting because it does
not account for the cost-specific nature of strategic response, so the amount of
regularization needed would be extreme. Specifically, we prove a lower bound on
the required ℓ2 regularization to ensure convexity of the strategic hinge loss:
Theorem 9.4.2. Let ∥ · ∥ be a p-norm and fix a cost matrix Σ. For any distribution q
on X ×Y , let τ+ := q(y = 1). Then the ℓ2-regularized loss Rc

s-hinge(β)+λu∗∥β∥2
is non-convex unless λ ≥ τ+∥Σ−1/2∥2.

Thus, the necessary ℓ2 regularization would be cost-dependent and quite large,
scaling with the inverse of the smallest eigenvalue. Moreover, since we want to
optimize this risk over all possible costs, this means that it would need to scale with
the largest spectral norm among all inverse cost matrices in C.
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Dual norm regularization. Luckily, we observe that for a given cost c we can
instead apply a small amount of dual norm regularization to β. This naturally ac-
counts for the problem’s structure and eliminates the need for excessive penalization.
Our dual-regularized objective is Rc

s-hinge(β) + λu∗∥β∥∗, where λ determines the
regularization strength. Since the dual norm ∥β∥∗ is implicitly defined via the cost
matrix, the following is straightforward:
Proposition 9.4.3. For any norm ∥ · ∥, cost matrix Σ, and distribution q, the
dual-regularized loss Rc

s-hinge(β) + λu∗∥β∥∗ is guaranteed to be convex for all
λ ≥ τ+.

Proofs are in Appendix H.2. Proposition 9.4.3 shows that a small, cost-
independent amount of dual norm regularization ensures convexity of the outer min
problem for any cost function, making it the natural choice in this setting.

9.5 Efficiently Identifying the Minimax-Optimal Classifier

We have shown how to efficiently solve for the maximizing cost c ∈ C for
any classifier β, allowing us to apply the corrected generalization bound in Theo-
rem 9.2.5 and get an upper bound on the adversarial 0-1 strategic risk. We have
also seen that with dual norm regularization, optimizing the strategic hinge loss
becomes tractable and also accounts for the unique structure of strategic response.
The remaining challenge is to combine these two methods to find the overall solution
to the min-max objective.

Solving a different loss for each cost simultaneously. An interesting conse-
quence of using the dual norm is that for any fixed cost, the “correct” regularization
is a function of that cost. Since we want to minimize this objective with respect
to the entirety of C, we absorb a separate dual norm regularization term into the
min-max objective for each possible cost, defining our new objective as

min
β

max
c∈C

[
Rc

s-hinge(β) + λu∗∥β∥∗
]
. (9.4)

Contrast this with typical regularization, which (e.g. for ℓ2) would instead attempt to
solve minβ

[
maxc∈C

[
Rc

s-hinge(β)
]
+ λ∥β∥2

]
, where regularization does not depend

on the inner maximization. For brevity, in the remainder of this work we leave the
regularization implicit, writing simply Rc

s-hinge(β). Proposition 9.4.3 shows that a
single choice of λ always suffices: whereas the structure-aware regularizer depends
on the cost, the ideal coefficient does not. By setting λ appropriately and optimizing
this new objective we account for the cost uncertainty “for free”, effectively solving
the problem across all costs in C simultaneously with a separate, appropriate reg-
ularization term for each. Importantly, this means our solution will be optimal with
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respect to the regularized objective. But once a solution is found, we can evaluate the
adversarial risk without the regularization term and Theorem 9.2.5 will still apply.

9.5.1 Solving the Objective in the Full-Batch Setting with the Subgra-
dient Method

Given a train set {(xi, yi)}ni=1, perhaps the simplest idea for solving Equa-
tion (9.4) is to follow the gradient of the empirical adversarial risk. The validity of
this approach is not trivial because of the min-max formulation, but we show that it
is indeed correct by invoking the following result:
Theorem 9.5.1 (Danskin’s Theorem [Bertsekas, 1997]). Suppose f : Rn ×Z →
R is a continuous function, where Z ⊂ Rm is a compact set. Define g(x) :=
maxz∈Z f(x, z). Then g(x) is convex in x if f(x, z) is convex in x for every z ∈ Z .
Furthermore, ∂xg(x) = Conv {∂xf(x, z) : z ∈ argmaxz f(x, z)}, where ∂ is the
subdifferential and “Conv” indicates the convex hull.

Note that this requires Z ⊂ Rm, whereas we introduced C as a set of PD
matrices in Rd×d. Using the assumption that C is compact and convex, we resolve
this by associating to each cost matrix Σ a vector of d eigenvalues σ2

1 . . . σ
2
d under a

fixed basis, with each eigenvalue σ2
i constrained to lie in the set [σ2

iℓ, σ
2
iu]. These

lower and upper bounds allow us to re-parameterize the cost uncertainty set so that
it is now a subset of Rd. One remaining technicality is that this requires a fixed
basis which may not be shared with the true cost. However, as a consequence of
Lemma 9.2.3, our results will still be meaningful so long as there exists a c ∈ C
which induces the same dual norm as the true cost. Without loss of generality, we
suppose this basis is the identity.

Thus, we let Z denote the reparameterized uncertainty set C and plug in R̂c=z
s-hinge

for f . We conclude that the subderivative of the worst-case strategic hinge loss
is given by the subderivative of the loss evaluated at any cost in C which maxi-
mizes it. We can optimize the objective via the subgradient method (Algorithm 9
in the Appendix), where each subgradient evaluation involves a call to the max-
imization subroutine MAXLOSSCOST. We then combine this with well-known
convergence results for the subgradient method and bound the generalization error
via Theorem 9.2.5, giving the complete result:
Theorem 9.5.2. Suppose we run Algorithm 9 for T iterations and get classifier β̂.
With probability ≥ 1− δ, the worst-case 0-1 strategic loss over costs in C can be
bounded by

max
c∈C

Rc
0−1(β̂) ≤min

β
max
c∈C

Rc
s-hinge(β) +O

(
LB√
T

+ (X + u∗)
B +

√
ln 1/δ√
n

)
.
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The proof appears in Appendix H.5. Despite the difficulty posed by strategic
response and an unknown cost (as made apparent in Section 9.3), Theorem 9.5.2
shows that robust one-shot learning is possible with sufficient consideration of the
underlying structure.

9.5.2 Solving the Objective in the Minibatch Setting with Stochastic
Mirror Descent-Ascent

Occasionally the number of training points n may be sufficiently large that
gradient descent is intractable, or the full dataset may not be available all at once.
We would still like to be able to solve Equation (9.3), even when we cannot eval-
uate the full gradient. Unfortunately, the stochastic subgradient method is not an
option here: evaluating the subderivative requires that we identify the cost that max-
imizes the population objective, which cannot be done on the basis of a subsample.
As an alternative, we turn to a method from convex-concave optimization known
as Stochastic Mirror Descent-Ascent (SMDA) [Nemirovski et al., 2009] which
iteratively optimizes the min and max players to converge to a Nash equilibrium.

Modifying mirror ascent to apply to our setting. Since the objective is convex
in β, minimization is straightforward. However, recall that the maximization over
costs is non-concave. Previously we got around this by solving for the maximizing
cost in a non-differentiable manner and then invoking Danskin’s theorem—but the
guarantees given by Nemirovski et al. [2009] require that we take iterative steps of
gradient ascent on the adversary’s (assumed concave) objective. We address this via
an algorithmic ϵ-net. Specifically, we can relax Equation (9.4) to a maximization
over a finite set of costs S ⊂ C such that the solution to this new objective is
provably close to that of the original problem. Given such a set, the new objective
becomes minβ maxc∈S Rc

s-hinge(β). Observe that the solution to this objective is
equivalent to the solution to

min
β

max
q∈∆(|S|)

∑
ci∈S

qiR
ci
s-hinge(β), (9.5)

where ∆(|S|) is the |S|-simplex. In other words, we can solve this problem over
all convex combinations of the risks under the different costs in S and arrive at the
same solution [Rosenfeld et al., 2022c]. Crucially, unlike our original objective,
Equation (9.5) is convex-concave, so it can be efficiently optimized via SMDA! The
correctness of this relaxation relies on the property proven in Lemma 9.2.3: strictly
speaking, the strategic loss depends only the scalar dual norm, not on the full cost
matrix.
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Algorithm 7 Stochastic Mirror Descent-Ascent on the regularized strategic hinge
loss

Input: Batch size n, Iterations T , Costs C, Upper bound u∗, Regularization λ,
Discretization ϵ, Step sizes ηq, ηβ .
define: β(0) ← 0

v ← [ϵ(σ−2
1ℓ − σ−2

1u ), . . . , ϵ(σ
−2
dℓ − σ−2

du )]
⊤

q(0) ← ϵ1
for t = 1, . . . , T do

Draw samples {(xi, yi)}ni=1.
ck ← σ⃗u

−2 + k · v, k ∈ {1, . . . , ⌈1/ϵ⌉}
q′ ← q(t−1)

q′k ← q′k exp(ηqR̂
ck
s-hinge(β

(t−1)))

q(t) ← q′/
∑

k q
′
k

β(t) ← β(t−1) − ηβ

(∑
k q

(t)
k ∇R̂

ck
s-hinge(β

(t−1))
)

end for
return β̂ := 1

T

∑T
t=1 β

(t)

The gap between the solution to the original objective and Equation (9.5) scales
inversely with the fineness of discretization, so we want the maximum distance
between any cost c ∈ C and its closest neighbor in S to be as small as possible.
However, the memory and compute requirements of SMDA scale linearly with
|S|—and error scales as

√
ln |S|—so we also cannot let it grow too large. To

balance these two considerations, we carefully construct a discretization over the
“diagonal” of the space of eigenvalue intervals in C, leading to a set S with cardi-
nality Θ

(
TD
lnT

)
, where T is the number of iterations and D := maxi 1/σ2

iℓ − 1/σ2
iu

is the diameter of C. The exact construction for S appears in Algorithm 7. With this
careful discretization, the computational cost to achieve a fixed sub-optimality gap
is dimension independent for p-norms with p ≤ 2, and the worst-case scaling (when
p = ∞) is O (d2/ln d). In contrast, a typical ϵ-net would have |S| = Θ(exp(d)),
with memory and compute scaling commensurately.
Theorem 9.5.3. Suppose we run Algorithm 7 for T rounds with discretization
ϵ = Θ

(
lnT
TD

)
and get classifier β̂. Then over the randomness of the stochastic

gradients, its expected sub-optimality3 is bounded by

E[max
c∈C

Rc
s-hinge(β̂)] ≲ min

β
max
c∈C

Rc
s-hinge(β) +O

(
LB√
T

+B(X + u∗)

√
lnTD

T

)
.

3Exponential concentration of the adversarial risk to its expectation follows from Nemirovski et al.
[2009], Proposition 3.2.

148



The proof can be found in Appendix H.6. Remarkably, convergence to the
population minimax solution occurs at the same rate as the full-batch setting up to
logarithmic factors—the cost of stochasticity is surprisingly small. Once again, we
can use MAXLOSSCOST to evaluate the adversarial strategic risk and then apply
Theorem 9.2.5 to get a generalization bound on the worst-case 0-1 error.

9.6 Conclusion

This paper studies robust strategic learning under unknown user costs in the
challenging one-shot setting. Our results suggest that uncertainty in how users
respond should be considered an integral aspect of strategic learning: motivated
by realistic problem domains which permit only a single action (which must be
immediately effective), we provide a learning framework based on distributionally
robust optimization for modeling—and robustly handling—this uncertainty. We
begin by showing that even a miniscule error in estimating the true cost can cause
substantial error in deployment, motivating the use of an uncertainty set of possible
costs. Next, we propose a natural proxy to the intractable min-max objective over
this set, and we design two efficient algorithms for different settings that converge
to the empirical solution, for which we also provide generalization guarantees.

Our approach highlights the value of dual norm regularization, which ensures
good performance while accounting for the structure of strategic behavior cou-
pled with cost uncertainty. Such structure can both harm accuracy (on negative
examples) and help it (on positive examples). One important implication is that
it often does not suffice to simply be more conservative, as this can fail to take
advantage of settings where the learner’s and agents’ incentives are aligned. Rather,
maintaining robustness without substantially sacrificing accuracy requires more
careful consideration of and accounting for the interests and actions of future users.
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Chapter 10

Outliers with Opposing Signals
Have an Outsized Effect on
Neural Network Optimization

This chapter is based on Rosenfeld and Risteski [2024]:
Rosenfeld, E. & Risteski, A.
Outliers with Opposing Signals have an Outsized Effect on Neural Network
Optimization.
In International Conference on Learning Representations, 2024.

10.1 Introduction

There is a steadily growing list of intriguing properties of neural network (NN)
optimization which are not readily explained by classical tools from optimization.
Likewise, we have varying degrees of understanding of the mechanistic causes for
each. Extensive efforts have led to possible explanations for the effectiveness of
Adam [Kingma and Ba, 2014], Batch Normalization [Ioffe and Szegedy, 2015]
and other tools for successful training—but the evidence is not always entirely
convincing, and there is certainly little theoretical understanding. Other findings,
such as grokking [Power et al., 2022] or the edge of stability [Cohen et al., 2021],
do not have immediate practical implications but provide new ways to study what
sets NN optimization apart. These phenomena are typically considered in isolation—
though they are not completely disparate, it is unknown what specific underlying
causes they may share. Clearly, a better understanding of NN training dynamics in
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a specific context can lead to algorithmic improvements [Chen et al., 2021c]; this
suggests that any commonality will be a valuable tool for further investigation.

In this work, we identify a phenomenon in NN optimization which offers a new
perspective on many of these prior observations and which we hope will contribute to
a deeper understanding of how they may be connected. While we do not (and do not
claim to) give a complete explanation, we present strong qualitative and quantitative
evidence for a single high-level idea—one which naturally fits into several existing
narratives and suggests a more coherent picture of their origin. Specifically, we
demonstrate the prevalence of paired groups of outliers in natural data which have
a significant influence on a network’s optimization dynamics. These groups are
characterized by the inclusion of one or more (relatively) large magnitude features
that dominate the network’s output at initialization and throughout most of training.
In addition to their magnitude, the other distinctive property of these features is that
they provide large, consistent, and opposing gradients, in that following one group’s
gradient to decrease its loss will increase the other’s by a similar amount. Because
of this structure, we refer to them as Opposing Signals. These features share a
non-trivial correlation with the target task, but they are often not the “correct” (e.g.,
human-aligned) signal. In fact, in many cases these features perfectly encapsulate
the classic statistical conundrum of “correlation vs. causation”—for example, a
bright blue sky background does not determine the label of a CIFAR image, but it
does most often occur in images of planes. Other features are very relevant, such as
the presence of wheels and headlights in images of trucks and cars, or the fact that a
colon often precedes either “the” or a newline token in written text.

Opposing signals are most easily understood with an example, which we will
give along with a brief outline of their effect on training dynamics; a more detailed
description is presented in Section 10.3. Figure 10.1 depicts the training loss of a
ResNet-18 [He et al., 2016] trained with full-batch gradient descent (GD) on CIFAR-
10 [Krizhevsky and Hinton, 2009], along with a few dominant outlier groups and
their respective losses. In the early stages of training, the network enters a narrow
valley in weight space which carefully balances the pairs’ opposing gradients;
subsequent sharpening of the loss landscape [Jastrzȩbski et al., 2020, Cohen et al.,
2021] causes the network to oscillate with growing magnitude along particular
axes, upsetting this balance. Returning to our example of a sky background, one
step results in the class plane being assigned greater probability for all images
with sky, and the next will reverse that effect. In essence, the “sky = plane”
subnetwork grows and shrinks.1 The direct result of this oscillation is that the

1It would be more precise to say “strengthening connections between regions of the network’s
output and neurons which have large activations for sky-colored inputs”. Though we prefer to avoid
informal terminology, this example makes clear that the more relaxed phrasing is usually much cleaner.
We therefore employ it when the intended meaning is clear.
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Figure 10.1: Training dynamics of neural networks are heavily influenced by
outliers with opposing signals. We plot the overall loss of a ResNet-18 trained with
GD on CIFAR-10, plus the losses of a small but representative set of outlier groups.
These groups have consistent opposing signals (e.g., wheels and headlights can
mean either car or truck). Throughout training, losses on these groups oscillate
with growing and shrinking amplitude—this has an obvious correspondence to the
intermittent spikes in overall loss and appears to be a direct cause of the edge of
stability phenomenon.

network’s loss on images of planes with a sky background will alternate between
sharply increasing and decreasing with growing amplitude, with the exact opposite
occurring for images of non-planes with sky. Consequently, the gradients of these
groups will alternate directions while growing in magnitude as well. As these pairs
represent a small fraction of the data, this behavior is not immediately apparent from
the overall training loss—but eventually, it progresses far enough that the overall
loss spikes. As there is an obvious direct correspondence between these two events
throughout, we conjecture that opposing signals are a direct cause of the edge of
stability phenomenon [Cohen et al., 2021]. We also note that the most influential
signals appear to increase in complexity over time [Nakkiran et al., 2019].

We repeat this experiment across a range of vision architectures and training
hyperparameters: though the precise groups and their order of appearance change,
the pattern occurs consistently. We also verify this behavior for transformers on
next-token prediction of natural text and small ReLU MLPs on simple 1D functions;
we give some examples of opposing signals in text in Appendix I.2. However, we
rely on images for exposition because it offers the clearest intuition. To isolate this
effect, most of our experiments use GD, but we observe similar patterns during
SGD which we present in Section 10.4.

153



Summary of contributions. The primary contribution of this paper is demonstrat-
ing the existence, pervasiveness, and large influence of opposing signals during NN
optimization. We further present our current best understanding, with supporting
experiments, of how these signals cause the observed training dynamics—in par-
ticular, we provide evidence that it is a consequence of depth and steepest descent
methods. We complement this discussion with a toy example and an analysis of a
two-layer linear net on a simple model. Notably, though rudimentary, our explana-
tion enables concrete qualitative predictions of NN behavior during training, which
we confirm experimentally. It also provides a new lens through which to study
modern stochastic optimization methods, which we highlight via a case study of
SGD vs. Adam. We see possible connections between opposing signals and a wide
variety of phenomena in NN optimization and generalization, including grokking
[Power et al., 2022], catapulting/slingshotting [Lewkowycz et al., 2020, Thilak
et al., 2022], simplicity bias [Valle-Perez et al., 2019], double descent [Belkin et al.,
2019, Nakkiran et al., 2020], and Sharpness-Aware Minimization [Foret et al., 2021].
We discuss these and other connections in Section 10.5.

10.2 Characterizing and Identifying Opposing Signals

Though their influence on aggregate metrics is non-obvious, identifying outliers
with opposing signals is straightforward. Our methodology is as follows: when
training a network with GD, we track its loss on each individual training point. For
a given iteration, we select the training points whose loss exhibited the most positive
and most negative change in the preceding step (there is large overlap between these
sets in successive steps). This set will sometimes contain multiple opposing signals,
which we distinguish via visual inspection. This last detail means that the images we
depict are not random, but we emphasize that it would not be correct to describe this
process as cherry-picking: though precise quantification is difficult, these signals
consistently obey the maxim “I know it when I see it”. This is particularly true for
images, such as the groups in Figure 10.1 which have easily recognizable patterns.
To demonstrate this fact more generally, Appendix I.8 contains the pre-inspection
samples for a ResNet-18, VGG-11 [Simonyan and Zisserman, 2014], and a small
Vision Transformer [Dosovitskiy et al., 2020] at several training steps and for
multiple seeds; we believe the implied groupings are immediate, even if not totally
objective. We see algorithmic approaches to automatically clustering these samples
as a direction for future study—for example, one could select samples by correlation
in their loss time-series, or by gradient alignment.

154



0 500 1000 1500 2000 2500 3000

Iteration

10

20

30

40

50

60

70

N
or

m
Gradient Norm

0 500 1000 1500 2000 2500 3000

Iteration

0

1000

2000

3000

4000

5000

E
ig

en
va

lu
e

Top Eigenvalue of Individual Loss

0 500 1000 1500 2000 2500 3000

Iteration

−200

−150

−100

−50

0

50

100

C
ur

va
tu

re

Curvature On Top Full Loss Eigenvector

Signal 0
Signal 1
Signal 2
Signal 3
Random

Figure 10.2: Tracking other metrics which characterize outliers with opposing
signals. Maximal per-step change in loss relates to other useful metrics, such
as per-sample gradient norm and curvature. We combine each pair of groups in
Figure 10.1 to create training subsets which each exemplify one “signal”: we see
that these samples are also significant outliers according to the other metrics. (For a
point x, “Curvature on Top Full Loss Eigenvector” is defined as v⊤H(x)v, where v
is the top eigenvector of the full loss Hessian and H(x) is the Hessian of the loss on
x alone.)

Measuring alternative metrics. Given how these samples are selected, several
other characterizations seem appropriate. For instance, one-step loss change is often
a reasonable proxy for gradient norm; we could also consider the largest eigenvalue
of the loss of the individual point, or how much curvature it has in the direction of
the overall loss’s top eigenvector. For large networks these options are far more
compute-intensive than our chosen method, but we can evaluate them on specific
small subsets. In Figure 10.2 we track these metrics for several opposing group
pairs and we find that they are consistently much larger than that of random samples
from the training set.

10.2.1 On the Possibility of a Formal Definition

Though the features and their exemplar samples are immediately recognizable,
we do not attempt to exactly define a “feature”, nor an “outlier” with respect
to that feature. The presence of a particular feature is often ambiguous, and it is
difficult to define a clear threshold for what makes a given point an outlier.2 Thus,
instead of trying to exactly partition the data, we simply note that these heavy tails
exist and we use the most obvious outliers as representatives for visualization. In
Figures 10.1 and 10.2 we choose an arbitrary cutoff of twenty samples per group.

We also note that what qualifies as an opposing signal or outlier may vary over

2In the case of language—where tokenization is discrete and more interpretable—a precise
definition is sometimes possible. For example, one opposing pair in Appendix I.2 consists of
sequences whose penultimate token is a colon and whose last token is either “the” or a newline.
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Figure 10.3: Opposing signals when fitting a Chebyshev polynomial with a small
MLP. Though the data lacks traditional “outliers”, it is apparent that the network
has some features which are most influential only on the more negative inputs (or
whose effect is otherwise cancelled out by other features). Since the correct use of
this feature is opposite for these two groups, they provide opposing signals.

time. For visual clarity, Figure 10.1 depicts the loss on only the most dominant
group pair in its respective training phase, but this pattern occurs simultaneously
for many different signals and at multiple scales throughout training. Further, the
opposing signals are with respect to the model’s internal representations (and the
label), not the input space itself; this means that the definition is also a property
of the architecture. For example, following Cohen et al. [2021] we train a small
MLP to fit a Chebyshev polynomial on evenly spaced points in the interval [−1, 1]
(Figure 10.3). This data has no “outliers” in the traditional sense, and it is not
immediately clear what opposing signals are present. Nevertheless, we observe the
same alternating behavior: we find a pair where one group is a small interval of
x-values and the opposing group contains its neighbors, all in the range [−1,−0.5].
This suggests that the network has internal activations which are heavily influential
only for more negative x-values. In this context, these two groups are the outliers.

10.3 Understanding the Effect of Opposing Signals

Beyond noting their existence, our eventual goal will be to derive actionable
insights from this finding. To do this, it is necessary to gain a better understanding of
how these outliers cause the observed behavior. In this section we give a simplified
“mental picture” which serves as our current understanding of this process. We begin
with an informal discussion of the outsized influence of opposing signals and how
they lead to progressive sharpening; this subsection collates and expands on prior
work to give important context for how these signals differ from typically imagined
“noise”. Next, we give a mechanistic description of the specific effect of opposing
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signals with a toy example. This explanation is intentionally high-level, but we
will eventually see how it gives concrete predictions of specific behaviors, which
we then verify on real networks. Finally, we prove that this behavior occurs on a
two-layer linear network under a simple model.

10.3.1 Progressive Sharpening, and Intuition for Why these Features
are so Influential

At a high level, most variation in the input is unneeded when training a network
to minimize predictive error—particularly with depth and high dimension, only
a small fraction of information will be propagated to the last linear layer [Huh
et al., 2021]. Starting from random initialization, training a network aligns adjacent
layers’ singular values [Saxe et al., 2013, Mulayoff and Michaeli, 2020] to amplify
meaningful signal while downweighting noise,3 growing sensitivity to the important
signal. This sensitivity can be measured, for example, by the spectral norm of the
input-output Jacobian, which grows during training [Ma and Ying, 2021]; it has
also been connected to growth in the norm of the output layer [Wang et al., 2022b].

Observe that with this growth, small changes to how the network processes
inputs become more influential. Hypothetically, a small weight perturbation could
massively increase loss by redirecting unhelpful noise to the subspace to which the
network is most sensitive, or by changing how the last layer uses it. The increase of
this sensitivity thus represents precisely the growth of loss Hessian spectrum, with
the strength of this effect increasing with depth [Wang et al., 2016, Du et al., 2018,
Mulayoff and Michaeli, 2020].4

Crucially, this sharpening also depends on the structure of the input. If the noise
is independent of the target, it will be downweighted throughout training. In contrast,
genuine signals which oppose each other will be retained and perhaps even further
amplified by gradient descent; this is because the “correct” feature may be much
smaller in magnitude (or not yet learned), so using the large, “incorrect” feature is
often the most immediate way of minimizing loss. As a concrete example, observe
that a randomly initialized network will lack the features required for the subtle
task of distinguishing birds from planes. But it will capture the presence of sky,
which is very useful for reducing loss on such images by predicting the conditional
p(class | sky) (this is akin to the “linear/shallow-first” behavior described by Nakki-
ran et al. [2019], Mangalam and Prabhu [2019]). Thus, any method attempting to

3In this discussion we use the term “noise” informally. We refer not necessarily to pure randomness,
but more generally to input variation which is least useful in predicting the target.

4The coincident growth of these two measures was previously noted by Ma and Ying [2021],
Gamba et al. [2023], MacDonald et al. [2023], though they did not make explicit this connection to
how the network processes different types of input variance.
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minimize loss as fast as possible (e.g., steepest descent) may actually upweight these
features. Furthermore, amplified opposing signals will cause greater sharpening
than random noise, because using a signal to the benefit of one group is maximally
harmful for the other—e.g., confidently predicting plane whenever there is sky
will cause enormous loss on images of other classes with sky. Since random noise
is more diffuse, this effect is less pronounced.

This description is somewhat abstract. To gain a more precise understanding,
we illustrate the dynamics more explicitly on a toy example.

10.3.2 Illustrating with a Hypothetical Example of Gradient Descent

Consider the global loss landscape of a neural network: this is the function
which describes how the loss changes as we move through parameter space. Suppose
we identify a direction in this space which corresponds to the network’s use of the
“sky” feature to predict plane versus some other class. That is, we will imagine that
whenever the input image includes a bright blue background, moving the parameters
in one direction increases the logit of the plane class and decreases the others,
and vice-versa. We will also decompose this loss—among images with a sky
background, we consider separately the loss on those labeled plane versus
those with any other label. Because the sky feature has large magnitude, a small
change in weight space will induce a large change in the network outputs— i.e., a
small movement in the direction “sky = plane” will greatly increase loss on these
non-plane images.

Figure 10.4 depicts this heavily simplified scenario. Early in training, optimizing
this network with GD will rapidly move towards the minimum along this direction.
In particular, until better features are learned, the direction of steepest descent
will lead to a network which upweights the sky feature and predicts p(class | sky)
whenever it occurs. Once sufficiently close to the minimum, the gradient will point
“through the valley” towards amplifying the more relevant signal [Xing et al., 2018].
However, this will also cause the sky feature to grow in magnitude—as well as its
potential influence were the weights to be selectively perturbed, as described above.
Both these factors contribute to progressive sharpening.

Here we emphasize the distinction between the loss on the outliers and the full
train loss. As images without sky are not nearly as sensitive to movement along
this axis, their gradient and curvature is much smaller—and since they comprise
the majority of the dataset, the global loss landscape may not at first be signifi-
cantly affected. Continued optimization will oscillate across the minimum with
growing magnitude, but this growth may not be immediately apparent. Furthermore,
progress orthogonal to these oscillations need not be affected—we find some evi-
dence that these two processes occur somewhat independently, which we present in

158



Loss on plane

Loss on other

Gradient Steps

Loss on Outliers

Projection onto  
1D Weight Space

p(plane ∣ sky) ≈ 1 p(other ∣ sky) ≈ 1 p(plane ∣ sky) ≈ 1 p(other ∣ sky) ≈ 1

Overall Loss

Figure 10.4: A toy illustration of the effect of opposing signals. Images with
many blue pixels cause large activations, with high loss sensitivity. We project
the loss to the hypothetical weight-space dimension “sky = plane”. Left: Early
optimization approaches the minimum, balancing the opposing gradients for plane
and other (these are losses for separate training subsets: those labeled plane vs.
those with any other label—the purple curve is their average). Progress continues
through this valley, further growing the feature magnitude. Right: The valley
sharpens and the iterates diverge, alternating between high and low loss for each
group. Because most training points are insensitive to this axis, the overall loss may
not be noticeably affected at first. Eventually either (a) the loss growth forces the
network to downweight “sky”, flattening the valley; or (b) the weights “catapult” to
a different basin.

Section 10.4. Returning to the loss decomposition, we see that these oscillations
will cause the losses to grow and alternate, with one group having high loss and
then the other. Eventually the outliers’ loss increases sufficiently and the overall loss
spikes, either flattening the valley and returning to the first phase, or “catapulting”
to a different basin [Wu et al., 2018, Lewkowycz et al., 2020, Thilak et al., 2022].
This phenomenon is depicted in Figure 10.1. Finally, we note that if one visualizes
the dynamics in Figure 10.4 from above—so the left/right direction on the page
becomes up/down—it gives exactly the pattern of a network’s weights projected
onto the top eigenvector of the Hessian (e.g., Figure 10.6b later in this work).

Verifying our toy examples’s predictions. Though this explanation lacks precise
details, it does enable concrete predictions of network behavior during training.
Figure 10.5 tracks the predictions of a ResNet-18 on an image of sky—to eliminate
possible confounders, we create a synthetic image as a single color block. Though
the “plane vs. other” example seems almost too simple, we see exactly the
described behavior—initial convergence to the minimum along with rapid growth in
feature norm, followed by oscillation in class probabilities. Over time, the network
learns to use other signal and downweights the sky feature, as evidenced by the slow
decay in feature norm. We reproduce this figure for many other inputs and for a
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Figure 10.5: Passing a sky-colored block through a ResNet during GD precisely
tracks the predictions of our toy example. Left: In the first phase, the network
rapidly learns to use the sky feature to minimize loss. As signal is amplified, so too
is the sky-colored input, and oscillation begins as depicted in Figure 10.4. Middle:
During oscillation, gradient steps alternate along the axis “sky = plane” (and a
bit ship). Right: The initial phase amplifies the sky input, causing rapid growth
in feature norm. The network then oscillates, slowly learning to downweight this
feature and rely on other signal (average feature norm provided for comparison).

VGG-11-BN in Appendix I.3, with similar findings.
Our example also suggests that oscillation serves as a valuable regularizer that

reduces reliance on easily learned opposing signals which may not generalize.
When a signal is used to the benefit of one group and the detriment of another, the
advantaged group’s loss goes down while the other’s goes up, meaning the latter’s
gradient grows in magnitude while the former’s shrinks. As the now gradient-
dominating group is also the one disadvantaged by the use of this signal, the network
will be encouraged to downweight this feature. In Appendix I.3.3 we reproduce
Figure 10.5 with a VGG-11-BN trained with a very small learning rate to closely
approximate gradient flow. We see that gradient flow and GD are very similar until
reaching the edge of stability. After this point, the feature norm under GD begins
to slowly decay while oscillating; in contrast, in the absence of oscillation, the
feature norms of opposing signals under gradient flow grow continuously. If it is
the case that opposing signals represent “simple” features which generalize worse,
this could help to explain the poor generalization of gradient flow. A similar effect
was observed by Jastrzȩbski et al. [2020], who noted that large initial learning rate
leads to a better-conditioned loss landscape later.

10.3.3 Theoretical Analysis of Opposing Signals in a Simple Model

To demonstrate this effect formally, we study misspecified linear regression on
inputs x ∈ Rd with a two-layer linear network. Though this model is simplified,
it enables preliminary insight into the factors we think are most important for
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these dynamics to occur. Since we are analyzing the dynamics from initialization
until the stability threshold, it will be sufficient to study the trajectory of gradient
flow—for reasonable step sizes η, a similar result then follows for gradient descent.
Our analysis reproduces the initial phase of quickly reducing loss on the outliers,
followed by the subsequent growth in sensitivity to the way the opposing signal is
used—i.e., progressive sharpening. We also verify this pattern (and the subsequent
oscillation, which we do not formally prove) in experiments on real and synthetic
data in Appendix I.5.

We remark that one relevant factor which our model lacks is the concept of a
“partially useful” signal as described at the end of Section 10.3.1. This seems to
require a somewhat more complex model to properly capture (e.g., multinomial
logistic regression) so we view this analysis as an early investigation, capturing only
part of relevant aspects of the phenomena we observe.

Model. We model the observed features as a distribution over x ∈ Rd1 , assuming
only that its covariance Σ exists—for clarity we treat Σ = I in the main text. We
further model an additional vector xo ∈ Rd2 representing the opposing signal,
with d2 > d1. We will suppose that on some small fraction of outliers p ≪ 1,
xo ∼ Unif

({
±
√

α
pd2

1
})

(1 is the all-ones vector) for some α which governs the

feature magnitude, and we let it be 0 on the remainder of the dataset. We model
the target as the linear function y = β⊤x+ 1√

d2
1⊤|xo|; this captures the idea that

the signal xo correlates strongly with the target, but in opposing directions of equal
strength. Finally, we parameterize the network with vectors b ∈ Rd1 , bo ∈ Rd2 and
scalar c in one single vector θ, as fθ(x) = c · (b⊤x + b⊤o xo). Note the specific
distribution of xo is unimportant—furthermore, in our simulations we observed the
exact same pattern with cross-entropy loss. From our experiments and this analysis,
it seems that depth and a small signal-to-noise ratio are the only elements needed
for this behavior to arise.

Setup. A standard initialization would be to sample [b, bo]
⊤ ∼ N (0, 1

d1+d2
I),

which would then imply highly concentrated distributions for the quantities of
interest. As tracking the precise concentration terms would not meaningfully
contribute to the analysis, we simplify by directly assuming that at initialization
these quantities are equal to their expected order of magnitude: ∥b∥22 = 1⊤b =

d1
d1+d2

, ∥bo∥22 = 1⊤bo = d2
d1+d2

, and b⊤β = ∥β∥√
d1+d2

. Likewise, we let c = 1,
ensuring that both layers have the same norm. We perform standard linear regression
by minimizing the population loss L(θ) := 1

2E[(fθ(x) − y)2]. We see that the
minimizer of this objective has bo = 0 and cb = β. However, an analysis of gradient
flow will elucidate how depth and strong opposing signals lead to sharpening as this
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minimum is approached.

Results. In exploring progressive sharpening, Cohen et al. [2021] found that
sometimes the model would have a brief decrease in sharpness, particularly for
square loss. In fact, this is consistent with our above explanation: for large α and a
sharper loss (e.g. the square loss), the network will initially prioritize minimizing
loss on the outliers, thus heavily reducing sharpness. Our first result proves that this
occurs in the presence of large magnitude opposing signals:
Theorem 10.3.1 (Initial decrease in sharpness). Let k := d2

d1
> 1, and assume

∥β∥ > max
(

d1√
d1+d2

, 245

)
. At initialization, the sharpness ∥∇2

θL(θ)∥2 lies in

(α, 3α). Further, if
√
α = Ω(∥β∥k ln k), then both bo and the overall sharpness

will decrease as Õ(e−αt) from t = 0 until some time t1 ≤ ln ∥β∥/2
2∥β∥ .

Proofs can be found in Appendix I.7. After this decrease, signal amplification
can proceed—but this also means that the sharpness with respect to how the network
uses the feature xo will grow, so a small perturbation to the parameters bo will
induce a large increase in loss.
Theorem 10.3.2 (Progressive sharpening). If

√
α = Ω

(
1 + ∥β∥2k ln k

)
, then at

starting at time t1 the sharpness will increase linearly in ∥β∥ until some time
t2 ≥ 1

2∥β∥22
, reaching at least 5

8∥β∥α. This lower bound on sharpness applies to
each dimension of bo.

Oscillation will not occur during gradient flow—but for gradient descent with
step size η > 16

5∥β∥α , bo will start to increase in magnitude while oscillating across
the origin. If this growth continues, it will rapidly reintroduce the feature, causing
the loss on the outliers to grow and alternate. Such reintroduction (an example
of which occurs around iteration 3000 in Figure 10.5) seems potentially helpful
for exploration. In Figure I.32 in the Appendix we simulate our model and verify
exactly this sequence of events. We also show that an MLP trained on CIFAR-10
displays the same characteristic behavior.

10.3.4 Additional Findings

Sharpness often occurs overwhelmingly in the first few layers. Theorem 10.3.2
shows that progressive sharpening occurs specifically in bo. Generally, our model
suggests that sharpness will begin in the last layer but that that early in training it
will shift to the earlier layers since they have more capacity to redirect the signal. In
Appendix I.4 we track what fraction of curvature5 of the top eigenvector lies in each

5The “fraction of curvature” is with respect to the top eigenvector of the loss Hessian. We partition
this vector by network layer, so each sub-vector’s squared norm represents that layer’s contribution to
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layer of various networks during training with GD. In a ResNet-18, sharpness occurs
almost exclusively in the first convolutional layer after the first few training steps; the
same pattern appears more slowly while training a VGG-11. In a Vision Transformer
curvature occurs overwhelmingly in the embedding layer and very slightly in the
earlier MLP projection heads. The text transformer (NanoGPT) follows the same
pattern, though with less extreme concentration in the embedding. Thus it does seem
to be the case that earlier layers have the most significant sharpness—especially if
they perform dimensionality reduction or have particular influence over how the
signal is propagated to later layers. This seems the likely cause of large gradients in
the early layers of vision models [Chen et al., 2021c, Kumar et al., 2022], suggesting
that this effect is equally influential during finetuning and pretraining and that further
study can improve optimization.

Batchnorm may smooth training, even if not the loss itself. Cohen et al. [2021]
noted that batchnorm (BN) [Ioffe and Szegedy, 2015] does not prevent networks
from reaching the edge of stability and concluded, contrary to Santurkar et al. [2018],
that BN does not smooth the loss landscape. We conjecture that the benefit of BN
may be in downweighting the influence of opposing signals and mitigating this
oscillation. In other words, BN may smooth the optimization trajectory of neural
networks, rather than the loss itself (this is consistent with the distinction made
by Cohen et al. [2021] between regularity and smoothness). In Section 10.4 we
demonstrate that Adam also smooths the optimization trajectory and that minor
changes to emulate this effect can aid stochastic optimization. We imagine that the
effect of BN could also depend on the use of GD vs. SGD. Specifically, our findings
hint at a possible benefit of BN which applies only to SGD: reducing the variance
of imbalanced opposing signals across random minibatches.

For both GD and SGD, approximately half of training points go up in loss on
each step. Though only the outliers are wildly oscillating, many more images
contain some small component of the features they exemplify. Figure I.30 in the
Appendix shows that the fraction of points which increase in loss hovers around
50% for every step—to some extent, a small degree of oscillation appears to be
happening to the entire dataset.

Different losses have different effects on sharpening. Our model would predict
that adding label smoothing to the cross-entropy loss should reduce sharpening,
because smoothing reduces loss curvature under extreme overconfidence. Indeed,
MacDonald et al. [2023] show this to be the case. This also hints at why logistic loss

the overall curvature.
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may be more suitable for NN optimization, because it only has substantial curvature
around x = 0 (x being the logit, i.e. when prediction entropy is high), so unlike
square or exponential loss, large magnitude features will not massively increase
sharpness. We expect a similar property could contribute to the relative behavior
of different activations (e.g. ReLU or tanh).

10.4 The Interplay of Opposing Signals and Stochasticity

Full-batch GD is not used in practice when training NNs. It is therefore pertinent
to ask what these findings imply about stochastic optimization. We begin by
verifying that this pattern persists during SGD. Figure 10.6a displays the losses for
four opposing group pairs of a VGG-11-BN trained on CIFAR-10 with SGD batch
size 128. We observe that the paired groups do exhibit clear opposing oscillatory
patterns, but they do not alternate with every step, nor do they always move in
opposite directions. This should not be surprising: we expect that not every batch
will have a given signal in one direction or the other. For comparison, we include the
full train loss in each figure—that is, including the points not in the training batch.
We see that the loss on the outliers has substantially larger variance; to confirm that
this is not just because the groups have many fewer samples, we also plot the loss
on a random subset of training points of the same size. We reproduce this plot with
a VGG-11 without BN in Figure I.31 in the Appendix.

Having verified that this behavior occurs in the stochastic setting, we conjecture
that current best practices for neural network optimization owe much of their success
to how they handle opposing signals. As a proof of concept, we will make this more
precise with a preliminary investigation of the Adam optimizer [Kingma and Ba,
2014].

10.4.1 How Adam Handles Gradients with Opposing Signals

To better understand their differences, Figure 10.6b visualizes the parameter
iterates of Adam and SGD with momentum on a ReLU MLP trained on a 5k
subset of CIFAR-10, alongside those of GD and SGD (all methods use the same
initialization and sequence of training batches). The top figure is the projection
of these parameters onto the top eigenvector of the loss Hessian of the network
trained with GD, evaluated at the first step where the sharpness crosses 2/η. We
observe that SGD tracks a similar path to GD, though adding momentum mitigates
the oscillation somewhat. In contrast, the network optimized with Adam markedly
departs from this pattern, smoothly oscillating along one side. We identify three
components of Adam which potentially contribute to this effect:

164



1

2

3

L
os

s
Group 1
Group 2
Full Train Loss
Random Subset

1

2

3

4

10 20 30 40 50
Iteration

1

2

3

4

L
os

s

10 20 30 40 50
Iteration

1

2

3

4

VGG-11 SGD Loss on Opposing Groups

(a)

−0.20

−0.15

−0.10

−0.05

0.00

Sc
al

ar
Pr

oj
ec

tio
n

Projection on Top Eigenvector

GD
SGD
Adam
Momentum SGD

0 5 10 15 20 25 30 35
Iteration

0

50

St
ep

Si
ze Adam Effective Step Size (×3e-4)

(b)

Figure 10.6: Outliers with opposing signals have a significant influence even
during SGD. Left: We plot the losses of paired outlier groups on a VGG-11-
BN trained on CIFAR-10, along with the full train loss for comparison. Modulo
batch randomness, the outliers’ loss follow the same oscillatory pattern with large
magnitude. See appendix for the same without batchnorm. Right (top): We train
a small MLP on a 5k subset of CIFAR-10 with various optimizers and project
the iterates onto the top Hessian eigenvector. SGD closely tracks GD, bouncing
across the valley; momentum somewhat mitigates the sharp jumps. Adam smoothly
oscillates along one side. Right (bottom): Adam’s effective step size drops sharply
when moving too close or far from the valley floor.

Advantage 1: Smaller steps along high curvature directions. Adam’s normal-
ization causes smaller steps along the top eigenvector, especially near the mini-
mum. The lower plot in Figure 10.6b shows that the effective step size in this
direction—i.e., the absolute inner product of the parameter-wise step sizes and the
top eigenvector—rapidly drops to zero as the iterates approach the valley floor (in
the opposite direction, the gradient negates the momentum for the same effect). We
conjecture that general normalization may not be essential to Adam’s performance;
we even expect it could be somewhat harmful by limiting exploration. On the other
hand, normalizing steps by curvature parameter-wise does seem important; Pan and
Li [2023] argue the same and show that parameter-wise gradient clipping improves
SGD substantially. We highlight why this may be useful in the next point.

Advantage 2: Managing heavy-tailed gradients and avoiding steepest descent.
Zhang et al. [2020] identified the “trust region” as an important contributor to
Adam’s success in attention models, pointing to heavy-tailed noise in the stochastic
gradients. More recently, Kunstner et al. [2023] argued that Adam’s superiority does
not come from better handling noise, which they supported by experimenting with
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large batch sizes. Our result reconciles these contradictory claims by showing that
the difficulty is not heavy-tailed noise, but strong, directed (and perhaps imbalanced)
opposing signals. Unlike traditional “gradient noise”, larger batch sizes may not
reduce the effect of these signals—that is, the gradient is heavy-tailed (across pa-
rameters) even without being stochastic. Also of note: Adam’s largest steps emulate
Sign SGD, which is notably not a descent method. Figure 10.6b shows that Adam’s
steps are more parallel to the valley floor than those of steepest descent. Thus it
seems advantageous to intentionally avoid steps along the gradient which point
towards the local minimum, which might lead to over-reliance on these features.
Indeed, Benzing [2022] observe that true second order methods perform worse than
SGD on NNs, and Kunstner et al. [2023] show that Adam shares some behavior
with Sign SGD with momentum. Here we see the value in taking small steps along
high-curvature directions, particularly when we are close to the minimum. This
point is also consistent with the observed generalization benefits of a large learning
rate for SGD on NNs [Jastrzȩbski et al., 2020]; in fact, opposing signals naturally
fit the concept of “easy-to-fit” features as modeled by Li et al. [2019]—who prove
the benefit of intentionally failing to learn them.

Advantage 3: Dampening. Lastly, Adam’s third important factor: downweight-
ing the most recent gradient. Traditional SGD with momentum β < 1 takes a step
which weights the current gradient by 1

1+β > 1
2 . Though this makes intuitive sense,

our results imply that heavily weighting the most recent gradient can be problem-
atic. Instead, we expect an important addition is dampening, which multiplies the
stochastic gradient at each step by some (1 − τ) < 1. We observe that Adam’s
(unnormalized) gradient is equivalent to SGD with momentum and dampening both
equal to β1, plus a debiasing step. Recently proposed alternatives also include
dampening in their momentum update but do not explicitly identify the distinction
[Zhang et al., 2020, Pan and Li, 2023, Chen et al., 2023a].

10.4.2 Proof of Concept: Using These Insights to Aid Stochastic Opti-
mization

To test whether our findings translate to practical gains, we design a variant
of SGD which incorporates these insights. First, we use dampening τ = 0.9 in
addition to momentum. Second, we choose a global threshold: if the gradient
magnitude for a parameter is above this threshold, we take a fixed step size (à la
Sign SGD); otherwise, we take a gradient step as normal. The exact method appears
in Appendix I.6.

Results in Appendix I.6 show that this approach matches Adam when training
ResNet-56/110 on CIFAR-10 with learning rates for the unthresholded parameters
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across several orders of magnitude ranging from 10−4 to 103. Notably, the fraction
of parameters above the threshold (whose step size is fixed) is only around 10-25%
per step. This implies that the trajectory and behavior of the network is dominated
by this small fraction of parameters; the remainder can be optimized much more
robustly, but their effect on the network’s behavior is obscured. We therefore
see the influence of opposing signals as a possible explanation for the “hidden”
progress in grokking [Barak et al., 2022, Nanda et al., 2023]. We also compare this
method to Adam for the early phase of training GPT-2 [Radford et al., 2019] on
the OpenWebText dataset [Gokaslan et al., 2019]—not only do they perform the
same, their loss similarity suggests that their exact trajectory may be very similar
(Appendix I.6.2). Here the fraction of parameters above the threshold hovers around
50% initially and then gradually decays. The fact that many more parameters in the
attention model are above the threshold suggests that the attention mechanism is
more sensitive to opposing signals and that further investigation of how to mitigate
this instability may be fruitful.

10.5 Discussion and Future Work

Many of the observations we make in this paper are not new, having been
described in various prior works. Rather, this work identifies a possible higher-order
cause which neatly ties these findings together. There are also many works which
pursue a more theoretical understanding of each of these phenomena independently.
Such analyses begin with a set of assumptions (on the data, in particular) and prove
that the given behavior follows. In contrast, this work begins by identifying a
condition—the presence of opposing signals—which we argue is likely a major
cause of these behaviors. These two are not at odds: we believe in many cases our
result serves as direct evidence for the validity of these modeling assumptions and
that it may enable even more fine-grained analyses. This work provides an initial
investigation which we hope will inspire future efforts towards a more complete
understanding.

We now highlight some connections to these earlier findings. More general
related work can be found in Appendix I.1.

Heavy-tailed loss spectrum. Earlier studies of the loss landscape noted a small
group of very large outlier Hessian eigenvalues or Jacobian singular values (e.g.
Sagun et al. 2016, 2017, Papyan 2018, see Appendix I.1 for more). Our method
of identifying these paired groups, along with the metrics tracked in Figure 10.2,
indicate that these outlier directions in the spectrum are precisely the directions
with opposing signals in the gradient and that this pattern may be key to better
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understanding the generalization ability of NNs trained with SGD.

Progressive sharpening and the edge of stability. More recent focus has shifted
to the top Hessian eigenvalue(s), where it was empirically observed that their
magnitude (the loss “sharpness”) grows during training [Jastrzȩbski et al., 2019,
2020, Cohen et al., 2021] (so-called progressive sharpening), leading to rapid
oscillation in weight space [Xing et al., 2018, Jastrzȩbski et al., 2019]. Cohen
et al. [2021] also found that for GD this coincides with a consistent yet non-
monotonic decrease in training loss over long timescales, which they named the
edge of stability. We observe that prior analyses have proven the occurrence of
progressive sharpening and the edge of stability under various assumptions [Arora
et al., 2022, Wang et al., 2022b], but the underlying cause has not been made clear.
Our discussion, experiments, and theoretical analysis in Section 10.3 provide strong
evidence for a genuine cause which aligns with several of these existing modeling
assumptions. Roughly, our results seem to imply that progressive sharpening occurs
when the network learns to rely on (or not rely on) opposing signals in a very specific
way, while simultaneously amplifying overall sensitivity. This growth in sensitivity
means a small parameter change modifying how opposing signals are used can
massively increase loss. This leads to intermittent instability orthogonal to the
“valley floor”, accompanied by gradual training loss decay and occasional spikes as
described by the toy example in Figure 10.4 and depicted on real data in Figure 10.1.
Empirically, this oscillation seems somewhat independent of movement parallel to
the floor (see Appendix I.6), but further study of the precise dynamics is needed.

Spurious correlations, grokking, and slingshotting. In images, the features
corresponding to opposing signals match the traditional picture of “spurious cor-
relations” surprisingly closely—it could be that a network maintaining balance or
diverging along a direction also determines whether it continues to use a “spuri-
ous” feature or is forced to find an alternative way to minimize loss. Indeed, the
exact phenomenon of a network “slingshotting” to a new region with improved
generalization has been directly observed [Wu et al., 2018, Lewkowycz et al., 2020,
Jastrzȩbski et al., 2021, Thilak et al., 2022]. Grokking [Power et al., 2022], whereby
a network learns to generalize long after memorizing the training set, is closely
related. Several works have shown that grokking is a “hidden” phenomenon, with
gradual amplification of generalizing subnetworks [Barak et al., 2022, Nanda et al.,
2023, Merrill et al., 2023]; it has even been noted to co-occur with weight oscilla-
tion [Notsawo Jr et al., 2023]. Our experiments in Section 10.4 and Appendix I.6
show that the influence of opposing signals obscures the behavior of the rest of the
network, offering one possible explanation.
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Simplicity bias and double descent. Nakkiran et al. [2019] observed that NNs
learn functions of increasing complexity throughout training. Our experiments—
particularly the slow decay in the norm of the feature embedding of opposing
signals—lead us to believe it would be more accurate to say that they unlearn sim-
ple functions, which enables more complex subnetworks with smaller magnitude
and better performance to take over. At first this seems at odds with the notion
of simplicity bias [Valle-Perez et al., 2019, Shah et al., 2020], defined broadly as
a tendency of networks to rely on simple functions of their inputs. However, it
does seem to be the case that the network will use the simplest (e.g., largest norm)
features that it can, so long as such features allow it to approach zero training
loss; otherwise it may eventually diverge. This tendency also suggests a possible
explanation for double descent [Belkin et al., 2019, Nakkiran et al., 2020]: even
after interpolation, the network pushes towards greater confidence and the weight
layers continue to balance [Saxe et al., 2013, Du et al., 2018], increasing sharpness.
This could lead to oscillation, pushing the network to learn new features which
generalize better [Wu et al., 2018, Rosenfeld et al., 2022b, Thilak et al., 2022]. This
behavior would also be more pronounced for larger networks because they exhibit
greater sharpening. Note that the true explanation is not quite so straightforward:
generalization is sometimes improved via methods that reduce oscillation (like
loss smoothing), implying that this behavior is not always advantageous. A better
understanding of these nuances is an important subject for future study.

Sharpness-Aware Minimization Another connection we think merits further
inquiry is Sharpness-Aware Minimization (SAM) [Foret et al., 2021], which is
known to improve generalization of neural networks for reasons still not fully
understood [Wen et al., 2023]. In particular, the better-performing variant is 1-SAM,
which takes positive gradient steps on each training point in the batch individually.
It it evident that several of these updates will point along directions of steepest
descent/ascent orthogonal to the valley floor (and, if not normalized, the updates
may be very large). Thus it may be that 1-SAM is in some sense “simulating”
oscillation and divergence out of this valley in both directions, enabling exploration
in a manner that would not normally be possible until the sharpness grows large
enough—these intermediate steps would also encourage the network to downweight
these features sooner and faster. Standard SAM would only take this step in one of
the two directions, or perhaps not at all if the opposing signals are equally balanced.
Furthermore, unlike 1-SAM the intermediate step would blend together all opposing
signals in the minibatch. These possibilities seem a promising direction for further
exploration.
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10.6 Conclusion

The existence of small, paired groups of training data with such a significant
yet non-obvious influence on neural network training raises as many questions as
it answers. This work presents an initial investigation into the effect of opposing
signals on various aspects of optimization, but there is still much more to understand.
Though it is clear they have a large influence on training, less obvious is whether
reducing their influence is necessary for improved optimization or simply coincides
with it. At the same time, there is evidence that the behavior these signals induce
may serve as an important method of exploration and/or regularization. If so,
another key question is whether these two effects can be decoupled—or if the
incredible generalization ability of neural networks is somehow inherently tied to
their optimization instability.
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Appendix A

Appendix for Chapter 2

A.1 Proofs of Theorems 2.3.1 and 2.3.2

Here we provide the complete proofs for Theorems 2.3.1 and 2.3.2. We fist prove
the following lemma, which is essentially a restatement of the Neyman-Pearson
lemma [Neyman and Pearson, 1933] from statistical hypothesis testing.

Lemma A.1.1 (Neyman-Pearson). Let X and Y be random variables in Rd with
densities µX and µY . Let h : Rd → {0, 1} be a random or deterministic function.
Then:

1. If S =
{
z ∈ Rd : µY (z)

µX(z) ≤ t
}

for some t > 0 and P(h(X) = 1) ≥ P(X ∈
S), then P(h(Y ) = 1) ≥ P(Y ∈ S).

2. If S =
{
z ∈ Rd : µY (z)

µX(z) ≥ t
}

for some t > 0 and P(h(X) = 1) ≤ P(X ∈
S), then P(h(Y ) = 1) ≤ P(Y ∈ S).

Proof. Without loss of generality, we assume that h is random and write h(1|x) for
the probability that h(x) = 1.
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First we prove part 1. We denote the complement of S as Sc.

P(h(Y ) = 1)− P(Y ∈ S) (A.1)

=

∫
Rd

h(1|z)µY (z)dz −
∫
S
µY (z)dz (A.2)

=

[∫
Sc

h(1|z)µY (z)dz +

∫
S
h(1|z)µY (z)dz

]
−
[∫

S
h(1|z)µY (z)dz +

∫
S
h(0|z)µY (z)dz

]
(A.3)

=

∫
Sc

h(1|z)µY (z)dz −
∫
S
h(0|z)µY (z)dz (A.4)

≥ t

[∫
Sc

h(1|z)µX(z)dz −
∫
S
h(0|z)µX(z)

]
(A.5)

= t

[∫
Sc

h(1|z)µX(z)dz +

∫
S
h(1|z)µX(z)dz −

∫
S
h(1|z)µX(z)dz −

∫
S
h(0|z)µX(z)

]
(A.6)

= t

[∫
Rd

h(1|z)µX(z)dz −
∫
S
µX(z)dz

]
(A.7)

= t [P(h(X) = 1)− P(X ∈ S)] (A.8)

≥ 0 (A.9)

The inequality in the middle is due to the fact that µY (z) ≤ t µX(z) ∀z ∈ S
and µY (z) > tµX(z) ∀z ∈ Sc. The inequality at the end is because both terms in
the product are non-negative by assumption.

The proof for part 2 is virtually identical, except both “≥” become “≤.”

Remark: connection to statistical hypothesis testing. Part 2 of Lemma Lemma A.1.1
is known in the field of statistical hypothesis testing as the Neyman-Pearson Lemma
[Neyman and Pearson, 1933]. The hypothesis testing problem is this: we are given a
sample that comes from one of two distributions over Rd: either the null distribution
X or the alternative distribution Y . We would like to identify which distribution the
sample came from. It is worse to say “Y ” when the true answer is “X” than to say
“X” when the true answer is “Y .” Therefore we seek a (potentially randomized)
procedure h : Rd → {0, 1} which returns “Y ” when the sample really came from
X with probability no greater than some failure rate α. In particular, out of all such
rules h, we would like the uniformly most powerful one h∗, i.e. the rule which is
most likely to correctly say “Y ” when the sample really came from Y . Neyman and
Pearson [1933] showed that h∗ is the rule which returns “Y ” deterministically on
the set S∗ = {z ∈ Rd : µY (z)

µX(z) ≥ t} for whichever t makes P(X ∈ S∗) = α. In
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other words, to state this in a form that looks like Part 2 of Lemma Lemma A.1.1: if
h is a different rule with P(h(X) = 1) ≤ α, then h∗ is more powerful than h, i.e.
P(h(Y ) = 1) ≤ P(Y ∈ S∗).

Now we state the special case of Lemma Lemma A.1.1 for when X and Y are
isotropic Gaussians.
Lemma A.1.2 (Neyman-Pearson for Gaussians with different means). Let X ∼
N (x, σ2I) and Y ∼ N (x+ δ, σ2I). Let h : Rd → {0, 1} be any deterministic or
random function. Then:

1. If S =
{
z ∈ Rd : δT z ≤ β

}
for some β and P(h(X) = 1) ≥ P(X ∈ S),

then P(h(Y ) = 1) ≥ P(Y ∈ S)

2. If S =
{
z ∈ Rd : δT z ≥ β

}
for some β and P(h(X) = 1) ≤ P(X ∈ S),

then P(h(Y ) = 1) ≤ P(Y ∈ S)

Proof. This lemma is the special case of Lemma Lemma A.1.1 when X and Y are
isotropic Gaussians with means x and x+ δ.

By Lemma Lemma A.1.1 it suffices to simply show that for any β, there is some
t > 0 for which:

{z : δT z ≤ β} =
{
z :

µY (z)

µX(z)
≤ t

}
and {z : δT z ≥ β} =

{
z :

µY (z)

µX(z)
≥ t

}
(A.10)

The likelihood ratio for this choice of X and Y turns out to be:

µY (z)

µX(z)
=

exp
(
− 1

2σ2

∑d
i=1(zi − (xi + δi))

2)
)

exp
(
− 1

2σ2

∑d
i=1(zi − xi)2

) (A.11)

= exp

(
1

2σ2

d∑
i=1

2ziδi − δ2i − 2xiδi

)
(A.12)

= exp(aδT z + b) (A.13)

where a > 0 and b are constants w.r.t z, specifically a = 1
σ2 and b = −(2δT x+∥δ∥2)

2σ2 .
Therefore, given any β we may take t = exp(aβ + b), noticing that

δT z ≤ β ⇐⇒ exp(aδT z + b) ≤ t (A.14)

δT z ≥ β ⇐⇒ exp(aδT z + b) ≥ t (A.15)
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Finally, we prove Theorems 2.3.1 and 2.3.2.
Theorem 2.3.1 (restated). Let f : Rd → Y be any deterministic or random

function. Let ε ∼ N (0, σ2I). Let g(x) = argmaxc P(f(x+ ε) = c). Suppose that
for a specific x ∈ Rd, there exist cA ∈ Y and pA, pB ∈ [0, 1] such that:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ ε) = c) (A.16)

Then g(x+ δ) = cA for all ∥δ∥2 < R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (A.17)

Proof. To show that g(x+ δ) = cA, it follows from the definition of g that we need
to show that

P(f(x+ δ + ε) = cA) > max
cB ̸=cA

P(f(x+ δ + ε) = cB) (A.18)

We will prove that P(f(x+ δ + ε) = cA) > P(f(x+ δ + ε) = cB) for every class
cB ̸= cA. Fix one such class cB without loss of generality.

For brevity, define the random variables

X := x+ ε = N (x, σ2I) (A.19)

Y := x+ δ + ε = N (x+ δ, σ2I) (A.20)

In this notation, we know from (Equation (A.16)) that

P(f(X) = cA) ≥ pA and P(f(X) = cB) ≤ pB (A.21)

and our goal is to show that

P(f(Y ) = cA) > P(f(Y ) = cB) (A.22)

Define the half-spaces:

A := {z : δT (z − x) ≤ σ∥δ∥Φ−1(pA)} (A.23)

B := {z : δT (z − x) ≥ σ∥δ∥Φ−1(1− pB)} (A.24)

Algebra (deferred to the end) shows that P(X ∈ A) = pA. Therefore, by (Equa-
tion (A.21)) we know that P(f(X) = cA) ≥ P(X ∈ A). Hence we may apply
Lemma Lemma A.1.2 with h(z) := 1[f(z) = cA] to conclude:

P(f(Y ) = cA) ≥ P(Y ∈ A) (A.25)

176



x+ δ

x

x+ δ

x

Figure A.1: Illustration of the proof of Theorem 2.3.1. The solid line concentric
circles are the density level sets of X := x+ ε; the dashed line concentric circles
are the level sets of Y := x + δ + ε. The set A is in blue and the set B is in
red. The figure on the left depicts a situation where P(Y ∈ A) > P(Y ∈ B), and
hence g(x + δ) may equal cA. The figure on the right depicts a situation where
P(Y ∈ A) < P(Y ∈ B) and hence g(x+ δ) ̸= cA.

Similarly, algebra shows that P(X ∈ B) = pB . Therefore, by (Equation (A.21))
we know that P(f(X) = cB) ≤ P(X ∈ B). Hence we may apply Lemma
Lemma A.1.2 with h(z) := 1[f(z) = cB] to conclude:

P(f(Y ) = cB) ≤ P(Y ∈ B) (A.26)

To guarantee (Equation (A.22)), we see from (Equation (A.25), Equation (A.26))
that it suffices to show that P(Y ∈ A) > P(Y ∈ B), as this step completes the
chain of inequalities

P(f(Y ) = cA) ≥ P(Y ∈ A) > P(Y ∈ B) ≥ P(f(Y ) = cB) (A.27)

We can compute the following:

P(Y ∈ A) = Φ

(
Φ−1(pA)−

∥δ∥
σ

)
(A.28)

P(Y ∈ B) = Φ

(
Φ−1(pB) +

∥δ∥
σ

)
(A.29)

Finally, algebra shows that P(Y ∈ A) > P(Y ∈ B) if and only if:

∥δ∥ < σ

2
(Φ−1(pA)− Φ−1(pB)) (A.30)

which recovers the theorem statement.

177



We now restate and prove Theorem 2.3.2, which shows that the bound in
Theorem 2.3.1 is tight. The assumption below in Theorem 2.3.2 that pA + pB ≤ 1
is mild: given any pA and pB which do not satisfy this condition, one could have
always redefined pB ← 1− pA to obtain a Theorem 2.3.1 guarantee with a larger
certified radius, so there is no reason to invoke Theorem 2.3.1 unless pA + pB ≤ 1.

Theorem 2 (restated). Assune pA + pB ≤ 1. For any perturbation δ ∈ Rd

with ∥δ∥2 > R, there exists a base classifier f∗ consistent with the observed class
probabilities (Equation (A.16)) such that if f∗ is the base classifier for g, then
g(x+ δ) ̸= cA.

Proof. We re-use notation from the preceding proof.
Pick any class cB arbitrarily. Define A and B as above, and consider the function

f∗(x) :=


cA if x ∈ A

cB if x ∈ B

other classes otherwise

(A.31)

This function is well-defined, since A ∩B = ∅ provided that pA + pB ≤ 1.
By construction, the function f∗ satisfies (Equation (A.16)) with equalities,

since

P(f∗(x+ ε) = cA) = P(X ∈ A) = pA P(f∗(x+ ε) = cB) = P(X ∈ B) = pB
(A.32)

It follows from (Equation (A.28)) and (Equation (A.29)) that

P(Y ∈ A) < P(Y ∈ B) ⇐⇒ ∥δ∥2 > R (A.33)

By assumption, ∥δ∥2 > R, so P(Y ∈ A) < P(Y ∈ B), or equivalently,

P(f∗(x+ δ + ε) = cA) < P(f∗(x+ δ + ε) = cB) (A.34)

Therefore, if f∗ is the base classifier for g, then g(x+ δ) ̸= cA.

Deferred Algebra

Claim A.1.3. P(X ∈ A) = pA
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Proof. Recall that X ∼ N (x, σ2I) and A = {z : δT (z − x) ≤ σ∥δ∥Φ−1(pA)}.

P(X ∈ A) = P(δT (X − x) ≤ σ∥δ∥Φ−1(pA)) (A.35)

= P(δTN (0, σ2I) ≤ σ∥δ∥Φ−1(pA)) (A.36)

= P(σ∥δ∥Z ≤ σ∥δ∥Φ−1(pA)) (Z ∼ N (0, 1))

= Φ(Φ−1(pA)) (A.37)

= pA (A.38)

Claim A.1.4. P(X ∈ B) = pB

Proof. Recall that X ∼ N (x, σ2I) and B = {z : δT (z−x) ≤ σ∥δ∥Φ−1(1−pB)}.

P(X ∈ A) = P(δT (X − x) ≥ σ∥δ∥Φ−1(1− pB)) (A.39)

= P(δTN (0, σ2I) ≥ σ∥δ∥Φ−1(1− pB)) (A.40)

= P(σ∥δ∥Z ≥ σ∥δ∥Φ−1(1− pB)) (Z ∼ N (0, 1))

= P(Z ≥ Φ−1(1− pB)) (A.41)

= 1− Φ(Φ−1(1− pB)) (A.42)

= pB (A.43)

Claim A.1.5. P(Y ∈ A) = Φ
(
Φ−1(pA)− ∥δ∥

σ

)
Proof. Recall that Y ∼ N (x+ δ, σ2I) and A = {z : δT (z−x) ≤ σ∥δ∥Φ−1(pA)}.

P(Y ∈ A) = P(δT (Y − x) ≤ σ∥δ∥Φ−1(pA)) (A.44)

= P(δTN (0, σ2I) + ∥δ∥2 ≤ σ∥δ∥Φ−1(pA)) (A.45)

= P(σ∥δ∥Z ≤ σ∥δ∥Φ−1(pA)− ∥δ∥2) (Z ∼ N (0, 1))

= P
(
Z ≤ Φ−1(pA)−

∥δ∥
σ

)
(A.46)

= Φ

(
Φ−1(pA)−

∥δ∥
σ

)
(A.47)

Claim A.1.6. P(Y ∈ B) = Φ
(
Φ−1(pB) +

∥δ∥
σ

)
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Proof. Recall that Y ∼ N (x+ δ, σ2I) and B = {z : δT (z − x) ≥ σ∥δ∥Φ−1(1−
pB)}.

P(Y ∈ B) = P(δT (Y − x) ≥ σ∥δ∥Φ−1(1− pB)) (A.48)

= P(δTN (0, σ2I) + ∥δ∥2 ≥ σ∥δ∥Φ−1(1− pB)) (A.49)

= P(σ∥δ∥Z + ∥δ∥2 ≥ σ∥δ∥Φ−1(1− pB)) (Z ∼ N (0, 1))

= P
(
Z ≥ Φ−1(1− pB)−

∥δ∥
σ

)
(A.50)

= P
(
Z ≤ Φ−1(pB) +

∥δ∥
σ

)
(A.51)

= Φ

(
Φ−1(pB) +

∥δ∥
σ

)
(A.52)
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A.2 Smoothing a Two-Class Linear Classifier

In this appendix, we analyze what happens when the base classifier f is a two-
class linear classifier f(x) = sign(wTx+ b). To match the definition of g, we take
sign(·) to be undefined when its argument is zero.

x
x

Figure A.2: Illustration of Proposition Proposition A.2.1. A binary linear classifier
f(x) = sign(wTx+ b) partitions Rd into two half-spaces, drawn here in blue and
red. An isotropic Gaussian N (x, σ2I) will put more mass on whichever half-space
its center x lies in: in the figure on the left, x is in the blue half-space andN (x, σ2I)
puts more mass on the blue than on red. In the figure on the right, x is in the red
half-space and N (x, σ2I) puts more mass on red than on blue. Since the smoothed
classifier’s prediction g(x) is defined to be whichever half-space N (x, σ2I) puts
more mass in, and the base classifier’s prediction f(x) is defined to be whichever
half-space x is in, we have that g(x) = f(x) for all x.

Our first result is that when f is a two-class linear classifier, the smoothed
classifier g is identical to the base classifier f .

Proposition A.2.1. If f is a two-class linear classifier f(x) = sign(wTx+ b), and
g is the smoothed version of f with any σ, then g(x) = f(x) for any x (where f is
defined).
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Proof. From the definition of g,

g(x) = 1 ⇐⇒ Pε(f(x+ ε) = 1) >
1

2
(ε ∼ N (0, σ2I))

⇐⇒ Pε

(
sign(wT (x+ ε) + b) = 1

)
>

1

2
(A.53)

⇐⇒ Pε

(
wTx+ wT ε+ b ≥ 0

)
>

1

2
(A.54)

⇐⇒ P
(
σ∥w∥Z ≥ −wTx− b

)
>

1

2
(Z ∼ N (0, 1))

⇐⇒ P
(
Z ≤ wTx+ b

σ∥w∥

)
>

1

2
(A.55)

⇐⇒ wTx+ b

σ∥w∥ > 0 (A.56)

⇐⇒ wTx+ b > 0 (A.57)

⇐⇒ f(x) = 1 (A.58)

A similar calculation shows that g(x) = −1 ⇐⇒ f(x) = −1.
A two-class linear classifier f(x) = sign(wTx+ b) is already certifiable: the

distance from any point x to the decision boundary is (wTx + b)/∥w∥2, and no
distance with ℓ2 norm strictly less than this distance can possibly change f ’s
prediction. Let g be a smoothed version of f . By Proposition Proposition A.2.1, g
is identical to f , so it follows that g is truly robust around any input x within the ℓ2
radius (wTx+ b)/∥w∥2. We now show that Theorem 2.3.1 will certify this radius,
rather than a smaller, over-conservative radius.
Proposition A.2.2. If f is a two-class linear classifier f(x) = sign(wTx+ b), and
g is the smoothed version of f with any σ, then invoking Theorem 2.3.1 at any x
(where f is defined) with pA = pA and pB = pB will yield the certified radius

R = |wT x+b|
∥w∥ .

Proof. In binary classification, pA = 1 − pB , so Theorem 2.3.1 returns R =
σΦ−1(pA).

We have:

pA = Pε(f(x+ ε) = g(x)) (A.59)

= Pε(sign(wT (x+ ε) + b) = sign(wTx+ b))
(By Proposition Proposition A.2.1, g(x) = f(x))

= Pε(sign(wTx+ σ∥w∥Z + b) = sign(wTx+ b)) (A.60)
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There are two cases: if wTx+ b > 0, then

pA = Pε(w
Tx+ σ∥w∥Z + b > 0) (A.61)

= Pε

(
Z >

−wTx− b

σ∥w∥

)
(A.62)

= Pε

(
Z <

wTx+ b

σ∥w∥

)
(A.63)

= Φ

(
wTx+ b

σ∥w∥

)
(A.64)

On the other hand, if wTx+ b < 0, then

pA = Pε(w
Tx+ σ∥w∥Z + b < 0) (A.65)

= Pε

(
Z <

−wTx− b

σ∥w∥

)
(A.66)

= Φ

(−wTx− b

σ∥w∥

)
(A.67)

In either case, we have:

pA = Φ

( |wTx+ b|
σ∥w∥

)
(A.68)

Therefore, the bound in Theorem 1 returns a radius of

R = σΦ−1(pA) (A.69)

=
|wTx+ b|
∥w∥ (A.70)

The previous two propositions imply that when f is a two-class linear classifier,
the Theorem 2.3.1 bound is “tight” in the sense that there always exists a class-
changing perturbation just beyond the certified radius.1

1Note that this is a different sense of “tight” than the sense in which Theorem 2.3.2 proves that
Theorem 2.3.1 is tight. Theorem 2.3.2 proves that for any fixed perturbation δ outside the radius
certified by Theorem 2.3.1, there exists a base classifier f for which g(x+ δ) ̸= g(x). In contrast,
Proposition Proposition A.2.3 proves that for any fixed binary linear base classifier f , there exists a
perturbation δ just outside the radius certified by Theorem 2.3.1 for which g(x+ δ) ̸= g(x).
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Proposition A.2.3. Let f be a two-class linear classifier f(x) = sign(wTx+b), let
g be the smoothed version of f for some σ, let x be any point (where f is defined),
and let R be the radius certified around x by Theorem 2.3.1. Then for any radius
r > R, there exists a perturbation δ with ∥δ∥2 = r for which g(x+ δ) ̸= g(x).

Proof. By Proposition Proposition A.2.1 it suffices to show that there exists some
perturbation δ with ∥δ∥2 = r for which f(x+ δ) ̸= f(x).

By Proposition Proposition A.2.2, we know that R = |wT x+b|
∥w∥2 .

If wTx + b > 0, consider the perturbation δ = − w
∥w∥2 r. This perturbation

satisfies ∥δ∥2 = r and

wT (x+ δ) + b = wTx+ b+ wT δ (A.71)

= wTx+ b− ∥w∥2r (A.72)

< wTx+ b− ∥w∥2R (A.73)

= wTx+ b− |wTx+ b| (A.74)

= wTx+ b− (wTx+ b) (A.75)

= 0 (A.76)

implying that f(x+ δ) = −1.
Likewise, if wTx + b < 0, then consider the perturbation δ = w

∥w∥2 r. This
perturbation satisfies ∥δ∥2 = r and f(x+ δ) = −1.

This special property of two-class linear classifiers is not true in general. In
fact, it is possible to construct situations where g’s prediction around some point
x0 is robust at radius∞, yet Theorem 2.3.1 only certifies a radius of τ , where τ is
arbitrarily close to zero.
Proposition A.2.4. For any τ > 0, there exists a base classifier f and an input x0
for which the corresponding smoothed classifier g is robust around x0 at radius∞,
yet Theorem 2.3.1 only certifies a radius of τ around x0.

Proof. Let t = −Φ−1(12Φ(τ)) and consider the following base classifier:

f(x) =


1 if x < −t
−1 if − t ≤ x ≤ t

1 if x > t

(A.77)

Let g be the smoothed version of f with σ = 1. We will show that g(x) = 1
everywhere, implying that g’s prediction is robust around x0 = 0 with radius∞.
Yet Theorem 2.3.1 only certifies a radius of τ around x0.
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x x

x+ δ

Figure A.3: Left: Illustration of of Proposition Proposition A.2.2. The red/blue
half-spaces are the decision regions of both the base classifier f and the smoothed
classifier g. (Since the base classifier is binary linear, g = f everywhere.) The black
circle is the robustness radius R certified by Theorem 2.3.1. Right: Illustration of
Proposition Proposition A.2.3. For any r > R, there exists a perturbation δ with
∥δ∥2 = r for which g(x+ δ) ̸= g(x).

Let Z ∼ N (0, 1). For any x, we have:

P(f(x+ ε) = −1) = P(−t ≤ x+ ε ≤ t) (A.78)

= P[−t− x ≤ Z ≤ t− x] (A.79)

≤ P[−t ≤ Z ≤ t]
(apply Lemma Lemma A.2.5 below with ℓ = −t− x)

= 1− 2Φ(−t) (A.80)

= 1− Φ(τ) (A.81)

<
1

2
. (A.82)

Therefore, g(x) = 1 for all x.
Meanwhile, at x0 = 0, we have:

P(f(x0 + ε) = 1) = P(f(ε) = 1) (A.83)

= P(Z < −t or Z > t) (A.84)

= 2Φ(−t) (A.85)

= Φ(τ), (A.86)

so by Theorem 2.3.1, the certified radius around x0 is R = τ .

185



The proof of Proposition Proposition A.2.4 employed the following lemma,
which formalizes the visually obvious fact that out of all intervals of some fixed
width 2t, the interval with maximal mass under the standard normal distribution Z
is the interval [−t, t].
Lemma A.2.5. Let Z ∼ N (0, 1). For any ℓ ∈ R, t > 0, we have P(ℓ ≤ Z ≤
ℓ+ 2t) ≤ P(−t ≤ Z ≤ t).

Proof. Let ϕ be the PDF of the standard normal distribution. Since ϕ is symmetric
about the origin (i.e. ϕ(x) = ϕ(−x) ∀x),

P(−t ≤ Z ≤ t) = 2

∫ t

0
ϕ(x)dx. (A.87)

There are two cases to consider:
Case 1: The interval [ℓ, ℓ+ 2t] is entirely positive, i.e. ℓ ≥ 0, or [ℓ, ℓ+ 2t] is

entirely negative, i.e. ℓ+ 2t ≤ 0.
First, we use the fact that ϕ is symmetric about the origin to rewrite P(ℓ ≤ Z ≤

ℓ+ 2t) as the probability that Z falls in a non-negative interval [a, a+ 2t] for some
a.

Specifically, if ℓ ≥ 0, then let a = ℓ. Else, if ℓ+2t ≤ 0, then let a = −(ℓ+2t).
We therefore have:

P(ℓ ≤ Z ≤ ℓ+ 2t) = P(a ≤ Z ≤ a+ 2t). (A.88)

Therefore:

P(−t ≤ Z ≤ t)− P(ℓ ≤ Z ≤ ℓ+ 2t) (A.89)

=

∫ t

0
ϕ(x)dx−

∫ a+t

a
ϕ(x)dx+

∫ t

0
ϕ(x)dx−

∫ a+2t

a+t
ϕ(x)dx (A.90)

=

∫ a+t

a
ϕ(x− a)dx−

∫ a+t

a
ϕ(x)dx+

∫ a+2t

a+t
ϕ(x− a− t)dx−

∫ a+2t

a+t
ϕ(x)dx

(A.91)

=

∫ a+t

a
[ϕ(x− a)− ϕ(x)] dx+

∫ a+2t

a+t
[ϕ(x− a− t)− ϕ(x)] dx (A.92)

≥
∫ a+t

a
0 dx+

∫ a+2t

a+t
0 dx (A.93)

= 0 (A.94)

where the inequality is because ϕ is monotonically decreasing on [0,∞).
Case 2: I is partly positive, partly negative, i.e. ℓ < 0 < ℓ+ 2t.
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First, we use the fact that ϕ is symmetric about the origin to rewrite P(ℓ ≤ Z ≤
ℓ + 2t) as the sum of the probabilities that Z falls in two non-negative intervals
[0, a] and [0, b] for some a, b.

Specifically, let a = min(−ℓ, ℓ+ 2t) and b = max(−ℓ, ℓ+ 2t). We therefore
have:

P(ℓ ≤ Z ≤ ℓ+ 2t) = P(0 ≤ Z ≤ a) + P(0 ≤ Z ≤ b). (A.95)

Note that by construction, a+ b = 2t, and 0 ≤ a ≤ t and t ≤ b ≤ 2t.
We have:

P(−t ≤ Z ≤ t)− P(ℓ ≤ Z ≤ ℓ+ 2t) (A.96)

=

[∫ t

0
ϕ(x)dx−

∫ a

0
ϕ(x)dx

]
−
[∫ b

0
ϕ(x)dx−

∫ t

0
ϕ(x)dx

]
(A.97)

=

∫ t

a
ϕ(x)dx−

∫ b

t
ϕ(x)dx (A.98)

=

∫ t

a
ϕ(x)dx−

∫ 2t−a

t
ϕ(x)dx (A.99)

=

∫ t

a
ϕ(x)dx−

∫ t

a
ϕ(x− a+ t)dx (A.100)

=

∫ t

a
(ϕ(x)− ϕ(x− a+ t))dx (A.101)

≥
∫ t

a
0 dx (A.102)

= 0 (A.103)

where the inequality is again because ϕ is monotonically decreasing on [0,∞).
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A.3 Practical Algorithms

In this appendix, we elaborate on the prediction and certification algorithms
described in Section Section 2.3.2. The pseudocode in Section Section 2.3.2 makes
use of several helper functions:

• SAMPLEUNDERNOISE(f , x, num, σ) works as follows:

1. Draw num samples of noise, ε1 . . . εnum ∼ N (0, σ2I).

2. Run the noisy images through the base classifier f to obtain the predic-
tions f(x+ ε1), . . . , f(x+ εnum).

3. Return the counts for each class, where the count for class c is defined
as
∑num

i=1 1[f(x+ εi) = c].
• BINOMPVALUE(nA, nA+nB , p) returns the p-value of the two-sided hypoth-

esis test that nA ∼ Binomial(nA+nB, p). Using scipy.stats.binom test,
this can be implemented as: binom test(nA, nA + nB, p).

• LOWERCONFBOUND(k, n, 1− α) returns a one-sided (1− α) lower confi-
dence interval for the Binomial parameter p given that k ∼ Binomial(n, p).
In other words, it returns some number p for which p ≤ p with probabil-
ity at least 1 − α over the sampling of k ∼ Binomial(n, p). Following
Lecuyer et al. [2019], we chose to use the Clopper-Pearson confidence inter-
val, which inverts the Binomial CDF [Clopper and Pearson, 1934]. Using
statsmodels.stats.proportion.proportion confint, this can
be implemented as

proportion_confint(k, n, alpha=2*alpha, method="beta")[0]

A.3.1 Prediction

The randomized algorithm given in pseudocode as PREDICT leverages the
hypothesis test given in Hung and Fithian [2019] for identifying the top category of
a multinomial distribution. PREDICT has one tunable hyperparameter, α. When α
is small, PREDICT abstains frequently but rarely returns the wrong class. When α is
large, PREDICT usually makes a prediction, but may often return the wrong class.

We now prove that with high probability, PREDICT will either return g(x) or
abstain.

Proposition Proposition 2.3.3 (restated). With probability at least 1 − α
over the randomness in PREDICT, PREDICT will either abstain or return g(x).
(Equivalently: the probability that PREDICT returns a class other than g(x) is at
most α.)

Proof. For notational convenience, define pc = P(f(x+ε) = c). Let cA = maxc pc.
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Notice that by definition, g(x) = cA.
We can describe the randomized procedure PREDICT as follows:

1. Sample a vector of class counts {nc}c∈Y from Multinomial({pc}c∈Y , n).
2. Let ĉA = argmaxc nc be the class whose count is largest. Let nA and nB be

the largest count and the second-largest count, respectively.
3. If the p-value of the two-sided hypothesis test that nA is drawn from Binom

(
nA + nB,

1
2

)
is less than α, then return ĉA. Else, abstain.

The quantities cA and the pc’s are fixed but unknown, while the quantities ĉA,
the nc’s, nA, and nB are random.

We’d like to prove that the probability that PREDICT returns a class other than
cA is at most α. PREDICT returns a class other than cA if and only if (1) ĉA ̸= cA
and (2) PREDICT does not abstain.

We have:

P(PREDICT returns class ̸= cA) = P(ĉA ̸= cA, PREDICT does not abstain)
(A.104)

= P(ĉA ̸= cA) P(PREDICT does not abstain|ĉA ̸= cA)
(A.105)

≤ P(PREDICT does not abstain|ĉA ̸= cA)
(A.106)

Recall that PREDICT does not abstain if and only if the p-value of the two-sided
hypothesis test that nA is drawn from Binom(nA + nB,

1
2) is less than α. Theorem

1 in Hung and Fithian [2019] proves that the conditional probability that this event
occurs given that ĉA ̸= cA is exactly α. That is,

P(PREDICT does not abstain|ĉA ̸= cA) = α (A.107)

Therefore, we have:

P(PREDICT returns class ̸= cA) ≤ α (A.108)

A.3.2 Certification

The certification task is: given some input x and a randomized smoothing
classifier described by (f, σ), return both (1) the prediction g(x) and (2) a radius R
in which this prediction is certified robust. This task requires identifying the class cA
with maximal weight in f(x+ ε), estimating a lower bound pA on pA := P(f(x+
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ε) = cA) and estimating an upper bound pB on pB := maxc̸=cA P(f(x+ ε) = c)
(Figure Figure 2.1).

Suppose for simplicity that we already knew cA and needed to obtain pA. We
could collect n samples of f(x + ε), count how many times f(x + ε) = cA, and
use a Binomial confidence interval to obtain a lower bound on pA that holds with
probability at least 1− α over the n samples.

However, estimating pA and pB while simultaneously identifying the top class
cA is a little bit tricky, statistically speaking. We propose a simple two-step proce-
dure. First, use n0 samples from f(x+ ε) to take a guess ĉA at the identity of the
top class cA. In practice we observed that f(x+ ε) tends to put most of its weight
on the top class, so n0 can be set very small. Second, use n samples from f(x+ ε)
to obtain some pA and pB for which pA ≤ pA and pB ≥ pB with probability at
least 1− α. We observed that it is much more typical for the mass of f(x+ ε) not
allocated to cA to be allocated entirely to one runner-up class than to be allocated
uniformly over all remaining classes. Therefore, the quantity 1− pA is a reasonably
tight upper bound on pB . Hence, we simply set pB = 1−pA, so our bound becomes

R =
σ

2
(Φ−1(pA)− Φ−1(1− pA)) (A.109)

=
σ

2
(Φ−1(pA) + Φ−1(pA)) (A.110)

= σΦ−1(pA) (A.111)

The full procedure is described in pseudocode as CERTIFY. If pA < 1
2 , we

abstain from making a certification; this can occur especially if ĉA ̸= g(x), i.e. if
we misidentify the top class using the first n0 samples of f(x+ ε).

Proposition Proposition 2.3.4 (restated). With probability at least 1− α over
the randomness in CERTIFY, if CERTIFY returns a class ĉA and a radius R (i.e.
does not abstain), then we have the robustness guarantee

g(x+ δ) = ĉA whenever ∥δ∥2 < R (A.112)

Proof. From the contract of LOWERCONFBOUND, we know that with probability at
least 1−α over the sampling of ε1 . . . εn, we have pA ≤ P[f(x+ ε) = ĉA]. Notice
that CERTIFY returns a class and radius only if pA > 1

2 (otherwise it abstains). If
pA ≤ P[f(x + ε) = ĉA] and 1

2 < pA, then we can invoke Theorem 2.3.1 with
pB = 1− pA to obtain the desired guarantee.
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A.4 Estimating the Certified Test-Set Accuracy

In this appendix, we show how to convert the “approximate certified test ac-
curacy” considered in the main paper into a lower bound on the true certified test
accuracy that holds with high probability over the randomness in CERTIFY.

Consider a classifier g, a test set S = {(x1, c1) . . . (xm, cm)}, and a radius r.
For each example i ∈ [m], let zi indicate whether g’s prediction at xi is both correct
and robust at radius r, i.e.

zi = 1[g(xi + δ) = ci ∀∥δ∥2 < r] (A.113)

The certified test set accuracy of g at radius r is defined as 1
m

∑m
i=1 zi. If g

is a randomized smoothing classifier, we cannot compute this quantity exactly,
but we can estimate a lower bound that holds with arbitrarily high probability
over the randomness in CERTIFY. In particular, suppose that we run CERTIFY

with failure rate α on each example xi in the test set. Let the Bernoulli random
variable Yi denote the event that on example i, CERTIFY returns the correct label
cA = ci and a certified radius R which is greater than r. Let Y =

∑m
i=1 Yi. In

the main paper, we referred to Y/m as the “approximate certified accuracy.” It is
“approximate” because Yi = 1 does not mean that zi = 1. Rather, from Proposition
Proposition 2.3.4, we know the following: if zi = 0, then P(Yi = 1) ≤ α. We now
show how to exploit this fact to construct a one-sided confidence interval for the
unobserved quantity 1

m

∑m
i=1 zi using the observed quantities Y and m.

Theorem A.4.1. For any ρ > 0, with probability at least 1−ρ over the randomness
in CERTIFY,

1

m

m∑
i=1

zi ≥
1

1− α

(
Y

m
− α−

√
2α(1− α) log(1/ρ)

m
− log(1/ρ)

3m

)
(A.114)

Proof. Let mgood =
∑m

i=1 zi and mbad =
∑m

i=1(1 − zi) be the number of test
examples on which zi = 1 or zi = 0, respectively. We model Yi ∼ Bernoulli(pi),
where pi is in general unknown. Let Ygood =

∑
i:zi=1 Yi and Ybad =

∑
i:zi=0 Yi.

The quantity of interest, the certified accuracy 1
m

∑m
i=1 zi, is equal to mgood/m.

However, we only observe Y = Ygood + Ybad.
Note that if zi = 0, then pi ≤ α, so we have E[Yi] = pi ≤ α and assuming

α ≤ 1
2 , we have Var[Yi] = pi(1− pi) ≤ α(1− α).

Since Ybad is a sum of mbad independent random variables each bounded be-
tween zero and one, with E[Ybad] ≤ αmbad and Var(Ybad) ≤ mbadα(1− α), Bern-
stein’s inequality guarantees that with probability at least 1−ρ over the randomness
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in CERTIFY,

Ybad ≤ αmbad +
√
2mbadα(1− α) log(1/ρ) +

log(1/ρ)

3
(A.115)

From now on, we manipulate this inequality — remember that it holds with proba-
bility at least 1− ρ.

Since Y = Ygood + Ybad, may write

Ygood ≥ Y − αmbad −
√

2mbadα(1− α) log(1/ρ)− log(1/ρ)

3
(A.116)

Since mgood ≥ Ygood, we may write

mgood ≥ Y − αmbad −
√
2mbadα(1− α) log(1/ρ)− log(1/ρ)

3
(A.117)

Since mgood +mbad = m, we may write

mgood ≥
1

1− α

(
Y − αm−

√
2mbadα(1− α) log(1/ρ)− log(1/ρ)

3

)
(A.118)

Finally, in order to make this confidence interval depend only on observables, we
use mbad ≤ m to write

mgood ≥
1

1− α

(
Y − αm−

√
2mα(1− α) log(1/ρ)− log(1/ρ)

3

)
(A.119)

Dividing both sides of the inequality by m recovers the theorem statement.
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A.5 ImageNet and CIFAR-10 Results

A.5.1 Certification

Tables Table A.1 and Table A.2 show the approximate certified top-1 test set
accuracy of randomized smoothing on ImageNet and CIFAR-10 with various noise
levels σ. By “approximate certified accuracy,” we mean that we ran CERTIFY on
a subsample of the test set, and for each r we report the fraction of examples on
which CERTIFY (a) did not abstain, (b) returned the correct class, and (c) returned a
radius R greater than r. There is some probability (at most α) that any example’s
certification is inaccurate. We used α = 0.001 and n = 100000. On CIFAR-10 our
base classifier was a 110-layer residual network and we certified the full test set; on
ImageNet our base classifier was a ResNet-50 and we certified a subsample of 500
points. Note that the certified accuracy at r = 0 is just the standard accuracy of the
smoothed classifier. See Appendix Appendix A.10 for more experimental details.

r = 0.0 r = 0.5 r = 1.0 r = 1.5 r = 2.0 r = 2.5 r = 3.0

σ = 0.25 0.67 0.49 0.00 0.00 0.00 0.00 0.00
σ = 0.50 0.57 0.46 0.37 0.29 0.00 0.00 0.00
σ = 1.00 0.44 0.38 0.33 0.26 0.19 0.15 0.12

Table A.1: Approximate certified test accuracy on ImageNet. Each row is a setting
of the hyperparameter σ, each column is an ℓ2 radius. The entry of the best σ
for each radius is bolded. For comparison, random guessing would attain 0.001
accuracy.

r = 0.0 r = 0.25 r = 0.5 r = 0.75 r = 1.0 r = 1.25 r = 1.5

σ = 0.12 0.83 0.60 0.00 0.00 0.00 0.00 0.00
σ = 0.25 0.77 0.61 0.42 0.25 0.00 0.00 0.00
σ = 0.50 0.66 0.55 0.43 0.32 0.22 0.14 0.08
σ = 1.00 0.47 0.41 0.34 0.28 0.22 0.17 0.14

Table A.2: Approximate certified test accuracy on CIFAR-10. Each row is a setting
of the hyperparameter σ, each column is an ℓ2 radius. The entry of the best σ for
each radius is bolded. For comparison, random guessing would attain 0.1 accuracy.

193



A.5.2 Prediction

Table Table A.3 shows the performance of PREDICT as the number of Monte
Carlo samples n is varied between 100 and 10,000. Suppose that for some test
example (x, c), PREDICT returns the label ĉA. We say that this prediction was
correct if ĉA = c and we say that this prediction was accurate if ĉA = g(x). For
example, a prediction could be correct but inaccurate if g is wrong at x, yet PREDICT

accidentally returns the correct class. Ideally, we’d like PREDICT to be both correct
and accurate.

With n = 100 Monte Carlo samples and a failure rate of α = 0.001, PREDICT

is cheap to evaluate (0.15 seconds on our hardware) yet it attains relatively high
top-1 accuracy of 65% on the ImageNet test set, and only abstains 12% of the time.
When we use n = 10,000 Monte Carlo samples, PREDICT takes longer to evaluate
(15 seconds), yet only abstains 4% of the time. Interestingly, we observe from Table
Table A.3 that most of the abstentions when n = 100 were for examples on which
g was wrong, so in practice we would lose little accuracy by taking n to be as small
as 100.

CORR, ACC CORR, INACC INCORR, ACC INCORR, INACC ABSTAIN
N

100 0.65 0.00 0.23 0.00 0.12
1000 0.68 0.00 0.28 0.00 0.04
10000 0.69 0.00 0.30 0.00 0.01

Table A.3: Performance of PRECICT as n is varied. The dataset was ImageNet
and σ = 0.25, α = 0.001. Each column shows the fraction of test examples
which ended up in one of five categories; the prediction at x is “correct” (CORR) if
PREDICT returned the true label (otherwise it is INCORR), while the prediction is
“accurate” (ACC) if PREDICT returned g(x) (otherwise it is INACC). Computing g(x)
exactly is not possible, so in order to determine whether PREDICT was accurate, we
took the gold standard to be the top class over n =100,000 Monte Carlo samples.
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A.6 Training with Noise

As mentioned in section Section 2.3.3, in the experiments for this paper, we
followed Lecuyer et al. [2019] and trained the base classifier by minimizing the cross-
entropy loss with Gaussian data augmentation. We now provide some justification
for this idea.

Let {(x1, c1), . . . , (xn, cn)} be a training dataset. We assume that the base
classifier takes the form f(x) = argmaxc∈Y fc(x), where each fc is the scoring
function for class c.

Suppose that our goal is to maximize the sum of of the log-probabilities that f
will classify each xi + ε as ci:

n∑
i=1

logPε(f(xi + ε) = ci) =
n∑

i=1

logEε 1

[
argmax

c
fc(xi + ε) = ci

]
(A.120)

Recall that the softmax function can be interpreted as a continuous, differentiable
approximation to argmax:

1

[
argmax

c
fc(xi + ε) = ci

]
≈ exp(fci(xi + ε))∑

c∈Y exp(fc(xi + ε))
(A.121)

Therefore, our objective is approximately equal to:

n∑
i=1

logEε

[
exp(fci(xi + ε))∑
c∈Y exp(fc(xi + ε))

]
(A.122)

By Jensen’s inequality and the concavity of log, this quantity is lower-bounded by:

n∑
i=1

Eε

[
log

exp(fci(xi + ε))∑
c∈Y exp(fc(xi + ε))

]
(A.123)

which is the negative of the cross-entropy loss under Gaussian data augmentation.
Therefore, minimizing the cross-entropy loss under Gaussian data augmentation

will maximize (Equation (A.122)), which will approximately maximize (Equa-
tion (A.120)).
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A.7 Noise Level can Scale with Input Resolution

Since our robustness guarantee equation 2.3 in Theorem 2.3.1 does not explicitly
depend on the data dimension d, one might worry that randomized smoothing is
less effective for images in high resolution — certifying a fixed ℓ2 radius is “less
impressive” for, say, 224× 224 image than for a 56× 56 image. However, it turns
out that in high resolution, images can be corrupted with larger levels of isotropic
Gaussian noise while still preserving their content. This fact is made clear by Figure
Figure A.4, which shows an image at high and low resolution corrupted by Gaussian
noise with the same variance.full The class (“hummingbird”) is easy to discern
from the high-resolution noisy image, but not from the low-resolution noisy image.
As a consequence, in high resolution one can take σ to be larger while still being
able to obtain a base classifier that classifies noisy images accurately. Since our
Theorem 2.3.1 robustness guarantee scales linearly with σ, this means that in high
resolution one can certify larger radii.

Figure A.4: Top: An ImageNet image from class “hummingbird” in resolutions
56x56 (left) and 224x224 (right). Bottom: the same images corrupted by isotropic
Gaussian noise at σ = 0.5. On noiseless images the class is easy to distinguish no
matter the resolution, but on noisy data the class is much easier to distinguish when
the resolution is high.

The argument above can be made rigorous, though we first need to decide what
it means for two images to be high- and low-resolution versions of each other. Here
we present one solution:

Let X denote the space of “high-resolution” images in dimension 2k × 2k × 3,
and let X ′ denote the space of “low-resolution” images in dimension k× k× 3. Let
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AVGPOOL : X → X ′ be the function which takes as input an image x in dimension
2k × 2k × 3, averages together every 2x2 square of pixels, and outputs an image in
dimension k × k × 3.

Equipped with these definitions, we can say that (x, x′) ∈ X ×X ′ are a high/low
resolution image pair if x′ = AVGPOOL(x).
Proposition A.7.1. Given any smoothing classifier g′ : X ′ → Y , one can construct
a smoothing classifier g : X → Y with the following property: for any x ∈ X
and x′ = AVGPOOL(x), g predicts the same class at x that g′ predicts at x′, but is
certifiably robust at twice the radius.

Proof. Given some smoothing classifier g′ = (f ′, σ′) from X ′ to Y , define g to
be the smoothing classifier (f, σ) from X to Y with noise level σ = 2σ′ and base
classifier f(x) = f ′(AVGPOOL(x)). Note that the average of four independent
copies of N (0, (2σ)2) is distributed as N (0, σ2). Therefore, for any high/low-
resolution image pair x′ = AVGPOOL(x), the random variable AVGPOOL(x+ ε),
where ε ∼ N (0, (2σ)2I2k×2k×3), is equal in distribution to the random variable
x′ + ε′, where ε′ ∼ N (0, σ2Ik×k×3). Hence, f(x + ε) = f ′(AVGPOOL(x + ε))
has the same distribution as f ′(x′ + ε′). By the definition of g, this means that
g(x) = g′(x′), Additionally, by Theorem 2.3.1, since σ = 2σ′, this means that g’s
prediction at x is certifiably robust at twice the radius as g′’s prediction at x′.
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A.8 Additional Experiments

A.8.1 Comparisons to Baselines

Figure Figure A.5 compares the certified accuracy of a smoothed 20-layer resnet
to that of the released models from two recent works on certified ℓ2 robustness: the
Lipschitz approach from Tsuzuku et al. [2018] and the approach from Zhang et al.
[2018]. Note that in these experiments, the base classifier for smoothing was larger
than the networks of competing approaches. The comparison to Zhang et al. [2018]
is on CIFAR-10, while the comparison to Tsuzuku et al. [2018] is on SVHN. Note
that for each comparison, we preprocessed the dataset to follow the preprocessing
used when the baseline was trained; therefore, the radii reported for CIFAR-10 here
are not comparable to the radii reported elsewhere in this paper. Full experimental
details are in Appendix Appendix A.10.
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(a) Tsuzuku et al. [2018]
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(b) Zhang et al. [2018]

Figure A.5: Randomized smoothing with a 20-layer resnet base classifier attains
higher certified accuracy than the released models from two recent works on certified
ℓ2 robustness.

A.8.2 High-Probability Guarantees

Appendix Appendix A.4 details how to use CERTIFY to obtain a lower bound
on the certified test accuracy at radius r of a randomized smoothing classifier
that holds with high probability over the randomness in CERTIFY. In the main
paper, we declined to do this and simply reported the approximate certified test
accuracy, defined as the fraction of test examples for which CERTIFY gives the
correct prediction and certifies it at radius r. Of course, with some probability
(guaranteed to be less than α), each of these certifications is wrong.

198



However, we now demonstrate empirically that there is a negligible difference
between a proper high-probability lower bound on the certified accuracy and the
approximate version that we reported in the paper. We created a randomized
smoothing classifier g on ImageNet with a ResNet-50 base classifier and noise
level σ = 0.25. We used CERTIFY with α = 0.001 to certify a subsample of 500
examples from the ImageNet test set. From this we computed the approximate
certified test accuracy at each radius r. Then we used the correction from Appendix
Appendix A.4 with ρ = 0.001 to obtain a lower bound on the certified test accuracy
at r that holds pointwise with probability at least 1 − ρ over the randomness in
CERTIFY. Figure Figure A.6 plots both quantities as a function of r. Observe that
the difference is so negligible that the lines almost overlap.
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Figure A.6: The difference between the approximate certified accuracy, and a high-
probability lower bound on the certified accuracy, is negligible.

A.8.3 How Much Noise to Use When Training the Base Classifier?

In the main paper, whenever we created a randomized smoothing classifier g at
noise level σ, we always trained the corresponding base classifier f with Gaussian
data augmentation at noise level σ. In Figure Figure A.7, we show the effects of
training the base classifier with a different level of Gaussian noise. Observe that g
has a lower certified accuracy if f was trained using a different noise level. It seems
to be worse to train with noise < σ than to train with noise > σ.
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Figure A.7: Vary training noise while holding prediction noise fixed at σ = 0.50.

A.9 Derivation of Prior Randomized Smoothing Guaran-
tees

In this appendix, we derive the randomized smoothing guarantees of Lecuyer
et al. [2019] and Li et al. [2018a] using the notation of our paper. Both guarantees
take same general form as ours, except with a different expression for R:

Theorem (generic guarantee): Let f : Rd → Y be any deterministic or
random function, and let ε ∼ N (0, σ2I). Let g be defined as in (Equation (2.1)).
Suppose cA ∈ Y and pA, pB ∈ [0, 1] satisfy:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ ε) = c) (A.124)

Then g(x+ δ) = cA for all ∥δ∥2 < R.
For convenience, define the notation X ∼ N (x, σ2I) and Y ∼ N (x+ δ, σ2I).

A.9.1 Lecuyer et al. [2019]

Lecuyer et al. [2019] proved a version of the generic robustness guarantee in
which

R = sup
0<β≤min

(
1, 1

2
log

pA
pB

) σβ√
2 log

(
1.25(1+exp(β))
pA−exp(2β)pB

) (A.125)

Proof. In order to avoid notation that conflicts with the rest of this paper, we use β
and γ where Lecuyer et al. [2019] used ϵ and δ.

Suppose that we have some 0 < β ≤ 1 and γ > 0 such that

σ2 =
∥δ∥2
β2

2 log
1.25

γ
(A.126)
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The “Gaussian mechanism” from differential privacy guarantees that:

P(f(X) = cA) ≤ exp(β)P(f(Y ) = cA) + γ (A.127)

and, symmetrically,

P(f(Y ) = cB) ≤ exp(β)P(f(X) = cB) + γ (A.128)

See Lecuyer et al. [2019], Lemma 2 for how to obtain this form from the standard
form of the (β, γ) DP definition.

Fix a perturbation δ. To guarantee that g(x + δ) = cA, we need to show that
P(f(Y ) = cA) > P(f(Y ) = cB) for each cB ̸= cA.

Together, (Equation (A.127)) and (Equation (A.128)) imply that to guarantee
P(f(Y ) = cA) > P(f(Y ) = cB) for any cB , it suffices to show that:

P(f(X) = cA) > exp(2β)P(f(X) = cB) + γ(1 + exp(β)) (A.129)

Therefore, in order to guarantee thatP(f(Y ) = cA) > P(f(Y ) = cB) for each
cB ̸= cA, by (Equation (A.124)) it suffices to show:

pA > exp(2β)pB + γ(1 + exp(β)) (A.130)

Now, inverting (Equation (A.126)), we obtain:

γ = 1.25 exp

(
− σ2β2

2∥δ∥2
)

(A.131)

Plugging (Equation (A.131)) into (Equation (A.130)), we see that to guarantee
P(f(Y ) = cA) ≥ P(f(Y ) = cB) it suffices to show that:

pA > exp(2β)pB + 1.25 exp

(
− σ2β2

2∥δ∥2
)
(1 + exp(β)) (A.132)

which rearranges to:

pA − exp(2β)pB

1.25(1 + exp(β))
> exp

(
− σ2β2

2∥δ∥2
)

(A.133)

Since the RHS is always positive, and the denominator on the LHS is always
positive, this condition can only possibly hold if the numerator on the LHS is
positive. Therefore, we need to restrict β to

0 < β ≤ min

(
1,

1

2
log

pA

pB

)
(A.134)
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The condition (Equation (A.133)) is equivalent to:

∥δ∥2 log 1.25(1 + exp(β))

pA − exp(2β)pB
<

σ2β2

2
(A.135)

Since pA ≤ 1 and pB ≥ 0, the denominator in the LHS is ≤ 1 which is in turn ≤
the numerator on the LHS. Therefore, the term inside the log in the LHS is greater
than 1, so the log term on the LHS is greater than zero. Therefore, we may divide
both sides of the inequality by the log term on the LHS to obtain:

∥δ∥2 < σ2β2

2 log
(
1.25(1+exp(β))
pA−exp(2β)pB

) (A.136)

Finally, we take the square root and maximize the bound over all valid β (Equa-
tion (A.134)) to yield:

∥δ∥ < sup
0<β≤min

(
1, 1

2
log

pA
pB

) σβ√
2 log

(
1.25(1+exp(β))
pA−exp(2β)pB

) (A.137)

Figure Figure A.8a plots this bound at varying settings of the tuning parameter
β, while Figure Figure A.8c plots how the bound varies with β for a fixed pA and
pB .

A.9.2 Li et al. [2018a]

Li et al. [2018a] proved a version of the generic robustness guarantee in which

R = sup
α>0

σ

√
− 2

α
log

(
1− pA − pB + 2

(
1

2
(pA1−α + pB1−α)1−α

))
(A.138)

Proof. A generalization of KL divergence, the α-Renyi divergence is an information
theoretic measure of distance between two distributions. It is parameterized by
some α > 0. The α-Renyi divergence between two discrete distributions P and Q
is defined as:

Dα(P ||Q) :=
1

α− 1
log

(
k∑

i=1

pαi
qα−1
i

)
(A.139)
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In the continuous case, this sum is replaced with an integral. The divergence is
undefined when α = 1 since a division by zero occurs, but the limit of Dα(P ||Q)
as α→ 1 is the KL divergence between P and Q.

Li et al. [2018a] prove that if P is a discrete distribution for which the highest
probability class has probability ≥ pA and all other classes have probability ≤ pB ,
then for any other discrete distribution Q for which

Dα(P ||Q) < − log

(
1− pA − pB + 2

(
1

2
(pA

1−α + pB
1−α)1−α

))
(A.140)

the highest-probability class in Q is guaranteed to be the same as the highest-
probability class in P .

We now apply this result to the discrete distributions P = f(X) and Q = f(Y ).
If Dα(f(X)||f(Y )) satisfies (Equation (A.140)), then it is guaranteed that g(x) =
g(x+ δ).

The data processing inequality states that applying a function to two random
variables can only decrease the α-Renyi divergence between them. In particular,

Dα(f(X)||f(Y )) ≤ Dα(X||Y ) (A.141)

There is a closed-form expression for the α-Renyi divergence between two Gaus-
sians:

Dα(X||Y ) =
α∥δ∥2
2σ2

(A.142)

Therefore, we can guarantee that g(x+ δ) = cA so long as

α∥δ∥2
2σ2

< − log

(
1− pA − pB + 2

(
1

2
(pA

1−α + pB
1−α)1−α

))
(A.143)

which simplifies to

∥δ∥ < σ

√
− 2

α
log

(
1− pA − pB + 2

(
1

2
(pA1−α + pB1−α)1−α

))
(A.144)

Finally, since this result holds for any α > 0, we may maximize over α to obtain
the largest possible certified radius:

∥δ∥ < sup
α>0

σ

√
− 2

α
log

(
1− pA − pB + 2

(
1

2
(pA1−α + pB1−α)1−α

))
(A.145)

Figure Figure A.8b plots this bound at varying settings of the tuning parameter
α, while figure Figure A.8d plots how the bound varies with α for a fixed pA and
pB .
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(a) The Lecuyer et al. [2019] bound over sev-
eral settings of β. The brown line is the point-
wise supremum over all eligible β, computed
numerically.

(b) The Li et al. [2018a] bound over several
settings of α. The purple line is the point-
wise supremum over all eligible α, computed
numerically.

(c) Tuning the Lecuyer et al. [2019] bound
wrt β when pA = 0.8, pB = 0.2

(d) Tuning the Li et al. [2018a] bound wrt α
when pA = 0.999, pB = 0.0001

A.10 Experiment Details

A.10.1 Comparison to Baselines

We compared randomized smoothing against three recent approaches for ℓ2-
robust classification [Tsuzuku et al., 2018, Wong et al., 2018, Zhang et al., 2018].
Tsuzuku et al. [2018] and Wong et al. [2018] propose both a robust training method
and a complementary certification mechanism, while Zhang et al. [2018] propose a
method to certify generically trained networks. In all cases we compared against
networks provided by the authors. We compared against Wong et al. [2018] and
Zhang et al. [2018] on CIFAR-10, and we compared against Tsuzuku et al. [2018]
on SVHN.

In image classification it is common practice to preprocess a dataset by sub-
tracting from each channel the mean over the dataset, and dividing each channel
by the standard deviation over the dataset. However, we wanted to report certified
radii in the original image coordinates rather than in the standardized coordinates.
Therefore, throughout most of this work we first added the Gaussian noise, and then
standardized the channels, before feeding the image to the base classifier. (In the
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practical PyTorch implementation, the first layer of the base classifier was a layer
that standardized the input.) However, all of the baselines we compared against
provided pre-trained networks which assumed that the dataset was first preprocessed
in a specific way. Therefore, when comparing against the baselines we also prepro-
cessed the datasets first, so that we could report certified radii that were directly
comparable to the radii reported by the baseline methods.

Comparison to Wong et al. [2018] Following Wong et al. [2018], the CIFAR-
10 dataset was preprocessed by subtracting (0.485, 0.456, 0.406) and dividing by
(0.225, 0.225, 0.225).

While the body of the Wong et al. [2018] paper focuses on ℓ∞ certified robust-
ness, their algorithm naturally extends to ℓ2 certified robustness, as developed in the
appendix of the paper. We used three ℓ2-trained residual networks publicly released
by the authors, each trained with a different setting of their hyperparameter ϵ ∈
{0.157, 0.628, 2.51}. We used code publicly released by the authors at https://
github.com/locuslab/convex_adversarial/blob/master/examples/
cifar_evaluate.py to compute the robustness radius of test images. The code
accepts a radius and returns TRUE (robust) or FALSE (not robust); we incorporated
this subroutine into a binary search procedure to find the largest radius for which
the code returned TRUE.

For randomized smoothing we used σ = 0.6 and a 20-layer residual network
base classifier. We ran CERTIFY with n0 = 100, n = 100,000 and α = 0.001.

For both methods, we certified the full CIFAR-10 test set.

Comparison to Tsuzuku et al. [2018] Following Tsuzuku et al. [2018], the
SVHN dataset was not preprocessed except that pixels were divided by 255 so as to
lie within [0, 1].

We compared against a pretrained network provided to us by the authors in
which the hyperparameter of their method was set to c = 0.1. The network was a
wide residual network with 16 layers and a width factor of 4. We used the authors’
code at https://github.com/ytsmiling/lmt to compute the robustness
radius of test images.

For randomized smoothing we used σ = 0.1 and a 20-layer residual network
base classifier. We ran CERTIFY with n0 = 100, n = 100,000 and α = 0.001.

For both methods, we certified the whole SVHN test set.

Comparison to Zhang et al. [2018] Following Zhang et al. [2018], the CIFAR-10
dataset was preprocessed by subtracting 0.5 from each pixel.
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We compared against the cifar 7 1024 vanilla network released by the
authors, which is a 7-layer MLP. We used the authors’ code at https://github.
com/IBM/CROWN-Robustness-Certification to compute the robust-
ness radius of test images.

For randomized smoothing we used σ = 1.2 and a 20-layer residual network
base classifier. We ran CERTIFY with n0 = 100, n = 100,000 and α = 0.001.

For randomized smoothing, we certified the whole CIFAR-10 test set. For
Zhang et al. [2018], we certified every fourth image in the CIFAR-10 test set.

A.10.2 ImageNet and CIFAR-10 Experiments

Our code is available at http://github.com/locuslab/smoothing.
In order to report certified radii in the original coordinates, we first added

Gaussian noise, and then standardized the data. Specifically, in our PyTorch im-
plementation, the first layer of the base classifier was a normalization layer that
performed a channel-wise standardization of its input. For CIFAR-10 we subtracted
the dataset mean (0.4914, 0.4822, 0.4465) and divided by the dataset standard de-
viation (0.2023, 0.1994, 0.2010). For ImageNet we subtracted the dataset mean
(0.485, 0.456, 0.406) and divided by the standard deviation (0.229, 0.224, 0.225).

For both ImageNet and CIFAR-10, we trained the base classifier with random
horizontal flips and random crops (in addition to the Gaussian data augmentation
discussed explicitly in the paper). On ImageNet we trained with synchronous SGD
on four NVIDIA RTX 2080 Ti GPUs; training took approximately three days.

On ImageNet our base classifier used the ResNet-50 architecture provided
in torchvision. On CIFAR-10 we used a 110-layer residual network from
https://github.com/bearpaw/pytorch-classification.

On ImageNet we certified every 100-th image in the validation set, for 500
images total. On CIFAR-10 we certified the whole test set.

In Figure Figure 2.8 (middle) we fixed σ = 0.25 and α = 0.001 while varying
the number of samples n. We did not actually vary the number of samples n that
we simulated: we kept this number fixed at 100,000 but varied the number that we
fed the Clopper-Pearson confidence interval.

In Figure Figure 2.8 (right), we fixed σ = 0.25 and n =100,000 while varying
α.

A.10.3 Adversarial Attacks

As discussed in Section Section 2.4, we subjected smoothed classifiers to a
projected gradient descent-style adversarial attack. We now describe the details of
this attack.
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Let f be the base classifier and let σ be the noise level. Following Li et al.
[2018a], given an example (x, c) ∈ Rd × Y and a radius r, we used a projected
gradient descent style adversarial attack to optimize the objective:

argmax
δ:∥δ∥2<r

Eε∼N (0,σ2I) [ℓ(f(x+ δ + ε), c)] (A.146)

where ℓ is the softmax loss function. (Breaking notation with the rest of the paper
in which f returns a class, the function f here refers to the function that maps an
image in Rd to a vector of classwise scores.)

At each iteration of the attack, we drew k samples of noise, ε1 . . . εk ∼
N (0, σ2I), and followed the stochastic gradient gt =

∑k
i=1∇δtℓ(f(x+δt+εk), c).

As is typical, we used a “steepest ascent” update rule, which, for the ℓ2 norm,
means that we normalized the gradient before applying the update. The overall
PGD update is: δt+1 = projr

(
δt + η gt

∥gt∥

)
where the function projr that projects

its input onto the ball {z : ∥z∥2 ≤ r} is given by projr(z) =
rz

max(r,∥z∥2) . We used
a constant step size η and a fixed number T of PGD iterations.

In practice, our step size was η = 0.1, we used T = 20 steps of PGD, and we
computed the stochastic gradient using k = 1000 Monte Carlo samples.

Unfortunately, the objective we optimize (Equation (A.146)) is not actually the
attack objective of interest. To force a misclassification, an attacker needs to find
some perturbation δ with ∥δ∥2 < r and some class cB for which

Pε∼N (0,σ2I)(f(x+ δ + ε) = cB) ≥ Pε∼N (0,σ2I)(f(x+ δ + ε) = c) (A.147)

Effective adversarial attacks against randomized smoothing are outside the scope of
this paper.
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A.11 Examples of Noisy Images

We now show examples of CIFAR-10 and ImageNet images corrupted with
varying levels of noise.

σ = 0.00 σ = 0.25 σ = 0.50 σ = 1.00

Figure A.9: CIFAR-10 images additively corrupted by varying levels of Gaussian
noise N (0, σ2I). Pixel values greater than 1.0 (=255) or less than 0.0 (=0) were
clipped to 1.0 or 0.0.
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σ = 0.00 σ = 0.25 σ = 0.50 σ = 1.00

Figure A.10: ImageNet images additively corrupted by varying levels of Gaussian
noise N (0, σ2I). Pixel values greater than 1.0 (=255) or less than 0.0 (=0) were
clipped to 1.0 or 0.0.
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Appendix B

Appendix for Chapter 3

B.1 Generic Randomized Smoothing Algorithm

Algorithm 8 Generic randomized smoothing procedure

Input: function ϕ : X → {0, 1}, number of samples N , smoothing distribution
µ, test point to predict x0, failure probability δ > 0.
for i = 1, . . . , N do

Sample xi ∼ µ(x0) and compute yi = ϕ(xi).
end for
Compute approximate smoothed output

ĝ(µ, ϕ) = 1

{(
1

N

N∑
i=1

yi

)
≥ 1

2

}
.

Compute bound Ĝ(µ, ϕ) such that with probability ≥ 1− δ

Ĝ(µ, ϕ)

{
≤ G(µ, ϕ) if ĝ(µ, ϕ) = 1
≥ G(µ, ϕ) if ĝ(µ, ϕ) = 0.

Output: Prediction ĝ(µ, ϕ) and probability bound Ĝ(µ, ϕ), or abstention if
ĝ(µ, ϕ) ̸= sign(Ĝ(µ, ϕ)− 1

2).
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B.2 The Multi-Class Setting

Although the notation and algorithms are slightly more complex, all the methods
we have discussed in the main paper can be extended to the multi-class setting.
In this case, we consider a class label y ∈ {1, . . . ,K}, and we again seek some
smoothed prediction such that the classifier’s prediction on a new point will not
change with some number r flips of the labels in the training set.

B.2.1 Randomized Smoothing in the Multi-Class Case

We here extend our notation to the case of more than two classes. Recall our
original definition of G,

G(µ, ϕ) = Ex∼µ[ϕ(x)] =

∫
X
µ(x)ϕ(x)dx,

where ϕ : X → {0, 1}. More generally, consider a classifier ϕ : X → [K],
outputting the index of one of K classes. Under this formulation, for a given class
c ∈ [K], we have

G(µ, ϕ, c) = Ex∼µ[ϕc(x)] =

∫
X
µ(x)ϕc(x)dx,

where ϕc(x) = 1 {ϕ(x) = c} is the indicator function for if ϕ(x) outputs the class
c. In this case, the hard threshold g is evaluated by returning the class with the
highest probability. That is,

g(µ, ϕ) = argmax
c

G(µ, ϕ, c).

B.2.2 Linearization and Chernoff Bound Approach for the Multi-Class
Case

Using the same linearization approach as in the binary case, we can formulate an
analogous approach which forgoes the need to actually perform random sampling at
all and instead directly bounds the randomized classifier using the Chernoff bound.

Adopting the same notation as in the main text, the equivalent least-squares
classifier for the multi-class setting finds some set of weights

β̂ =
(
XTX

)−1
XTY

where Y ∈ {0, 1}n×K is a binary matrix with each row equal to a one-hot encoding
of the class label (note that the resulting β̂ ∈ Rk×K is now a matrix, and we let β̂i
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refer to the ith column). At prediction time, the predicted class of some new point
xn+1 is simply given by the prediction with the highest value, i.e.,

ŷn+1 = argmax
i

β̂i
T
h(xn+1).

Alternatively, following the same logic as in the binary case, this same prediction
can be written in terms of the α variable as

ŷn+1 = argmax
i

αTYi

where Yi denotes the ith column of Yi.

In our randomized smoothing setting, we again propose to flip the class of any
label with probability q, selecting an alternative label uniformly at random from the
remaining K − 1 labels. Assuming that the predicted class label is i, we wish to
bound the probability that

P (αTYi < αTYi′)

for all alternative classes i′. By the Chernoff bound, we have that

logP (αTYi < αTYi′) = logP (αT (Yi − Yi′) ≤ 0)

≤ min
t>0


n∑

j=1

logE
[
e−tαj(Yji−Yji′ )

] .

The random variable Yji − Yji′ takes on three different distributions depending on
if yj = i, if yj = i′, or if yj ̸= i and yj ̸= i′. Specifically, this variable can take on
the terms +1, 0,−1 with the associated probabilities

P (Yji − Yji′ = +1) =

{
1− q if yj = i,
q/(K − 1) otherwise.

P (Yji − Yji′ = −1) =
{

1− q if yj = i′,
q/(K − 1) otherwise.

P (Yji − Yji′ = 0) =

{
q(K − 2)/(K − 1) if yj = i or yj = i′,
1− 2q/(K − 1) otherwise.
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Combining these cases directly into the Chernoff bound gives

logP (αTYi < αTYi′) (B.1)

≤ min
t>0

{ ∑
j:yj=i

log

(
(1− q)e−tαj + q

K − 2

K − 1
+

q

K − 1
etαj

)
(B.2)

+
∑

j:yj=i′

log

(
q

K − 1
e−tαj + q

K − 2

K − 1
+ (1− q)etαj

)
(B.3)

+
∑

j:yj ̸=i,yj ̸=i′

log

(
q

K − 1
e−tαj + 1− 2

q

K − 1
+

q

K − 1
etαj

)}
. (B.4)

Again, this problem is convex in t, and so can be solved efficiently using Newton’s
method. And again since the reverse case can be computed via the same expression
we can similarly optimize this in an unconstrained fashion. Specifically, we can do
this for every pair of classes i and i′, and return the i which gives the smallest lower
bound for the worst-case choice of i′.

B.2.3 KL Divergence Bound

To compute actual certification radii, we will derive the KL divergence bound
for the the case of K classes. Let µ, ρ be defined as in Section 3.4, except that as
in the previous section when a label is flipped with probability q it is changed to
one of the other K − 1 classes uniformly at random. Let µi and ρi refer to the
independent measures on each dimension which collectively make up the factorized
distributions µ and ρ (i.e., µ(x) =

∏d
i=1 µi(x)). Further, let Y i

1 be the ith element
of Y1, meaning it is the “original” label which may or may not be flipped when
sampling from µ. First noting that each dimension of the distributions µ and ρ are
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independent, we have

KL(ρ ∥ µ) =
n∑

i=1

KL(ρi ∥ µi) (B.5)

=
∑

i:ρi ̸=µi

KL(ρi ∥ µi) (B.6)

= r

 K∑
j=1

ρi(j) log

(
ρi(j)

µi(j)

) (B.7)

= r

(
ρi(Y

i
1 ) log

(
ρi(Y

i
1 )

µi(Y i
1 )

)
+ ρi(Y

i
2 ) log

(
ρi(Y

i
2 )

µi(Y i
2 )

))
(B.8)

= r

(
(1− q) log

(
1− q

q
K−1

)
+

q

K − 1
log

( q
K−1

1− q

))
(B.9)

= r

(
1− Kq

K − 1

)
log

(
(1− q)(K − 1)

q

)
. (B.10)

Plugging in the robustness guarantee (3.3), we have that g(µ, ϕ) = g(ρ, ϕ) so
long as

r ≤ log(4p(1− p))

2(1− Kq
K−1) log

(
q

(1−q)(K−1)

) .
Setting K = 2 recovers the divergence term (3.4) and the bound (3.5).

B.3 Description of Label-Flipping Attacks

B.3.1 Attacks on Undefended Classifiers

Due to the dearth of existing work on label-flipping attacks for deep networks,
our attacks on MNIST and Dogfish were quite straightforward; we expect significant
improvements could be made to tighten this upper bound.

For Dogfish, we used a pre-trained Inception network [Szegedy et al., 2016]
to evaluate the influence of each training point with respect to the loss of each test
point [Koh and Liang, 2017]. As in prior work, we froze all but the top layer of the
network for retraining. Once we obtained the most influential points, we flipped
the first one and recomputed approximate influence using only the top layer for
efficiency. After each flip, we recorded which points were classified differently and
maintained for each test point the successful attack which required the fewest flips.
When this was finished, we also tried the reverse of each attack to see if any of them
could be achieved with even fewer flips.
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For MNIST we implemented two similar attacks and kept the best attack for
each test point. The first attack simply ordered training labels by their ℓ2 distance
from the test point in feature space, as a proxy for influence. We then tried flipping
these one at a time until the prediction changed, and we also tried the reverse. The
second attack was essentially the same as the Dogfish attack, ordering the test
points by influence. To calculate influence we again assumed a frozen feature map;
specifically, using the same notation as Koh and Liang [2017], the influence of
flipping the label of a training point z = (x, y) to z− = (x, 1− y) on the loss at the
test point ztest is:

dL(ztest, θ̂ϵ,z−,−z)

dϵ
= ∇θL(ztest, θ̂)

T dθ̂ϵ,z−,−z

dϵ

≈ −∇θL(ztest, θ̂)
TH−1

θ̂

(
∇θL(z

−, θ̂)−∇θL(z, θ̂)
)
.

For logistic regression these values can easily be computed in closed form.

B.3.2 Attacks on Our Classifier

Recall that our theoretical classifier outputs a prediction based on P (αTy ≥
1/2), where the randomness is over the label flips of y. More specifically, the
classifier’s output is based on a weighted majority vote of “sub-classifiers”, each of
which is a simple linear classifier which outputs 1{αT ŷ ≥ 1/2} for its own labels
ŷ. The sub-classifier’s vote is weighted by its probability under the smoothing
distribution, which depends only on ∥y − ŷ∥0 (and is monotonically decreasing in
this value). It is clear that the optimal attack to reduce P (αTy ≥ 1/2) is to flip
the labels which will push the inner product αTy as much as possible towards the
incorrect label: flipping labels by their change to the inner product will add weight
to the votes of the most overall number of incorrect sub-classifiers, pushing our
smoothed classifier to be incorrect.

Here we make a subtle distinction: while this attack is optimal for the purpose
of reducing P (αTy ≥ 1/2), it is not necessarily optimal against our classifier,
even though this probability represents how our classifier (theoretically) makes
a prediction. This is because in practice, we never actually compute P (αTy ≥
1/2). Instead, recall from equation 3.6 that we use the Chernoff inequality to
tightly bound this probability. Thus, while the attack described above is optimal
for reducing the true probability (and therefore the theoretical robustness), it is
technically possible that a different attack would cause a looser Chernoff bound,
more effectively reducing our bound on the probability. In essence, our attack is
optimal for modifying the LHS of equation 3.6, but not necessarily the RHS, which
is ultimately how our classifier actually makes predictions.
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(a) Binary MNIST (classes 1 and 7)
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(b) Dogfish

Figure B.1: MNIST 1/7 and Dogfish certified lower bounds (solid) compared to
empirical upper bounds (dashed) of our classifier and the undefended classifier. Our
classifier’s upper and lower bounds are reasonably close, and they get closer as q
decreases. The gap is due to the potential looseness of the Chernoff bound, though
in practice we would expect the true robustness to be closer to the upper bound.

With that said, the existence of an attack which causes the Chernoff bound to
return a particularly sub-optimal bound seems debatable. So, while we present these
results as an empirical upper bound, we believe it would not be inappropriate to
also view them as an approximate lower bound. Of course, the actual lower bound
returned by our classifier is still a genuinely guaranteed certificate. Figure B.1a
displays the result of our attack on MNIST 1/7, with the undefended classifier
for comparison. Observe that the empirical upper bounds (dashed lines) track
the guaranteed lower bounds (solid lines) reasonably closely. The gap is under
10% accuracy and shrinks as the noise q decreases. Further, this empirical robust
accuracy outperforms the undefended classifier’s empirical robust accuracy by an
even larger margin. Figure B.1b presents the same results on the Dogfish dataset.
Our empirical attacks had very similar success rates for all values of q, so we only
plot two values along with the undefended classifier. We again observe a tight
correspondence between upper and lower bounds which gets tighter with smaller q.

B.4 Additional Tables of Results

To supplement the line plots, for each dataset and noise parameter we present
here precise certified test set accuracy at specific numbers of label flips. When
available, for comparison we also provide the undefended classifier’s empirical
accuracy when subjected to our label-flipping attack as detailed in Appendix B.3.1.
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For each number of label flips, the noise hyperparameter setting which results in the
highest certified accuracy is in bold.

MNIST 1/7 (n = 13007, 2 classes)
Number of Label Flips

Noise q ↓ 1 10 100 500 1000 1500 2000
(undefended) (.9903) (.9815) (.9163) (.4674) (.1503) (.0388) (.0065)

0.3 .9399 .9320 .8918 .7470 .5726 .4681 .4089
0.4 .8659 .8571 .8248 .7152 .6283 .5566 .5072
0.45 .7855 .7767 .7540 .7004 .6556 .6218 .5950

0.475 .7294 .7262 .7118 .6873 .6674 .6503 .6378

Table B.1: Certified test set accuracy on MNIST 1/7 (Figure 3.1a), with the unde-
fended classifier’s empirical robust accuracy for comparison. Random guessing or a
constant classifier would attain 50% accuracy.

Full MNIST (n = 60000, 10 classes)
Number of Label Flips

Noise q ↓ 1 10 100 200 300 400 500
0.0125 .5693 .5689 .5212 .4292 .3333 .2446 .1706
0.025 .5713 .5701 .5053 .4040 .2999 .2096 .1407
0.05 .5495 .5486 .4954 .4160 .3400 .2633 .2012

Table B.2: Certified test set accuracy on Full MNIST (Figure 3.1b). Random
guessing or a constant classifier would attain 10% accuracy.

CIFAR10 (n = 50000, 10 classes)
Number of Label Flips

Noise q ↓ 1 10 50 100 200 300 400
0.012 .7180 .7158 .6800 .6234 .4493 .2520 .1201
0.025 .7068 .7017 .6597 .5949 .4051 .1870 .0548

0.1 .7040 .6876 .6230 .5384 .3019 .0981 .0213

Table B.3: Certified test set accuracy on CIFAR10 (Figure 3.2). Random guessing
or a constant classifier would attain 10% accuracy.
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Dogfish (n = 1800, 2 classes)
Number of Label Flips

Noise q ↓ 1 10 25 50 75 100 150
(undefended) (.9367) (.2933) (.0050) (.0000) (.0000) (.0000) (.0000)

0.0001 .8950 .8667 .8083 .7150 .6233 .5167 .3267
0.001 .8950 .8550 .7967 .6967 .5917 .4750 .3017
0.01 .8800 .8333 .7583 .6617 .5283 .4250 .2367
0.05 .9367 .7833 .7033 .5567 .4350 .3200 .1583

Table B.4: Certified test set accuracy on Dogfish (Figure 3.3), with the undefended
classifier’s empirical robust accuracy for comparison. Random guessing or a con-
stant classifier would attain 50% accuracy.

IMDB Sentiment Analysis (n = 25000, 2 classes)
Number of Label Flips

Noise q ↓ 1 10 25 50 100 200 300
0.01 .6275 .5980 .5882 .5686 .5392 .4804 .4412
0.025 .6364 .6154 .5944 .5594 .5105 .4406 .3287
0.05 .5878 .5344 .5038 .4656 .4160 .3206 .2519
0.1 .7585 .7034 .6469 .5806 .4788 .3263 .2135

Table B.5: Certified test set accuracy on the IMDB Sentiment Analysis dataset
(Figure 3.4). Random guessing or a constant classifier would attain 50% accuracy.

B.5 Additional Plots
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Figure B.2: MNIST 1/7 test set certified accuracy with and without ℓ2 regularization
in the computation of α. Note that the unregularized solution achieves almost 100%
non-robust accuracy, but certifies significantly lower robustness. This implies that
the “training” process is not robust enough to label noise, hence the lower margin by
the ensemble. In comparison, the regularized solution achieves significantly higher
margins, at a slight cost in overall accuracy.
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Figure B.3: Dogfish test set certified accuracy using features learned with RICA
[Le, 2013]. While not as performant as the pre-trained features, our classifier
still achieves reasonable certified accuracy—note that the certified lines are lower
bounds, while the undefended line is an upper bound. As demonstrated in the main
body, deep unsupervised features significantly boost performance, but require a
larger dataset.
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Appendix C

Appendix for Chapter 4

C.1 Additional Notation for the Appendix

To avoid overloading, we use ϕ, F for the standard Gaussian PDF and CDF
respectively. We write Sc to denote the set complement of a set S . We write | · | to
denote entrywise absolute value.

C.2 Proof of Proposition Proposition 4.4.1

Recall the IRM objective:

min
Φ,β

E(x,y)∼p(x,y)[− log σ(y · β̂⊤Φ(x))]

subject to
∂

∂β̂
E(x,y)∼pe [− log σ(y · β̂⊤Φ(x))] = 0. ∀e ∈ E .

Concretely, we represent Φ as some parametrized function Φθ, over whose
parameters θ we then optimize. The derivative of the negative log-likelihood for
logistic regression with respect to the β coefficients is well known:

∂

∂β̂

[
− log σ(y · β̂⊤Φθ(x))

]
= (σ(β̂⊤Φθ(x))− 1{y = 1})Φθ(x). (C.1)

Suppose we recover the true invariant features Φθ(x) =

[
zc
0

]
and coefficients

β̂ =

[
β
0

]
(in other words, we allow for the introduction of new features). Then the
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IRM constraint becomes:

0 =
∂

∂β̂
E(x,y)∼pe [− log σ(y · β̂⊤Φθ(x))] (C.2)

=

∫
Z
pe(zc)

∑
y∈{±1}

pe(y | zc)
∂

∂β̂

[
− log σ(y · β⊤zc)

]
dzc (C.3)

=

∫
Z
pe(zc)Φθ(x)

[
σ(β̂⊤zc)(σ(β̂

⊤zc)− 1) + (1− σ(β̂⊤zc))σ(β̂
⊤zc)

]
dzc.

(C.4)

Since β̂ is constant across environments, this constraint is clearly satisfied for every
environment, and is therefore also the minimizing β̂ for the training data as a whole.

Considering now the derivative with respect to the featurizer Φθ:

∂

∂θ

[
− log σ(y · β̂⊤Φθ(x))

]
= (σ(β̂⊤Φθ(x))− 1{y = 1}) ∂

∂θ
β̂⊤Φθ(x). (C.5)

Then the derivative of the loss with respect to these parameters is∫
Z
pe(zc)

(
∂

∂θ
β̂⊤Φθ(x)

)[
σ(β⊤zc)(σ(β

⊤zc)− 1) + (1− σ(β⊤zc))σ(β
⊤zc)

]
dzc

(C.6)

and is equal to 0. So, the invariant classifier is a stationary point with respect to the
feature map parameters as well.

C.3 Results from Section Section 4.5

C.3.1 Proof of Theorem 4.5.1

We begin by formally stating the non-degeneracy condition. Consider any
environmental mean µe, and suppose it can be written as a linear combination of
the others means with coefficients αe:

µe =
∑
i

αe
iµi. (C.7)

Then the environments are considered non-degenerate if the following inequality
holds for any such set of coefficients:∑

i

αe
i ̸= 1, (C.8)
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and furthermore that the following ratio is different for at least two different envi-
ronments a, b:

∃αa, αb.
σ2
a −

∑
i α

a
i σ

2
i

1−∑i α
a
i

̸= σ2
b −

∑
i α

b
iσ

2
i

1−∑i α
b
i

. (C.9)

The first inequality says that none of the environmental means are are an affine
combination of the others; in other words, they lie in general linear position,
which is the same requirement as Arjovsky et al. [2019]. The other inequality
is a similarly lax non-degeneracy requirement regarding the relative scale of the
variances. It is clear that the set of environmental parameters that do not satisfy
Equations Equation (C.8) and Equation (C.9) has measure zero under any absolutely
continuous density, and similarly, if E ≤ de then the environmental means will be
linearly independent almost surely.

We can now proceed with the proof, beginning with some helper lemmas:
Lemma C.3.1. Suppose we observe E environments E = {e1, e2, . . . , eE}, each
with environmental mean of dimension de ≥ E, such that all environmental means
are linearly independent. Then there is a unique unit-norm vector p such that

p⊤µe = σ2
e µ̃ ∀e ∈ E , (C.10)

where µ̃ is the largest scalar which admits such a solution.

Proof. Let v1, v2, . . . , vE be a set of basis vectors for span{µ1, µ2, . . . , µE}. Each
mean can then be expressed as a combination of these basis vectors: ui =

∑E
j=1 αijvj .

Since the means are linearly independent, we can combine these coefficients into a
single invertible matrix

U =


α11 α21 . . . αE1

α12 α22 . . . αE2
...

...
. . .

...
α1E α2E . . . αEE

 . (C.11)

We can then combine the constraints (Equation (C.10)) as

U⊤pα = σ ≜


σ2
1

σ2
2
...
σ2
E

 , (C.12)
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where pα denotes our solution expressed in terms of the basis vectors {vi}Ei=1. This
then has the solution

pα = U−Tσ. (C.13)

This defines the entire space of solutions, which consists of pα plus any element of
the remaining (de −E)-dimensional orthogonal subspace. However, we want p to
be unit-norm—observe that the current vector solves Equation (C.10) with µ̃ = 1,
which means that after normalizing we get µ̃ = 1

∥pα∥ . Adding any element of the
orthogonal subspace would only increase the norm of p, decreasing µ̃. Thus, the
unique maximizing solution is

pα =
U−Tσ

∥U−Tσ∥ , with µ̃ =
1

∥U−Tσ∥ . (C.14)

Finally, pα has to be rotated back into the original space by defining p =
∑E

i=1 pαivi.

Lemma C.3.2. Assume f is linear. Suppose we observe E ≤ de environments
whose means are linearly independent. Then there exists a linear Φ with rank(Φ) =
dc+de+1−E whose output depends on the environmental features, yet the optimal
classifier on top of Φ is invariant.

Proof. We will begin with the case when E = de and then show how to modify this
construction for when E < de. Consider defining

Φ =

[
I 0
0 M

]
◦ f−1 (C.15)

with

M =


p⊤

0
...
0

 . (C.16)

Here, p ∈ Rdc is defined as the unit-norm vector solution to

p⊤µe = σ2
e µ̃ ∀e (C.17)
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such that µ̃ is maximized—such a vector is guaranteed to exist by Lemma C.3.1.

Thus we get Φ(x) =
[

zc
p⊤ze

]
, which is of rank dc+1 as desired. Define z̃e = p⊤ze,

which means that z̃e | y ∼ N (y · σ2
e µ̃, σ

2
e). For each environment we have

p(y | zc, z̃e) =
p(zc, z̃e, y)

p(zc, z̃e)
(C.18)

=
σ(y · β⊤

c zc)p(z̃e | y · σe2
e µ̃, σ2

e)

[σ(y · β⊤
c zc)p(z̃e | y · σe2

e µ̃, σ2
e) + σ(−y · β⊤

c zc)p(z̃e | −y · σe2
e µ̃, σ2

e)]
(C.19)

=
σ(y · β⊤

c zc) exp(y · z̃eµ̃)
[σ(y · β⊤

c zc) exp(y · z̃eµ̃) + σ(−y · β⊤
c zc) exp(−y · z̃eµ̃)]

(C.20)

=
1

1 + exp(−y · (β⊤
c zc + 2z̃eµ̃))

. (C.21)

The log-odds of y is linear in these features, so the optimal classifier is

β̂ =

[
βc
2µ̃

]
, (C.22)

which is the same for all environments.
Now we show how to modify this construction for when E < de. If we remove

one of the environmental means, Φ trivially maintains its feasibility. Note that since
they are linearly independent, the mean which was removed has a component in a
direction orthogonal to the remaining means. Call this component p′, and consider
redefining M as

M =


p⊤

p′⊤

0
...
0

 . (C.23)

The distribution of z̃e in each of the remaining dimensions is normal with mean 0,
which means a corresponding coefficient of 0 is optimal for all environments. So
the classifier β̂ remains optimal for all environments, yet we’ve added another row
to M which increases the dimensionality of its span, and therefore the rank of Φ, by
1. Working backwards, we can repeat this process for each additional mean, such
that rank(Φ) = dc + 1 + (de − E), as desired. Note that for E = 1 any Φ will be
vacuously feasible.
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Lemma C.3.3. Suppose we observe E environments E = {e1, e2, . . . , eE} whose
parameters satisfy the non-degeneracy conditions (Equation (C.8), Equation (C.9)).
Let Φ(x) = Azc + Bze be any feature vector which is a linear function of the
invariant and environmental features, and suppose the optimal β̂ on top of Φ is
invariant. If E > de, then β̂ = 0 or B = 0.

Proof. Write Φ = [A|B] where A ∈ Rd×dc , B ∈ Rd×de and define

µ̄e = Φ

[
µc

µe

]
= Aµc +Bµe, (C.24)

Σ̄e = Φ

[
σ2
c Idc 0
0 σ2

eIde

]
Φ⊤ = σ2

cAA
⊤ + σ2

eBB⊤. (C.25)

Without loss of generality we assume Σ̄ is invertible (if it is not, we can consider just
the subspace in which it is—outside of this space, the features have no variance and
therefore cannot carry information about the label). By Lemma C.6.2, the optimal
coefficient for each environment is 2Σ̄−1

e µ̄e. In order for this vector to be invariant,
it must be the same across environments; we write it as a constant β̂. Suppose
µ̄e = 0 for some environment e—then the claim is trivially true with β̂ = 0. We
therefore proceed under the assumption that µ̄e ̸= 0 ∀e ∈ E .

With this fact, we have that ∀e ∈ E ,

β̂ = 2(σ2
cAA

⊤ + σ2
eBB⊤)−1(Aµc +Bµe)

⇐⇒ (σ2
cAA

⊤ + σ2
eBB⊤)β̂ = 2Aµc + 2Bµe

⇐⇒ σ2
eBB⊤β̂ − 2Bµe = 2Aµc − σ2

cAA
⊤β̂. (C.26)

Define the vector v = 2Aµc − σ2
cAA

⊤β̂. We will show that for any β̂, A, with
probability 1 only B = 0 can satisfy Equation (C.26) for every environment. If
E > de, then there exists at least one environmental mean which can be written as a
linear combination of the others. Without loss of generality, denote the parameters
of this environment as (µ̄, σ̄2) and write µ̄ =

∑de
i=1 αiµi. However, note that by

assumption the means lie in general linear position, and therefore we actually have
at least de sets of coefficients α for which this holds. Rearranging Equation (C.26),
we get

σ̄2BB⊤β̂ − v = 2Bµ̄ (C.27)

=

de∑
i=1

αi2Bµi (C.28)

=

de∑
i=1

αi

[
σ2
iBB⊤β̂ − v

]
, (C.29)
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and rearranging once more yields(
σ̄2 −

∑
αiσ

2
i

)
BB⊤β̂ =

(
1−

∑
αi

)
v. (C.30)

By assumption, (1−∑αi) is non-zero. We can therefore rewrite this as

α̂BB⊤β̂ = v, (C.31)

where α̂ =
σ̄2−

∑
αiσ

2
i

1−
∑

αi
is a scalar. As the vectors BB⊤β̂ and v are both independent

of the environment, this can only hold true if α̂ is fixed for all environments or if
both BB⊤β̂,v are 0. The former is false by assumption, so the the latter must hold.

As a result, we see that Equation (C.26) reduces to

Bµe = 0 ∀e ∈ E . (C.32)

As the span of the observed µe is all of Rde , this is only possible if B = 0.

We are now ready to prove the main claim. We restate the theorem here for
convenience:
Theorem 4.5.1 (Linear case). Assume f is linear. Suppose we observe E training
environments. Then the following hold:
1. Suppose E > de. Under mild non-degeneracy conditions, any linear featurizer

Φ with an invariant optimal regression vector β̂ uses only invariant features, and
it therefore has identical risk on all possible environments.

2. If E ≤ de and the environmental means µe are linearly independent, then there
exists a linear Φ with rank(Φ) = dc + de + 1 − E whose output depends on
the environmental features, yet the optimal classifier on top of Φ is invariant.
Further, both the logistic and 0-1 risks of this Φ and its corresponding β̂ are
strictly lower than those of the invariant classifier.

Proof. 1. Since Φ, f are linear, we can write Φ(x) = Azc + Bze for some
matrices A,B. Assume the non-degeneracy conditions (Equation (C.8),
Equation (C.9)) hold. By Lemma C.3.3, one of B = 0 or β̂ = 0 holds.
Thus, Φ, β̂ uses only invariant features. Since the joint distribution pe(zc, y)
is invariant, this classifier has identical risk across all environments.

2. The existence of such a classifier is proven by Lemma C.3.2. It remains to
show that the risk of this discriminator is lower than that of the invariant
classifier. Observe that these features are non-degenerate independent random
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variables with support over all of R, and therefore by Lemma C.6.1, dropping
the z̃e term and using

Φ(x) = [zc], β̂ =

[
βc
β0

]
(C.33)

results in strictly higher risk. The proof is completed by noting that this
definition is precisely the invariant classifier.

C.3.2 Experiments for Theorem 4.5.1

To corroborate our theoretical findings, we run an experiment on data drawn
from our model to see at what point IRM is able to recover a generalizing classifier.
We generated data precisely according to our model in the linear setting, with
dc = 3, de = 6. The environmental means were drawn from a multivariate Gaussian
prior; we randomly generated the invariant parameters and the parameters of the
prior such that using the invariant features gave reasonable accuracy (71.9%) but the
environmental features would allow for almost perfect accuracy on in-distribution
test data (99.8%). Thus, the goal was to see if IRM could successfully learn a
classifier which ignores meaningful covariates ze, to the detriment of its training
performance but to the benefit of OOD generalization. We chose equal class
marginals (η = 0.5).

Figure C.1 shows the result of five runs of IRM, each with different environmen-
tal parameters but the same invariant parameters (the training data itself was redrawn
for each run). We found that optimizing for the IRM objective was quite unstable,
frequently collapsing to the ERM solution unless λ and the optimizer learning rate
were carefully tuned. This echoes the results of Krueger et al. [2020] who found
that tuning λ during training to specific values at precisely the right time is essential
for good performance. To prevent collapse, we kept the same environmental prior
and found a single setting for λ and the learning rate which resulted in reasonable
performance across all five runs. At test time, we evaluated the trained classifiers on
additional, unseen environments whose parameters were drawn from the same prior.
To simulate distribution shift, we evaluated the classifiers on the same data but with
the environmental means negated. Thus the correlations between the environmental
features ze and the label y were reversed.

Observe that the results closely track the expected outcome according to Theo-
rem 4.5.1: up until E = de, IRM essentially matches ERM in performance both
in-distribution and under distribution shift. As soon as we cross that threshold of
observed environments, the classifier learned via IRM begins to perform drastically
better under distribution shift, behaving more like the optimal invariant classifier.
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We did however observe that occasionally the invariant solution would be found
after only E = de = 6 environments; we conjecture that this is because at this
point the feasible-yet-not-invariant classifier with lower objective value presented
in Theorem 4.5.1 is precisely a single point, as opposed to a multi-dimensional
subspace, and therefore might be difficult for the optimizer to find.

Figure C.1: Performance of classifiers learned with IRM (5 different runs) and ERM
(dashed lines) on test distributions where the correlation between environmental
features and the label is consistent (no shift) or reversed (shift). The dashed green
line is the performance of the optimal invariant classifier. Observe that up until
E = de, IRM consistently returns a classifier with performance similar to ERM:
good generalization without distribution shift, but catastrophic failure when the
correlation is reversed. In contrast, once E > de, IRM is able to recover a Φ, β̂ with
performance similar to that of the causal classifier.

C.3.3 Proof of Theorem 4.5.3

Theorem 4.5.3. Suppose we observe E ≤ de environments, such that all environ-
mental means are linearly independent. Then there exists a feasible Φ, β̂ which uses
only environmental features and achieves lower 0-1 risk than the invariant classifier
on every environment e such that σeµ̃ > σ−1

c ∥µc∥ and 2σeµ̃σ
−1
c ∥µc∥ ≥ |β0|.

Proof. We consider the non-invariant classifier constructed as described in Lemma C.3.2,
but dropping the invariant features and coefficients. By Lemma C.6.2, the optimal
coefficients for the invariant and non-invariant classifiers are

β̂caus =

[
2σ−2

c µc

β0

]
and β̂non−caus =

[
2µ̃
β0

]
, (C.34)
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respectively. Therefore, the 0-1 risk of the invariant classifier is precisely

ηP(2σ−2
c µ⊤

c zc + β0 < 0) + (1− η)P(−2σ−2
c µ⊤

c zc + β0 > 0) (C.35)

=ηF

(
−σ−1

c ∥µc∥ −
β0σc
2∥µc∥

)
+ (1− η)F

(
−σ−1

c ∥µc∥+
β0σc
2∥µc∥

)
, (C.36)

where F is the Gaussian CDF. By the same reasoning, the 0-1 risk of the non-
invariant classifier is

ηF

(
−σeµ̃−

β0
2σeµ̃

)
+ (1− η)F

(
−σeµ̃+

β0
2σeµ̃

)
. (C.37)

Define α = σ−1
c ∥µc∥ and γ = σeµ̃. By monotonicity of the Gaussian CDF, the

former risk is higher than the latter if

α+
β0
2α
≤ γ +

β0
2γ

, (C.38)

α− β0
2α

< γ − β0
2γ

. (C.39)

Without loss of generality, we will prove these inequalities for β0 ≥ 0; an identical
argument proves it for β0 < 0 but with the ‘≤’ and ‘<’ swapped.

Suppose γ > α (the first condition). Then Equation (C.39) is immediate. Finally,
for Equation (C.38), observe that

γ +
β0
2γ
≥ α+

β0
2α

(C.40)

⇐⇒ γ − α ≥ β0
2α
− β0

2γ
=

(γ − α)β0
2γα

(C.41)

⇐⇒ 2γα ≥ β0, (C.42)

which is the second condition.

C.3.4 Simulations of Magnitude of Environmental Features

As discussed in Section 4.5, analytically quantifying the solution µ̃ to the
equation in Lemma C.3.1 is difficult; instead, we present simulations to give a sense
of how often these conditions would hold in practice.

For each choice of environmental dimension de, we generated a “base” correla-
tion b ∼ N (0, Ide) as the mean of the prior over environmental means µe. Each of
these µe was then drawn fromN (b, 4Ide)—thus, while they all came from the same
prior, the noise in the draw of each µe was significantly larger than the bias induced
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by the prior. We then solved for the precise value σeµ̃, with the same variance σ2
e

for all environments, chosen as a hyperparameter. The shaded area represents a 95%
confidence interval over 20 runs.

The dotted lines are
√
dc. If we imagine the invariant parameters are drawn

from a standard Gaussian prior, then this is precisely E[σ−1
c ∥µc∥]. Thus, the point

where σeµ̃ crosses these dotted lines is approximately how many environments
would need to be observed before the non-invariant classifier has higher risk than
the invariant classifier. We note that this value is quite large, on the order of de − dc.
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Projected Environmental Mean Separation

dc = 40, de = 200, σ2
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dc = 100, de = 200, σ2
e = 1

dc = 50, de = 300, σ2
e = 2

dc = 60, de = 300, σ2
e = 1

√
de − E

Figure C.2: Simulations to evaluate σeµ̃ for varying ratios of de
dc

. When σ2
e = 1,

the value closely tracks
√
de − E, giving a crossover point of de − dc. These

results imply the conditions of Theorem 4.5.3 are very likely to hold in the high-
dimensional setting.

C.4 Theorem 4.6.3 and Discussion

C.4.1 Proof of Theorem 4.6.3

We again begin with helper lemmas.
Our classifier Φ is constructed to recover the environmental features only if they

fall within a set Bc. The following lemma shows that since only the environmental
features contribute to the gradient penalty, the penalty can be bounded as a function
of the measure and geometry of that set. This is used together with Lemmas
Lemma C.6.3 and Lemma C.6.4 to bound the overall penalty of our constructed
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classifier.
Lemma C.4.1. Suppose we observe environments E = {e1, e2, . . .}. Given a
set B ⊆ Rde , consider the classifier defined by Equation (C.61). Then for any
environment e, the penalty term of this classifier in Equation (4.5) is bounded as

∥∇
β̂
Re(Φ, β̂)∥2 ≤

∥∥∥∥P(ze ∈ Bc)E[|ze| | ze ∈ Bc]∥∥∥∥2
2

. (C.43)

Proof. We write out the precise form of the gradient for an environment e:

∇
β̂
Re(Φ, β̂) =

∫
Zc×Ze

[
pe(zc, ze)

(
σ(β̂⊤Φ(f(zc, ze)))− pe(y = 1 | zc, ze)

)
(C.44)

Φ(f(zc, ze))

]
d(zc, ze). (C.45)

Observe that since zc ⊥⊥ ze | y, the optimal invariant coefficients are unchanged,
and therefore the gradient in the invariant dimensions is 0. We can split the gradient
in the environmental dimensions into two integrals:∫

Zc×B
pe(zc, ze)

[
σ(β⊤

c zc + β0)− pe(y = 1 | zc, ze)
]
[0] d(zc, ze) (C.46)

+

∫
Zc×Bc

pe(zc, ze)
[
σ(β⊤

c zc + β⊤
e;ERMze + β0)− σ(β⊤

c zc + β⊤
e ze + β0)

]
× [ze] d(zc, ze). (C.47)

Since the features are 0 within B, the first term reduces to 0. For the second term,
note that ∀ x, y ∈ R, |σ(x)− σ(y)| ≤ 1, and therefore

|∇
β̂
Re(Φ, β̂)| ≤

∫
Zc×Bc

pe(zc, ze)[|ze|] d(zc, ze). (C.48)

We can marginalize out zc, and noting that we want to bound the squared norm,

∥∇
β̂
Re(Φ, β̂)∥2 ≤

∥∥∥∥∫
Bc

pe(ze)[|ze|] dze
∥∥∥∥2
2

(C.49)

=

∥∥∥∥P(ze ∈ Bc)E[|ze| | ze ∈ Bc]∥∥∥∥2
2

. (C.50)
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This next lemma says that if the environmental mean of the test distribution
is sufficiently separated from each of the training means, with high probability a
sample from this distribution will fall outside of Br, and therefore Φϵ, β̂ will be
equivalent to the ERM solution.
Lemma C.4.2. For a set of E environments E = {e1, e2, . . . , eE} and any ϵ > 1,
construct Br as in Equation (C.60) and define Φϵ using Br as in Equation (C.61).
Suppose we now test on a new environment with parameters (µE+1, σ

2
E+1), and

assume Equation (C.55) holds with parameter δ. Define k = mine∈E
σ2
e

σ2
E+1

. Then

with probability ≥ 1− 2E√
kπδ

exp{−kδ2} over the draw of an observation from this
new environment, we have

Φϵ(x) = f−1(x) =

[
zc
ze

]
. (C.51)

Proof. By Equation (C.55) our new environmental mean is sufficiently far away
from all the label-conditional means of the training environments. In particular, for
any environment e ∈ E and any label y ∈ {±1}, the ℓ2 distance from that mean to
µE+1 is at least (

√
ϵ+ δ)σe

√
de.

Recall that Br is the union of balls ±Be, where Be is the ball of ℓ2 radius√
ϵσ2

ede centered at µe. For each environment e, consider constructing the halfspace
which is perpendicular to the line connecting µe and µE+1 and tangent to Be. This
halfspace fully contains Be, and therefore the measure of Be is upper bounded by
that of the halfspace.

By rotational invariance of the Gaussian distribution, we can rotate this halfspace
into one dimension and the measure will not change. The center of the ball is
(
√
ϵ+δ)σe

√
de away from the mean µE+1, so accounting for its radius, the distance

from the mean to the halfspace is δσe
√
de. The variance of the rotated distribution

one dimension is σ2
E+1de, so the measure of this halfspace is upper bounded by

1− Φ

 δσe
√
de√

σ2
E+1de

 ≤ Φ
(
−
√
kδ
)

(C.52)

≤ 1√
kπδ

exp{−kδ2}, (C.53)

using results from Kschischang [2017]. There are 2E such balls comprising Br,
which can be combined via union bound.

With these two lemmas, we now state the full version of Theorem 4.6.3, with
the main difference being that it allows for any environmental variance.
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Theorem C.4.3 (Non-linear case, full). Suppose we observe E environments E =
{e1, e2, . . . , eE}. Then, for any ϵ > 1, there exists a featurizer Φϵ which, combined
with the ERM-optimal classifier β̂ = [βc, βe;ERM, β0]

⊤, satisfies the following
properties, where we define pϵ,de := exp{−demin((ϵ− 1), (ϵ− 1)2)/8}:

1. Define σ2
max = maxe σ

2
e . Then the regularization term of Φϵ, β̂ is bounded as

1

E

∑
e∈E
∥∇

β̂
Re(Φϵ, β̂)∥2 ∈ O

(
p2ϵ,de

[
ϵdeσ

4
max exp{2ϵσ2

max}+ ∥µ∥2
])

.

(C.54)

2. Φϵ, β̂ exactly matches the invariant classifier on at least a 1− pϵ,de fraction
of the training set. On the remaining inputs, it matches the ERM-optimal
solution.

Further, for any test distribution with environmental parameters (µE+1, σ
2
E+1),

suppose the environmental mean µE+1 is sufficiently far from the training means:

∀e ∈ E , min
y∈{±1}

∥µE+1 − y · µe∥ ≥ (
√
ϵ+ δ)σe

√
de (C.55)

for some δ > 0. Define the constants:

k = min
e∈E

σ2
e

σ2
E+1

(C.56)

q =
2E√
kπδ

exp{−kδ2}. (C.57)

Then the following holds:
3. Φϵ, β̂ is equivalent to the ERM-optimal classifier on at least a 1− q fraction

of the test distribution.
4. Under Assumption Assumption 4.6.2, suppose it holds that

µE+1 = −
∑
e∈E

αeµe (C.58)

for some set of coefficients {αe}e∈E . Then for any c ∈ R, so long as

∑
e∈E

αe
∥µe∥2
σ2
e

≥ ∥µc∥2/σ2
c + |β0|/2 + cσERM

1− γ
, (C.59)

the 0-1 risk of Φϵ, β̂ is lower bounded by F (2c)− q.
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Proof. Define r =
√
ϵσ2

ede and construct Br ⊂ Rde as

Br =
[⋃
e∈E

Br(µe)

]
∪
[⋃
e∈E

Br(−µe)

]
, (C.60)

where Br(α) is the ball of ℓ2-norm radius r centered at α. Further construct Φϵ

using Br as follows:

Φϵ(x) =



[
zc

0

]
, ze ∈ Br[

zc

ze

]
, ze ∈ Bcr,

and β̂ =

βcβ̂e
β0

 . (C.61)

Without loss of generality, fix an environment e.

1. By Lemma C.4.1, the squared gradient norm is upper bounded by

∥∇
β̂
Re(Φϵ, β̂)∥2 ≤

∥∥∥∥P(ze ∈ Bcr)E[|ze| | ze ∈ Bcr]∥∥∥∥2
2

. (C.62)

Define Be := Br(µe), and observe that Bcr ⊆ Bc
e. Since |ze| is non-negative,

P(ze ∈ Bcr)E[|ze| | ze ∈ Bcr] ≤ P(ze ∈ Bc
e)E[|ze| | ze ∈ Bc

e] (C.63)

(this inequality is element-wise). Plugging this into Equation (C.62) yields

∥∇
β̂
Re(Φϵ, β̂)∥2 ≤

∥∥∥∥P(ze ∈ Bc
e)E[|ze| | ze ∈ Bc

e]

∥∥∥∥2
2

(C.64)

= [P(ze ∈ Bc
e)]

2

∥∥∥∥E[|ze| | ze ∈ Bc
e]

∥∥∥∥2
2

. (C.65)

Define p = P(ze ∈ Bcr) ≤ P(ze ∈ Bc
e). By Lemma C.6.3,

p ≤ pϵ,de = e−de min((ϵ−1),(ϵ−1)2)/8. (C.66)

Combining Lemmas Lemma C.6.4 and Lemma C.6.5 gives∥∥∥∥E[|ze| | ze ∈ Bc
e]

∥∥∥∥2
2

≤ 2de

[
σ
ϕ(r/
√
de)

F (−r/
√
d)

]2
+ 2∥µe∥2 (C.67)

≤ deσ
2
e exp

{
2ϵ(σ2

e − 1/2)
} [

ϵσ2
e + 1

]
+ 2∥µe∥2.

(C.68)
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Putting these two bounds together, we have

∥∇
β̂
Re(Φϵ, β̂)∥2 ∈ O

(
p2ϵ,de

[
ϵdeσ

4
max exp{2ϵσ2

max}+ ∥µe∥2
])

,

(C.69)

and averaging this value across environments gives the result.
2. Φϵ, β̂ is equal to the invariant classifier on Br and the ERM solution on Bcr.

The claim then follows from Lemma C.6.3.
3. This follows directly from Lemma C.4.2.
4. With Equation (C.58), we have that

β⊤
e;ERMµE+1 = −

∑
e∈E

αeβ
⊤
e;ERMµe (C.70)

≤ −2(1− γ)
∑
e∈E

αe
∥µe∥2
σ2
e

(C.71)

≤ −2(1− γ)
∥µc∥2/σ2

c + |β0|/2 + cσERM

1− γ
(C.72)

= −(2∥µc∥2/σ2
c + |β0|+ 2cσERM). (C.73)

where we have applied Assumption 1 in the first inequality and Equation (C.59)
in the second. Consider the full set of features Φϵ(x) = f−1(x), and without
loss of generality assume y = 1. The label-conditional distribution of the
resulting logit is

β⊤
c zc + β⊤

e;ERMze + β0 ∼ N
(
β⊤
c µc + β⊤

e;ERMµE+1 + β0, σ
2
ERM

)
. (C.74)

Therefore, the 0-1 risk is equal to the probability that this logit is negative.
This is precisely

F

(
−
β⊤
c µc + β⊤

e;ERMµE+1 + β0

σERM

)
(C.75)

≥ F

(
(2∥µc∥2/σ2

c + |β0|+ 2cσERM)− 2∥µc∥2/σ2
c − |β0|

σERM

)
(C.76)

= F

(
2cσERM

σERM

)
(C.77)

= F (2c). (C.78)

Observe that by the previous part, Φϵ ̸= f−1 on at most a q fraction of
observations, so the risk of our classifier Φϵ, β̂ can differ from that of f−1, β̂
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by at most q. Therefore our classifier’s risk is lower bounded by F (2c)− q.
In particular, choosing c = 1 recovers the statement in the main body.

C.4.2 Discussion of Conditions and Assumption

To see just how often we can expect the conditions for Theorem C.4.3 to hold,
we can do a Fermi approximation based on the expectations of each of the terms. A
reasonable prior for the environmental means is a multivariate Gaussian N (m,Σ).
We might expect them to be very concentrated (with Tr(Σ) small), or perhaps to
have a strong bias (with ∥m∥2 ≫ Tr(Σ)). For simplicity we treat the variances
σ2
c , σ

2
e as constants. Then the expected separation between any two means from this

distribution is

E[∥µ1 − µ2∥] = Ex∼N (0,2Σ)[∥x∥] ≈
√

2Tr(Σ). (C.79)

In high dimensions this value will tightly concentrate around the mean, which is
in O(

√
de). On the other hand, even a slight deviation from this separation, to

Ω(
√
de logE), means δ ∈ Ω(

√
logE), which implies q ∈ O(1/E); this is plenty

small to ensure worse-than-random error on the test distribution.
Now we turn our attention to the second condition (Equation (C.59)). The

expected squared norm of each mean is de, and in high dimensions we expect
them to be reasonably orthogonal (as a rough approximation; this is technically not
true with a non-centered Gaussian). Then so long as

∑
i αi ∈ Ω(1), the left-hand

side of Equation (C.59) is approximately de. On the other hand, treating γ as a
constant, the right-hand side is close to dc +

√
dc + de ∈ O(dc +

√
de). Thus,

Equation (C.59) is quite likely to hold for any mean µE+1 with the same scale as
the training environments but with reversed correlations—again, this is exactly the
situation where IRM hopes to outperform ERM, and we have shown that it does
not.

We can also do a quick analysis of Assumption Assumption 4.6.2 under this
prior: the ERM-optimal non-invariant coefficient will be approximately 2m/σ2

e

with high probability, meaning β̂⊤µ ≈ 2∥m∥2/σ2
e for every environment. Thus,

this vector will be γ-close to optimal with γ ≈ 1 for every environment with high
probability.
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C.5 Extensions to Alternative Objectives

C.5.1 Extensions for the Linear Case

Observe that the constraint of Equation (4.4) is strictly stronger than that of
Bellot and van der Schaar [2020]; when the former is satisfied, the penalty term of
the latter is necessarily 0. It is thus trivial to extend all results in the Section 4.5 to
this objective. As another example, consider the risk-variance-penalized objective
of Krueger et al. [2020]:

min
Φ,β̂

1

|E|
∑
e∈E
Re(Φ, β̂) + λVare∈E

(
Re(Φ, β̂)

)
, (C.80)

It is simple to extend Theorem 4.5.1 under an additional assumption:
Corollary C.5.1 (Extension to Theorem 4.5.1). Assume f is linear. Suppose we
observe E ≤ de environments with linearly independent means and identical
variance σ2

e . Consider minimizing empirical risk subject to a penalty on the risk
variance (Equation (C.80)). Then there exists a Φ, β̂ dependent on the non-invariant
features which achieves a lower objective value than the invariant classifier for any
choice of regularization parameter λ ∈ [0,∞].

Proof. Consider the featurizer Φ constructed in Lemma C.3.2. If the environmental
variance is constant, then the label-conditional distribution of the environmental
features,

ze | y ∼ N (y · µ̃σ2
e , σ

2
e), (C.81)

is also invariant. This implies that the optimal β̂ also has constant risk across the
environments, meaning the penalty term is 0, and as a result the objective does not
depend on the choice of λ. As in Theorem 4.5.1, invoking Lemma C.6.1 implies
that the overall risk is lower than that of the invariant classifier.

As mentioned in Section 4.5, this additional requirement of constant variance
is due to the assumptions underlying the design of the objective—REx expects
invariance of the conditional distribution p(y | Φ(x)), in contrast with the strictly
weaker invariance of E[y | Φ(x)] assumed by IRM. This might seem to imply that
REx is a more robust objective, but this does not convey the entire picture. The
conditions for the above corollary are just one possible failure case for REx; by
extending Theorem 4.5.3 to this objective, we see that REx is just as prone to bad
solutions:
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Corollary C.5.2 (Extension to Theorem 4.5.3). Suppose we observe E ≤ de
environments, such that all environmental means are linearly independent. Then
there exists a Φ, β̂ which uses only environmental features and, under any choice of
λ ∈ [0,∞], achieves a lower objective value than the invariant classifier under 0-1
loss on every environment e such that µ̃ > σ−1

c ∥µc∥+ |β0|
2σ−1

c ∥µc∥
.

Proof. We follow the proof of Theorem 4.5.3, except when solving for p as in
Lemma C.3.1 we instead find the unit-norm vector such that

p⊤µe = σeµ̃ ∀e ∈ E . (C.82)

Observe that by setting Φ(x) = [p⊤ze] and β̂ = [1], the 0-1 risk in a given
environment is

ηF (−µ̃σe/σe) + (1− η)F (−µ̃σe/σe) = F (−µ̃), (C.83)

which is independent of the environment. Further, by carrying through the same
proof as in Theorem 4.5.3, we get that this non-invariant classifier has lower 0-1
risk so long as

α+
|β0|
2α
≤ µ̃, (C.84)

where α = σ−1
c ∥µc∥

Though µ̃ here is not exactly the same value because of the slightly different so-
lution (Equation (C.82)), it depends upon the geometry of the training environments
in the same way—it is the same as taking the square root of each of the variances.
We can therefore expect this condition to hold in approximately the same situations,
which we empirically verify by replicating Figure C.2 with the modified equation
below.

C.5.2 Extensions for the Non-Linear Case

The failure of these objectives in the non-linear regime is even more straight-
forward, as we can keep unchanged the constructed classifier from Theorem 4.6.3.
Observe that parts 2-4 of the theorem do not involve the objective itself, and there-
fore do not require modification.

To see that part 1 still holds, note that since the constructed classifier matches
the invariant classifier on 1− p of the observations, its risk across environments can
only vary on the remaining p fraction: as the 0-1 risk on this fraction is bounded
between 0 and p, it is immediate that the variance of the environmental risks is
upper bounded by p2

4 , which is in O(p2) as before. Applying this argument to the
other objectives yields similar results.
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Figure C.3: Simulations to evaluate µ̃ for varying ratios of de
dc

. When σ2
e = 1,

the value closely tracks
√
de − E. Due to the similarity of Equation (C.82) to

Equation (C.10), it makes sense that the results are very similar to those presented
in Figure C.2.

C.6 Technical Lemmas

Lemma C.6.1. Consider solving the standard logistic regression problem

z ∼ p(z) ∈ Rk, (C.85)

y =

{
+1 w.p. σ(β⊤z),

−1 w.p. σ(−β⊤z).
(C.86)

Assume that none of the latent dimensions are degenerate—∀S ⊆ [k], P(β⊤
S zS ̸=

0) > 0, and no feature can be written as a linear combination of the other features.
Then for any distribution p(z), any classifier f(z) = σ(β⊤

S zS) that uses a strict
subset of the features S ⊊ [k] has strictly higher risk with logistic loss than the
Bayes classifier f∗(z) = σ(β⊤z). This additionally holds for 0-1 loss if β⊤

−Sz−S

has greater magnitude and opposite sign of β⊤
S zS with non-zero probability.

Proof. The Bayes classifier suffers the minimal expected loss for each observation
z. Therefore, another classifier has positive excess risk if and only if it disagrees
with the Bayes classifier on a set of non-zero measure. Consider the set of values
z−S such that β⊤

−Sz−S ̸= 0. Then on this set we have

f∗(β⊤z) = σ(β⊤
S zS + β⊤

−Sz−S) ̸= σ(β⊤
S zS) = f(z). (C.87)
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Since these values occur with positive probability, f has strictly higher logistic risk
than f∗. By the same argument, there exists a set of positive measure under which

f∗(β⊤z) = sign(β⊤
S zS + β⊤

−Sz−S) ̸= sign(β⊤
S zS) = f(z), (C.88)

and so f also has strictly higher 0-1 risk.

Lemma C.6.2. For any feature vector which is a linear function of the invariant
and environmental features z̃ = Azc +Bze, any optimal corresponding coefficient
for an environment e is of the form

2(AA⊤σ2
c +BB⊤σ2

e)
+(Aµc +Bµe), (C.89)

where G+ is a generalized inverse of G.

Proof. We begin by evaluating a closed form for pe(y | z̃). We have:

pe(y | Azc +Bze = z̃) (C.90)

=
p(Azc +Bze = z̃ | y)p(y)

pe(Azc +Bze = z̃)
(C.91)

=
pe(Azc +Bze = z̃ | y)

pe(Azc +Bze = z̃ | y) + pe(Azc +Bze = z̃ | −y) (C.92)

=
1

1 + pe(Azc+Bze=z̃|−y)
pe(Azc+Bze=z̃|y)

. (C.93)

Now we need a closed form expression for p(Azc +Bze = z̃ | y). Noting that
zc ⊥⊥ ze | y, this is a convolution of the two independent Gaussian densities, which
is the density of their sum. In other words,

Azc +Bze | y ∼ N (y · (
µ̄︷ ︸︸ ︷

Aµc +Bµe),

Σ̄︷ ︸︸ ︷
AA⊤σ2

c +BB⊤σ2
e). (C.94)

Thus,

pe(Azc +Bze = z̃ | y) = 1(
2π|Σ̄|

)k/2 exp{−1

2
(z̃ − y · µ̄)⊤Σ̄+(z̃ − y · µ̄)

}
.

(C.95)
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Canceling common terms, we get

pe(y = 1 | Azc +Bze = z̃) =
1

1 + pe(Azc+Bze=z̃|−y)
pe(Azc+Bze=z̃|y)

(C.96)

=
1

1 + exp
{
−y · 2z̃⊤Σ̄+µ̄

} (C.97)

= σ
(
y · 2z̃⊤Σ̄+µ̄

)
. (C.98)

Therefore, given a feature vector z̃, the optimal coefficient vector is 2Σ̄+µ̄.

Lemma C.6.3. For any environment e with parameters µe, σ
2
e and any ϵ > 1, define

B := B√
ϵσ2

ede
(µe), (C.99)

where Br(α) is the ball of ℓ2-norm radius r centered at α. Then for an observation
drawn from pe, we have

P
ze∼pe

(ze ∈ Bc) ≤ exp

{
−demin((ϵ− 1), (ϵ− 1)2)

8

}
. (C.100)

Proof. Without loss of generality, suppose y = 1. We have

P(ze ∈ B) ≥ P
ze∼N (µe,σ2

eI)

(
∥ze − µe∥ ≤

√
ϵσ2

ede

)
(C.101)

= P
ze∼N (0,σ2

eI)

(
∥ze∥ ≤

√
ϵσ2

ede

)
(C.102)

= P
ze∼N (0,I)

(
∥ze∥2 ≤ ϵde

)
. (C.103)

Each term in the squared norm of ze is a random variable with distribution χ2
1, which

means their sum has mean de and is sub-exponential with parameters (2
√
de, 4). By

standard sub-exponential concentration bounds we have

P
ze∼N (0,I)

(
∥ze∥2 ≥ ϵde

)
≤ exp

{
−demin((ϵ− 1), (ϵ− 1)2)

8

}
, (C.104)

which immediately implies the claim.
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Lemma C.6.4. Let z ∼ N (µ, σ2Id) be a multivariate isotropic Gaussian in d
dimensions, and for some r > 0 define B as the ball of ℓ2 radius r centered at µ.
Then we have∥∥∥∥E[|z| | z ∈ Bc]

∥∥∥∥2
2

≤ 2d

[
σ

ϕ(r/
√
d)

F (−r/
√
d)

]2
+ 2∥µ∥2, (C.105)

where ϕ, F are the standard Gaussian PDF and CDF.

Proof. Observe that

E
z∼N (µ,σ2Id)

[|z| | z ∈ Bc] = E
z∼N (µ,σ2Id)

[|z| | ∥z − µ∥ > r] (C.106)

= E
z∼N (0,σ2Id)

[|z + µ| | ∥z∥ > r] (C.107)

≤ E
z∼N (0,σ2Id)

[|z| | ∥z∥ > r] + |µ|. (C.108)

Now, consider the expectation for an individual dimension, and note that |zi| >
r√
d
∀i =⇒ ∥z∥ > r. So because the dimensions are independent, conditioning on

this event can only increase the expectation:

E
z∼N (0,σ2Id)

[|zi| | ∥z∥ > r] ≤ E
zi∼N (0,σ2)

[
|zi| | |zi| >

r√
d

]
(C.109)

= E
zi∼N (0,σ2)

[
zi | zi >

r√
d

]
, (C.110)

where the equality is because the distribution is symmetric about 0. This last term is
known as the conditional tail expectation of a Gaussian and is available in closed
form:

E
zi∼N (0,σ2)

[
zi | zi >

r√
d

]
= σ

ϕ(F−1(α))

1− α
, (C.111)

where α = F (r/
√
d). Combining the above results, squaring with (a + b)2 ≤

2(a2 + b2), and summing over dimensions, we get∥∥∥∥E[|z| | z ∈ Bc]

∥∥∥∥2
2

≤ 2

d∑
i=1

E
zi∼N (0,σ2)

[
zi | zi >

r√
d

]2
+ 2∥µ∥2 (C.112)

= 2d

[
σ

ϕ(r/
√
d)

F (−r/
√
d)

]2
+ 2∥µ∥2, (C.113)

as desired.
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Lemma C.6.5. For σ, ϵ > 0, define r =
√
ϵσ. Then[

ϕ(r)

F (−r)

]2
≤ 1

2
exp

{
2ϵ(σ2 − 1/2)

} [
ϵσ2 + 1

]
. (C.114)

Proof. We have

ϕ(r) =
1√
2π

exp
{
− ϵ

2

}
(C.115)

and

F (−r) ≥ 2 exp{−ϵσ2}√
π(
√
ϵσ +

√
ϵσ2 + 2)

(C.116)

(see Kschischang [2017]). Dividing them gives

ϕ(r)

F (−r) ≤
1

2
√
2
exp{ϵ(σ2 − 1/2)}

[√
ϵσ +

√
ϵσ2 + 2

]
. (C.117)

Squaring and using (a+ b)2 ≤ 2(a2 + b2) yields the result.
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Appendix D

Appendix for Chapter 5

D.1 Proof of Lemma 5.5.1

We use the following lemma to discretize the space of orthonormal matrices
Q = {Q : QQ⊤ = Ik, Q ∈ Rk×ds}. For any Q,Q′ ∈ Q, we define the metric
ρ(Q,Q′) = ∥Q⊤Q−Q′⊤Q′∥F . We recall the following lemma about the existence
of a cover of Q with respect to the metric ρ:
Lemma D.1.1 (Proposition 8 of Pajor [1998]). For 1 ≤ k ≤ ds/2, there ex-
ists absolute constant c3 and covering Q̃ ⊂ Q such that for all ϵ > 0, |Q̃| ≤
(c3
√
k/ϵ)k(ds−k), and ∀Q∗ ∈ Q, ∃Q ∈ Q̃ such that ρ(Q,Q∗) ≤ ϵ.

For any odd integer e < E, define ∆e
2 = Σe

2−Σe+1
2 = (Σe

2−Σe+1
2 )+(GeG

⊤
e −

Ge+1G
⊤
e+1).

For any Q ∈ Q, let qi be the i-th row of Q, for i ∈ [k]. Let Zije = (q⊤i ∆
e
2qj)

2.
Define Aije = q⊤i (Σ

e
2 − Σe+1

2 )qj , and A =
∑

odd e<E,i,j∈[k],i ̸=j A
2
ije. The main

lemma below shows that the sum of Zije’s are bounded away from 0.
Lemma D.1.2. There exists constants c1, c2, b1, b2 > 0 such that for any integer
2 ≤ k ≤ ds/2, for all E satisfying

b1
ds − k

k − 1
max

{
1, log

(
D

(k − 1)ds

)
, log

(
ds

k − 1

)}
< E < b2ds, (D.1)

where maxe ∥Σe
2∥22 ≤ D for some constant D, with probability 1− c1 exp (−ds),

for all Q ∈ Q, ∑
odd e<E,i,j∈[k],i ̸=j

Zije > c2(A+ Ek(k − 1)ds). (D.2)
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Proof. For any odd e < E and i ∈ [k], by definition∑
j ̸=i

Zije =
∑
j ̸=i

(Aije + q⊤i GeG
⊤
e qj − q⊤i Ge+1G

⊤
e+1qj)

2 (D.3)

Define Vi,e = Geqi for e ∈ [E], i ∈ [k]. For fixed orthonormal Q, Vi,e ∼ N (0, Ids)
and the ensemble {Vi,e}i∈[k],e∈[E]’s is independent. Therefore

q⊤i GeG
⊤
e qj − q⊤i Ge+1G

⊤
e+1qj = V ⊤

i,eVj,e − V ⊤
i,e+1Vj,e+1 (D.4)

For further simplification, we define Wi,e = [Vi,e;Vi,e+1] ∈ R2ds , and I∗ =
[Ids ,0;0,−Ids ], so

V ⊤
i,eVj,e − V ⊤

i,e+1Vj,e+1 = W⊤
i,eI

∗Wj,e (D.5)

We use the following lemma to decouple the correlations between W⊤
i,eI

∗Wj,e and
W⊤

i,eI
∗Wj′,e for j′ ̸= j, j′ ̸= i, i ̸= j:

Lemma D.1.3 (Theorem 1 of de la Peña and Montgomery-Smith [1995]). Sup-
pose {Xi} (i ∈ [k]) are independent random variables, Xi and Yi have the same
distribution. There exists some absolute constant c4 such that

Pr

∣∣∣∣∣∣
∑

i,j∈[k],i ̸=j

f(Xi, Xj)

∣∣∣∣∣∣ ≥ t

 ≤ c4 Pr

∣∣∣∣∣∣
∑

i,j∈[k],i ̸=j

f(Xi, Yj)

∣∣∣∣∣∣ ≥ t/c4

 . (D.6)

We apply Lemma D.1.3 with Xi = Wi,e and f(Xi, Xj) = Zije−E[Zije] to get

Pr

∣∣∣∣∣∣
∑

i,j∈[k],i ̸=j

Zije − E[Zije]

∣∣∣∣∣∣ ≥ t

 ≤ c4 Pr

∣∣∣∣∣∣
∑

i,j∈[k],i ̸=j

Z ′
ije − E[Z ′

ije]

∣∣∣∣∣∣ ≥ t/c4

 .

(D.7)

where Yi,e and Xi,e are identically distributed and

Z ′
ije = A2

ije + 2AijeX
⊤
i,eI

∗Yj,e + (X⊤
i,eI

∗Yj,e)
2. (D.8)

Note that {Z ′
ije} and {Z ′′

ije} are identically distributed, where

Z ′′
ije = A2

ije + 2AijeX
⊤
i,eYj,e + (X⊤

i,eYj,e)
2. (D.9)

Below we first consider the randomness in {Yi,e}, and prove that with high
probability {Yi,e} satisfies some good properties; we then show the concentration
of
∑

i,j,e Z
′′
ije conditioned on the event that {Yi,e} satisfies these properties.
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First, for fixed Q, since Yi,e = [Gevi;Ge+1vi] ∼ N (0, I2ds), if we write
Ye = [Y1,e; . . . ;Yk,e] ∈ Rk×2ds , it is a random matrix with iid standard normal
entries. We show that the ∥Ye∥2F = Θ(kds) with high probability. The following
lemma is a standard concentration bound for chi-squared variable:

Lemma D.1.4 (Corollary of Lemma 1 in Laurent and Massart [2000]). Suppose
Zi ∼ N (0, 1) for i ∈ [n]. For any t > 0,

Pr

[
n∑

i=1

Z2
i ≥ n+ 2

√
nt+ 2t

]
≤ exp(−t), (D.10)

Pr

[
n∑

i=1

Z2
i ≤ n− 2

√
nt

]
≤ exp(−t). (D.11)

Applying Lemma D.1.4 to n = Ekds entries of {Ye}Ee=1 and setting t =
Ekds/16 we get with probability 1− 2 exp(−Ekds/16),

Ekds
2
≤
∑
e

∥Ye∥2F ≤
13Ekds

8
. (D.12)

Second, we show that with high probability over the randomness of Ge, ∥Ye∥2
viewed as a function of Q satisfies ∥Ye∥2 = O(

√
ds) for all orthonormal Q. We use

the following lemma to upper bound ∥Ge∥2:

Lemma D.1.5 (Corollary 5.35 of Vershynin [2012]). Suppose G ∈ RD×d and
[G]ij ∼ N (0, 1) for all i ∈ [D], j ∈ [d]. For every t ≥ 0, with probability
1− 2 exp(−t2/2),

∥G∥2 ≤
√
D +

√
d+ t (D.13)

Applying Lemma D.1.5 with G = [Ge;Ge+1], D = 2ds, d = ds, t =
√
ds, we

get with probability 1− 2 exp(−ds/2), ∥G∥2 ≤ (2 +
√
2)
√
ds, and therefore for

all orthonormal Q ∈ Rk×ds ,

∥Ye∥2 = ∥QG⊤∥2 ≤ ∥Q∥2∥G∥2 ≤ (2 +
√
2)
√

ds. (D.14)

For any odd e < E, i ∈ [k], and fixed Ye, we prove Pei =
∑

j ̸=i Z
′′
ije concen-

trates. Once we fix Ye, the Er/2 random variables {Pei} are independent, so the
concentration of their sum is immediate. Let Y−i,e be Ye without the i-th row,

Pei =
∑
j ̸=i

Z ′′
ije =

∑
j ̸=i

A2
ije + 2X⊤

i,e

∑
j ̸=i

AijeYj,e

+X⊤
i,eY−i,eY

⊤
−i,eXi,e

(D.15)
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Define Bi,e = Y−i,eY
⊤
−i,e. Let ai,e ∈ Rk−1 be the column vector consisting of Aije

for j ̸= i.
Since Xi,e ∼ N (0, I2ds), X

⊤
i,e

(∑
j ̸=iAijeYj,e

)
is a Gaussian variable with

mean 0 and variance a⊤i,eBi,eai,e ≤ ∥ai,e∥22∥Bi,e∥2, so by Hoeffding’s inequality,
for all t ≥ 0,

Pr

2X⊤
i,e

∑
j ̸=i

AijeYj,e

 > t | Ye

 ≤ exp

(
− t2

8∥ai,e∥2∥Bi,e∥2

)
. (D.16)

By Hanson-Wright Inequality (e.g. Theorem 1.1 of Rudelson et al. [2013]), there
exists constant c5 such that

Pr
[
E[X⊤

i,eBi,eXi,e]−X⊤
i,eBi,eXi,e > t | Ye

]
≤ exp

(
−c5min

{
t2

∥Bi,e∥2F
,

t

∥Bi,e∥2

})
. (D.17)

Combining Equations (D.15) to (D.17), we get

Pr [E[Pei]− Pei > t | Ye] ≤ exp

(
− t2

32∥ai,e∥22∥Bi,e∥2

)
+exp

(
−c5min{ t2

4∥Bi,e∥2F
,

t

2∥Bi,e∥2
}
)
. (D.18)

Summing over all e ∈ [E] and i ∈ [k] we get

Pr

E
∑

e,i

Pei

−∑
e,i

Pei > t | Y1, . . . , YE

 ≤ exp

(
− t2

32
∑

e,i ∥ai,e∥22∥Bi,e∥2

)
(D.19)

+exp

(
−c5min

{
t2

4
∑

e,i ∥Bi,e∥2F
,

t

2maxe,i ∥Bi,e∥2

})
.

(D.20)

Note that E[X⊤
i,eBXi,e] = E

∑
j ̸=i(X

⊤
i,eYj,e)

2 = ∥Y−i,e∥2F so

E

∑
e,i

Pei

 =
∑
e,i

∥ai,e∥22 +
∑
e,i

∥Y−i,e∥2F = A+ (k − 1)
∑
e

∥Ye∥2F . (D.21)
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Since ∥Bi,e∥2 ≤ ∥Ye∥22, ∥Bi,e∥2F ≤ ∥Y−i,e∥2F ∥Ye∥22, taking t = 1
2E[
∑

e,i Pei],

Pr

∑
e,i

Pei <
1

2

(
A+ (k − 1)

∑
e

∥Ye∥2F

)
| Y1, . . . , YE


≤ exp

(
−(A+ (k − 1)

∑
e ∥Ye∥2F )2

128
∑

e,i ∥ai,e∥22∥Ye∥22

)

+exp

(
−c5min

{
(k − 1)2(

∑
e ∥Ye∥2F )2

16(k − 1)
∑

e ∥Ye∥2F ∥Ye∥22
,
(k − 1)

∑
e ∥Ye∥2F

2maxe ∥Ye∥22

})
. (D.22)

Let E1 denote the event that for all odd e < E, [Ge;Ge+1] ∈ R2ds×ds denote the
matrix with Ge, Ge+1 ∈ Rds×ds in its first and last ds rows, respectively, we have

∥[Ge;Ge+1]∥2 ≤ (2 +
√
2)
√

ds. (D.23)

Due to Equation (D.14) and the union bound, Pr[E1] ≥ 1−E exp(−ds/2). Condi-
tioned on E1, for all Q ∈ Q and odd e < E,

∥Ye∥2 ≤ (2 +
√
2)
√
ds. (D.24)

Let E2 denote the event that for all cover elements Q ∈ Q̃,

Ekds
2
≤
∑
e

∥Ye∥2F ≤
13Ekds

8
. (D.25)

Due to Equation (D.12) and the union bound, Pr [E2] ≥ 1− 2|Q̃| exp (−Ekds/16).
Conditioned on E1 and E2, for fixed Q ∈ Q̃, there exists constants c6, c7 such that

Pr

∑
e,i

Pei <
1

2
A+

1

4
Ek(k − 1)ds

 ≤ exp

(
−c6

(A+ Ek(k − 1)ds)
2

Ads

)
(D.26)

+exp

(
−c7min

{
(k − 1)2E2k2d2s
Ek(k − 1)d2s

,
Ek(k − 1)ds

ds

})
,

(D.27)

which implies there exists constants c8 such that

Pr

∑
e,i

Pei <
1

2
A+

1

4
Ek(k − 1)ds


≤ exp

(
−c8min

{
(A+ Ek(k − 1)ds)

2

Ads
, Ek(k − 1)

})
. (D.28)
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Note that we always have (A+Ek(k−1)ds)2

Ads
≥ Ek(k − 1). To see this, for

A > Ek(k − 1)ds,
(A+Ek(k−1)ds)2

Ads
> A

ds
> Ek(k − 1). For A ≤ Ek(k − 1)ds,

(A+Ek(k−1)ds)2

Ads
≥ (Ek(k−1)ds)2

Ek(k−1)d2s
= Ek(k − 1).

In other words, with probability 1− δ, where

δ = E exp(−ds/2) + 2|Q̃| exp (−Ekds/16) + |Q̃| exp (−c8Ek(k − 1)),
(D.29)

all Q ∈ Q̃ satisfies
∑

e,i Pei ≥ 1
4(A+Ek(k−1)ds). Combined with Lemma D.1.3,

with probability 1− c9δ, all Q ∈ Q̃ satisfies
∑

e,i,j Zije < c10(A+ Ek(k − 1)ds)
for some constants c9, c10.

For any Q∗ ∈ Q, let Q be the element in the cover closest to it, so that
ρ(Q,Q∗) = ∥Q⊤Q − Q∗⊤Q∗∥F ≤ ϵ. Let q∗i be the i-th row of Q∗, and Z∗

ije =

(q∗i
⊤∆e

2q
∗
j ). Then∑

eij

Z∗
ije =

∑
e

∥Q∗∆e
2Q

∗⊤∥2F (D.30)

=
∑
e

∥∆e
2Q

∗⊤Q∗∥2F (D.31)

≥ 1

2

∑
e

∥∆e
2Q

⊤Q∥2F − ∥∆e
2

(
Q⊤Q−Q∗⊤Q∗

)
∥2F (D.32)

≥ 1

2

∑
eij

Zije − ∥∆e
2∥22ρ(Q,Q∗)2. (D.33)

Since ∥∆e
2∥22 ≤ 2∥Σe

2∥22 + 2∥GeG
⊤
e ∥22, and conditioned on E1, ∥GeG

⊤
e ∥22 ≤ c11d

2
s

for all e, if maxe ∥Σe
2∥22 ≤ D for some constant D, we have with probability 1− δ,∑

eij

Z∗
ije ≥

c10
2
(A+ Ek(k − 1)ds)− 2E(D + c11d

2
s)ϵ

2. (D.34)

We choose ϵ2 < c10k(k−1)ds
8(D+c11d2s)

so that 2E(D + c11d
2
s)ϵ

2 < c10
4 Ek(k − 1)ds.

With this choice of ϵ, by Equation (D.34) we have∑
eij

Z∗
ije ≥

c10
4
(A+ Ek(k − 1)ds). (D.35)

By Lemma D.1.1, log(|Q̃|) ≤ k(ds−k) log(c3
√
k/ϵ) ≤ c12k(ds−k) log

(
D

(k−1)ds
+

ds
k−1

)
.
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Therefore there exists b1, b2 > 0 such that for E satisfying

b2ds > E > b1
ds − k

k − 1
max

{
1, log

(
D

(k − 1)ds

)
, log

(
ds

k − 1

)}
, (D.36)

we have

δ ≤ exp(−ds/2 + log (b2ds)) (D.37)

+ 2 exp

(
c12k(ds − k) log

(
D

(k − 1)ds
+

ds
k − 1

)
− Ekds/16

)
(D.38)

+ exp

(
c12k(ds − k) log

(
D

(k − 1)ds
+

ds
k − 1

)
− c8Ek(k − 1)

)
(D.39)

≤ c1 exp (−ds) (D.40)

for some constant c1. Therefore with probability 1− c1 exp (−ds), for all Q∗ ∈ Q,
and c2 = c10/4, ∑

eij

Z∗
ije ≥ c2(A+ Ek(k − 1)ds). (D.41)

Corollary D.1.6 (Corollary of Lemma D.1.2). Suppose 2 ≤ k ≤ r/2 ≤ ds/2. Let
P = {P ∈ Rr×ds : PP⊤ = Ir}, Q = {Q ∈ Rk×r : QQ⊤ = Ik}. For fixed
P ∈ P , there exists constants c1, c2, b1, b2 > 0 such that for all E satisfying

b1
r − k

k − 1
max

{
1, log

(
D

(k − 1)ds

)
, log

(
ds

k − 1

)}
< E < b2ds, (D.42)

where maxe ∥Σe
2∥22 ≤ D for some constant D, with probability 1− c1 exp (−ds),

for all Q ∈ Q, ∑
odd e<E

∥QP∆e
2P

⊤Q⊤∥2F > c2Ek(k − 1)ds. (D.43)

Proof. The proof mostly follows that of Lemma D.1.2, with a few modifications
below. We discretize over Q and get a ϵ-covering Q̃ of size (c3

√
k/ϵ)r(r−k).

For any Q ∈ Q, let vi be the i-th row of QP and define Zije, Aije accordingly.
For any Q∗ ∈ Q, let Q be its cover element, so ρ(Q,Q∗) = ∥Q⊤Q−Q∗⊤Q∗∥F ≤ ϵ.
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Let q∗i be the i-th row of Q∗P , and Z∗
ije = (q∗i

⊤∆e
2q

∗
j ). Then∑

eij

Z∗
ije =

∑
e

∥Q∗P∆e
2P

⊤Q∗⊤∥2F (D.44)

=
∑
e

∥P∆e
2P

⊤Q∗⊤Q∗∥2F (D.45)

≥ 1

2

∑
e

∥P∆e
2P

⊤Q⊤Q∥2F − ∥P∆e
2P

⊤
(
Q⊤Q−Q∗⊤Q∗

)
∥2F (D.46)

≥ 1

2

∑
eij

Zije − ∥P∆e
2P

⊤∥22ρ(Q,Q∗)2 (D.47)

≥ 1

2

∑
eij

Zije − ∥∆e
2∥22ρ(Q,Q∗)2 (D.48)

Thus with the same choice of ϵ as Lemma D.1.2, log(|Q̃|) ≤ k(r−k) log(c3
√
k/ϵ) ≤

c12k(r − k) log
(

D
(k−1)ds

+ ds
k−1

)
. The rest of the argument is identical.

Lemma D.1.7. Let P = {P ∈ R2×ds : PP⊤ = I2}. Suppose Σ2 = Σ1
2 − Σ2

2 +

G1G
⊤
1 −G2G

⊤
2 and Σ′

2 = Σ1
2 − Σ3

2 +G1G
⊤
1 −G3G

⊤
3 , where Ge ∈ Rds×ds and

[Ge]ij ∼ N (0, 1) for all e ∈ [3], i, j ∈ [ds]. For fixed P ∈ P , with probability 1,
no vector q ∈ R2 satisfies ∥q∥2 = 1 and

q⊤Σ2q = 0, q⊤Σ′
2q = 0. (D.49)

Proof. For any fixed G1, G2, consider the system of quadratic equations over two
variables,

{q⊤Σ2q = 0, ∥q∥2 = 1}. (D.50)

With probability 1, it has at most 4 real solutions. Conditioned on G1, G2, consider
the third quadratic equation where the randomness is in G3.

{q⊤Σ′
2q = 0}. (D.51)

With probability 1, any fixed solution from the first system does not satisfy this.

The following lemma is trivial so proof is omitted:
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Lemma D.1.8. Suppose p ∈ Rds and ∥p∥2 = 1. Suppose Σ2 = Σ1
2−Σ2

2+G1G
⊤
1 −

G2G
⊤
2 , where Ge ∈ Rds×ds and [Ge]ij ∼ N (0, 1) for e ∈ [2], i, j ∈ [ds]. With

probability 1, no scalar q ̸= 0 satisfies

q2p⊤Σ2p = 0. (D.52)

D.2 Proof of Theorem 5.4.2

Proof. Denote the unit-norm classifier β. For any environment with mean (µ1, µ
i
2)

and covariance Σe ⪰ σminI , the accuracy of β can be written

E[1(sign(β⊤x) = y] (D.53)

= p(y = 1)p(β⊤x ≥ 0 | y = 1) + p(y = −1)p(β⊤x < 0 | y = −1) (D.54)

=
1

2

[
1− Φ

(
−β⊤

1 µ1 + β⊤
2 µ

i
2√

β⊤Σeβ

)]
+

1

2
Φ

(
β⊤
1 µ1 + β⊤

2 µ
i
2√

β⊤Σeβ

)
(D.55)

= Φ

(
β⊤
1 µ1 + β⊤

2 µ
i
2√

β⊤Σeβ

)
, (D.56)

where Φ is the standard normal CDF. Observe that Φ is monotone, and there-
fore a training accuracy of at least γ on each environment implies that for each
environment,

γ ≤ Φ

(
β⊤
1 µ1 + β⊤

2 µ
i
2√

β⊤Σβ

)
(D.57)

≤ Φ

(
β⊤
1 µ1 + β⊤

2 µ
i
2√

σmin

)
. (D.58)

Applying the inverse CDF (which is also monotone) and rearranging, we have

β⊤
2 µ

i
2 ≥
√
σminΦ

−1(γ)− β⊤
1 µ1, (D.59)

which implies

β⊤
1 µ1 − β⊤

2 µ
i
2 ≤ 2β⊤

1 µ1 −
√
σminΦ

−1(γ). (D.60)

If γ ≥ Φ
(

2∥µ1∥√
σmin

)
≥ Φ

(
2β⊤

1 µ1√
σmin

)
then we have β⊤

1 µ1 − β⊤
2 µ

i
2 ≤ 0 for all environ-

ments and therefore the classifier has accuracy ≤ 1
2 on all test environments.

255



D.3 Proof of Theorem 5.4.3

Definition D.3.1. For a positive definite matrix A ∈Matd×d(R) and vector b ∈ Rd,
the associated ellipsoid EA,b ⊆ Rd is given by

EA,b = {x ∈ Rd : x⊤Ax− b⊤x = 0}.
Observe that the origin is contained in any such ellipsoid EA,b. Therefore, any

collection of ellipsoids EAi,bi has the origin as a trivial point in its intersection. Our
main result ensures the existence of another (non-trivial) intersection of any d such
ellipses whenever the vectors bi are linearly independent.
Theorem D.3.2. If b1, . . . , bd ∈ Rd are linearly independent and A1, . . . , Ad are
positive-definite matrices, then ∣∣∣∣∣

d⋂
i=1

EAi,bi

∣∣∣∣∣ ≥ 2. (D.61)

To prove this result we use technical tools from differential topology. The
most central tool, Proposition D.3.6, ensures that the total number of intersection
points between two manifolds of complementary dimensions k, d− k is even when
certain generic tranversality conditions hold. Using these techniques, we show that∣∣∣⋂d

i=1EAi,bi

∣∣∣ ≥ 2 for almost all matrices A1, . . . , Ad, as long as b1, . . . , bd are
linearly independent. Then we use a continuity argument to extend the result to all
positive definite matrices A1, . . . , Ad.

Throughout we say a function is smooth to mean it is infinitely differentiable,
i.e. C∞. All manifolds considered are smooth, i.e. they have a smooth structure.
When F (x, y) has two arguments we denote by Fx the function Fx(y) = F (x, y)
of y given by fixing x, and similarly define Fy. If x ∈ X is a point in the smooth
manifold X , we denote by Tx(X) its tangent space, which is intuitively the vector
space of all tangent vectors to X at x. The derivative of a smooth map f : X → Y
at x ∈ X is a linear map dfx : Tx(X)→ Tf(x)(Y ).
Definition D.3.3. [Guillemin and Pollack, 2010, Chapter 1.5]

Let X,Y, Z be smooth manifolds (without boundary) such that Z ⊆ Y . The
smooth map f : X → Y is tranverse to Z if for each x ∈ X with f(x) ∈ Z, it
holds that

Image(dfx) + Tf(x)(Z) = Tf(x)(Y ).

If X,Z ⊆ Y are both submanifolds of Y , we say they are transverse if the
inclusion ιX : X ↪→ Y is transverse to Z. Equivalently, this means that for any
x ∈ X ∩ Z,
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Tx(X) + Tx(Z) = Tx(Y ).

Roughly speaking, smooth two manifolds X,Z are transversal if all intersection
points are “typical”. For example, if dim(X) + dim(Z) < dim(Y ), then X,Z
being transverse is equivalent to their intersection being empty. This corresponds to
the intuition that their total dimension is too small for them to generically intersect.
If dim(X) + dim(Z) = dim(Y ), transversality rules out “unstable” intersections
such as a line tangent to a circle.
Proposition D.3.4. [Guillemin and Pollack, 2010, Chapter 1.5]

The intersection W = X ∩ Z of two transversal submanifolds X,Z ⊆ Y is
itself a submanifold of Y , and dim(W ) = dim(X) + dim(Z)− dim(Y ).
Proposition D.3.5. [Guillemin and Pollack, 2010, Chapter 2.3]

Suppose that F : X × S → Y is a smooth map of manifolds, and let Z be a
sub-manifold of Y . If F is transversal to Z, then for almost every s ∈ S, the map
fs = F (·, s) : X → Y is also transversal to Z.
Proposition D.3.6. [Guillemin and Pollack, 2010, Chapter 2.4, Exercise 5]

Suppose the smooth, compact manifolds X,Y ⊆ Rd are transversal, and that
dim(X) + dim(Y ) = d. Then |X ∩ Y | is finite and even.
Remark D.3.7. Proposition D.3.6 follows from the methods of [Guillemin and
Pollack, 2010, Chapter 2.4], which shows that the parity of |X ∩ Y | is invariant
under homotopy as long as transversality is enforced. One simply argues that by a
homotopy X → X ′, Y → Y ′, we can arrange that |X ′ ∩ Y ′| = 0 by translating X
far away and invoking compactness.
Lemma D.3.8. The tangent space T0EA,b is exactly the orthogonal complement
b⊥.

Proof. Since EA,b is an ellipsoid, it is a smooth manifold of dimension d − 1. If
γ : [0, 1] → EA,b is a smooth curve with γ(0) = 0, then we claim ⟨b, γ′(t)⟩ = 0.
This suffices to prove the desired result since γ′(t) can be any vector in T0EA,b.
Indeed, differentiating the equation for EA,b gives

0 = 2
d

dt
⟨0, Aγ(t)⟩ (D.62)

=
d

dt
⟨γ(t), Aγ(t)⟩|t=0 (D.63)

=
d

dt
⟨b, γ(t)⟩|t=0 (D.64)

= ⟨b, γ′(t)⟩|t=0. (D.65)
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Set A◦ to be the set of all d× d strictly positive-definite matrices with distinct
eigenvalues. Note that A◦ is open in the space of all positive definite matrices, and
its complement has Lebesgue measure 0. Denote by Sd−1 ⊆ Rd the unit sphere so
that (c1, . . . , cd) ∈ Sd−1 if and only if

∑d
i=1 c

2
i = 1.

Proposition D.3.9. [Serre, 2010, Theorem 5.3]
For any A0 ∈ A◦, there is an open neighborhood UA0 ⊆ A◦ of A0 such that

the eigenvalues λ1(A) > · · · > λd(A) and associated orthonormal eigenvectors
v1, . . . , vd can be chosen to depend smoothly on the entries of A ∈ UA0 .

We remark that is it impossible to make a globally smooth choice of the eigen-
vectors and eigenvalues as above. This is because of problems caused by higher
multiplicity eigenvalues, and also by the need to choose a sign for the eigenvectors.
Lemma D.3.10. For A ∈ A◦ and non-zero b ∈ Rd, let λ1 > · · · > λd be
the eigenvalues of A, with associated orthonormal eigenvectors v1, . . . , vd. Then
x ∈ EA,b if and only if x = x0 + x1 where x0 =

A−1b
2 and

x1 =

√
b⊤A−1b

2

d∑
i=1

civi√
λi

for (c1, . . . , cd) ∈ Sd−1.

Proof. Writing x = x0 + x1, we derive

x⊤1 Ax1 + x⊤1 b+
b⊤A−1b

4
= x⊤1 Ax1 + 2x⊤1 Ax0 + x0Ax0

= x⊤Ax

= b⊤(x1 + x0) (D.66)

= b⊤x1 +
b⊤A−1b

2
.

Since we used the condition x ∈ EA,b only in reaching Equation (D.66), the
initial and final expressions are equal if and only if x ∈ EA,b. It follows that
x = x0 + x1 ∈ EA,b if and only if

x⊤1 Ax1 =
b⊤A−1b

4
.

This easily leads to the parametrization given and concludes the proof.

Lemma D.3.11. Let Mk ⊆ Rd be a compact manifold of dimension k ≥ 1 passing
through the origin, and such that T0(M

k) ⊊ b⊥. Then for all but a measure-zero
set of positive-definite matrices A, the ellipsoid EA,b is transversal to Mk.
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Proof of Lemma D.3.11. Fixing A0 ∈ A◦, Proposition D.3.9 ensures the existence
of an open neighborhood UA0 ⊆ A◦ of A0 on which the eigenvalues λ1(A) >
λ2(A) > · · · > λd(A) and associated orthonormal eigenvectors v1(A), . . . , vd(A)
are defined smoothly on all A ∈ UA0 . Define F : UA × Sd−1 → Rd by:

F (A, (c1, . . . , cd)) =
A−1b

2
+

√
b⊤A−1b

2

d∑
i=1

civi(A)√
λi(A)

.

Lemma D.3.10 implies that for each fixed A we obtain a diffeomorphism
FA : Sn−1 → EA,b. Moreover, F is smooth by construction. We claim that F and
Mk are transversal. To check this, we must verify that for any z = F (A, c) ∈Mk,
it holds that

Image
(
dF ◦ TF−1(z)(UA0 × SN−1)

)
+ Tz(M

k) = Rd.

First, recall that fixing A = A0, the map FA0 : Sn−1 → EA0,b is a diffeomor-
phism. Therefore

Image
(
dF ◦ TF−1(z)(UA0 × SN−1)

)
contains the tangent space Tz(EA,b) = b⊥ of EA,b at z. When z = 0 is the origin,
the assumption T0(M

k) ⊊ b⊥ implies

dim
(

Image
(
dF ◦ TF−1(z)(UA0 × SN−1)

)
+ Tz(M

k)
)
≥ dim(b⊥) + 1 = d

and the claim follows. Supposing for the remainder of the proof that z ̸= 0 is
not the zero vector, we claim that in fact

Image
(
dF ◦ TF−1(z)(UA0 × SN−1)

)
+ Tz(M

k) = Rd,

i.e. the tangent space of Mk is unnecessary. Indeed fixing c ∈ SN−1, we may vary
A ∈ UA along the path γA(t) =

A
t for t ∈ (1− ε, 1 + ε). It is not difficult to see

directly that

F (tA, c) = tF (A, c).

Therefore differentiating F along γ gives

d

dt
F (γA(t), (c1, . . . , cd))|t=1 = F (A, c).

This means z ∈ Image
(
dF ◦ TF−1(z)(UA0 × SN−1)

)
+ Tz(M

k). Because
EA,b is strictly convex and passes through the origin, it follows that the tangent

259



hyperplane to EA,b at z does not pass through the origin, hence z /∈ Tz(EA,b).
We have establish that Image

(
dF ◦ TF−1(z)(UA0 × SN−1)

)
+ Tz(M

k) contains
both Tz(EA,b) and z /∈ Tz(EA,b). Since dim (Tz(EA,b)) = d − 1 it follows that
Image

(
dF ◦ TF−1(z)(UA0 × SN−1)

)
+ Tz(M

k) = Rd for z ̸= 0 as claimed. This
shows the desired transversality for almost all A ∈ UA0 .

To extend the transversality to all of A◦
Mk , we use the fact that A◦

Mk is σ-
compact, i.e. is the union of countably many compact sets. In fact, any open subset
of Rd is σ-compact. As a consequence, A◦

Mk is contained the union of countably
many of open neighborhoods UA0 as constructed above. Since the set of matrices A
inside each UA0 violating the transversality statement has measure 0, we conclude
by countable additivity that the set of A ∈ A◦

Mk violating transversality has measure
0 as well. This concludes the proof.

Lemma D.3.12. Fix linearly independent vectors b1, . . . , bd ∈ Rd and let A1, . . . , Ad

be positive-definite matrices sampled independently from probability distributions
on R(

d+1
2 ) which are absolutely continuous with respect to Lebesgue measure (i.e.

which have a density). Then ∣∣∣∣∣
d⋂

i=1

EAi,bi

∣∣∣∣∣ ≥ 2

holds almost surely.

Proof. We proceed iteratively. For k = d− 1, . . . , 1 set

Mk = EA1,b1 ∩ · · · ∩ EAd−k,bd−k
.

We show by induction that Mk is almost surely a smooth compact manifold of
dimension k. The base case k = d− 1 is obvious, and for smaller k, we have

Mk = Mk+1 ∩ EA,b.

Lemma D.3.11 combined with Proposition D.3.4 now implies that Mk is a
smooth compact manifold of dimension k almost surely, completing the inductive
step.

Finally Proposition D.3.6 implies that assuming M1 and EAd,bd are transverse
(which holds with probability 1), the number of intersection points |M1 ∩ EAd,bd |
is finite and even. Of course |M1 ∩ EAd,bd | =

∣∣∩di=1EAi,bi

∣∣. Since ∩di=1EAi,bi

trivially contains the origin, it must also contain another point. This completes the
proof.
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Proof of Theorem D.3.2. Given A1, . . . , Ad, consider a sequence of d-tuples(
A

(k)
1 , . . . , A

(k)
d

)
k≥1

converging to (A1, . . . , Ad), i.e. satisfying

lim
k→∞

A
(k)
i = Ai

for each i ∈ [d]. Moreover assume that
∣∣∣⋂i∈[d]EA

(k)
i ,bi

∣∣∣ ≥ 2 for each k; such a
sequence certainly exists by Lemma D.3.12. We also assume that the estimates

ℓ ≤ λd(A
(k)
i ) ≤ λ1(A

(k)
i ) ≤ L (D.67)

hold for some positive constants ℓ, L where λd, λ1 are the minimum and maxi-
mum eigenvalues. This last assumption is without loss of generality by restricting
the values of k to k ≥ k0 for suitably large k0. For each k, choose a non-zero point

xk ∈
⋂
i∈[d]

E
A

(k)
i ,bi
\{0}.

Such points exist because |⋂i∈[d]EA
(k)
i ,bi
| ≥ 2. We claim the norms |xk| are

bounded away from infinity, bounded away from zero, and that any sub-sequential
limit x∗ satisfies

x∗ ∈
⋂
i∈[d]

EAi,bi .

It follows from the above claims that at least one sub-sequential limit x∗ exists
(using the Bolzano-Weierstrass theorem) and that |x∗| ̸= 0. Therefore the above
claims suffice to finish the proof, and we now turn to their individual proofs.

First, since x⊤k A
(k)
i xk ≥ λd(A

(k)
i )|xk|2 ≥ ℓ|xk|2 and |b⊤i xk| ≤ |b⊤i | · |xk|, it

follows that |xk| ≤ |b1|
ℓ for all k, so in particular these norms are bounded above.

Next we show the values |xk| are bounded away from 0. Suppose for sake of
contradiction that |xaj | → 0 along some subsequence (aj)j≥1. Then

⟨bi, xaj ⟩ = x⊤ajA
(aj)
i xaj ≤ L|xaj |2 = o(|xaj |).

Defining the rescaled unit vectors x̂aj =
xaj

|xaj |
, it follows that

lim
j→∞
⟨bi, x̂aj ⟩ = 0

for each i. As the x̂aj are unit vectors, the Bolzano-Weierstrass theorem guar-
antees existence of a subsequential limit x̂∗ which is also a unit vector. It follows
⟨bi, x̂∗⟩ = 0 for all i ∈ [d]. However because the vectors bi are linearly independent,
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this implies |x̂∗| = 0 which is a contradiction. We conclude that |xk| is bounded
away from 0.

Finally we show that any subsequential limit satisfies x∗ ∈ EA,b. With b fixed,
observe that the functions gA,b(x) = x⊤Ax− b⊤x are uniformly Lipschitz for A
obeying the eigenvalue bound (Equation (D.67)) and |x| ≤ |b1|

ℓ . It follows that

lim
k→∞

g
A

(k)
i ,bi

(x∗) = lim
k→∞

g
A

(k)
i ,bi

(xk) = 0.

Having established the three claims we conclude the proof of Theorem D.3.2.

D.4 Proof of Theorem 5.4.4

Proof. Define A,B as the left r and right ds columns of S. The optimal output is
defined by[

A⊤

B⊤

]
w∗ =

[
Σ−1
1 µ1

0

]
⇐⇒ A⊤w∗ = Σ−1

1 µ1, B
⊤w∗ = 0 (D.68)

⇐⇒ Σ1A
⊤w∗ = µ1, PBw

∗ = 0. (D.69)

The algorithmic output satisfies

(I − PB)AΣ1A
⊤(I − PB)w

′ = (I − PB)Aµ1, PBw
′ = 0 (D.70)

=⇒ (I − PB)AΣ1A
⊤w′ = (I − PB)Aµ1, PBw

′ = 0 (D.71)

Multiple the first equation on the RHS by its pseudo-inverse

(A⊤(I − PB)A)−1A⊤(I − PB)AΣ1A
⊤w′ = (A⊤(I − PB)A)−1A⊤(I − PB)Aµ1

(D.72)

=⇒ Σ1A
⊤w′ = µ1.

(D.73)

D.5 Additional Experimental Details

For Noised MNIST dataset, for each class c ∈ {0, . . . , 9}, we first generative
a class signature xc ∈ R28 ∼ N(0, 2.5I28). For each of the E = 12 groups, we
generate a training spurious covariance Σe

2 = GeG
⊤
e and a test spurious covariance

Σe
2
′ = G′

eG
′
e
⊤. The noise code for digit c in training environment e is drawn from
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N (xc,Σ
e
2). In test environment, the noise is drawn from N (xc′ ,Σ

e
2
′) for random

label c′ ∼ unif{0, . . . , 9}).
We use SGD optimizer for both datasets. The hyperparameters are the coef-

ficients for coral penalty, orthonormal penalty, and irm penalty λcoral, λon, λirm,
and learning rate lr. For each algorithm in Figures 5.1 and 5.2, we select penal-
ization strengths from {0.1, 1, 10, 100} and lr from {0.1, 0.01, 0.001, 0.0001} that
achieves highest average test accuracy within 500 epochs (for Gaussian dataset) and
400 epochs (for Noised MNIST). Gaussian dataset has batch size 100 and Noised
MNIST has batch size 1000 from each training environment.

The average test accuracies for each algorithm with error bars are shown in Fig-
ures 5.1 and 5.2. We fix the datasets and use different random seeds for algorithmic
randomness. Error bar indicates mean and standard deviation across 5 runs.

The MLP architecture in Figure 5.2 is in Table D.1:

Table D.1: MLP network architectures for Noised MNIST

Layers 1 2 3 4 6
Widths 24 96,24 128,50,24 192,96,48,24 400,300,200,100,50,24

Table D.2: Matching features at 3 layers with identical widths does not have
significant advantage over matching only at the last layer (CORAL).

Layer widths 24 128, 50, 24 24, 24, 24
ERM 58.6± 0.4 56.0± 0.6 62.1± 0.6

IRM 59.0± 0.2 56.1± 0.6 62.3± 1.0

CORAL (only match last layer) 69.1± 1.0 65.2± 1.0 67.2± 0.4

CORAL (match-disjoint) 69.1± 1.0 75.5± 1.0 70.6± 0.9

CORAL (match-all) 69.1± 1.0 77.9± 0.4 70.4± 0.9

To answer (Q5), we compare performances of algorithms on a 3-layer MLP that
does not shrink feature dimensions (right column) with those on a 3-layer MLP
that does (middle column) and a 1-layer MLP (left column) in Table D.2. Results
show that without shrinking feature dimensions, matching at multiple layers does
not improve over naive CORAL on a smaller architecture.

No run in any of our experiments take more than 10 minutes on a single GPU.
MNIST dataset [LeCun et al., 1998] is made available under the terms of the
Creative Commons Attribution-Share Alike 3.0 license.
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Appendix E

Appendix for Chapter 6

E.1 Proof of Theorem 1

Theorem 6.4.2. Suppose σmax ≥ σmin > 0 such that ∀e ∈ E , σminI ⪯ ∇2fe ⪯
σmaxI . Define g as the minimum gradient norm that is guaranteed to be forceable
by the adversary: g := minβ∈B maxλ∈∆E

∥∇f(β)∥2. Then for all t ∈ N it holds
that Vt >

g2σmin

16σ2
max

log t.

Proof. Define Ft(z) =
∑t

s=1 fs(z); since each f is convex, this sum is convex
as well. Let β∗

t−1 be the minimizer of Ft−1 (by Lemma E.3.1, this will lie in B),
and let z ∈ B be arbitrary. Finally, note that ∇2Ft ⪯ tσmaxI . Then we have the
following Taylor expansion:

Ft(z) = Ft−1(z) + ft(z) (E.1)

= Ft−1(β
∗
t−1 + (z − β∗

t−1)) + ft(z) (E.2)

≤ Ft−1(β
∗
t−1) +∇Ft−1(β

∗
t−1)

T (z − β∗
t−1)

+
(t− 1)σmax

2
∥z − β∗

t−1∥22 + ft(z) (E.3)

= Ft−1(β
∗
t−1) +

(t− 1)σmax

2
∥z − β∗

t−1∥22 + ft(z), (E.4)

where we have used the fact that∇Ft−1(β
∗
t−1) = 0 by definition. Thus,

t∑
s=1

fs(β̂s)− Ft(z) ≥
(

t−1∑
s=1

fs(β̂s)− Ft−1(β
∗
t−1)

)

+ (ft(β̂t)− ft(z)−
(t− 1)σmax

2
∥z − β∗

t−1∥22). (E.5)
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Then we can write

Vt = min
β̂1∈B

max
λ1

. . . min
β̂t∈B

max
λt,z∈B

(
t∑

s=1

ft(β̂t)− Ft(z)

)
(E.6)

≥ min
β̂1∈B

max
λ1

. . . min
β̂t−1∈B

max
λt−1

[( t−1∑
s=1

fs(β̂s)− Ft−1(β
∗
t−1)

)
(E.7)

+ min
β̂t∈B

max
λt,z∈B

(
ft(β̂t)− ft(z)−

(t− 1)σmax

2
∥z − β∗

t−1∥22
)]

. (E.8)

Thus, by lower bounding the second term, we can unroll the recursion and lower
bound the total regret. In particular, showing a bound of Ω(1t ) will result in an overall
regret lower bound of Ω(log T ), which would imply that ERM achieves minimax-
optimal rates for OOD generalization (this is also how we prove Corollary 6.4.3).

We proceed by lower bounding the inner optimization term. We consider two
possibilities for the choice of β̂t. Suppose ∥β̂t−β∗

t−1∥22 ≥ g2

8tσ2
max

. Then by choosing

z = β∗
t−1 the inner term can be lower bounded by min

β̂t∈B maxλt

(
ft(β̂t) −

ft(β
∗
t−1)

)
. Taylor expanding ft around β∗

t−1 gives

ft(β̂t)− ft(β
∗
t−1) ≥ ∇ft(β∗

t−1)
T (β̂t − β∗

t−1) +
σmin

2
∥β̂t − β∗

t−1∥22. (E.9)

By Lemma E.3.2, the adversary can always play λt such that ∇ft(β∗
t−1) = 0. So

plugging this in we get

min
β̂t∈B

max
λt

(
ft(β̂t)− ft(β

∗
t−1)

)
≥ σmin

2
∥β̂t − β∗

t−1∥22 (E.10)

≥ g2σmin

16tσ2
max

. (E.11)

Now consider the case where ∥β̂t − β∗
t−1∥22 < g2

8tσ2
max

. Suppose the adversary plays

any λt such that ∥∇ft(β̂t)∥2 ≥ g (by definition, such a choice is always possible).
Here we again split on cases, considering the possible values of ∇ft(β∗

t−1)
T (β̂t −

β∗
t−1):

Case 1: ∇ft(β∗
t−1)

T (β̂t − β∗
t−1) ≥ g2σmin

16tσ2
max
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Following the same steps as previously, we find the lower bound

ft(β̂t)− ft(β
∗
t−1) ≥ ∇ft(β∗

t−1)
T (β̂t − β∗

t−1) +
σmin

2
∥β̂t − β∗

t−1∥22 (E.12)

≥ ∇ft(β∗
t−1)

T (β̂t − β∗
t−1) (E.13)

≥ g2σmin

16tσ2
max

. (E.14)

Case 2: ∇ft(β∗
t−1)

T (β̂t − β∗
t−1) <

g2σmin

16tσ2
max

In this case the lower bound follows directly from Lemma E.3.3.
Thus the lower bound is shown in all cases; it follows that

Vt ≥ min
β̂1∈B

max
λ1

. . . min
β̂t−1∈B

max
λt−1

[(
t−1∑
s=1

fs(β̂s)− Ft−1(β
∗
t−1)

)
+

g2σmin

16tσ2
max

]
(E.15)

= min
β̂1∈B

max
λ1

. . . min
β̂t−1∈B

max
λt−1

[
t−1∑
s=1

fs(β̂s)− Ft−1(β
∗
t−1)

]
+

g2σmin

16tσ2
max

(E.16)

= Vt−1 +
g2σmin

16tσ2
max

. (E.17)

Expanding the recursion finishes the proof.

E.2 Proof of Existence for Theorem 6.4.4

We restate Theorem 6.4.4 for convenience:
Theorem 6.4.4. No algorithm can guarantee sublinear regret against bounded
affine combinations of a finite set of strongly convex losses.

In the main body, we prove the primary claim. Here we include proof of the
existence of a regression task over a set of distributions which induces the loss
functions we construct in our proof.

Proof. Suppose we are regressing labels y ∈ R on observations z ∈ R2 with
squared loss. We’ll define our classifier with a parameter β such that given an
observation (z1, z2) we predict β2z1 + βz2. This is of course an unusual regression
setup, but we’re just giving an existence proof for a simple lower bound.

The first environment will assign all its probability mass to a single example
(z1, z2, y) = (0, 1, 0). Thus, if we choose a parameter β, in this environment we
will suffer risk E[(βz21 + βz2 − y)2] = β2. This produces the first environment,
loss fe1(β) = β2.
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We define the second environment as having two possible samples: one is

(z1, z2, y) = (0,
√

2α+1
2α , 0) and the other is (z1, z2, y) = (

√
2α+1
2α , 0, 0). Thus, the

first sample induces loss 2α+1
2α β2, and the second induces loss 2α+1

2α β4. Now for the
probabilities: we assign probability 1

2α+1 to the first point and 2α
2α+1 to the second

point. Clearly these sum to 1, and taking the expectation over losses we see that the
overall risk is β4 + 1

2αβ
2, as desired.

E.3 Lemmas

Lemma 6.4.1. RecallRe(β) is defined as the risk of β on the distribution pe. Then
for all λ ∈ ∆E , it holds thatRλ(β) =

∑
e∈E λeRe(β).

Proof. Using Fubini’s theorem, we have

Rλ(β) =

∫
X×Y

[∑
e∈E

λep
e(x, y)

]
ℓ(β, (x, y)) d(x, y) (E.18)

=
∑
e∈E

λe

∫
X×Y

pe(x, y)ℓ(β, (x, y)) d(x, y) (E.19)

=
∑
e∈E

λeRe(β).

Lemma E.3.1. For any Ft =
∑t

s=1 ft, there exist convex coefficients λ̂ such that

Ft = t
∑
e∈E

λ̂efe. (E.20)

Proof. Every loss function ft can be written as a convex combination of the original
environment losses:

ft =
∑
e∈E

λt,efe. (E.21)

So, write

Ft =

t∑
s=1

ft =

t∑
s=1

∑
e∈E

λt,efe =
∑
e∈E

(
t∑

s=1

λt,e

)
fe. (E.22)

Clearly,
∑

e∈E
(∑t

s=1 λt,e

)
= t. So, defining λ̂e := 1

t

(∑t
s=1 λt,e

)
gives the

desired result.
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Lemma E.3.2. For any solution β∗
t−1 which minimizes the sum of previously seen

losses Ft−1, there exists a convex combination of losses ft playable by the adversary
for which ∇ft(β∗

t−1) = 0.

Proof. By Lemma E.3.1, we can write Ft−1 = (t− 1)
∑

e∈E λ̂efe for some convex
coefficients λ̂. Define ft =

∑
e∈E λ̂efe =

1
t−1Ft−1. Since β∗

t−1 minimizes Ft−1 it
follows that

∇ft(β∗
t−1) =

1

t− 1
∇Ft−1(β

∗
t−1) = 0. (E.23)

Lemma E.3.3. Let β̂t, λt be such that ∥β̂t−β∗
t−1∥22 < g2

8tσ2
max

and ∥∇ft(β̂t)∥2 ≥ g.

Define z := β∗
t−1 − c∇ft(β̂t), where c := 1/2tσmax. If∇ft(β∗

t−1)
T (β̂t − β∗

t−1) <
g2σmin

16tσ2
max

, then

ft(β̂t)− ft(z)−
(t− 1)σmax

2
∥z − β∗

t−1∥22 ≥
g2σmin

16tσ2
max

. (E.24)

Proof. Expanding ft around β̂t,

ft(β̂t)− ft(z) ≥ −∇ft(β̂t)T (z − β̂t)−
σmax

2
∥z − β̂t∥22, (E.25)

which gives

ft(β̂t)− ft(z)−
(t− 1)σmax

2
∥z − β∗

t−1∥22

≥ ∇ft(β̂t)T (β̂t − z)− σmax

2

(
∥z − β̂t∥22 + (t− 1)∥z − β∗

t−1∥22
)

= ∇ft(β̂t)T (β̂t − β∗
t−1 + c∇ft(β̂t))

− σmax

2

(
∥β∗

t−1 − β̂t − c∇ft(β̂t)∥22 + (t− 1)∥c∇ft(β̂t)∥22
)
. (E.26)

By the triangle inequality,

∥β∗
t−1 − β̂t − c∇ft(β̂t)∥2 ≤ ∥β∗

t−1 − β̂t∥2 + c∥∇ft(β̂t)∥2, (E.27)

and therefore

1

2
∥β∗

t−1 − β̂t − c∇ft(β̂t)∥22 ≤ ∥β∗
t−1 − β̂t∥22 + c2∥∇ft(β̂t)∥22. (E.28)
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Continuing with the lower bound in Equation (E.26),

≥ ∇ft(β̂t)T (β̂t − β∗
t−1) + c∥∇ft(β̂t)∥22

− σmax

(
∥β∗

t−1 − β̂t∥22 + c2∥∇ft(β̂t)∥22
)
− (t− 1)σmaxc

2

2
∥∇ft(β̂t)∥22

(E.29)

≥ ∇ft(β̂t)T (β̂t − β∗
t−1) +

(
c− 1

8tσmax
− (t+ 1)c2σmax

2

)
∥∇ft(β̂t)∥22,

(E.30)

where we’ve used the upper bound on ∥β∗
t−1 − β̂t∥22 and simplified. Recalling that

c = 1
2tσmax

and noting that t+1
t2
≤ 2

t ,

= ∇ft(β̂t)T (β̂t − β∗
t−1) +

(
1

2tσmax
− 1

8tσmax
− (t+ 1)

8t2σmax

)
∥∇ft(β̂t)∥22

(E.31)

≥ ∇ft(β̂t)T (β̂t − β∗
t−1) +

∥∇ft(β̂t)∥22
8tσmax

(E.32)

≥ ∇ft(β̂t)T (β̂t − β∗
t−1) +

g2

8tσmax
. (E.33)

By strong convexity,

(∇ft(β∗
t−1)−∇ft(β̂t))T (β∗

t−1 − β̂t) ≥ σmin∥β∗
t−1 − β̂t∥22, (E.34)

and therefore

∇ft(β̂t)T (β̂t − β∗
t−1) ≥ σmin∥β∗

t−1 − β̂t∥22 −∇ft(β∗
t−1)

T (β̂t − β∗
t−1) (E.35)

> − g2σmin

16tσ2
max

, (E.36)

where the second inequality is due to the assumption in the Lemma statement.
Plugging this in above gives

∇ft(β̂t)T (β̂t − β∗
t−1) +

g2

8tσmax
> − g2σmin

16tσ2
max

+
g2

8tσmax
(E.37)

≥ g2σmin

8tσ2
max

− g2σmin

16tσ2
max

(E.38)

=
g2σmin

16tσ2
max

, (E.39)

completing the proof.
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Appendix F

Appendix for Chapter 7

F.1 Additional Discussion

F.1.1 Connection to Anchor Regression

The DARE objective for linear regression is written

min
β

∑
e∈E

Epe [(β
⊤Σ−1/2

e (x− µe)− y)2] s.t. β⊤Σ−1/2
e µe = 0. ∀e ∈ E .

(F.1)
The idea of adjusting for domain projections has similarities to Anchor Regression
[Rothenhäusler et al., 2021], an objective which linearly regresses separately on the
projection and rejection of the data onto the span of a set of anchor variables. These
variables represent some (known) measure of variability across the data, and the
resulting solution enjoys robustness to pointwise-additive shifts in the underlying
SCM. If we define the anchor variable to be a one-hot vector indicating a sample’s
environment, the Anchor Regression objective minimizes

1

|E|
∑
e∈E

Epe

[
ℓ(β⊤(x− µe), y − µy,e) + γℓ(β⊤µe, µy,e))

]
, (F.2)

where ℓ is the squared loss and µy,e = Epe [y]. Here we see that Anchor Regression
is “adjusting” in a sense, by regressing on the residuals, though the objective also
regresses the mean prediction onto the target mean. Unfortunately, this requires
access to the target mean, which is unavailable in logistic regression due to the
lack of a good estimator for E

[
log p(y=1|x)

p(y=−1|x)

]
. Nevertheless, if we (i) assume the

feature covariance is fixed for all environments and (ii) assume the target mean is
zero for all environments, we observe that the above objective becomes equivalent

271



to the Lagrangian form of DARE for linear regression (F.1). Alternatively, we could
imagine combining the two by keeping Anchor Regression’s use of separate target
means while adding DARE’s feature covariance whitening which would give

1

|E|
∑
e∈E

Epe

[
ℓ(β⊤Σ−1/2

e (x− µe), y − µy,e) + γℓ(β⊤Σ−1/2
e µe, µy,e)

]
, (F.3)

However, this still requires us to estimate the target mean, so it is unclear if or how
this objective could be applied to the task of classification.

F.1.2 On Assumption 7.5.1 and the Conditions Assumed Without Loss
of Generality

It may not be immediately clear why it is reasonable to assume both V = I
and Σϵ = I WLOG simultaneously, so we clarify this point here. It is crucial
to observe that β∗ and Ae do not need to be directly identifiable, because we
only care about the predictive distribution β∗T ϵ. That is, we only need Ae to
be identifiable from x up to equivalence of this distribution. So if for example
we recover Ae up to some invertible transformation: Âe = AeM , this is not at
all a problem because we also learn the corresponding β̂ = M⊤β∗ such that
β̂⊤Â−1

e x = β∗TMM−1A−1
e x = β∗T ϵ.

In particular, suppose instead V ̸= I and E[ϵ0ϵ⊤0 ] = Σ0. Then we can sim-
ply reparameterize as ϵ0 → Σ

−1/2
0 ϵ0, be → Σ

−1/2
0 be, β∗ → Σ

1/2
0 β∗, Ae →

AeV
−1Σ

1/2
0 . It is easy to see this results in the same observed distribution over

(x, y), and further that learning β∗ to predict on ϵ0 is the same as learning Σ
1/2
0 β∗

to predict on Σ
−1/2
0 ϵ0. So now we’ve reduced this to a setting where E[ϵ0ϵ⊤0 ] = I

but perhaps V ̸= I . However, when V ̸= I it represents precisely the unidentifiable
transformation M above, which does not pose a problem for prediction because
it will not change in future environments. In other words, the DARE solution is
technically Π̂V ⊤β∗, where V is the shared right singular vectors of all domain-
specific transformations Ae. We assume V = I WLOG so as to not carry around
this additional term when it has no effect on the risk of the recovered predictor.

We emphasize that some assumption of the same flavor as Assumption 7.5.1 is
fundamentally necessary when dealing with latent variable models of distribution
shift. To see this, consider training on data from a linear regression model with
latent variables z ∼ N (0, I) where we observe (x, y) = (Az, β⊤z). Now suppose
we encounter a test distribution with (x, y) = (Ãz, β⊤z), where A has different
right singular vectors from Ã. The resulting test prediction task would be completely
detached from the training task and we could not possibly hope to generalize. In
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fact, it is encouraging that our method only requires V to be constant, and not the
entire matrix A, as is assumed in prior work [Rothenhäusler et al., 2021].

F.2 Proofs of Main Results

F.2.1 Notation

We use capital letters to denote matrices and lowercase to denote vectors or
scalars, where the latter should be clear from context. ∥ ·∥2 refers to the usual vector
norm, or spectral norm for matrices. For a matrix M , we use λmax(M) to mean its
maximum eigenvalue—the minimum is defined analogously. We write the pseudo-
inverse as M †. For a collection of samples {xi}ni=1, we frequently make use of the
sample mean, µ̂ := 1

n

∑
xi, and the sample covariance, Σ̂ := 1

n

∑
(xi−µ̄)(xi−µ̄)⊤.

The notation ≲ means less than or equal to up to constant factors.

F.2.2 Statement and Proof of Lemma F.2.1, and Discussion of Related
Results

Lemma F.2.1. Assume our data follows a logistic regression model with regression
vector β∗ and covariates z ∼ N (0, I): log p(y=1|z)

p(y=−1|z) = β∗T z. Then the solution to
the dimension-constrained logistic regression problem

argmin
β

Ez,y[− log σ(yβ⊤z)] s.t. βSc = 0, (F.4)

where S ⊆ [d] indexes a subset of the dimensions, is equal to αβ∗
S for some

α ∈ (0, 1].

Proof. The logistic regression model can be rewritten:

y | z = 1{β∗T z + ϵ > 0}, (F.5)

where ϵ is drawn from a standard logistic distribution. If we are restricted to not use
zSc , we can see that these can be modeled simply as an additional noise term. Thus,
our new model is

y | z = 1{β∗T
S zS + ϵ+ τ > 0}, (F.6)

where τ := β∗T
Sc zSc ∼ p is symmetric zero-mean noise, independent of zS . Because

we are now modeling the other dimensions as noise, moving forward we will drop
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the S subscript, writing simply β∗T z. Define F, f as the CDF and PDF of the
distribution of ϵ′ := ϵ+ τ . Then the MLE population objective can be written

L(β) = −Ez

[
Eϵ′∼f(ϵ′)[1{β∗T z + ϵ′ > 0} log σ(β⊤z)

+ 1{−(β∗T z + ϵ′) > 0} log σ(−β⊤z)]
]
. (F.7)

For a fixed z, note that Eϵ′ [1{β∗T z + ϵ′ > 0}] = P(ϵ′ ≥ −β∗T z) = F (β∗T z)
(since f is symmetric), and therefore taking the derivative of this objective we get

∇βL(β) = −∇βEz[F (β∗T z) log σ(β⊤z) + F (−β∗T z) log σ(−β⊤z)] (F.8)

= Ez[z ·
(
F (−β∗T z)σ(β⊤z)− F (β∗T z)σ(−β⊤z)

)
] (F.9)

Because f is symmetric, we have F (z) = 1− F (−z), giving

∇βL(β) = Ez

[
z ·
(
σ(β⊤z)− F (β∗T z)

)]
. (F.10)

Consider the directional derivative of the loss in the direction β∗, at the point
β = αβ∗:

β∗T∇βL(αβ∗) = Ez

[
β∗T z ·

(
σ(αβ∗T z)− F (β∗T z)

)]
. (F.11)

Because F is the CDF of a logistic distribution convolved with p, by Fubini’s
theorem we have

F (z) =

∫ z

−∞
f(z) dz (F.12)

=

∫ z

−∞

[∫ ∞

−∞
p(τ)σ′(z − τ) dτ

]
dz (F.13)

=

∫ ∞

−∞
p(τ)

[∫ z−τ

−∞
σ′(ω) dω

]
dτ (F.14)

=

∫ ∞

−∞
p(τ)σ(z − τ) (F.15)

= Eτ∼p[σ(z − τ)]. (F.16)

Further, because p is symmetric, this is equal to 1
2 (Eτ∼p[σ(z − τ)] + Eτ∼p[σ(z + τ)]).

Thus, we have

β∗T∇βL(αβ∗) = Ez

[
β∗T z ·

Eτ∼p

[
σ(αβ∗T z)− 1

2

(
σ(β∗T z − τ) + σ(β∗T z + τ)

)]]
.

(F.17)
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We first consider the case where α = 1. When β∗T z > 0, the term inside the
expectation is positive for all τ ̸= 0, and vice-versa when β∗T z < 0 (this can be
verified by writing the difference as a function of β∗T z, τ , and observing that all the
terms are non-negative except for a factor of eβ

∗T z − 1). It follows that at the point
β = β∗, −β∗ is a descent direction. Furthermore, since the objective is continuous
in α, we can follow this direction by reducing α (that is, moving in the direction
−β∗) until the directional derivative vanishes.

Next, consider α = 0. Then the directional derivative is

β∗T∇βL(0) =
1

2
Ez

[
β∗T z · Eτ∼p

[
1− (σ(β∗T z − τ) + σ(β∗T z + τ))

]]
.

(F.18)

Here, when β∗T z > 0 the inner term is negative, and vice-versa for β∗T z < 0,
implying that the directional derivative is now negative. Because the objective is
convex, it follows that the optimal choice for α lies in (0, 1], being equal to 1 when
τ = 0 almost surely.

It remains to show that the optimal vector has no other component orthogonal to
β∗—in other words, that the solution is precisely αβ∗. For isotropic Gaussian z, we
have for any δ perpendicular to β∗ that E[δ⊤z|β∗T z] = 0. Therefore, the gradient
in the direction δ is

Ez[δ
⊤z · (σ(αβ∗T z)− F (β∗T z))] (F.19)

= Eβ∗T z[Eδ⊤z|β∗T z[δ
⊤z](σ(αβ∗T z)− F (β∗T z))] (F.20)

= 0. (F.21)

Since β∗ and all orthogonal directions form a complete basis, it follows that
∇L(αβ∗) = 0 and therefore that αβ∗ is the optimal solution.

Though we prove this lemma only for Gaussian z, we found empirically that
the result approximately holds whenever z is dimension-wise independent and
symmetric about the origin. We believe this is a consequence of the Central Limit
Theorem: our proof relies on the conditional expectation of inner products with z
which converge to Gaussian in distribution as the dimensionality of z grows.

We observe that Li and Duan [1989] prove a much simpler result under a general
“linear conditional expectation” condition which is similar to the property we exploit
regarding zero-mean conditional expectation of orthogonal inner products with
isotropic Gaussians. Their result is more general, but it allows for any value of
α, including negative. In this case, we would actually be recovering the opposite
effects of the ground truth, which is clearly insufficient for test-time prediction.
Heagerty and Zeger [2000] give an analytical closed-form for the solution under a
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probit model with Gaussian noise; since this is not a logistic model, the Gaussian
noise represents significantly less model misspecification, which explains why the
exact closed-form is recoverable.

F.2.3 Proof of Theorem 7.5.2

Theorem 7.5.2. (Closed-form solution to the DARE population objective). Under
model (Equation (7.2)), the solution to the DARE population objective (Equa-
tion (F.1)) for linear regression is Π̂β∗. If ϵ is Gaussian, then the solution for
logistic regression (Equation (7.1)) is αΠ̂β∗ for some α ∈ (0, 1].

Proof. Observe that under the constraint, regressing on the centered observations is
equivalent to regressing on the non-centered observations (since the mean must have
no effect on the output), so the solutions to these two objectives must be the same
and have the same minimizers. We therefore consider the solution to the DARE
objective but on non-centered observations.

It is immediate that the unconstrained solution to the DARE population objec-
tive on non-centered data is β∗ for both linear and logistic regression. For linear
regression, we observe that because the adjusted covariates in each environment have
identity covariance, the excess training risk of a predictor β is exactly ∥β − β∗∥22.
Therefore, the solution can be rewritten

min
β

∥β − β∗∥22

s.t. β⊤Σ−1/2
e µe = 0. ∀e ∈ E .

Recalling that Σ−1/2
e µe = be, the constraint can be written in matrix form as

B⊤β = 0, and thus we see that the solution is the ℓ2-norm projection of β∗ onto
the nullspace of B⊤ (i.e., the intersection of the nullspaces of the be). By definition,
this is given by (I − BB†)β∗ = Π̂β∗.

To derive the closed-form for logistic regression, write the spectral decomposi-
tion B = UDV ⊤, and consider regressing on U⊤ϵ instead of ϵ. As the predictor
only affects the objective through its linear projection, the solution to this objective
will be U⊤ times the solution to the original objective (that is, for all vectors v,
(U⊤β)⊤U⊤v = β⊤v). We will denote parameters for the rotated objective with a
tilde, e.g. ṽ := U⊤v.

The constraint in Equation (7.1) is equivalent to requiring that the mean projec-
tion is a constant vector c1 and, with the inclusion of a bias term, we can WLOG con-
sider c = 0. Thus, the constraint can be written B̃⊤β̃ = V Dβ̃ = 0 ⇐⇒ Dβ̃ = 0.
We can therefore see that this constraint is the same as requiring that the dimensions
of β̃ corresponding to the non-zero dimensions of D are 0.
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Noting that U⊤ϵ ∼ N (0, I), we now apply Lemma F.2.1 to see that the solution
will be β̃ = α(I −DD†)β̃∗ for some α ∈ (0, 1]. Finally, as argued above we can
recover the solution to the original objective by rotating back, giving the solution
β = Uβ̃ = αU(I −DD†)U⊤β∗ = αΠ̂β∗.

F.2.4 Proof of Theorem 7.5.6

Theorem F.2.2 (Theorem 7.5.6, restated). For any ρ ≥ 0, denote the set of pos-
sible test environments Aρ which contains all parameters (Ae′ , be′) subject to
?? 7.5.3?? 7.5.5 and a bound on the mean: ∥be′∥2 ≤ ρ. For logistic or linear
regression, let β̂ be the minimizer of the corresponding DARE objective (7.1) or
(F.1). Then,

sup
(Ae′ ,be′ )∈Aρ

Re′(β̂) = (1 + ρ2)(∥β∗∥22 + 2B∥β∗
Π̂
∥2∥β∗

I−Π̂
∥2). (F.22)

Furthermore, the DARE solution is minimax:

β̂ ∈ argmin
β∈Rd

sup
(Ae′ ,be′ )∈Aρ

Re′(β). (F.23)

Proof. Recall that in an environment e, Ee[y | x] = β∗TΣ
−1/2
e x. So, for an

environment e′ and predictor β̂, we have the following excess risk decomposition:

Re′(β̂) = Ee′ [(β̂
⊤Σ̄−1/2x′ − β∗TΣ

−1/2
e′ x′)2] (F.24)

=

T1︷ ︸︸ ︷
Ee′ [(β̂

⊤Σ̄−1/2(x′ − µe′)− β∗TΣ
−1/2
e′ (x′ − µe′))

2]

+

T2︷ ︸︸ ︷
Ee′ [(β̂

⊤Σ̄−1/2µe′ − β∗TΣ
−1/2
e′ µe′)

2] . (F.25)

Observe that term T1 does not depend on the mean be′ .
Term T2 simplifies to

Ee′ [(β̂
⊤Σ̄−1/2µe′ − β∗TΣ

−1/2
e′ µe′)

2] =

(

v︷ ︸︸ ︷
Σ
1/2
e′ Σ̄−1/2β̂ − β∗)⊤be′


2

, (F.26)

and so we can write a supremum over T2 as

sup
Aρ

T2 = sup
Aρ

(v⊤be′)
2 (F.27)

= ρ2 sup
Aρ

∥v∥22. (F.28)
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Next, observe that T1 simplifies to

β̂⊤Σ̄−1/2Σe′Σ̄
−1/2β̂ + ∥β∗∥22 − 2β̂⊤Σ̄−1/2Σ

1/2
e′ β∗ = ∥Σ1/2

e′ Σ̄−1/2β̂ − β∗∥22
(F.29)

= ∥v∥22. (F.30)

So, returning to the full loss and recalling that T1 is independent of be′ , we have

sup
Aρ

Re′(β̂) = sup
Aρ

T1 + T2 (F.31)

= (1 + ρ2) sup
Aρ

∥v∥22. (F.32)

Of course, the ideal would be for a given environment e′ to set β̂ := Σ̄1/2Σ
−1/2
e′ β∗

=⇒ v = 0, but we have to choose a single β̂ for all possible environments e′

parameterized by (Ae′ , be′) ∈ Aρ. We will show that the choice of β̂ := αΠ̂β∗ is
minimax-optimal under this set for any α ∈ (0, 1].

Leaving the supremum over adversary choices implicit, we can rewrite the
squared norm of v as

v⊤v = ((∆ + I)β̂ − β∗)⊤((∆ + I)β̂ − β∗) (F.33)

= β̂⊤∆⊤∆β̂ + ∥β̂ − β∗∥22 + 2β̂⊤∆⊤(β̂ − β∗). (F.34)

By Lemma F.3.4, we can define an environment by defining the block terms of

U
Π̂
∆U⊤

Π̂
directly. Consider the choice of ∆1 = λ

β̂
I−Π̂

β̂⊤
I−Π̂

∥β̂
I−Π̂

∥22
,∆2 = ∆12 = ∆21 = 0.

This choice is in Aρ for any λ ∈ R since it is block-diagonal and ∥∆2∥2 = 0. Now
we can write

v⊤v = λ2∥β̂
I−Π̂
∥22 + ∥β̂ − β∗∥22 + 2λβ̂⊤

I−Π̂
(β̂

I−Π̂
− β∗

I−Π̂
) (F.35)

≥ λ2∥β̂
I−Π̂
∥22 − 2λ∥β̂

I−Π̂
∥2∥β̂ − β∗∥2), (F.36)

via Cauchy-Schwarz and the triangle inequality. So, taking λ→∞ means that the
minimax risk is unbounded unless β̂

I−Π̂
= 0 ⇐⇒ β̂ = β̂

Π̂
. For the remainder of

the proof we consider only this case.
With this restriction, we have

∥v∥22 = ∥(∆ + I)β̂
Π̂
− β∗∥22 (F.37)

= ∥(∆ + I)β̂
Π̂
− β∗

Π̂
− β∗

I−Π̂
∥22 (F.38)

= ∥(∆ + I)β̂
Π̂
− β∗

Π̂
∥22 + ∥β∗

I−Π̂
∥22 − 2β∗T

I−Π̂
∆β̂

Π̂
. (F.39)
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Assumption 7.5.3 implies that

|β∗T
I−Π̂

∆β̂
Π̂
| = |β∗TU

Π̂
(I − S

Π̂
)U⊤

Π̂
∆U

Π̂
S
Π̂
U⊤
Π̂
β̂| (F.40)

=

∣∣∣∣β∗TU
Π̂
(I − S

Π̂
)

[
∆1 ∆12

∆21 ∆2

]
S
Π̂
U⊤
Π̂
β̂

∣∣∣∣ (F.41)

≤ B∥β∗
Π̂
∥2∥β∗

I−Π̂
∥2, (F.42)

Consider the DARE solution β̂ = αβ∗
Π̂

for α ∈ (0, 1]. Then using the equivalent
supremized set from Assumption 7.5.5 and Lemma F.3.3, the worst-case risk of this
choice is

sup
Aρ

Re′(β̂) (F.43)

= (1 + ρ2) sup
∥∆β∗

Π̂
∥22<∥β∗

Π̂
∥22
(∥(α∆+ (α− 1)I)β∗

Π̂
∥22 + ∥β∗

I−Π̂
∥22

+ 2B∥β∗
Π̂
∥2∥β∗

I−Π̂
∥2) (F.44)

= (1 + ρ2)(∥β∗
Π̂
∥22 + ∥β∗

I−Π̂
∥22 + 2B∥β∗

Π̂
∥2∥β∗

I−Π̂
∥2). (F.45)

It remains to show that any other choice of β̂ results in greater risk. Observe that
the second two terms of (F.43) are constant with respect to ∆, so we focus on the
first term. That is, we show that any other choice results in sup∥∆β∗

Π̂
∥22<∥β∗

Π̂
∥22 ∥(∆+

I)β̂
Π̂
− β∗

Π̂
∥22 > ∥β∗

Π̂
∥22 (except for β̂ = 0, which we address at the end).

For any choice of β̂
Π̂

, decompose the vector into its projection and rejection
onto β∗

Π̂
as β̂

Π̂
= αβ∗

Π̂
+ δ, with δ⊤β∗

Π̂
= 0. The adversary can choose ∆2 = λδδ⊤,

which lies in Aρ for any λ. Then taking λ → ∞ causes risk to grow without
bound—it follows that we must have δ = 0.

Next, consider any choice α ̸∈ (0, 1]. If α > 2 or α < 0, choosing ∆2 = 0
makes this term (α−1)2∥β∗

Π̂
∥22 > ∥β∗

Π̂
∥22. If 2 ≥ α > 1, choosing ∆2 =

1
αI makes

this term α2∥β∗
Π̂
∥22 > ∥β∗

Π̂
∥22.

Finally, if α = 0 then this term is equal to ∥β∗
Π̂
∥22—however, this value is the

supremum of the adversarial risk of the DARE solution and it cannot actually be
attained.

F.2.5 Proof of Theorem 7.5.9

Theorem F.2.3 (Theorem 7.5.9, restated). Fix test environment parameters Ae′ , be′

and our guess Σ̄. Suppose we minimize the DARE regression objective (F.1)
on environments whose means be are Gaussian vectors with covariance Σb, with
span(Σb) = span(I −Π). After seeing E training domains:
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1. If E ≥ rank(Σb) then DARE recovers the minimax-optimal predictor almost
surely: β̂ = β∗

Π.
2. Otherwise, if E ≥ r(Σb) then with probability ≥ 1− δ,

Re′(β̂) ≤ Re′(β
∗
Π)

+O
(
∥Σb∥2
ξ(Σb)

(√
r(Σb)

E
+max

{√
log 1/δ

E
,
log 1/δ

E

}))
,

(F.46)

where O(·) hides dependence on ∥∆∥2.

Proof. Define Π̂E as the projection onto the nullspace of B⊤ after having seen E
environments. Item 1 is immediate, since as soon as we observe E = rank(Σb)
linearly independent be we have that span(B) = span(Σb) and therefore Π̂E = Π
(this occurs almost surely for any absolutely continuous distribution). To prove item
2, we will write the solution learned after seeing E environments as β̂E := Π̂Eβ

∗.
We can write the excess risk of the ground-truth minimax predictor β∗

Π as

Re′(β
∗
Π) = E[(β∗T

Π Σ̄−1/2Σ
1/2
e′ ϵ− β∗T ϵ)2] (F.47)

= E[(β∗TΠΣ̄−1/2Σ
1/2
e′ ϵ− β∗T ϵ)2], (F.48)

and likewise we have

Re′(β̂E) = E[(β̂⊤
E Σ̄

−1/2Σ
1/2
e′ ϵ− β∗T ϵ)2] (F.49)

= E[(β∗T Π̂EΣ̄
−1/2Σ

1/2
e′ ϵ− β∗T ϵ)2]. (F.50)

Taking the difference,

R(β̂E)−R(β∗
Π) = E[(β∗T Π̂E

:=v︷ ︸︸ ︷
Σ̄−1/2Σ

1/2
e′ ϵ−β∗T ϵ)2

− (β∗TΠΣ̄−1/2Σ
1/2
e′ ϵ− β∗T ϵ)2] (F.51)

≤ ∥(Π− Π̂E)E[vv⊤](2I −Π− Π̂E)∥2 + 2∥(Π− Π̂E)E[vϵ⊤]∥2
(F.52)

≤ 2
[
∥(Π− Π̂E)E[vv⊤]∥2 + ∥(Π− Π̂E)E[vϵ⊤]∥2

]
. (F.53)

Now we note that

E[vv⊤] = E[(Σ̄−1/2Σ
1/2
e′ ϵ)(Σ̄−1/2Σ

1/2
e′ ϵ)⊤] (F.54)

= Σ̄−1/2Σe′Σ̄
−1/2 (F.55)
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and

E[vϵ⊤] = Σ̄−1/2Σ
1/2
e′ . (F.56)

These matrices are bounded by ∥∆+ I∥22, ∥∆+ I∥2 respectively and are constant
with respect to the training environments we sample. It follows that we can bound
the risk difference as

R(β̂E)−R(β∗
Π) ≲ ∥Π̂E −Π∥2, (F.57)

and all that remains is to bound the term ∥Π̂E −Π∥2.
Combining Theorems 4 and 5 from Koltchinskii and Lounici [2017] with the

triangle inequality, we have that when r(Σb) ≤ E, with probability ≥ 1− δ,

∥Σ̄− Σb∥2 ≲ ∥Σb∥2
(
max

{√
log 1/δ

E
,
log 1/δ

E

}
+max

{√
r(Σb)

E
,
r(Σb)

E

})
.

(F.58)

Since r(Σb) ≤ E, the first term of the second max dominates. Further, Corollary 3
of Yu et al. [2014], a variant of the Davis-Kahan theorem, gives us

∥Π̂E −Π∥2 ≲
∥Σ̄− Σb∥2

ξ(Σb)
. (F.59)

Combining these facts gives the result.

F.2.6 Proof of Theorem 7.5.11

Theorem F.2.4 (Theorem 7.5.11, fully stated). Assume the data follows model
(7.2) with ϵ ∼ N (0, I). Observing nS samples from a source distribution S with
covariance ΣS , we use half to estimate Σ̂S and the other half to learn parameters β
which minimize the unconstrained (λ = 0), uncentered DARE regression objective.
At test-time, given nT samples {xi}nT

i=1 from the target distribution T with mean
and covariance µT ,ΣT , we predict f(x;β) = β⊤Σ̂

−1/2
T x.

Define m(Σ) := λmax(Σ)
λ3
min(Σ)

, and assume nS = Ω(m(ΣS)d
2), nT = Ω(m(ΣT )d

2).

Then with probability at least 1− 3d−1, the excess squared error of our predictor
on the new environment is bounded as

RT (f) = O

(1 + ∥µT ∥22)

 E[η2]

1−O
(√

d
nS

) d

nS
+ d2

(
m(ΣS)

nS
+

m(ΣT )

nT

) .

(F.60)
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Proof. We begin by bounding the error of our solution ∥β − β∗∥2. Observe that
with our estimate Σ̂S of the source environment moments, we are solving linear
regression with targets β∗T ϵi + ηi and covariates x̂i = Σ̂

−1/2
S xi = Σ̂

−1/2
S ΣS

1/2ϵi.
Thus, if we had access to the true gradient of the modified least-squares objective
(which is not the same as assuming nS →∞, because in that case we would have
Σ̂S → ΣS), the solution would be

E[x̂x̂⊤]−1E[x̂y] (F.61)

=
(
Σ̂
−1/2
S ΣS

1/2(I + µTµT
⊤)ΣS

1/2Σ̂
−1/2
S

)−1 (
Σ̂
−1/2
S ΣS

1/2(I + µTµT
⊤)β∗

)
(F.62)

= Σ̂
1/2
S ΣS

−1/2β∗. (F.63)

We denote this solution to the modified objective as β̂ := Σ̂
1/2
S ΣS

−1/2β∗, and
further define ∆S := ΣS

1/2Σ̂
−1/2
S , with ∆T defined analogously. A classical result

tells us that the OLS solution is distributed as N
(
β̂,

σ2
y

nS
M−1

)
, where M is the

modified covariance ∆⊤
S∆S and σ2

y := E[η2]. To show a rate of convergence to the
OLS solution, we need to solve for the minimum eigenvalue λmin(M)—this will
suffice since the above fact implies finite-sample convergence of the OLS estimator
to the population solution. The well-known bound for sub-Gaussian random vectors
tells us that with probability ≥ 1− δ1,

∥β − β̂∥2 ≲
√
λmax(M−1)σ2

y

√ d

nS
+

√
log 1/δ1

nS

 . (F.64)

and moving forward we condition on this event. Now let γS :=
√
d/nS , with γT

defined analogously. Since M ⪰ 0, it follows that

λmax(M
−1) = λmin(∆

⊤
S∆S)

−1, (F.65)

and further,

λmin(∆
⊤
S∆S) ≥ 1− ∥∆⊤

S∆S − I∥2. (F.66)

By Lemma F.3.1, we have that with probability ≥ 1− d−1

∥∆⊤
S∆S − I∥2 ≲ γS . (F.67)
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This implies that our solution’s error can be bounded as

∥β − β∗∥2 = ∥(β − β̂) + (β̂ − β∗)∥2 (F.68)

≤
√

σ2
y

1−O(γS)

√ d

nS
+

√
log 1/δ1

nS

+ ∥Σ̂1/2
S ΣS

−1/2 − I∥2∥β∗∥2

(F.69)

We assume ∥β∗∥2 = 1 so we can avoid carrying it throughout the rest of the proof.
Bounding the second term with Lemma F.3.2 gives

∥β − β∗∥2 ≲
√

σ2
y

1−O(γS))

√ d

nS
+

√
log 1/δ1

nS

+ γS
√
d m(ΣS). (F.70)

On the target distribution, our excess risk with a predictor β is

Re′(β) = E[(β⊤Σ̂
−1/2
T x− β∗TΣT

−1/2x)2] (F.71)

= E


(

∆T︷ ︸︸ ︷
ΣT

1/2Σ̂
−1/2
T β − β∗)⊤ϵ


2 (F.72)

= (∆Tβ − β∗)⊤(I + µTµT
⊤)(∆Tβ − β∗) (F.73)

≤ (1 + ∥µT ∥22)∥∆Tβ − β∗∥22 (F.74)

Now, we have

∥∆Tβ − β∗∥2 = ∥(∆Tβ −∆Tβ
∗) + (∆Tβ

∗ − β∗)∥2 (F.75)

≤ ∥∆T (β − β∗)∥2 + ∥(∆T − I)β∗∥2 (F.76)

≤ (1 + ∥∆T − I∥2)∥β − β∗∥2 + ∥∆T − I∥2. (F.77)

Once again invoking Lemma F.3.2, with probability ≥ 1− d−1,

∥∆T − I∥2 ≲ γT
√
d m(ΣT ), (F.78)

and using this plus the previous result, the triangle inequality, and (a + b)2 ≤
2(a2 + b2) gives

∥∆Tβ − β∗∥22 ≲ (1 + ∥∆T − I∥2)2∥β − β∗∥22 + ∥∆T − I∥22 (F.79)

≲ (1 + γT
√
d m(ΣT ))

2∥β − β∗∥22 + (∥Σ1/2∥2∥Σ−1∥3/22

√
dγT )

2

(F.80)

≲ ∥β − β∗∥22 + γ2Td m(ΣT ), (F.81)
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where the lower bound on nT enforces γT
√
d m(ΣT ) ≤ 1. It follows that the

excess risk can be bounded as

Re′ ≲ (1 + ∥µT ∥22)∥∆Tβ − β∗∥22 (F.82)

≲ (1 + ∥µT ∥22)
(
∥β − β∗∥22 + γ2Td m(ΣT )

)
. (F.83)

Letting δ1 = 1/d, combining all of the above via union bound, and eliminating
lower-order terms, we get

Re′(β) ≲ (1 + ∥µT ∥22)
(

σ2
y

1−O(γS)
d

nS
+ γ2Sd m(ΣS) + γ2Td m(ΣT )

)
(F.84)

= (1 + ∥µT ∥22)

 σ2
y

1−O
(√

d
nS

) d

nS
+ d2

(
m(ΣS)

nS
+

m(ΣT )

nT

)
(F.85)

with probability ≥ 1− 3d−1.

F.3 Technical Lemmas

Lemma F.3.1. Suppose we observe n ∈ Ω(d + log 1/δ) samples X ∼ N (µ,Σ)
with Σ ⪰ 0 and estimate the inverse covariance matrix Σ−1 with the inverse of the
sample covariance matrix Σ̄−1. Then with probability ≥ 1− δ, it holds that

∥Σ̄−1/2ΣΣ̄−1/2 − I∥2 ≲
√

d+ log 1/δ

n
. (F.86)

Proof. As Σ̄−1/2ΣΣ̄−1/2 and Σ1/2Σ̄−1Σ1/2 have the same spectrum, it suffices to
bound the latter. Observe that

∥Σ1/2Σ̄−1Σ1/2 − I∥2 = ∥Σ1/2(Σ̄−1 − Σ−1)Σ1/2∥2. (F.87)

Now applying Theorem 10 of Kereta and Klock [2021] with A = B = Σ1/2 yields
the result.

Lemma F.3.2. Assume the conditions of Lemma F.3.1. Then under the same event
as Lemma F.3.1, it holds that

∥Σ1/2Σ̄−1/2 − I∥2 ≲ ∥Σ1/2∥2
(
∥Σ−1∥3/22

√
dγ + ∥Σ−1∥22γ2

)
, (F.88)

where γ =

√
d+log 1/δ

n . In particular, if δ = d−1, then

∥Σ1/2Σ̄−1/2 − I∥2 ≲
√
∥Σ∥2∥Σ−1∥32

d2

n
(F.89)
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Proof. We begin by deriving a bound for ∥Σ̄−1/2 − Σ−1/2∥2. Define E = Σ̄−1 −
Σ−1. Observe that

∥E∥2 = ∥Σ−1/2Σ1/2EΣ1/2Σ−1/2∥2 (F.90)

= ∥Σ−1/2(Σ1/2Σ̄−1Σ1/2 − I)Σ−1/2∥2 (F.91)

≤ ∥Σ−1∥2∥Σ1/2Σ̄−1Σ1/2 − I∥2, (F.92)

and now apply Lemma F.3.1 (since Σ̄−1/2ΣΣ̄−1/2 and Σ1/2Σ̄−1Σ1/2 have the same
spectrum), giving

∥E∥2 ≲ ∥Σ−1∥2γ. (F.93)

Let UDU⊤ be the eigendecomposition of Σ, and define the matrix [
√·, α]i,j =

1√
Dii+
√

Djj
as in Carlsson [2018]. The Daleckii-Krein theorem [Daleckii and Krein,

1965] tells us that

∥Σ̄−1/2 − Σ−1/2∥2 = ∥U([
√
·, α] ◦ E)U⊤∥2 +O(∥E∥22). (F.94)

Note that maxi,j |[
√·, α]i,j | = 1/2

√
λmin(Σ) =⇒ ∥[√·, α]∥2 ≤

√
d∥Σ−1∥2,

and therefore by sub-multiplicativity of spectral norm under Hadamard product,

∥Σ̄−1/2 − Σ−1/2∥2 ≲
√

d∥Σ−1∥2∥E∥2 + ∥E∥22 (F.95)

≲ ∥Σ−1∥3/22

√
dγ + ∥Σ−1∥22γ2. (F.96)

Finally, noting that

∥Σ1/2Σ̄−1/2 − I∥2 = ∥Σ1/2(Σ̄−1/2 − Σ−1/2)∥2 (F.97)

≤ ∥Σ1/2∥2∥Σ̄−1/2 − Σ−1/2∥2 (F.98)

completes the main proof. To see the second claim, note that n ≥ 2∥Σ−1∥2 implies
∥Σ−1∥3/22

√
d ≥ ∥Σ−1∥22γ, meaning the first of the two terms dominates.

Lemma F.3.3. Let Σ̄ be fixed. Then Assumption 7.5.5 is satisfied if and only if
∥∆β∗

Π̂
∥22 < ∥β∗

Π̂
∥22.

Proof. The claim follows by rewriting the risk terms. Recall that ∆ = Σ
1/2
e′ Σ̄−1/2−

I . Writing out the excess risk of the ground truth β∗ in the subspace Π̂,

RΠ̂
pe′

(β∗) = Epe′

[
(β∗T

Π̂
Σ̄−1/2x− β∗T

Π̂
Σ
−1/2
e′ x)2

]
(F.99)

= Epe′

[
(β∗T Π̂Σ̄−1/2Σ

1/2
e′ ϵ− β∗T Π̂ϵ)2

]
(F.100)

= Epe′

[
(β∗T Π̂∆⊤ϵ)2

]
(F.101)

= ∥∆Π̂β∗∥22. (F.102)
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Next, the excess risk of the null vector β̂ = 0 in the same subspace is

RΠ̂
pe′

(0) = Epe′ [(β
∗T
Π̂

Σ
−1/2
e′ x)2] (F.103)

= Epe′ [(β
∗T Π̂ϵ)2] (F.104)

= ∥Π̂β∗∥22.

Lemma F.3.4. For a fixed Σ̄, choosing an environmental covariance Σe′ is equiva-
lent to directly choosing the error terms ∆1,∆2,∆12,∆21.

Proof. For a fixed Σ̄, due to the unique definition of square root as a result of
Assumption 7.5.1, the map Σe′ → Σ

1/2
e′ Σ̄−1/2− I is one-to-one. Recall that we can

write

U⊤
Π̂
∆U

Π̂
=

[
∆1 ∆12

∆21 ∆2

]
(F.105)

which defines a one-to-one map from ∆ to the error terms. Since the composition
of bijective functions is bijective, the claim follows.

F.4 Implementation Details

F.4.1 Evaluation Pipeline

Test Domain Accuracy Cheat on Test Domain 
to Learn Features 

and Classifier

Training 
Domains

Training 
Domains

Learn Features 
and Classifier

Learn FeaturesCheat to Learn 
just Classifier

Figure F.1: Depiction of evaluation pipeline. Standard training on train domains
leads to poor performance. Cheating while training the full network (features and
classifier) does substantially better. However, cheating on just the linear classifier
does almost as well, implying that the features learned without cheating are already
good enough for massive improvements over SOTA.

Figure F.1 depicts the overall pipeline for evaluation of the different approaches
we describe in Section 7.2. Our baselines are three distinct pipelines, each slightly
different:
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1. The first pipeline (dark blue in Figure F.1) is the standard method of evaluating
ERM on a new domain. We train the entire network (the combination of a
feature embedder comprising all layers except the last linear layer, and the
last layer linear classifier) end-to-end on the training domains, simultaneously
learning the features and the linear classifier on the training domains via
backpropagation. When evaluated on a new domain, this achieves state-of-
the-art accuracy [Gulrajani and Lopez-Paz, 2021], but it still performs quite
poorly.

2. The second pipeline (red) is very similar to the first, but we include the
test domain among the domains on which the network is trained end-to-end.
Because this means that the test distribution is one of the training domains,
this simulates an “ideal” setting where no distribution shift occurs from train-
time to test-time. As such, it is unsurprising that this approach performs
substantially better (though it still leaves a bit to be desired—this raises
a separate question about failures of in-distribution learning with multiple
domains). As this approach requires cheating, it is completely unrealistic to
expect current methods to even begin to approach this baseline, but it gives a
good sense of what would be the best performance to hope for.

3. The final pipeline (grey) is our main experimental contribution. Here, the
features (all but the last layer) are learned without cheating, as in the first
pipeline. Next, we freeze the features and cheat only while learning a linear
classifier on top of these features. Not only does this method do significantly
better than the first baseline, it actually performs almost as well as—and
sometimes better than—the second pipeline. Thus, we find that standard
features learned via ERM without cheating are already good enough for
generalization and that the main bottleneck to reaching the accuracy of the
second baseline is in learning a good linear classifier only. This has several
important advantages to current methods which attempt to change the entire
end-to-end process, which we explicate in Section 7.2 in the main body.

F.4.2 Code details

All features were learned by finetuning a ResNet-50 using the default settings
and hyperparameter sweeps of the DOMAINBED benchmark [Gulrajani and Lopez-
Paz, 2021]. We extracted features from 3 trials, with 5 random hyperparameter
choices per trial, picking the one with the best training domain validation accuracy.
We used the default random splits of 80% train / 20% test for each domain.

Using frozen features, the cheating linear classifier was trained by minimizing
the multinomial logistic loss with full-batch SGD with momentum for 3000 steps.
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We did not use a validation set.
For the main experiments, all algorithms were trained using full-batch L-BFGS

[Liu and Nocedal, 1989]. We used the exact same optimization hyperparameters for
all methods; the default learning rate of 1 was unstable when optimizing IRM, fre-
quently diverging, so we lowered the learning rate until IRM consistently converged
(which occurred at a learning rate of 0.2). Since the IRM penalty only makes sense
with both a feature embedder and a classification vector, we used an additional
linear layer for IRM, making the objective non-convex. Presumably due to their
convexity for linear classifiers, all other methods were unaffected by this change.
For all methods, we halted optimization once 20 epochs occurred with no increase
in training domain validation accuracy; the maximum validation accuracy typically
occurred within the first 5 epochs.

For stability when whitening (and because the number of samples per domain
was often less than the feature dimension), in estimating Σ̂e for each environment
we shrank the sample covariance towards the identity. Specifically, we define
Σ̂e = (1 − ρ) 1n

∑n
i=1 xix

⊤
i + ρI , with ρ = 0.1, and ρ = 0.01 for DomainNet

due to its much larger size. We found that increasing λ beyond ∼1 had little-to-no
effect on the accuracy, loss, or penalty of the DARE solution (see Appendix F.5 for
ablations). However, we did observe that choosing a very large value for λ (e.g., 105

or higher) could result in poor conditioning of the objective, with the result being
that the L-BFGS optimizer took several epochs for the loss to begin going down.

F.5 Additional Experiments

Here we present additional experimental results. All reported accuracies rep-
resent the mean of three trials, and all error bars (where present) display 90%
confidence intervals calculated as ±1.645 σ̂√

n
. Note though that the results are not

independent across methods, so simply checking if the error bars overlap is
overly conservative in identifying methods which perform better.

F.5.1 Accuracy of the Test Covariance Whitener

As we do not have access to the true test-time covariance, we estimate the
adjustment with the average of the train-time adjustments. Table F.1 reports the
normalized squared Frobenius norm of our estimate’s error to the sample covariance

adjustment, defined as ∥Ŵ−W∥2F
∥W∥2F

, where W := Σ̂
−1/2
e′ is the sample covariance

adjustment and Ŵ := 1
|E|
∑

e∈E Σ
−1/2
e is our averaging estimate. We find that

this normalized error is consistently small, meaning our estimated adjustment is
reasonably close to the “true” adjustment, relative to its spectrum (we put “true” in

288



quotation marks because the best we can do is estimate it via the sample covariance).
This helps explain why our averaging adjustment performs so well in practice,
though we expect future methods could improve on this estimate (particularly on
the last domain of PACS).

Dataset Normalized Error

Office-Home
A 0.033
C 0.040
P 0.022
R 0.019

PACS
A 0.052
C 0.016
P 0.025
S 0.217

VLCS
C 0.094
L 0.039
S 0.051
V 0.029

Table F.1: Mean normalized adjustment estimation error for each dataset and each
train-domain/test-domain split.

F.5.2 Alignment of Domain-Specific Optimal Classifiers

As discussed in Section 7.3, DARE does not project out varying subspaces but
rather aligns them such that the adjusted domains have similar optimal classifiers
simultaneously. To verify that this is actually happening, we learn the optimal
linear classifier for each domain individually and evaluate the inter-domain cosine
similarity for these vectors for each class. We see that without adjustment, different
domains’ optimal linear decision boundaries have normals with small alignment on
average, which explains why trying to learn a single linear classifier which does well
on all domains simultaneously performs poorly in most cases. After alignment, the
individually optimal classifiers are more aligned, which allows a single classifier to
perform better on all domains. Furthermore, this is done without throwing away the
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varying component (as would be done by invariant prediction [Peters et al., 2016]),
allowing DARE to use more information and resulting in higher test accuracy.

Dataset With Adjustement Without Adjustement

Office-Home
A 0.693 0.596
C 0.710 0.691
P 0.695 0.636
R 0.642 0.590

PACS
A 0.903 0.863
C 0.896 0.776
P 0.905 0.827
S 0.903 0.791

VLCS
C 0.598 0.200
L 0.723 0.436
S 0.674 0.231
V 0.591 0.210

Table F.2: Mean cosine similarity between linear classification vectors which are
individually optimal for their respective domains (learned via logistic regression).
For each dataset and each train-domain/test-domain split we report the average
similarity across all class normal vectors and all domain pairs.

F.5.3 Ablations
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Figure F.2: Demonstration of the effect of whitening. NoSigmaDARE is the exact
same algorithm as DARE but with no covariance whitening. In almost all cases,
covariance whitening + guessing at test-time results in better performance. We
expect under much larger distribution shift that this pattern may reverse.

Figure F.3: Effect of penalty term λ on the two algorithms which use it. λ = 0
corresponds to no constraint, and the lower performance demonstrates that this
invariance requirement is essential to the quality of the learned classifier. For λ ̸= 0,
DARE accuracy is extremely robust, effectively constant for all λ ≥ 1; in practice
we also found the penalty term itself to always be ∼0. In contrast, IRM accuracy
appears to decrease with increasing λ, implying that the observed benefit of IRM
primarily comes from the domain reweighting as in our Reweighted ERM method.
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Figure F.4: Effect of final feature bottleneck dimensionality on cheating accuracy.
Reducing the dimensionality reduces accuracy of all methods to varying degrees,
though in some cases it actually increases test accuracy. We observe that the
main pattern persists, though the gap between cheating on finetuned features and
traditional ERM shrinks as the dimensionality is reduced substantially. To reduce
dimensionality of the pretrained features we use a random projection; unsurprisingly,
the quality dramatically falls as the number of dimensions is reduced.
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Appendix G

Appendix for Chapter 8

G.1 Experimental Details

G.1.1 Description of Baselines

Average Thresholded Confidence (ATC). ATC first estimates a threshold t on
the confidence of softmax prediction (or on negative entropy) such that the number
of source labeled points that get a confidence greater than t match the fraction of
correct examples, and then estimates the test error on on the target domain Dtest as
the expected number of target points that obtain a score less than t, i.e.,

ATCDtest(s) =
n∑

i=1

I
[
s(f(x′i)) < t

]
, (G.1)

where t satisfies:
∑j

i=1 I [maxj∈Y(fj(xi)) < t] =
∑m

i=1 I
[
argmaxj∈Y fj(xi) ̸= yi

]
Average Confidence (AC). Error is estimated as the average value of the maxi-

mum softmax confidence on the target data, i.e, ACDtest =
∑n

i=1maxj∈Y fj(x
′
i).

Difference Of Confidence (DOC). We estimate error on the target by subtracting
the difference of confidences on source and target (as a surrogate to distributional dis-
tance [Guillory et al., 2021]) from the error on source distribution, i.e., DOCDtest =∑n

i=1maxj∈Y fj(x
′
i)+

∑m
i=1 I

[
argmaxj∈Y fj(xi) ̸= yi

]
−∑m

i=1maxj∈Y fj(xi).
This is referred to as DOC-Feat in [Guillory et al., 2021].

Confidence Optimal Transport (COT). COT uses the empirical estimator of
the Earth Mover’s Distance between labels from the source domain and softmax
outputs of samples from the target domain to provide accuracy estimates:
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COTDtest(s) =
1

2
min

π∈Π(Sn,Y m)

n,m∑
i,j=1

∥si − eyj∥2πij , (G.2)

where Sn = {f(x′i)}ni=1 are the softmax outputs on the unlabeled target data and
Y m = {yj}mj=1 are the labels on holdout source examples.

For all of the methods described above, we assume that {(x′i)}ni=1 are the
unlabeled target samples and {(xi, yi)}mi=1 are hold-out labeled source samples.

G.1.2 Dataset Details

In this section, we provide additional details about the datasets used in our
benchmark study.

• CIFAR10 We use the original CIFAR10 dataset [Krizhevsky and Hinton,
2009] as the source dataset. For target domains, we consider (i) synthetic shifts
(CIFAR10-C) due to common corruptions [Hendrycks and Dietterich, 2019];
and (ii) natural distribution shift, i.e., CIFAR10v2 [Recht et al., 2018a, Torralba
et al., 2008] due to differences in data collection strategy. We randomly sample
3 set of CIFAR-10-C datasets. Overall, we obtain 5 datasets (i.e., CIFAR10v1,
CIFAR10v2, CIFAR10C-Frost (severity 4), CIFAR10C-Pixelate (severity 5),
CIFAR10-C Saturate (severity 5)).

• CIFAR100 Similar to CIFAR10, we use the original CIFAR100 set as the source
dataset. For target domains we consider synthetic shifts (CIFAR100-C) due to
common corruptions. We sample 4 CIFAR100-C datasets, overall obtaining 5
domains (i.e., CIFAR100, CIFAR100C-Fog (severity 4), CIFAR100C-Motion
Blur (severity 2), CIFAR100C-Contrast (severity 4), CIFAR100C-spatter (severity
2) ).

• FMoW In order to consider distribution shifts faced in the wild, we consider
FMoW-WILDs [Koh et al., 2021, Christie et al., 2018] from WILDS benchmark,
which contains satellite images taken in different geographical regions and at
different times. We use the original train as source and OOD val and OOD test
splits as target domains as they are collected over different time-period. Overall,
we obtain 3 different domains.

• Camelyon17 Similar to FMoW, we consider tumor identification dataset from
the wilds benchmark [Bandi et al., 2018]. We use the default train as source
and OOD val and OOD test splits as target domains as they are collected across
different hospitals. Overall, we obtain 3 different domains.
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• BREEDs We also consider BREEDs benchmark [Santurkar et al., 2020] in
our setup to assess robustness to subpopulation shifts. BREEDs leverage class
hierarchy in ImageNet to re-purpose original classes to be the subpopulations and
defines a classification task on superclasses. We consider distribution shift due
to subpopulation shift which is induced by directly making the subpopulations
present in the training and test distributions disjoint. BREEDs benchmark contains
4 datasets Entity-13, Entity-30, Living-17, and Non-living-26, each focusing on
different subtrees and levels in the hierarchy. We also consider natural shifts due to
differences in the data collection process of ImageNet [Russakovsky et al., 2015],
e.g, ImageNetv2 [Recht et al., 2019] and a combination of both. Overall, for each
of the 4 BREEDs datasets (i.e., Entity-13, Entity-30, Living-17, and Non-living-
26), we obtain four different domains. We refer to them as follows: BREEDsv1
sub-population 1 (sampled from ImageNetv1), BREEDsv1 sub-population 2
(sampled from ImageNetv1), BREEDsv2 sub-population 1 (sampled from Ima-
geNetv2), BREEDsv2 sub-population 2 (sampled from ImageNetv2). For each
BREEDs dataset, we use BREEDsv1 sub-population A as source and the other
three as target domains.

• OfficeHome We use four domains (art, clipart, product and real) from Office-
Home dataset [Venkateswara et al., 2017b]. We use the product domain as source
and the other domains as target.

• DomainNet We use four domains (clipart, painting, real, sketch) from the
Domainnet dataset [Peng et al., 2019b]. We use real domain as the source and the
other domains as target.

• Visda We use three domains (train, val and test) from the Visda dataset [Peng
et al., 2018]. While ‘train’ domain contains synthetic renditions of the objects,
‘val’ and ‘test’ domains contain real world images. To avoid confusing, the
domain names with their roles as splits, we rename them as ‘synthetic’, ‘Real-1’
and ‘Real-2’. We use the synthetic (original train set) as the source domain and
use the other domains as target.

G.1.3 Setup and Protocols

Architecture Details For all datasets, we used the same architecture across differ-
ent algorithms:

• CIFAR-10: Resnet-18 [He et al., 2016] pretrained on Imagenet
• CIFAR-100: Resnet-18 [He et al., 2016] pretrained on Imagenet
• Camelyon: Densenet-121 [Huang et al., 2017a] not pretrained on Imagenet

as per the suggestion made in [Koh et al., 2021]
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• FMoW: Densenet-121 [Huang et al., 2017a] pretrained on Imagenet
• BREEDs (Entity13, Entity30, Living17, Nonliving26): Resnet-18 [He et al.,

2016] not pretrained on Imagenet as per the suggestion in [Santurkar et al.,
2020]. The main rationale is to avoid pre-training on the superset dataset
where we are simulating sub-population shift.

• Officehome: Resnet-50 [He et al., 2016] pretrained on Imagenet
• Domainnet: Resnet-50 [He et al., 2016] pretrained on Imagenet
• Visda: Resnet-50 [He et al., 2016] pretrained on Imagenet

Except for Resnets on CIFAR datasets, we used the standard pytorch implemen-
tation [Gardner et al., 2018]. For Resnet on cifar, we refer to the implementation
here: https://github.com/kuangliu/pytorch-cifar. For all the ar-
chitectures, whenever applicable, we add antialiasing [Zhang, 2019]. We use the
official library released with the paper.

For imagenet-pretrained models with standard architectures, we use the publicly
available models here: https://pytorch.org/vision/stable/models.
html. For imagenet-pretrained models on the reduced input size images (e.g.
CIFAR-10), we train a model on Imagenet on reduced input size from scratch. We
include the model with our publicly available repository.

Hyperparameter details First, we tune learning rate and ℓ2 regularization param-
eter by fixing batch size for each dataset that correspond to maximum we can fit to
15GB GPU memory. We set the number of epochs for training as per the suggestions
of the authors of respective benchmarks. Note that we define the number of epochs
as a full pass over the labeled training source data. We summarize learning rate,
batch size, number of epochs, and ℓ2 regularization parameter used in our study in
Table G.2.

For each algorithm, we use the hyperparameters reported in the initial papers.
For domain-adversarial methods (DANN and CDANN), we refer to the suggestions
made in Transfer Learning Library [Jiang et al., 2022a]. We tabulate hyperparame-
ters for each algorithm next:

• DANN, CDANN, As per Transfer Learning Library suggestion, we use
a learning rate multiplier of 0.1 for the featurizer when initializing with a
pre-trained network and 1.0 otherwise. We default to a penalty weight of 1.0
for all datasets with pre-trained initialization.

• FixMatch We use the lambda is 1.0 and use threshold τ as 0.9.
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Compute Infrastructure Our experiments were performed across a combination
of Nvidia T4, A6000, and V100 GPUs.

G.2 Comparing Disagreement Losses

We define the alternate losses for maximizing disagreement:

1. Chuang et al. [2020] minimize the negative cross-entropy loss, which is
concave in the model logits. That is, they add the term log softmax(h(x)y)
to the objective they are minimizing. This loss results in substantially lower
disagreement discrepancy than the other two.

2. Pagliardini et al. [2023] use a loss which is not too different from ours. They
define the disagreement objective for a point (x, y) as

log

(
1 +

exp(h(x)y)∑
ŷ ̸=y exp(h(x)ŷ)

)
. (G.3)

For comparison, ℓdis can be rewritten as

log

1 +
exp(h(x)y)

exp
(

1
|Y|−1

∑
ŷ ̸=y h(x)ŷ

)
 , (G.4)

where the incorrect logits are averaged and the exponential is pushed outside the
sum. This modification results in (G.4) being convex in the logits and an upper
bound to the disagreement 0-1 loss, whereas (G.3) is neither.

Figure G.1 displays histograms of the achieved disagreement discrepancy across
all distributions for each of the disagreement losses (all hyperparameters and random
seeds are the same for all three losses). The table below it reports the mean
disagreement discrepancy on the train and test sets. We find that the negative cross-
entropy, being a concave function, results in very low discrepancy. The loss (G.3) is
reasonably competitive with our loss (G.4) on average, seemingly because it gets
very high discrepancy on a subset of shifts. This suggests that it may be particularly
suited for a specific type of distribution shift, though it is less good overall. Though
the averages are reasonably close, the samples are not independent, so we run a
paired t-test and we find that the increases to average train and test discrepancies
achieved by ℓdis are significant at levels p = 0.024 and p = 0.009, respectively.
However, with enough holdout data, a reasonable approach would be to split the
data in two: one subset to validate critics trained on either of the two losses, and
another to evaluate the discrepancy of whichever one is ultimately selected.
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Loss Mean Discr. (Train) Mean Discr. (Test)

Neg. X-Ent [Chuang et al., 2020] 0.3555± .0124 0.1694± .0105
D-BAT [Pagliardini et al., 2023] 0.8145± .0177 0.3224± .0212
ℓdis (Ours) 0.8333± .0132 0.3322± .0205

Figure G.1 & Table G.2: Histogram of disagreement discrepancies for each of the
three losses, and the average values across all datasets. Bold (resp. Underline) indi-
cates the method has higher average discrepancy under a paired t-test at significance
p = .01 (resp. p = .05).

G.3 Exploration of the Validity Score

To experiment with reducing the complexity of the classH, we evaluate DIS2

on progressively fewer top principal components (PCs) of the features. Precisely,
for features of dimension d, we evaluate DIS2 on the same features projected onto
their top d/k components, for k ∈ [1, 4, 16, 32, 64, 128] (Figure G.2). We see that
while projecting to fewer and fewer PCs does reduce the error bound value, unlike
the logits it is a rather crude way to reduce complexity ofH, meaning at some point
it goes too far and results in invalid error bounds.

However, during the optimization process we observe that around when this
violation occurs, the task of training a critic to both agree on S and disagree on T
goes from “easy” to “hard”. Figure G.3 shows that on the full features, the critic
rapidly ascends to maximum agreement on S , followed by slow decay (due to both
overfitting and learning to simultaneously disagree on T ). As we drop more and
more components, this optimization becomes slower.

We therefore design a “validity score” intended to capture this phenomenon
which we refer to as the cumulative ℓ1 ratio. This is defined as the maximum
agreement achieved, divided by the cumulative sum of absolute differences in
agreement across all epochs up until the maximum was achieved. Formally, let
{ai}Ti=1 represent the agreement between h′ and ĥ after epoch i, i.e. 1− ϵŜ(ĥ, h

′
i),

and define m := argmaxi∈[T ] ai. The cumulative ℓ1 ratio is then am
a1+

∑m
i=2 |ai−ai−1| .
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Figure G.2: DIS2 bound as fewer principal components are kept. Reducing the
number of top principal components crudely reduces complexity ofH—this leads
to lower error estimates, but at some point the bounds become invalid for a large
fraction of shifts.

Figure G.3: Agreement on one shift between ĥ and h′ on Ŝ during optimization.
We observe that as the number of top PCs retained drops, the optimization occurs
more slowly and less monotonically. For this particular shift, the bound becomes
invalid when keeping only the top 1/128 components, depicted by the brown line.

Thus, if the agreement rapidly ascends to its maximum without ever going down
over the course of an epoch, this ratio will be equal to 1, and if it non-monotonically
ascends then the ratio will be significantly less. This definition was simply the first
metric we considered which approximately captures the behavior we observed; we
expect it could be greatly improved.

Figure G.4 displays a scatter plot of the cumulative ℓ1 ratio versus the difference
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Figure G.4: Cumulative ℓ1 ratio versus error prediction gap. Despite its sim-
plicity, the ratio captures the information encoded in the optimization trajectory,
roughly linearly correlating with the tightness and validity of a given prediction. It
is thus a useful metric for identifying the ideal number of top PCs to use.

in estimated and true error for DIS2 evaluated on the full range of top PCs. A
negative value implies that we have underestimated the error (i.e., the bound is not
valid). We see that even this very simply metric roughly linearly correlates with the
tightness of the bound, which suggests that evaluating over a range of top PC counts
and only keeping predictions whose ℓ1 ratio is above a certain threshold can improve
raw predictive accuracy without reducing coverage by too much. Figure G.5 shows
that this is indeed the case: compared to DIS2 evaluated on the logits, keeping
all predictions above a score threshold can produce more accurate error estimates,
without too severely underestimating error in the worst case.

G.4 Making Baselines More Conservative with LOOCV

To more thoroughly compare DIS2 to prior estimation techniques, we consider
a strengthening of the baselines which may give them higher coverage without
too much cost to prediction accuracy. Specifically, for each desired coverage level
α ∈ [0.9, 0.95, 0.99], we use all but one of the datasets to learn a parameter to
either scale or shift a method’s predictions enough to achieve coverage α. We then
evaluate this scaled or shifted prediction on the distribution shifts of the remaining
dataset, and we repeat this for each one.
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Figure G.5: DIS2 bounds and MAE / coverage as the cumulative ℓ1 ratio
threshold is lowered. Values in parenthesis are (MAE / coverage). By only keeping
predictions with ratio above a varying threshold, we can smoothly interpolate
between bound validity and raw error prediction accuracy.

The results, found in Table G.3, demonstrate that prior methods can indeed
be made to have much higher coverage, although as expected their MAE suffers.
Furthermore, they still underestimate error on the tail distribution shifts by quite a
bit, and they rarely achieve the desired coverage on the heldout dataset—though
they usually come reasonably close. In particular, ATC [Garg et al., 2022] and
COT [Lu et al., 2023] do well with a shift parameter, e.g. at the desired coverage
α = 0.95 ATC matches DIS2 in MAE and gets 94.4% coverage (compared to 98.9%
by DIS2). However, its conditional average overestimation is quite high, almost 9%.
COT gets much lower overestimation (particularly for higher coverage levels), and
it also appears to suffer less on the tail distribution shifts in the sense that α = 0.99
does not induce nearly as high MAE as it does for ATC. However, at that level it
only achieves 95.6% coverage, and it averages almost 5% accuracy overestimation
on the shifts it does not correctly bound (compared to 0.1% by DIS2). Also, its
MAE is still substantially higher than DIS2, despite getting lower coverage. Finally,
we evaluate the scale/shift approach on our DIS2 bound without the lower order
term, but based on the metrics we report there appears to be little reason to prefer it
over the untransformed version, one of the baselines, or the original DIS2 bound.

Taken together, these results imply that if one’s goal is predictive accuracy and
tail behavior is not important (worst ˜10%), ATC or COT will likely get reasonable
coverage with a shift parameter—though they still significantly underestimate error
on a non-negligible fraction of shifts. If one cares about the long tail of distribution
shifts, or prioritizes being conservative at a slight cost to average accuracy, DIS2

is clearly preferable. Finally, we observe that the randomness which determines
which shifts are not correctly bounded by DIS2 is “decoupled” from the distributions
themselves under Theorem 8.3.6, in the sense that it is an artifact of the random
samples, rather than a property of the distribution (recall Figure 8.4b). This is
in contrast with the shift/scale approach which would produce almost identical
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results under larger sample sizes because it does not account for finite sample
effects. This implies that some distribution shifts are simply “unsuitable” for prior
methods because they do not satisfy whatever condition these methods rely on, and
observing more samples will not remedy this problem. It is clear that working to
understand these conditions is crucial for reliability and interpretability, since we
are not currently able to identify which distributions are suitable a priori.

G.5 Proving that Assumption 8.3.5 Holds

Here we describe how the equivalence of Assumption 8.3.5 and the bound in
Theorem 8.3.6 allow us to prove that the assumption holds with high probability.
By repeating essentially the same proof as Theorem 8.3.6 in the other direction, we
get the following corollary:
Corollary G.5.1. If Assumption 8.3.5 does not hold, then with probability ≥ 1− δ,

ϵT̂ (ĥ) > ϵŜ(ĥ) + ∆̂(ĥ, h′)−
√

2(nS + nT ) log 1/δ

nSnT
. (G.5)

Note that the last term here is different from Theorem 8.3.6 because we are
bounding the empirical target error, rather than the true target error. The reason for
this change is that now we can make direct use of its contrapositive:
Corollary G.5.2. If it is the case that

ϵT̂ (ĥ) ≤ ϵŜ(ĥ) + ∆̂(ĥ, h′)−
√

2(nS + nT ) log 1/δ

nSnT
, (G.6)

then either Assumption 8.3.5 holds, or an event has occurred which had probability
≤ δ over the randomness of the samples Ŝ, T̂ .

We evaluate this bound on non-domain-adversarial shifts with δ = 10−6. As
some of the BREEDS shifts have as few as 68 test samples, we restrict ourselves
to shifts with nT ≥ 500 to ignore those where the finite-sample term heavily
dominates; this removes a little over 20% of all shifts. Among the remainder,
we find that the bound in Corollary G.5.2 holds 55.7% of the time when using
full features and 25.7% of the time when using logits. This means that for these
shifts, we can be essentially certain that Assumption 8.3.5—and therefore also
Assumption 8.3.3—is true.

Note that the fact that the bound is not violated for a given shift does not at
all imply that the assumption is not true. In general, the only rigorous way to
prove that Assumption 8.3.5 does not hold would be to show that for a fixed δ,
the fraction of shifts for which the bound in Theorem 8.3.6 does not hold is larger
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than δ (in a manner that is statistically significant under the appropriate hypothesis
test). Because this never occurs in our experiments, we cannot conclude that the
assumption is ever false. At the same time, the fact that the bound does hold at least
1− δ of the time does not prove that the assumption is true—it merely suggests that
it is reasonable and that the bound should continue to hold in the future. This is why
it is important for Assumption 8.3.5 to be simple and intuitive, so that we can trust
that it will persist and anticipate when it will not.

However, Corollary G.5.2 allows us to make a substantially stronger statement.
In fact, it says that for any distribution shift, with enough samples, we can prove a
posteriori whether or not Assumption 8.3.5 holds, because the gap between these
two bounds will shrink with increasing sample size.
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Dataset Source Target

CIFAR10 CIFAR10v1
CIFAR10v1, CIFAR10v2, CIFAR10C-Frost (severity 4),

CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate (severity 5)

CIFAR100 CIFAR100

CIFAR100, CIFAR100C-Fog (severity 4),

CIFAR100C-Motion Blur (severity 2), CIFAR100C-Contrast (severity 4),

CIFAR100C-spatter (severity 2)

Camelyon
Camelyon

(Hospital 1–3)
Camelyon (Hospital 1–3), Camelyon (Hospital 4), Camelyon (Hospital 5)

FMoW FMoW (2002–’13) FMoW (2002–’13), FMoW (2013–’16), FMoW (2016–’18)

Entity13

Entity13

(ImageNetv1

sub-population 1)

Entity13 (ImageNetv1 sub-population 1),

Entity13 (ImageNetv1 sub-population 2),

Entity13 (ImageNetv2 sub-population 1),

Entity13 (ImageNetv2 sub-population 2)

Entity30

Entity30

(ImageNetv1

sub-population 1)

Entity30 (ImageNetv1 sub-population 1),

Entity30 (ImageNetv1 sub-population 2),

Entity30 (ImageNetv2 sub-population 1),

Entity30 (ImageNetv2 sub-population 2)

Living17

Living17

(ImageNetv1

sub-population 1)

Living17 (ImageNetv1 sub-population 1),

Living17 (ImageNetv1 sub-population 2),

Living17 (ImageNetv2 sub-population 1),

Living17 (ImageNetv2 sub-population 2)

Nonliving26

Nonliving26

(ImageNetv1

sub-population 1)

Nonliving26 (ImageNetv1 sub-population 1),

Nonliving26 (ImageNetv1 sub-population 2),

Nonliving26 (ImageNetv2 sub-population 1),

Nonliving26 (ImageNetv2 sub-population 2)

Officehome Product Product, Art, ClipArt, Real

DomainNet Real Real, Painiting, Sketch, ClipArt

Visda

Synthetic

(originally referred

to as train)

Synthetic, Real-1 (originally referred to as val),

Real-2 (originally referred to as test)

Table G.1: Details of the source and target datasets in our testbed.
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Dataset Epoch Batch size ℓ2 regularization Learning rate

CIFAR10 50 200 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})
CIFAR100 50 200 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})
Camelyon 10 96 0.01 (chosen from {0.01, 0.001, 0.0001, 0.0}) 0.03 (chosen from {0.003, 0.3, 0.0003, 0.03})
FMoW 30 64 0.0 (chosen from {0.0001, 0.001,1e-5,0.0}) 0.0001 (chosen from {0.001, 0.01, 0.0001})
Entity13 40 256 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})
Entity30 40 256 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})
Living17 40 256 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})
Nonliving26 40 256 0 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})
Officehome 50 96 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})
DomainNet 15 96 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})
Visda 10 96 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

Table G.2: Details of the learning rate and batch size considered in our testbed
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MAE (↓) Coverage (↑) Overest. (↓)
α→ 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Method Adjustment

AC none 0.106 0.122 0.118
shift 0.153 0.201 0.465 0.878 0.922 0.956 0.119 0.138 0.149
scale 0.195 0.221 0.416 0.911 0.922 0.967 0.135 0.097 0.145

DoC none 0.105 0.167 0.122
shift 0.158 0.200 0.467 0.878 0.911 0.956 0.116 0.125 0.154
scale 0.195 0.223 0.417 0.900 0.944 0.967 0.123 0.139 0.139

ATC NE none 0.067 0.289 0.083
shift 0.117 0.150 0.309 0.900 0.944 0.978 0.072 0.088 0.127
scale 0.128 0.153 0.357 0.889 0.933 0.978 0.062 0.074 0.144

COT none 0.069 0.256 0.085
shift 0.115 0.140 0.232 0.878 0.944 0.956 0.049 0.065 0.048
scale 0.150 0.193 0.248 0.889 0.944 0.956 0.074 0.066 0.044

DIS2 (w/o δ) none 0.083 0.756 0.072
shift 0.159 0.169 0.197 0.889 0.933 0.989 0.021 0.010 0.017
scale 0.149 0.168 0.197 0.889 0.933 0.989 0.023 0.021 0.004

DIS2 (δ = 10−2) none 0.150 0.989 0.001
DIS2 (δ = 10−3) none 0.174 1.000 0.000

Table G.3: MAE, coverage, and conditional average overestimation for the strength-
ened baselines with a shift or scale parameter on non-domain-adversarial represen-
tations. Because a desired coverage α is only used when an adjustment is learned,
“none”—representing no adjustment—does not vary with α.
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Appendix H

Appendix for Chapter 9

H.1 Proofs of Hardness Results

We restate the theorems for convenience.

H.1.1 Proof of Theorem 9.3.1

Theorem H.1.1. Consider the task of learning a norm-bounded linear classifier.
Fix any two costs c1, c2 with non-equal PD matrices, and let 0 ≤ ϵ ≤ 1

2 . There
exists a distribution p over X × Y such that:

1. For each of c1 and c2, there is a (different) classifier which achieves 0 error
on p when facing strategic response under that cost; and

2. Any classifier which achieves 0 error on p under cost c1 suffers error ϵ under
cost c2, and any classifier which achieves 0 error on p under cost c2 suffers
error 1− ϵ under cost c2.

Proof. We will construct two distributions, one over the conditional q(x | y = 1)
and the other over q(x | y = −1), and combine them via the mixture q(y = 1) = ϵ,
q(y = −1) = 1 − ϵ. Let Σ1,Σ2 denote the cost matrices for c1, c2 respectively.
Let B denote the upper bound on the classifier norm. Pick any β∗ such that
∥β∗∥Σ1 ̸= ∥β∗∥Σ2 , and define r := u∗∥β∗∥

3B (∥β∗∥Σ1 − ∥β∗∥Σ2). WLOG, suppose
r > 0. Focusing on the negatively labeled portion, consider the (d−1)-dimensional
plane in X defined by β∗⊤x = −r. We let q(x | y = −1) be any distribution
with full support over that plane. Similarly, define the conditional distribution
q(x | y = 1) as a full-support distribution over the plane defined by β∗⊤x = r.
Thus the only classifier which achieves 0 error must have β̂ = αβ∗ for some scaling
factor B/∥β∗∥ ≥ α > 0. The only remaining degree of freedom is the bias term β̂0.
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Consider the case where the true cost is c1. If we wish to correctly classify the
negative points under strategic response, we must classify the negatively labeled
plane with margin greater than u∗∥β∗∥Σ1 . However, if we wish to do the same with
the positive points, the margin for that plane must be less than or equal to this same
value. Formally, we must have

β∗⊤x = −r =⇒ β̂⊤x+ β̂0 < −u∗∥β∗∥Σ1 , (H.1)

β∗⊤x = r =⇒ β̂⊤x+ β̂0 ≥ −u∗∥β∗∥Σ1 , (H.2)

which, remembering that β̂ = αβ∗, immediately implies

β̂0 − αr < −u∗∥β∗∥Σ1 , (H.3)

β̂0 + αr ≥ −u∗∥β∗∥Σ1 . (H.4)

Thus, we have

−u∗∥β∗∥Σ1 − αr ≤ β̂0 < −u∗∥β∗∥Σ1 + αr, (H.5)

and since αr > 0, this describes the non-empty set of all classifiers which achieve 0
error under cost c1. By an analogous argument we can construct the set of classifiers
which achieve 0 error under cost c2.

However, observe that

2αr =
2

3

∥β∗∥
B

u∗(∥β∗∥Σ1 − ∥β∗∥Σ2) (H.6)

< u∗(∥β∗∥Σ1 − ∥β∗∥Σ2), (H.7)

and therefore

−u∗∥β∗∥Σ1 + αr < −u∗∥β∗∥Σ2 − αr. (H.8)

This means that the upper bound for any β̂0 which achieves 0 error under cost c1
cannot satisfy the lower bound for cost c2, which means the positively labeled plane
will be classified negatively with a margin that is too large for strategic response,
causing error ϵ. By a symmetric argument, any β̂0 which achieves 0 error under
cost c2 cannot satisfy the upper bound for cost c1, implying the negatively labeled
plane will strategically shift and cause error 1− ϵ. Finally, we remark that while the
distribution defined here is not absolutely continuous on X , this can be remedied
by simply making the distribution a product of the constructed planar distribution
and a uniform distribution along the direction β∗ with width sufficiently small (e.g,
width c · αr for c≪ 1).
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H.1.2 Proof of Theorem 9.3.2

Theorem H.1.2. Define the distribution q over X ×Y as q(y = 1) = q(y = −1) =
1/2, q(x | y) d

= N (y · µ0, σ
2I). Denote by Φ the standard Normal CDF. Let the

true cost be defined as ∥x − x′∥Σ with unknown cost matrix Σ, and let β∗ be the
classifier which minimizes the strategic 0-1 risk under this cost.

Suppose one instead learns a classifier β̂ by assuming an incorrect cost Σ̂
and minimizing the population strategic 0-1 risk under that cost: β̂ := argminβ Eq[ℓ

ĉ
0−1(β)].

Then the excess 0-1 risk suffered by β̂ is

Φ

(∥µ0∥
σ

)
− 1

2

(
Φ

(∥µ0∥ − ϵ

σ

)
+Φ

(∥µ0∥+ ϵ

σ

))
, (H.9)

where ϵ :=
u∗|∥µ0∥∗,Σ̂−1−∥µ0∥∗,Σ−1 |

∥µ0∥ .

Proof. By the Neyman-Pearson Lemma, the classifier which minimizes non-strategic
0-1 risk will be the one which predicts sign(ln p(y=1|x)

p(y=0|x)), which gives β∗ = 2µ0.
To account for strategic response, we observe that as proven in Lemma 9.2.3, each
user will have δ(x) in the direction of β∗ which induces a change in their predicted
value by at most u∗∥β∗∥∗ = 2u∗∥µ0∥∗,Σ−1 ; since we are considering the 0-1 loss,
this is equivalent to every user shifting in this way.

It is immediate that to find the corresponding minimizer of the population 0-1
strategic risk, we can simply add a negative bias equal to the change induced by
this shift, because this maintains the same labels as before on all points, after
they strategically shift. Therefore, the strategic risk minimizer will be 2µ⊤

0 x −
2u∗∥µ0∥∗,Σ−1 . By the same argument, the minimizer of the 0-1 strategic risk under
the incorrect cost matrix Σ̂ is 2µ⊤

0 x− 2u∗∥µ0∥∗,Σ̂−1 . It remains to derive a lower
bound on their difference in risk.

First note that as argued above, the 0-1 strategic risk of the minimizer for the
correct cost is the same as the non-strategic risk of the non-strategic solution. For
the both positively and negatively labeled points, this is equal to Φ

(
−∥µ0∥

σ

)
due to

rotational symmetry. To determine the risk of the incorrect solution, we can identify
the regions whose label will differ under that classifier and bound the measure of
those regions. Define γ = 2u∗(∥µ0∥∗,Σ̂−1 −∥µ0∥∗,Σ−1) as the difference in the two
solutions’ predictions on all x. Due to the symmetry of the positive and negative
conditional distributions, we can assume WLOG that γ > 0, i.e., the incorrect
classifier assigns a smaller prediction to all x. This means it will have less risk on
a region of negative points and more on positive. Specifically, the two classifiers
will differ on all points for which the true strategic-optimal classifier assigns a value
before strategic response which lies in (−2u∗∥µ0∥∗,Σ−1 ,−2u∗∥µ0∥∗,Σ−1 + γ);
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those assigned a value less than −2u∗∥µ0∥∗,Σ−1 will receive a negative prediction
from both classifiers, and those assigned a value greater than −2u∗∥µ0∥∗,Σ−1 + γ
will still be close enough to the decision boundary that they can shift to achieve a
positive label prediction from β̂. Formally, this region is

{x | −2u∗∥µ0∥∗,Σ−1 < β∗⊤x < −2u∗∥µ0∥∗,Σ−1 + γ} = {x | 0 < µ⊤
0 x < γ/2}.

(H.10)

This region depends only on the value µ⊤
0 x. Since the negative points are distributed

as N (−µ0, σ
2I), this term has the distribution µ⊤

0 x ∼ N (−∥µ0∥2, σ2∥µ0∥2).
Therefore, the measure of this region under q(x | y = −1) is

Φ

(
γ/2 + ∥µ0∥2

σ∥µ0∥

)
− Φ

(∥µ0∥
σ

)
(H.11)

=

∫ γ
2∥µ0∥

0
ρ

(∥µ0∥+ z

σ

)
dz, (H.12)

This is the amount by which the risk of the incorrect solution will decrease on the
negative points. Likewise, the risk will increase on positive points in this region,
which under q(x | y = 1) has measure

Φ

(
γ/2− ∥µ0∥2

σ∥µ0∥

)
− Φ

(−∥µ0∥
σ

)
(H.13)

=

∫ γ
2∥µ0∥

0
ρ

(−∥µ0∥+ z

σ

)
dz, (H.14)

Therefore, the overall increase to risk will be

1

2

∫ ϵ

0
ρ

(−∥µ0∥+ z

σ

)
− ρ

(∥µ0∥+ z

σ

)
dz, (H.15)

where ϵ :=
u∗|∥µ0∥∗,Σ̂−1−∥µ0∥∗,Σ−1 |

∥µ0∥ . By applying the fundamental theorem of
calculus and the fact that Φ(x) = 1− Φ(−x) we arrive at the stated equality.

H.2 Proof of Theorem 9.4.2 and Proposition 9.4.3

Theorem H.2.1. Let ∥ · ∥ be a p-norm and fix a cost matrix Σ. For any distribution
q on X ×Y with q(y = 1) =: τ+, the dual-regularized loss Rc

s-hinge(β) + λu∗∥β∥∗
is guaranteed to be convex for λ ≥ τ+. In contrast, the ℓ2-regularized loss
Rc

s-hinge(β) + λu∗∥β∥2 is non-convex unless λ ≥ τ+∥Σ−1/2∥2.
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Proof. Writing out the dual-regularized loss with the full definition of the strategic
hinge,

Rc
s-hinge(β) + λu∗∥β∥∗ = E(x,y)∼q[max{0, 1− y(β⊤x+ u∗∥β∥∗)}] + λu∗∥β∥∗

= τ+Eq(x|y=1)[max{0, 1− β⊤x− u∗∥β∥∗}+ λ/τ+u∗∥β∥∗]+
(1− τ+)Eq(x|y=−1)[max{0, 1 + β⊤x+ u∗∥β∥∗}].

The last term is already convex in β. Rewriting the first term, we get

τ+Eq(x|y=1)[max{λ/τ+u∗∥β∥∗, 1− β⊤x+ u∗ (λ/τ+ − 1) ∥β∥∗}] (H.16)

For λ ≥ τ+ this is the expectation of the maximum of two convex functions, and
thus the full loss is convex.

To see why the ℓ2 norm requires much stronger regularization, consider again
the above term with regularization λu∗∥β∥2:

τ+Ex|y=1

[
max

{
λ

τ+
u∗∥β∥2, 1− β⊤x+ u∗

(
λ

τ+
∥β∥2 − ∥β∥∗

)}]
. (H.17)

The first term in the max is convex—so to show non-convexity, we will consider
values where the second term is larger. Recalling that ∥v∥∗ := ∥Σ−1/2v∥q, write
the second term as a function f(β) := 1− β⊤x+u∗

(
λ
τ+
∥β∥2 − ∥Σ−1/2β∥q

)
, and

thus

∇f(β) = −x+ u∗

(
λ

τ+
β

∥β∥2
− Σ−1/2

(
∂

∂v
∥v∥q

∣∣
v=Σ−1/2β2

))
. (H.18)

Recall that a function is convex if and only if for all x, y in its domain,

f(x)− f(y) ≥ ∇f(y)⊤(x− y). (H.19)

This means that f is convex only if for all vectors β1, β2 ∈ B,

λ

τ+
(∥β1∥2 − ∥β2∥2)− ∥Σ−1/2β1∥q + ∥Σ−1/2β2∥q (H.20)

≥
(

λ

τ+
β2
∥β2∥2

− Σ−1/2

(
∂

∂v
∥v∥q

∣∣
v=Σ−1/2β2

))⊤
(β1 − β2). (H.21)

Without loss of generality, suppose Σ is diagonal. Let vi, i ∈ [d] denote the
eigenvectors of Σ with decreasing eigenvalues σ2

1, σ
2
2, . . .. Choose any β2 =
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∑
i λivi with non-negative λi and λd = 0. Thus Σ−1/2β2 =

∑
i (λi/σi) vi. Then

β⊤
2 Σ

−1/2 ∂

∂v
∥v∥q

∣∣
v=Σ−1/2β2

=
∑
i

(λi/σi) ·
( |λi/σi|
∥Σ−1/2β2∥q

)q−1

(H.22)

=
∥Σ−1/2β2∥qq
∥Σ−1/2β2∥q−1

q

(H.23)

= ∥Σ−1/2β2∥q. (H.24)

This allows us to simplify the above inequality and arrive at the condition

λ

τ+
∥β1∥2 − ∥Σ−1/2β1∥q ≥ β⊤

1

(
λ

τ+
β2
∥β2∥2

− Σ−1/2 ∂

∂v
∥v∥q

∣∣
v=Σ−1/2β2

)
.

(H.25)

Now choose β1 = cvd for some scalar c ̸= 0. Then the RHS vanishes and f(β) is
convex only if

λc

τ+
− c

σd
≥ 0 (H.26)

⇐⇒ λ ≥ τ+

σd
= τ+∥Σ−1/2∥2. (H.27)

Thus we’ve proven the required lower bound on λ. What remains is to show that
this condition applies at a location in parameter space where the negatively labeled
samples do not contribute to the gradient, and where the losses on the positively
labeled samples are dominated by the second term of the maximum.

To do this, we scale down β2 → 0 and choose the bias as β0 = −(1+u∗∥β2∥∗+
ϵ(X + 1)) for some very small positive ϵ. It follows that for all x,

β⊤
2 x+ β0 + u∗∥β2∥∗ ≤ ϵX − (1 + u∗∥β2∥∗ + ϵ(X + 1)) + u∗∥β2∥∗ (H.28)

≤ −(1 + ϵ). (H.29)

This accomplishes both desiderata: first, it ensures that the loss on all negatively
labeled points is max{0, 1 + β⊤x + β0 + u∗∥β∥∗} ≤ max{0,−ϵ} = 0, with
gradient equal to 0. Second, it ensures that on the positive examples, the second
term in the loss dominates. We can see this by observing that the second term being
larger is equivalent to

0 < 1−
(
β⊤
2 x+ β0 + u∗∥β2∥∗

)
, (H.30)

and by construction the RHS is at least 2 + ϵ for all x.
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H.3 Proofs of Lemmas in Main Body

H.3.1 Proofs of Lemmas 9.2.3 and 9.2.4

Lemma H.3.1. For any cost c(x, x′) = ϕ(∥x− x′∥Σ), the maximum change to a
user’s prediction score that can result from strategic behavior is given by

β⊤x(β)− β⊤x ≤ u∗∥β∥∗ (H.31)

where ∥β∥∗ := ∥β∥∗,Σ−1 = sup∥v∥Σ=1 β
⊤v is the Σ-transformed dual norm of β

and u∗ := sup r ∈ R≥0 s.t. ϕ(r) ≤ u.

Proof. A user at x will move so as to maximize the inner product β⊤x(β) so long
as the cost of this move does not exceed the additional utility u (and only up until
the point that they achieve a positive classification). In other words, the maximum
logit they will feasibly achieve is given by the optimization problem

sup
x′

β⊤x′ s.t. c(x, x′) ≤ u. (H.32)

We can reparameterize x′ = x+ δ to rewrite the objective as

β⊤x+ sup
{δ : ϕ(∥δ∥Σ)≤u}

β⊤δ, (H.33)

which, recalling the definition of u∗ and monotonicity of ϕ, is equal to

β⊤x+ sup
{δ : ∥δ∥Σ≤u∗}

β⊤δ (H.34)

Here we recognize the variational formula for the dual norm, giving the solution
β⊤x+ u∗∥β∥∗.

Lemma H.3.2. For any cost c ∈ C, Rc
0−1(β) ≤ Rc

s-hinge(β).

Proof. For a fixed sample (x, y), recall the loss definitions:

ℓc0−1(β) := 1{sign(β⊤(x+ δ)) ̸= y} (H.35)

ℓchinge(β) := max
(
0, 1− yβ⊤(x+ δ)

)
(H.36)

ℓcs-hinge(β) := max
(
0, 1− y(β⊤x+ u∗∥β∥∗)

)
. (H.37)

Since strategic response is agnostic to the loss used (i.e., δ does not change) and the
hinge loss upper bounds the 0-1 loss, it is immediate that ℓc0−1 ≤ ℓchinge. Consider

313



any point with true label y = 1. If the point is positively classified (whether it
moves or not) then ℓc0−1 = 0 ≤ ℓcs-hinge. If the point is negatively classified and does
not move, this means β⊤x < −u∗∥β∥∗ =⇒ β⊤x + u∗∥β∥∗ < 0, and therefore
ℓc0−1 = 1 < ℓcs-hinge. So the claim holds for any point with y = 1.

Next, if a point with true label y = −1 does not move, then neither loss changes
as a result of strategic response, which means the strategic hinge loss is no less than
the regular hinge loss. It remains to prove the inequality for points with y = −1
which move in response to the classifier. By Lemma 9.2.3 the classifier’s output
after strategic response will increase by no more than u∗∥β∥∗. We have

ℓchinge(β) = ℓhinge(β
⊤(x+ δ), y = −1) (H.38)

= max{0, 1 + β⊤(x+ δ)} (H.39)

≤ max{0, 1 + β⊤x+ u∗∥β∥∗} (H.40)

= ℓs-hinge(β;u∗∥β∥∗) (H.41)

= ℓcs-hinge(β).

H.3.2 Proof of Lemma 9.4.1

Lemma H.3.3. Fix some classifier β. Then for any dataset (X × Y)n and uncer-
tainty set C, MAXLOSSCOST runs in O(nd + n lnn) time and returns the value
k∗ ∈ R≥0 which maximizes the k-shifted strategic hinge loss R̂s-hinge(β; k) subject
to k∗ = u∗∥β∥∗ for some cost c ∈ C.

Proof. Recall the regularized strategic hinge loss R̂s-hinge(β̂;u∗∥β̂∥∗) =
1
n

∑n
i=1max{0, 1 − yi(β̂

⊤x + u∗∥β̂∥∗)} + λu∗∥β̂∥∗. As this function depends
on c only through the dual norm, and since C is a convex set and the norm is
continuous, the worst-case cost scalar can be reparameterized as the argmax over
k ∈ [∥β̂∥min

∗ , ∥β̂∥max
∗ ] of R̂s-hinge(β̂;u∗k). This function is one-dimensional and

piecewise linear in k, and therefore the maximum must occur either at an endpoint
or at the boundary between two linear segments.

By sorting the vi := yi(1−yiβ̂
⊤xi), we get the values 1−yiβ̂

⊤xi with y = +1
in increasing order and those with y = −1 in decreasing order. At each step,
we maintain the condition that for all j′ < j, vj′ − u∗k ≤ 0. It follows that by
increasing k to the boundary of the next linear segment at k′, there are exactly c+1

points for which the loss will decrease by u∗(k
′ − k) and c−1 points for which

the loss will increase by that same amount, while the regularization term increases
by λu∗(k

′ − k). Thus r tracks the induced risk for the current k, and we keep
track of the k which so far induces the maximum risk. Finally, since we have
moved to the next linear segment: either an example with y = +1 now has 0
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loss and will not change for the remainder; or an example with y = −1 has > 0
loss and will contribute linearly to the risk for the remainder. We therefore update
the appropriate count and iterate. The algorithm is complete when we reach the
boundary k = ∥β∥max

∗ . If before this point we reach the end of the sorted vj , then
we know that for the remaining possible increase ∥β∥max

∗ − k, only the loss on the
negative examples will change, growing linearly until the boundary. So we do one
last evaluation and return the maximum.

H.4 Proof of Rademacher Generalization Bound

Theorem H.4.1 (Strategic Hinge Generalization Bound). Fix a norm ∥ · ∥. Assume
maxx∈D ∥x∥ ≤ X and ∥β∥2, ∥β∥∗ ≤ B, ∀β ∈ B, c ∈ C. Then with probability
≥ 1− δ, for all β ∈ B and all cost functions c ∈ C,

Rc
0−1(β) ≤ R̂c

s-hinge(β) +
B(4X + u∗) + 3

√
ln 1/δ√

n
(H.42)

Lemma 9.2.4 shows that Rc
0−1(β) ≤ Rc

s-hinge(β). The result then follows from
standard Rademacher bounds, requiring only the following additional Lemma:
Lemma H.4.2. For any set of n samples,

R̂n(ℓs-hinge ◦ B) ≤
B(4X + u∗)

2
√
n

. (H.43)

Proof. Define the function class H := {x 7→ β⊤x + z(y)u∗∥β∥∗} (z(y) follows
notation from Levanon and Rosenfeld [2022]—in our case it is always equal to 1
but more generally we let it be a map from {±1} 7→ {±1}). With the definition of
Rademacher complexity,

R̂n(H) = Eσ

[
sup

β∈B,c∈C

1

n

n∑
i=1

σi · (β⊤x+ z(y)u∗∥β∥∗)
]

(H.44)

≤ Eσ

[
sup
β∈B

1

n

n∑
i=1

σiβ
⊤x

]
+ Eσ

[
sup

β∈B,c∈C

1

n

n∑
i=1

σiz(y)u∗∥β∥∗
]
.

(H.45)

The first term is the empirical Rademacher complexity of norm-bounded linear
functions which is well known to be upper bounded by 2BX√

n
. An error in the proof

by Levanon and Rosenfeld [2022] dropped the second term from the calculation of
the Rademacher complexity. We observe that it is not zero, but we can bound it as
follows:
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Since z(y) = ±1 it can be dropped due to the symmetry of the Rademacher
variables (since the y are fixed). Also, if the sum of the Rademacher variables is
negative, the supremizing β will have dual norm 0, and if the sum is positive, it will
have dual norm B. Thus,

Eσ

[
sup

β∈B,c∈C

1

n

n∑
i=1

σiu∗∥β∥∗
]
= P

(∑
σi > 0

) u∗B

n
Eσ

[∑
σi|
∑

σi > 0
]

(H.46)

=
u∗B

2n
Eσ

[∣∣∣∑σi

∣∣∣] (H.47)

≤ u∗B

2n

√
Eσ

[(∑
σi

)2]
(H.48)

=
u∗B

2
√
n
, (H.49)

where the second equality is due to the symmetry of the distribution over σ and
the inequality is by Jensen’s. Since the function class ℓs-hinge ◦ B is generated by
a 1-Lipschitz function applied toH, the claim follows by Talagrand’s contraction
lemma.

H.5 Proof for Full-Batch Subgradient Method

Algorithm 9 Subgradient method on k-shifted strategic hinge loss

input: Dataset D = {(xi, yi)}ni=1, Iteration number T , Cost uncertainty set C.
Upper bound u∗, Regularization parameter λ.
define: β(1) ← 0.

η ← B
L
√
T

.
Σmin ← diag([σ1ℓ, . . . , σdℓ]).

for t = 1, . . . , T do
1. ct ← MAXLOSSCOST(D, β(t), C, u∗, λ).
2. Choose gt ∈ ∂β[R̂

ct
s-hinge(β

(t)) + λu∗∥β∥∗].
3. β(t+1) ← β(t) − ηΣmingt

end for
return β(t∗), where t∗ := argmint R̂

ct
s-hinge(β

(t)) + λu∗∥β(t)∥∗
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Algorithm 10 MAXLOSSCOST subprocedure for Algorithm 9

input: Dataset D = {(xi, yi)}ni=1, parameters β, Cost uncertainty set C, Upper
bound u∗, Regularization parameter λ.
define: ∥β∥min

∗ := minc∈C ∥β∥∗, ∥β∥max
∗ := maxc∈C ∥β∥∗.

initialize: k ← ∥β∥min
∗ , kmax ← k.

initialize: r ← R̂s-hinge(β;u∗k) + λu∗k, rmax ← r.
1. Evaluate vi = yi(1− yiβ

⊤xi) for all xi.
2. Sort vi in increasing order to get sorted indices j.
3. Initialize index j ← min j s.t. vj − u∗k > 0.
4. Initialize counts c+1 ← |{j′ ≥ j : yj′ = +1}|, c−1 ← |{j′ < j : yj′ = −1}|.
while k < ∥β∥max

∗ && j < n do
k′ ← min{vj/u∗, ∥β∥max

∗ }.
r ← r + u∗(k

′ − k)
(
λ+ c−1−c+1

n

)
.

k ← k′.
if r > rmax then

rmax ← r, kmax ← k.
end if
cyj ← cyj − yj .
j ← j + 1.

end while

# Found maximizing norm scalar, now need matrix Σ which induces it.
if j == n && r + u∗ [∥β∥max

∗ − k]
(
λ+ n−

n

)
> rmax then

return argmaxc∈C ∥β∥∗ = diag([σ1ℓ, . . . , σdℓ]).
else

initialize: σ̂ ← [σ1u, . . . , σdu].
for i = 1, . . . , d do

Let Σ̂ := diag([σ̂1, . . . , σiℓ, . . . , σ̂d]).
if ∥β∥∗,Σ̂−1 < kmax then
σ̂i ← σiℓ.
continue.

end if
Let Σ̂i=0 := diag([σ̂1, . . . , 0i, . . . , σ̂d]).
σ̂i ← |βi|(

kpmax−∥Σ̂−1/2
i=0 β∥p∗

)1/p
.

return diag(σ̂).
end for

end if

317



Theorem H.5.1. Suppose we run the subgradient method on the regularized k-
shifted strategic hinge loss as described in Algorithm 9 for T iterations and get
classifier β̂. Then with probability ≥ 1− δ, the worst-case 0-1 strategic loss under
costs in C can be bounded by

max
c∈C

Rc
0−1(β̂) ≤ max

c∈C
R̂c

s-hinge(β̂) +
B(4X + u∗) + 3

√
ln 2/δ)√

n
. (H.50)

Furthermore, the sub-optimality of β̂ with respect to the population minimax solution
is bounded by

max
c∈C

R̂c
s-hinge(β̂) ≤ min

β
max
c∈C

Rc
s-hinge(β) +B

(
L√
T

+ (X + u∗)

√
ln 2/δ

2n

)
.

(H.51)

Proof. The first statement follows immediately with probability ≥ 1 − δ/2 from
Theorem H.4.1 since the bound holds uniformly for all c ∈ C. Now we prove the
second statement also holds with probability ≥ 1− δ/2, which we then combine via
union bound. By Danskin’s theorem, the function r(β) := maxc∈C R̂

c
s-hinge(β)

is convex in β, and its subgradient is defined by ∂βR̂
c∗
s-hinge(β) where c∗ :=

argmaxc∈C R̂
c
s-hinge(β).

A standard result says that if we run the subgradient method on r(β) with step
size η = ϵ

L2 for T ≥ B2L2

ϵ2
steps, we will have r(βt∗) − minβ r(β) ≤ ϵ, which

matches the hyperparameters of Algorithm 9 with ϵ = LB√
T

. The descent lemma in
our setting is a bit different: we apply it to the Σmin-transformed gradient and show
convergence in the norm ∥ · ∥Σ−1

min
. That is, our update is β(t+1) = β(t) − ηΣmingt,

and therefore

∥β(t+1) − β∗∥2
Σ−1

min
= ∥β(t) − β∗∥2

Σ−1
min
− 2ηg⊤t (β

(t) − β∗) + η2∥gt∥2Σmin
(H.52)

≤ ∥β(t) − β∗∥2
Σ−1

min
(H.53)

− 2η
(
R̂s-hinge(β

(t))− R̂s-hinge(β
∗)
)
+ η2∥Σ1/2

mingt∥22.

Unrolling the chain of inequalities as in the typical convergence proof yields the
same result, with the difference being that the Lipschitz constant will now be an
upper bound on ∥Σ1/2

mingt∥2. Here we observe that for all Σ ∈ C (and therefore for
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every max player cost choice Σt at each iteration),

∥Σ1/2
mingt∥2 ≤

∥∥∥∥Σ1/2
min

(
x+ u∗(1 + λ)

∂∥β∥∗,Σ−1
t

∂β

)∥∥∥∥
2

(H.54)

≤ ∥Σ1/2
minx∥2 + u∗(1 + λ)

∥∥∥∥Σ1/2
min

∂∥Σ−1/2
t β∥∗
∂β

∥∥∥∥
2

(H.55)

≤ X + u∗(1 + λ)

∥∥∥∥Σ1/2
minΣ

−1/2
t

∂∥β∥∗
∂β

∣∣∣
β=Σ

−1/2
t β

∥∥∥∥
2

(H.56)

≤ X + u∗(1 + λ)

≤1︷ ︸︸ ︷
∥Σ1/2

minΣ
−1/2
t ∥2

∥∥∥∥∂∥β∥∗∂β

∣∣∣
β=Σ

−1/2
t β

∥∥∥∥
2

(H.57)

≤ X + u∗(1 + λ)L∗ =: L, (H.58)

where L∗ is the Lipschitz constant of the gradient of the dual norm (recall for p-
norms this is equal to max

(
1, d(p−2)/2p

)
). Now continuing with the standard proof

of convergence of the subgradient method gives us the desired result.
It remains to show that Algorithm 9 successfully identifies the subgradient of r.

We do so by invoking Lemma 9.4.1, which says that we can efficiently solve for c∗

at each iteration. Thus we have that

max
c∈C

R̂c
s-hinge(β̂) ≤ min

β
max
c∈C

R̂c
s-hinge(β) +

LB√
T
, (H.59)

noting that this bound is with respect to the minimax empirical risk. To complete the
bound with respect to the minimax population risk, define β∗ := argminβ maxc∈C
Rc

s-hinge(β) as the population minimax solution. Then we have with probability
≥ 1− δ/2

min
β

max
c∈C

R̂c
s-hinge(β) ≤ max

c∈C
R̂c

s-hinge(β
∗) (H.60)

≤ max
c∈C

Rc
s-hinge(β

∗) +B(X + u∗)

√
ln 2/δ

2n
(H.61)

= min
β

max
c∈C

Rc
s-hinge(β) +B(X + u∗)

√
ln 2/δ

2n
, (H.62)

where in the second inequality we’ve applied Hoeffding’s between the empirical
and population adversarial risk of β∗ (which is bounded in [0, B(X +u∗)]) because
that classifier does not depend on the training data.
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H.6 Proof for Stochastic Mirror Descent-Ascent

We let 0 < ϵ ≤ 1 denote the discretization parameter which tunes the size of the
set |S| (for simplicity, assume 1/ϵ is an integer). Specifically, we choose 1/ϵ equally
spaced points in each dimension’s range of inverse eigenvalues and then define the
elements of S to be the collection of smallest values in each dimension, then all the
second-smallest values, etc. In this way we discretize the “diagonal” of the cost
uncertainty set C to avoid an exponential dependence on the dimension.
Theorem H.6.1. Suppose we run SMDA on the regularized strategic hinge loss
as described in Algorithm 7 for T iterations and get averaged classifier iterates β̃.
Define the convergence error

εT := max
c∈C

Rc
s-hinge(β̃)−min

β
max
c∈C

Rc
s-hinge(β). (H.63)

Then over the randomness of the optimization procedure it holds that

E[εT ] ≲ B

[
u∗|1− λ|max

i

√
ϵ
(
σ−2
iℓ − σ−2

iu

)
+

L+ (B−1 +X + u∗)
√
ln 1/ϵ√

T

]
.

(H.64)

Proof. From Proposition 9.4.3, we have that the regularized loss is convex in β.
However, the loss is not concave in any parameterization of the cost function c.
To resolve this, we discretize the space of cost functions. We parameterize the
eigenvalues of the inverse cost matrix Σ−1 as a choice of eigenvalue for each
eigenvector vi from the compact set [σ−2

iu , σ−2
iℓ ]. We do so by discretizing the space

of choices linearly as σ−2
k = σ−2

iu + kϵ(σ−2
iℓ − σ−2

iu ) for k ∈ [1, 1/ϵ]. Now we can
instead optimize

min
β

max
k∈[1/ϵ]

R
c(k)
s-hinge(β), (H.65)

where Rc(k)
s-hinge denotes the loss under the cost defined by the eigenvalues induced by

k. As this is a discrete set of 1/ϵ choices, this objective is exactly equivalent to

min
β

max
δ∈∆1/ϵ

1/ϵ∑
i=1

δiR
c(i)
s-hinge(β), (H.66)

where ∆1/ϵ is the simplex over 1/ϵ values such that δi ≥ 0 ∀i, ∑i δi = 1. This
objective is concave in δ, which means it can be solved via SMDA as described by
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Nemirovski et al. [2009]. Let β̃, δ̃ denote the two players’ averaged iterates over
choices β, δ. Define

ε̂T := max
k∈[1/ϵ]

R
c(k)
s-hinge(β̃)−min

β

1/ϵ∑
i=1

δ̃iR
c(i)
s-hinge(β). (H.67)

Note that this is the expected sub-optimality gap for a new optimization problem,
whose solution is not the same as the one in the theorem statement. Nemirovski
et al. [2009] prove that after T iterations of SMDA with the appropriate step size
we have (in their original notation)

E[ε̂T ] ≤ 2

√
10[R2

xM
2
∗,x +M2

∗,y lnm]

N
. (H.68)

Translating these terms into our notation,

m = 1/ϵ, (H.69)

N = T, (H.70)

M2
∗,x = max

1≤i≤1/ϵ
E[∥∇ℓc(i)s-hinge(β̃)∥2] ≤ L2, (H.71)

M2
∗,y = E

[
max

1≤i≤1/ϵ
|ℓc(i)s-hinge(β̃)|2

]
≤ (1 +B(X + u∗))

2, (H.72)

R2
x =

1

2
max

b1,b2∈B
∥b1 − b2∥22 ≲ B2, (H.73)

where the last inequality follows from the triangle inequality and the upper bound
on ∥β∥2. Plugging these in gives the bound

E[ε̂T ] ≲
√

B2L2 + (1 +B(X + u∗))2 ln 1/ϵ

T
(H.74)

≲ B
L+ (B−1 +X + u∗)

√
ln 1/ϵ√

T
. (H.75)

Next, we can rewrite the convergence error in the theorem statement in terms of this
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error as

εT := max
c∈C

Rc
s-hinge(β̃)−min

β
max
c∈C

Rc
s-hinge(β) (H.76)

= ε̂T +

(
max
c∈C

Rc
s-hinge(β̃)− max

k∈[1/ϵ]
R

c(k)
s-hinge(β̃)

)
(H.77)

−

≥0︷ ︸︸ ︷min
β

max
c∈C

Rc
s-hinge(β)−min

β

1/ϵ∑
i=1

δ̃iR
c(i)
s-hinge(β)

 (H.78)

≤ ε̂T +

(
max
c∈C

Rc
s-hinge(β̃)− max

k∈[1/ϵ]
R

c(k)
s-hinge(β̃)

)
. (H.79)

This last term represents the error due to discretization. Revisiting the regularized
risk definition, for any c and k we have

Rc
s-hinge(β̃)−R

c(k)
s-hinge(β̃) = E

[
max{0, 1− y(β̃⊤x+ u∗∥Σ−1/2

c β̃∥∗)} (H.80)

−max{0, 1− y(β̃⊤x+ u∗∥Σ−1/2
c(k) β̃∥∗)}

]
(H.81)

+ λu∗(∥Σ−1/2
c β̃∥∗ − ∥Σ−1/2

c(k) β̃∥∗) (H.82)

≤ u∗|1− λ|
∣∣∣∥Σ−1/2

c(k) β̃∥∗ − ∥Σ−1/2
c β̃∥∗

∣∣∣ (H.83)

≤ u∗|1− λ|B · σmax

(
Σ
−1/2
c(k) − Σ−1/2

c

)
(H.84)

by the reverse triangle inequality. Since these two matrices have the same eigen-
vectors, the maximum eigenvalue of their difference is simply the maximum ab-
solute difference between their respective eigenvalues. By construction, for any
choice Σ−1

c , there is a choice k ∈ [1/ϵ] which differs in spectrum by no more than
ϵ ·maxi(σ

−2
iℓ − σ−2

iu ) in any given direction, and therefore we have

max
c∈C

Rc
s-hinge(β̃)− max

k∈[1/ϵ]
R

c(k)
s-hinge(β̃) (H.85)

≤ u∗B · |1− λ| ·max
i

∣∣∣∣∣
√

σi

(
Σ−1
c(k)

)
−
√
σi
(
Σ−1
c

)∣∣∣∣∣ (H.86)

≤ u∗B · |1− λ| ·max
i

√∣∣∣σi (Σ−1
c(k)

)
− σi

(
Σ−1
c

)∣∣∣ (H.87)

≤ u∗B · |1− λ| ·max
i

√
ϵ
(
σ−2
iℓ − σ−2

iu

)
. (H.88)
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Combining this bound with the one above on ε̂T and taking expectations gives the
result.

Corollary H.6.2. Recall D := maxi(σ
−2
iℓ − σ−2

iu ). Choosing ϵ = Θ
(

lnT
T max(1,D)

)
,

we have

E[εT ] ≲
LB√
T

+B(X + u∗)

√
lnT +max (0, lnD)

T
. (H.89)

H.7 Goodhart’s Law Under Known Costs

We here show that when each user’s strategic response to a classifier is known,
then in principle (information theoretically, discarding optimization concerns),
strategic response has no effect on predictive performance.

We start with a correspondence between classifiers operating on (non-strategic)
inputs and appropriately modified classifiers operating on strategically modified
inputs. In line with prior works—and unlike the other results in this paper—we
make the additional assumption that u is fixed and ϕ is strictly monotone (thus
u∗ = ϕ−1(u)) We also explicitly parameterize the bias term in the classifiers
because it plays an important role in the result.
Proposition H.7.1. Let f(x) = 1{β⊤x+ b ≥ 0} be the prediction of the classifier
parameterized by (β, b), and let f ′(x) = 1{β⊤x + b′ ≥ 0} denote this classifier
with a shifted bias b′ = b − u∗∥β∥∗. Then for all x, it holds that f(x) = f ′(x′),
where x′ = x(β, b′) is the new location of x after strategic response to the classifier
(β, b′).

This results states that f outputs on every data point x exactly what f ′ (which
only differs in its shifted bias term) outputs on x′—which represents the exact same
“user” after it has strategically responded.

Proof. The proof is simple. We consider three separate cases:

• If f(x) = 0 and x is too far to cross the decision boundary of f (so x′(β, b) =
x), then since u∗∥β∥∗ ≥ 0, x is also too far to cross the decision boundary of
f ′, (that is, x′(β, b′) = x). Therefore, f ′(x′) = f ′(x) = f(x).

• If f(x) = 0 and x is close enough to cross the decision boundary (so
x′(β, b) ̸= x), then Lemma 9.2.3 implies that the maximum amount by
which x will change its linear prediction under β is u∗∥β∥∗. Since f(x) =
0 =⇒ 0 > β⊤x + b =⇒ −u∗∥β∥∗ > β⊤x + b′, this means x cannot
force f ′(x′) = 1 without increasing the prediction by more than u∗∥β∥∗, and
thus it will not move. So, f ′(x′) = f ′(x) = f(x).
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• If f(x) = 1, then 0 ≤ β⊤x+ b =⇒ −u∗∥β∥∗ ≤ β⊤x+ b′. Thus, either x
will already get a positive classification from f ′, or it will be able to move
enough to cross the decision boundary. Either way, f ′(x′) = 1 = f(x).

Note that this proof applies even if we don’t know the user’s cost function—it is
sufficient to know for each user the maximum potential increase in their predicted
logit under β after strategic response, i.e. β⊤(x′(β)− x). Applying this insight to
the optimal classifier gives the following result:
Corollary H.7.2. Fix some distribution D, and let f∗ with parameters (β∗, b∗) be
the classifier minimizing the non-strategic 0-1 risk on D. Denote this risk as α.
Then for f ′ with (β∗, b∗ − u∗∥β∗∥∗), its expected strategic 0-1 risk on D is exactly
α.

The take-away is that if we are able to minimize the standard 0-1 loss, and we
know how users will respond (e.g. by knowing the exact cost function), then a
trivial modification would provide us with an optimal classifier for the strategic 0-1
loss. Thus, strategic response does not pose any additional statistical difficulty over
standard classification.

Importantly, however, this result does not imply that minimizing a proxy loss
(such as the hinge or logistic loss) on non-strategic data and applying the transfor-
mation would give a good strategic classifier; this precisely why the strategic hinge
loss is needed in the first place. Further, this result does not account for the social
cost of the classifier f ′ versus some other classifier [Milli et al., 2019]—there could
be a different classifier with similar accuracy under strategic response that induces a
smaller cost to the users.
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Appendix I

Appendix for Chapter 10

I.1 Related Work

Characterizing the NN loss landscape. Earlier studies of the loss landscape com-
monly identified a heavy-tailedness with a small group of very large outlier Hessian
eigenvalues or Jacobian singular values [Sagun et al., 2016, 2017, Papyan, 2018,
Oymak et al., 2019, Papyan, 2019, Fort and Ganguli, 2019, Ghorbani et al., 2019, Li
et al., 2020, Papyan, 2020, Kopitkov and Indelman, 2020]. Later efforts focused on
concretely linking these observations to corresponding behavior, often with an em-
phasis on SGD’s bias towards particular solutions [Wu et al., 2018, Jastrzȩbski et al.,
2017, 2020] and what this may imply about its resulting generalization [Jastrzȩbski
et al., 2019, Zhu et al., 2019b, Wu et al., 2022]. Our method for identifying these
paired groups, along with Figure 10.2, indicates that these outlier directions in the
Hessian/Jacobian spectrum are precisely the directions with opposing signals in the
gradient, and that this pattern may be key to better understanding the generalization
ability of NNs trained with SGD.

Progressive sharpening and the edge of stability. Shifting away from the overall
structure, more recent focus has been specifically on top eigenvalue(s), where it
was empirically observed that their magnitude (the loss “sharpness”) grows when
training with SGD [Jastrzȩbski et al., 2019, 2020] and GD [Kopitkov and Indelman,
2020, Cohen et al., 2021] (so-called “progressive sharpening”). This leads to
rapid oscillation in weight space [Xing et al., 2018, Jastrzȩbski et al., 2019, Cohen
et al., 2021, 2022]. Cohen et al. [2021] also found that for GD this coincides
with a consistent yet non-monotonic decrease in training loss over long timescales,
which they named the “edge of stability”; moreover, they noted that this behavior
runs contrary to our traditional understanding of NN convergence. Many works
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have since investigated the possible origins of this phenomenon [Zhu et al., 2023,
Kreisler et al., 2023]. Several of these are deeply related to our findings: Ma et al.
[2022] connect this behavior to the existence of multiple “scales” of losses; the
outliers we identify corroborate this point. Damian et al. [2022] prove that GD
implicitly regularizes the sharpness—we identify a conceptually distinct source of
such regularization, as described in Section 10.3. Arora et al. [2022] show under
some conditions that the GD trajectory follows a minimum-loss manifold towards
lower curvature regions. This is consistent with our findings, and we believe this
manifold to be precisely the path which evenly balances the opposing gradients.
Wang et al. [2022b] provide another thorough analysis of NN training dynamics at
the edge of stability; their demonstrated phases closely align with our own. They
further observe that this sharpening coincides with a growth in the norm of the last
layer, which was also noted by MacDonald et al. [2023]. Our proposed explanation
for the effect of opposing signals offers some insight into this relationship, but
further investigation is needed.
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I.2 Examples of Opposing Signals in Text

Punctuation Ordering

the EU is \the best war-avoidance mechanism ever
invented["].
the 2008 economic crash and in doing so \triggered a crisis
of rejection["].
I really thought she was going to use another C-word besides
\coward["].
because it was one of the few that still \dry-farmed["].
He describes the taste as \almost minty["].
I did receive several offers to \help out a bit["].
Or \it won’t make a difference anyway["].
and that’s what they mean by \when complete["].
next big investment bubble to burst is the \carbon
bubble["].
personal bank account was a \genuine donation["].
filibuster what some openly called a \stolen seat["].

I used to catch me a few and make pets out of them.["]
\I’m guessing he didn’t mean the drinking.["]
If you can’t get to it, that doesn’t make sense.’ ["]
and boring. He loved excitement and attention.["]
is playing favorites,’ and turned it against him.["]
or medical purposes, absolutely, it’s fine.["]
You have to make big decisions in a hurry.["]
I’m really excited about the potential.["]
still believe that it was the right thing to do.["]
Compliance was low on the list, but I think it’s a pretty
comfortable bike.["]
the opportunity to do that.’ I just needed to take it and
run with it.["]

Figure I.1: Examples of opposing signals in text. Found by training GPT-2 on a
subset of OpenWebText. Sequences are on separate lines, the token in brackets is
the target and all prior tokens are (the end of the) context. As both standards are
used, it is not always clear whether punctuation will come before or after the end
of a quotation (we include the period after the quote for clarity—the model does
not condition on it). Note that the double quotation is encoded as the pair of tokens
[447, 251], and the loss oscillation is occurring for sequences that end with this
pair, either before (top) or after (bottom) the occurrence of the period token (13).
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New Line or ‘the’ After Colon

prepare your data, there are three things to do:[\n]
namely Scalaz or Cats. It looks like this:[\n]
it will only accept one implementation:[\n]
Salcedo said of the work:[\n]
Enter your email address:[\n]
According to the CBO update:[\n]
Here’s how the Giants can still make the playoffs:[\n]
5 reasons as to why self diagnosis is valid:[\n]
successive Lambda invocations. It looks more or less like
this:[\n]
data, there are three things to do:[\n]
4.2 percent in early 2018.\n\nAccording to the CBO
update:[\n]
other than me being myself."\n\nWATCH:[\n]
is to make the entire construction plural.\n\nTwo recent
examples:[\n]
We offer the following talking points to anyone who is
attending the meeting:[\n]
is on the chopping block - and at the worst possible
moment:[\n]

our MPs in Westminster. But to me it is obvious: [the]
The wheelset is the same as that on the model above: [the]
not get so engrained or in a rut with what I had been doing.
Not to worry: [the]
polemics against religion return in various ways to one core
issue: [the]
which undergirds all other acts of love, both divine and
human: [the]
integrate fighters from the Kurds’ two main political
parties: [the]
robs this incredible title of precisely what makes it so
wonderful: [the]
you no doubt noticed something was missing: [the]
Neil Gorsuch’s ’sexist’ comments on maternity leave: [the]

Figure I.2: Examples of opposing signals in text. Found by training GPT-2 on
a subset of OpenWebText. Sequences are on separate lines, the token in brackets
is the target and all prior tokens are (the end of the) context. Sometimes a colon
occurs mid-sentence—and is often followed by “the”—other times it announces the
start of a new line. The model must unlearn “: 7→ [\n]” versus “: 7→ [the]” and
instead use other contextual information.
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Figure I.3: Loss of GPT-2 on the above opposing signals.
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I.3 Reproducing Figure 10.5 in Other Settings

Though colors are straightforward, for some opposing signals such as grass
texture it is not clear how to produce a synthetic image which properly captures
what precisely the model is latching on to. Instead, we identify a real image which
has as much grass and as little else as possible, with the understanding that the
additional signal in the image could affect the results. We depict the grass image
alongside the plots it produced.

I.3.1 ResNet-18 Trained with GD on Other Inputs
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Figure I.4: ResNet-18 on a red color block.
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Figure I.5: ResNet-18 on a green color block. As this color seems unnatural, we’ve
included two examples of relevant images in the dataset.

Figure I.6: Examples of images with the above green color.
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Figure I.7: ResNet-18 on a white color block.
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Figure I.8: ResNet-18 on a black color block.
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Figure I.9: ResNet-18 on an image with mostly grass texture.
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I.3.2 VGG-11-BN Trained with GD

For VGG-11, we found that the feature norm of the embedded images did not
decay nearly as much over the course of training. We expect this has to do with
the lack of a residual component. However, for the most part these features do still
follow the pattern of a rapid increase, followed by a marked decline.
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Figure I.10: VGG-11-BN on a sky color block.
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Figure I.11: VGG-11-BN on a red color block.
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Figure I.12: VGG-11-BN on a green color block. See above for two examples of
relevant images in the dataset.

332



0 100 200 300
Iteration

−4

−2

0

2

4

6

L
og

it
V

al
ue

Class Logits

plane
auto
bird
cat
deer
dog
frog
horse
ship
truck

0 100 200 300
Iteration

4

6

8

10

12

14

N
or

m

Feature Norm

Input Image
Mean Over Data

Iter 79 Iter 80

Iter 81 Iter 82

Class Probabilities During Oscillation

Figure I.13: VGG-11-BN on an image with mostly grass texture.
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Figure I.14: VGG-11-BN on a white color block.
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Figure I.15: VGG-11-BN on a black color block.
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I.3.3 VGG-11-BN with Small Learning Rate to Approximate Gradient
Flow

Here we see that oscillation is a valuable regularizer, preventing the network
from continuously upweighting opposing signals. As described in the main body,
stepping too far in one direction causes an imbalanced gradient between the two
opposing signals. Since the group which now has a larger loss is also the one which
suffers from the use of the feature, the network is encouraged to downweight its
influence. If we use a very small learning rate to approximate gradient flow, this
regularization does not occur and the feature norms grow continuously. This leads
to over-reliance on these features, suggesting that failing to downweight opposing
signals is a likely cause of the poor generalization of networks trained with gradient
flow.

The following plots depict a VGG-11-BN trained with learning rate .0005 to
closely approximate gradient flow. We compare this to the feature norms of the
same network trained with gradient descent with learning rate 0.1, which closely
matches gradient flow until it becomes unstable.
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Figure I.16: VGG-11-BN on a sky color block with learning rate 0.005 (approxi-
mating gradient flow) compared to 0.1.
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Figure I.17: VGG-11-BN on a white color block with learning rate 0.005 (approxi-
mating gradient flow) compared to 0.1.
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Figure I.18: VGG-11-BN on a black color block with learning rate 0.005 (approxi-
mating gradient flow) compared to 0.1.
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Figure I.19: VGG-11-BN on a red color block with learning rate 0.005 (approximat-
ing gradient flow) compared to 0.1.
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Figure I.20: VGG-11-BN on a green color block with learning rate 0.0005 (approxi-
mating gradient flow) compared to 0.1.
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Figure I.21: VGG-11-BN on an image with mostly grass texture with learning rate
0.0005 (approximating gradient flow) compared to 0.1.
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I.3.4 ResNet-18 Trained with Full-Batch Adam

Finally, we plot the same figures for a ResNet-18 trained with full-batch Adam.
We see that Adam consistently and quickly reduces the norm of these features,
especially for more complex features such as texture, and that it also quickly reaches
a point where oscillation ends. Note when comparing to plots above that the
maximum iteration on the x-axis differs.
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Figure I.22: ResNet-18 on a sky color block trained with Adam.
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Figure I.23: ResNet-18 on a red color block trained with Adam.
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Figure I.24: ResNet-18 on a green color block trained with Adam.
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Figure I.25: ResNet-18 on an image with mostly grass texture trained with Adam.
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I.4 Tracking the Amount of Curvature in each Parameter
Layer

Here we plot the “fraction of curvature” of different architectures at various
training steps. Recall the fraction of curvature is defined with respect to the top
eigenvector of the loss Hessian. We partition this vector by network layer and
evaluate each sub-vector’s squared norm. This represents that layer’s contribution
to the overall curvature. To keep the plots readable, we omit layers whose fraction
is never greater than 0.01 at any training step (including the intermediate ones not
plotted), though we always include the last linear layer. The total number of layers
is 45, 38, 106, and 39 for the ResNet, VGG-11, ViT, and NanoGPT respectively.
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Figure I.26: Sum of squared entries of the top eigenvector of the loss Hessian which
lie in each parameter layer of a ResNet-18 throughout training.
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Figure I.27: Sum of squared entries of the top eigenvector of the loss Hessian which
lie in each parameter layer of a VGG-11-BN throughout training.
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Figure I.28: Sum of squared entries of the top eigenvector of the loss Hessian which
lie in each parameter layer of a ViT throughout training.

tr
an

sf
or

m
er

.w
te

.w
ei

gh
t

tr
an

sf
or

m
er

.h
.0

.a
ttn

.c
at

tn
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.0

.a
ttn

.c
pr

oj
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.0

.m
lp

.c
fc

.w
ei

gh
t

tr
an

sf
or

m
er

.h
.0

.m
lp

.c
pr

oj
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.1

.a
ttn

.c
at

tn
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.1

.a
ttn

.c
pr

oj
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.1

.m
lp

.c
fc

.w
ei

gh
t

tr
an

sf
or

m
er

.h
.1

.m
lp

.c
pr

oj
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.2

.a
ttn

.c
pr

oj
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.2

.m
lp

.c
fc

.w
ei

gh
t

tr
an

sf
or

m
er

.h
.2

.m
lp

.c
pr

oj
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.3

.a
ttn

.c
pr

oj
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.3

.m
lp

.c
fc

.w
ei

gh
t

tr
an

sf
or

m
er

.h
.3

.m
lp

.c
pr

oj
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.4

.a
ttn

.c
at

tn
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.4

.a
ttn

.c
pr

oj
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.4

.m
lp

.c
fc

.w
ei

gh
t

tr
an

sf
or

m
er

.h
.4

.m
lp

.c
pr

oj
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.5

.a
ttn

.c
at

tn
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.5

.a
ttn

.c
pr

oj
.w

ei
gh

t

tr
an

sf
or

m
er

.h
.5

.m
lp

.c
fc

.w
ei

gh
t

tr
an

sf
or

m
er

.h
.5

.m
lp

.c
pr

oj
.w

ei
gh

t0.00

0.05

0.10

0.15

0.20

0.25

Su
m

Pe
rP

ar
am

et
er

B
lo

ck

NanoGPT Step 10
Step 520
Step 1030
Step 1540
Step 2050

Figure I.29: NanoGPT (6 layers, 6 head per layer, embedding dimension 384)
trained on the default shakespeare character dataset in the NanoGPT repository.
Due to difficulty calculating the true top eigenvector, we approximate it with the
exponential moving average of the squared gradient.

340



I.5 Additional Figures
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Figure I.30: The fraction of overall training points which increase in loss on any
given step. For both SGD and GD, it hovers around 0.5 (VGG without batchnorm
takes a long time to reach the edge of stability). Though the outliers have much
higher amplitude in their loss change, many more images contain some small
component of the features they exemplify (or are otherwise slightly affected by the
weight oscillations), and so these points also oscillate in loss at a smaller scale.
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Figure I.31: We reproduce Figure 10.6a without batch normalization.
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(a) A 3-layer ReLU MLP trained on a 5k-
subset of CIFAR-10.
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(b) Our model: a 2-layer linear network
trained on mostly Gaussian data with op-
posing signals.

Figure I.32: We compare a small ReLU MLP on a subset of CIFAR-10 to our simple
model of linear regression with a two-layer network.
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I.6 Comparing our Variant of SGD to Adam

Algorithm 11 SplitSGD

input: Initial parameters θ0, SGD step size η1, SignSGD step size η2, momentum
β, dampening τ , threshold r.
initialize: m0 = 0.
for t← 1, . . . , T do
gt ← ∇θLt(θt−1) {Get stochastic gradient}
mt ← βmt−1 + (1− τ)gt {Update momentum with dampening}
m̂t ← mt/(1− τ t) {Debias}
vmask ← 1{|m̂t| ≤ r} {Split parameters by threshold}
θt ← θt−1 − η1(m̂t ⊙ vmask)− η2(sign(m̂t)⊙ (1− vmask)) {unmasked SGD,
masked SignSGD}

end for

As described in the main text, we find that simply including dampening and
taking a fixed step size on gradients above a certain threshold results in performance
matching that of Adam for the experiments we tried. We found that setting this
threshold equal to the q = .1 quantile of the first gradient worked quite well—this
was about 1e-4 for the ResNet-56/110 and 1e-6 for GPT-2.

Simply to have something to label it with, we name the method SplitSGD,
because it performs SGD and SignSGD on different partitions of the parameters.
The precise method is given above in Algorithm 11. We reiterate that we are not
trying to suggest a new method—our goal is only to demonstrate the insight gained
from knowledge of opposing signals’ influence on NN optimization. For all plots,
β represents the momentum parameter and τ is dampening. Adam has a single
parameter β1 which represents both simultaneously, which we fix at 0.9, and we
do the same for SplitSGD by setting β = τ = 0.9. As in Algorithm 11, we let η1
refer to the learning rate for standard SGD on the parameters with gradient below
the magnitude threshold, and η2 refers to the learning rate for the remainder which
are optimized with SignSGD.

I.6.1 SplitSGD on ResNet

We begin with a comparison on ResNets trained on CIFAR-10. Figure I.33
compares SplitSGD to standard versions of SGD with varying momentum and
dampening on a ResNet-56. As expected, SGD is extremely sensitive to hyperpa-
rameters, particularly the learning rate, and even the best choice in a grid search
underperforms SplitSGD. Furthermore, the rightmost plot depicts the fraction of
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Figure I.33: Standard SGD with varying learning rates and momentum/dampening
parameters on a ResNet-56 on CIFAR-10, with one run of SplitSGD for comparison.
Omitted SGD hyperparameter combinations performed much worse. Notice that
SGD is extremely sensitive to hyperparameters. Rightmost plot is the fraction of
parameters with fixed step size by SplitSGD.

parameters for which SplitSGD takes a fixed-size signed step. This means that after
the first few training steps, 70-80% of the parameters are being optimized simply
with standard SGD (with β = τ = 0.9).
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Figure I.34: SplitSGD with varying SGD learning rates η1 versus Adam on a ResNet-
56 on CIFAR-10. The SignSGD learning rate is fixed at η2 = .001; Adam uses
η = .005, which was found to be the best performing choice via oracle selection
grid search. The rightmost plot is the fraction of parameters with fixed step size by
SplitSGD—that is, 1 minus this value is the fraction of parameters taking a regular
gradient step with step size as given in the legend. This learning rate ranges over
several orders of magnitude, is used for ˜70-80% of parameters, and can even be set
to 0, with no discernible difference in performance.

Next, Figure I.34 plots SplitSGD with varying η1 and η2 fixed at .001. This is
compared to Adam with learning rate .005, which was chosen via oracle grid search.
Even though the SGD learning rate η1 ranges over seven orders of magnitude and is
used for ˜70-80% of parameters, we see no real difference in the train loss or test
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accuracy of SplitSGD. In fact, we find that we can even eliminate it completely! This
suggests that for most of parameters and most of training, it is only a small fraction
of parameters in the entire network which are influencing the overall performance.
We posit a deeper connection here to the “hidden” progress described in grokking
[Barak et al., 2022, Nanda et al., 2023]—if the correct subnetwork and its influence
on the output grows slowly during training, that behavior will not be noticeable
until the dominating signals are first downweighted.

Figures I.35 and I.36 depict the train loss and test accuracy of Adam and
SplitSGD for varying learning rates (the standard SGD learning rate η1 is fixed at
0.1). We see that SplitSGD is at least as robust as Adam to learning rate choice, if
not more. The results also suggest that SplitSGD benefits from a slightly smaller
learning rate than Adam, which we attribute to the fact that it will always take step
sizes of that fixed size, whereas the learning rate for Adam represents an upper
bound on the step size for each parameter.
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Figure I.35: Train loss of Adam and SplitSGD for varying learning rates. The
regular SGD step size for SplitSGD is fixed at 0.1. SplitSGD seems at least as
robust to choice of learning rate as Adam, and it appears to benefit from a slightly
smaller learning rate because it cannot adjust per-parameter.

0 1000 2000
Iteration

0.25

0.50

0.75

A
cc

ur
ac

y

ηAdam = η1 =0.01

Adam
SplitSGD

0 1000 2000
Iteration

ηAdam = η1 =0.001

0 1000 2000
Iteration

ηAdam = η1 =0.0005

0 1000 2000
Iteration

ηAdam = η1 =0.0001

Figure I.36: Test accuracy of Adam and SplitSGD for varying learning rates. The
regular SGD step size for SplitSGD is fixed at 0.1. SplitSGD seems at least as
robust to choice of learning rate as Adam, and it appears to benefit from a slightly
smaller learning rate because it cannot adjust per-parameter.

We repeat these experiments with a ResNet-110, with similar findings. Fig-
ure I.37a compares the train loss and test accuracy of SGD with β = 0.9, τ = 0
to Adam, and again the sensitivity of this optimizer to learning rate is clear. Fig-
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ure I.37b compares Adam to SplitSGD (both with fixed-step learning rate .0003)
but ablates the use of dampening: we find that the fixed-size signed steps appear to
be more important for early in training, while dampening is helpful for maintaining
performance later. It is not immediately clear what causes this bifurcation, nor if it
will necessarily transfer to attention models.

Finally, Figure I.38a compares Adam to the full version of SplitSGD; we
see essentially the same performance, and furthermore SplitSGD maintains its
robustness to the choice of standard SGD learning rate.

I.6.2 SplitSGD on GPT-2

For the transformer, we use the public nanoGPT repository which trains GPT-2
on the OpenWebText dataset. As a full training run would be too expensive, we
compare only for the early stage of optimization. All hyperparameters are the
defaults from that repository, with the SGD learning rate η1 set equal to the other
learning rate η2. We observe that not only do the two methods track each other
closely in training loss, it appears that they experience exactly the same oscillations.
Though we do not track the parameters themselves, this suggests that these two
methods follow very similar optimization trajectories as well, which we believe is
an intriguing possibility worth further study.
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(b) Adam vs. SplitSGD with τ = 0. Fixed-
size learning rate for both is .0003.
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(a) Adam vs. SplitSGD with τ = 0.9.
Fixed-size learning rate for both is .0003.

(b) The fraction of parameters for which a
fixed-size signed step was taken for each
gradient step.

Figure I.39: Adam versus SplitSGD on the initial stage of training GPT-2 on the
OpenWebText dataset, and the fraction of parameters with a fixed-size signed step.
All hyperparameters are the defaults from the nanoGPT repository. Observe that
not only is their performance similar, they appear to have exactly the same loss
oscillations.
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I.7 Proofs of Theoretical Results

Before we begin the analysis, we must identify the quantities of interest during
gradient flow and the system of equations that determines how they evolve.

We start by writing out the loss:

2L(θ) = E[(c(b⊤x+ b⊤o xo)− (β⊤x+ d
−1/2
2 1⊤|xo|))2] (I.1)

= E[((cb− β)⊤x)2] + E[((cbo − d
−1/2
2 sign(xo)1)

⊤xo)
2] (I.2)

= ∥cb− β∥2 + p

2

((√
α

p
(cbo − 1)

)2

+

(√
α

p
(cbo + 1)

)2
)

(I.3)

= ∥cb− β∥2 + α(c2∥bo∥2 + 1). (I.4)

This provides the gradients

∇bL = c(cb− β), (I.5)

∇boL = αc2bo, (I.6)

∇cL = b⊤(cb− β) + α∥bo∥2c. (I.7)

We will also make use of the Hessian to identify its top eigenvalue; it is given by

∇2
θL(θ) =

 c2Id1 0d1×d2 2cb
0d2×d1 αc2Id2 2cαbo
2cb⊤ 2cαb⊤o ∥b∥2 + α∥bo∥2

 . (I.8)

The maximum eigenvalue λmax at initialization is upper bounded by the maximum
row sum of this matrix, and thus λmax ≤ 3d1+αd2

d1+d2
< 3α. Clearly, we also have

λmax ≥ α.

We observe that tracking the precise vectors b, bo are not necessary to uncover
the dynamics when optimizing this loss. First, let us write b := ϵ β

∥β∥ + δv, where v

is the direction of the rejection of b from β (i.e., β⊤v = 0) and δ is its norm. Then
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we have the gradients

∇ϵL = (∇ϵb)
⊤(∇bL) (I.9)

=
β

∥β∥
⊤(

c2
(
ϵ

β

∥β∥ + δv

)
− cβ

)
(I.10)

= c2ϵ− c∥β∥, (I.11)

∇δL = (∇δb)
⊤(∇bL) (I.12)

= v⊤
(
c2
(
ϵ

β

∥β∥ + δv

)
− cβ

)
(I.13)

= c2δ, (I.14)

∇cL =

(
ϵ

β

∥β∥ + δv

)⊤(
c

(
ϵ

β

∥β∥ + δv

)
− β

)
+ α∥bo∥2c (I.15)

= c(ϵ2 + δ2 + α∥bo∥2)− ϵ∥β∥. (I.16)

Finally, define the scalar quantity o := ∥bo∥2, noting that ∇oL = 2b⊤o ∇boL =
2αc2o. Minimizing this loss via gradient flow is therefore characterized by the
following ODE on four scalars:

dϵ

dt
= −c2ϵ+ c∥β∥, (I.17)

dδ

dt
= −c2δ, (I.18)

do

dt
= −2αc2o, (I.19)

dc

dt
= −c(ϵ2 + δ2 + αo) + ϵ∥β∥. (I.20)

(I.21)

Furthermore, we have the boundary conditions

ϵ(0) =

√
1

d1 + d2
, (I.22)

δ(0) =

√
d1 − 1

d1 + d2
, (I.23)

o(0) =
d2

d1 + d2
, (I.24)

c(0) = 1. (I.25)

Given these initializations and dynamics, we make a few observations: (i) all four
scalars are initialized at a value greater than 0, and remain greater than 0 at all
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time steps; (ii) δ and o will decrease towards 0 monotonically, and ϵ will increase
monotonically until cϵ = ∥β∥; (iii) c will be decreasing at initialization. Lastly, for
conciseness later on we define the quantities

r := (ϵ(0)2 + δ(0)2 + αo(0)) =
d1 + αd2
d1 + d2

, (I.26)

k :=
d2
d1

, (I.27)

m :=
d1

d1 + d2
=

1

1 + k
. (I.28)

Before we can prove the main results, we present a lemma which serves as a
key tool for deriving continuously valid bounds on the scalars we analyze:
Lemma I.7.1. Consider a vector valued ODE with scalar indices v1, v2, . . ., where
each index is described over the time interval [tmin, tmax] by the continuous dy-
namics dvi(t)

dt = ai(v−i(t)) · vi(t) + bi(v−i(t)) with ai ≤ 0, bi ≥ 0 for all i, t (v−i

denotes the vector v without index i). That is, each scalar’s gradient is an affine
function of that scalar with a negative coefficient. Suppose we define continuous
functions âi, b̂i : R→ R such that ∀i, t, âi(t) ≤ ai(v−i(t)) and b̂i(t) ≤ bi(v−i(t)).
Let v̂ be the vector described by these alternate dynamics, with the boundary condi-
tion v̂i(tmin) = vi(tmin) and vi(tmin) ≥ 0 for all i (if a solution exists). Then for
t ∈ [tmin, tmax] it holds that

v̂(t) ≤ v(t), (I.29)

elementwise. If âi, b̂i upper bound ai, bi, the inequality is reversed.

Proof. Define the vector w(t) := v̂(t)− v(t). This vector has the dynamics

dwi

dt
=

dv̂i
dt
− dvi

dt
(I.30)

= âi(t) · v̂i(t) + b̂i(t)− ai(v−i(t)) · vi(t)− bi(v−i(t)) (I.31)

≤ âi(t) · v̂i(t)− ai(v−i(t)) · vi(t). (I.32)

The result will follow by showing that w(t) ≤ 0 for all t ∈ [tmin, tmax] (this
clearly holds at tmin). Assume for the sake of contradiction there exists a time
t′ ∈ (tmin, tmax] and index i such that wi(t

′) > 0 (let i be the first such index
for which this occurs, breaking ties arbitrarily). By continuity, we can define
t0 := max {t ∈ [tmin, t

′] : wi(t) ≤ 0}. By definition of t0 it holds that wi(t0) = 0

and ∀ϵ > 0, wi(t0 + ϵ)− wi(t0) = wi(t0 + ϵ) > 0, and thus dwi(t0)
dt > 0. But by
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the definition of w we also have

v̂i(t0) = vi(t0) + wi(t0) (I.33)

= vi(t0), (I.34)

and therefore

dwi(t0)

dt
≤ âi(t0) · v̂i(t0)− ai(v−i(t0)) · vi(t0) (I.35)

=
(
âi(t0)− ai(v−i(t0))

)
· vi(t0) (I.36)

≤ 0, (I.37)

with the last inequality following because âi(t) ≤ ai(v−i(t)) and vi(t) > 0 for all
i, t ∈ [tmin, tmax]. Having proven both dwi(t0)

dt > 0 and dwi(t0)
dt ≤ 0, we conclude

that no such t′ can exist. The other direction follows by analogous argument.

We make use of this lemma repeatedly and its application is clear so we invoke
it without direct reference. We are now ready to prove the main results:

I.7.1 Proof of Theorem 10.3.1

Proof. At initialization, we have ∥β∥ ≥ d1√
d1+d2

=⇒ ∥β∥ϵ(0) ≥ d1
d1+d2

=

c(0)(ϵ(0)2 + δ(0)2). Therefore, we can remove these terms from dc
dt at time t = 0,

noting simple that dc
dt ≥ −αoc. Further, so long as c is still decreasing (and therefore

less than c(0) = 1),

d(∥β∥ϵ− c(ϵ2 + δ2))

dt
≥ d(∥β∥ϵ− (ϵ2 + δ2))

dt
(I.38)

= (∥β∥ − 2ϵ)
dϵ

dt
− 2δ

dδ

dt
(I.39)

= (∥β∥ − 2ϵ)(−c2ϵ+ ∥β∥c)− 2δ(−c2δ) (I.40)

= −c2(ϵ∥β∥ − 2(ϵ2 + δ2) + c(∥β∥2 − 2ϵ) (I.41)

≥ −c(ϵ∥β∥ − 2(ϵ2 + δ2)) + c(∥β∥2 − 2ϵ) (I.42)

= c(∥β∥2 − 2ϵ− ϵ∥β∥+ 2(ϵ2 + δ2)) (I.43)

≥ c(∥β∥2 − ϵ(2 + ∥β∥)). (I.44)
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Since c > 0 at all times, this is non-negative so long as the term in parentheses is
non-negative, which holds so long as ϵ ≤ ∥β∥2

∥β∥+2 . Further, since ϵc ≤ ∥β∥ we have

dϵ2

dt
= 2ϵ

dϵ

dt
(I.45)

= −2c2ϵ2 + 2ϵc∥β∥ (I.46)

≤ 2∥β∥2. (I.47)

This implies ϵ(t)2 ≤ ϵ(0)2 + 2t∥β∥2. Therefore, for t ≤ ln ∥β∥/2
2∥β∥ we have ϵ(t)2 ≤

1
d1+d2

+ ∥β∥ ln ∥β∥/2 ≤ ∥β∥4
(∥β∥+2)2

(this inequality holds for ∥β∥ ≥ 2). This satisfies
the desired upper bound.

Thus the term in Equation (I.44) is non-negative for all t ≤ ln ∥β∥/2
2∥β∥ , and so we

have dc
dt ≥ −αoc under the above conditions. Since the derivative of o is negative

in c, a lower bound on dc
dt gives us an upper bound on do

dt , which in turn maintains a
valid lower bound on dc

dt This allows us to solve for just the ODE given by

dc2

dt
= −2αc2o, (I.48)

do

dt
= −2αc2o. (I.49)

Recalling the initial values of c2, o, The solution to this system is given by

c(t)2 =
m

1− (1−m)
exp(2αmt)

, (I.50)

o(t) =
m

exp(2αmt)
1−m − 1

(I.51)

=
m

exp(2αmt)(1 + k−1)− 1
(I.52)

Since these are bounds on the original problem, we have c(t)2 ≥ m and o(t)
shrinks exponentially fast in t. In particular, note that under the stated condition√
α ≥ ∥β∥ ln k

m(ln ∥β∥/2) (recalling k := d2
d1

> 1), we have ln k
2
√
αm
≤ ln ∥β∥/2

2∥β∥ . Therefore we

can plug in this value for t, implying o(t) ≤ m
(
d1
d2

)√α
= mk−

√
α at some time

before t = ln ∥β∥/2
2∥β∥ .

Now we solve for the time at which dc
dt ≥ 0. Returning to Equation (I.44), we

can instead suppose that ϵ ≤ ∥β∥2−γ
∥β∥+2 =⇒ ∥β∥2− ϵ(2+ ∥β∥) ≥ γ for some γ > 0.

If this quantity was non-negative and has had a derivative of at least γ until time
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t = ln k
2
√
αm

, then its value at that time must be at least γ ln k
2
√
αm

. For dc
dt to be non-

negative, we need this to be greater than c(t)2αo(t), so it suffices to have γ ln k
2
√
αm
≥

αm
exp(2αmt)(1+k−1)−1

⇐= γ ln k ≥ 2α3/2m2

k
√
α(1+k−1)−1

⇐= γ ≥ 2α3/2m2k−
√
α

ln k .
Observe that the stated lower bound on α directly implies this inequality.

Finally, note that ∥b∥2 = ϵ2 + δ2, and therefore

d∥b∥2
dt

= 2ϵ
dϵ

dt
+ 2δ

dδ

dt
(I.53)

= −2c2(ϵ2 + δ2) + 2cϵ∥β∥. (I.54)

Since c(0) = 1 and cϵ < ∥β∥, this means ∥b∥2 will also be decreasing at initial-
ization. Thus we have shown that all relevant quantities will decrease towards 0 at
initialization, but that by time t = ln k

2
√
αm

, we will have dc
dt ≥ 0.

I.7.2 Proof of Proof of Theorem 10.3.2

Proof. Recall from the previous section that we have shown that at some time
t1 ≤ ln k

2
√
αm

, c(t)2 will be greater than m and increasing, and o(t) will be upper

bounded by mk−
√
α. Furthermore, ϵ(t)2 ≤ 1

d1+d2
+ 2t∥β∥2. To show that the

sharpness reaches a particular value, we must demonstrate that c grows large enough
before the point cϵ ≈ ∥β∥ where this growth will rapidly slow. To do this, we study
the relative growth of c vs. ϵ.

Recall the derivatives of these two terms:

dc

dt
= −(ϵ2 + δ2 + αo2)c+ ∥β∥ϵ, (I.55)

dϵ

dt
= −c2ϵ+ ∥β∥c. (I.56)

Considering instead their squares,

dc2

dt
= 2c

dc

dt
(I.57)

= −2(ϵ2 + δ2 + αo2)c2 + 2∥β∥ϵc, (I.58)

dϵ2

dt
= 2ϵ

dϵ

dt
(I.59)

= −2ϵ2c2 + 2∥β∥ϵc. (I.60)

Since δ, o decrease monotonically, we have dc2

dt ≥ −2(ϵ2+ d1
d1+d2

+αm
(
d1
d2

)√α
)c2+
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2∥β∥ϵ. Thus if we can show that

∥β∥ϵc ≥ (ϵ2 + 2(
d1

d1 + d2
+ αm

(
d1
d2

)√
α

))c2, (I.61)

we can conclude that dc2

dt ≥ (ϵ2c2 + ∥β∥ϵc) = 1
2
dϵ2

dt —that is, that c(t)2 grows at
least half as fast as ϵ(t)2. And since δ, o continue to decrease, this inequality will
continue to hold thereafter.

Simplifying the above desired inequality, we get

∥β∥ ϵ
c
≥ ϵ2 + 2m(1 + αk−

√
α). (I.62)

Noting that ϵ
c ≥ 1 and m = d1

d1+d2
≤ 1

2 , and recalling the upper bound on ϵ(t)2,
this reduces to proving

∥β∥ ≥ 1

d1 + d2
+ 2t∥β∥2 + 1 + αk−

√
α. (I.63)

Since this occurs at some time t1 ≤ ln k
2
√
αm

, and since m−1 = 1 + k, we get

∥β∥ ≥ 1

d1 + d2
+
∥β∥2(1 + k) ln k√

α
+ 1 + αk−

√
α. (I.64)

The assumed lower bound on
√
α means the sum of the first three terms can be

upper bounded by a small 1 + o(1) term (say, 9/5) and recalling ∥β∥ ≥ 24/5 it
suffices to prove

∥β∥ ≥ 9

5
+ αk−

√
α (I.65)

⇐= αk−
√
α ≤ 3. (I.66)

Taking logs,

2 ln
√
α

ln k
−√α ≤ ln 3, (I.67)

which is clearly satisfied for
√
α ≥ 1 + k ln k. As argued above, this implies

dc2

dt ≥ 1
2
dϵ2

dt by some time t2 ≤ ln k
2
√
αm

.
Consider the time t2 at which this first occurs, whereby c(t2)

2 is growing by at
least one-half the rate of ϵ(t2)2. Here we note that we can derive an upper bound on
c and ϵ at this time using our lemma and the fact that

dc

dt
≤ ∥β∥ϵ, (I.68)

dϵ

dt
≤ ∥β∥c. (I.69)
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The solution to this system implies

c(t2) ≤
1

2

(
exp(∥β∥t2)− exp(−∥β∥t2)√

d1 + d2
+ exp(∥β∥t2) + 1

)
(I.70)

≤ 1

2

(
exp(∥β∥t2)

(
1 +

1√
d1 + d2

)
+ 1

)
(I.71)

≤ 1

2

(
exp

(∥β∥ ln k
2
√
αm

)(
1 +

1√
d1 + d2

)
+ 1

)
, (I.72)

ϵ(t2) ≤
1

2

(
exp(∥β∥t2)

(
1 +

1√
d1 + d2

)
+

1√
d1 + d2

− 1

)
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Then for α >
(

∥β∥ ln k
m(ln ∥β∥−ln 2)

)2
, the exponential term is upper bounded by
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We know that optimization will continue until ϵ2c2 = ∥β∥2, and also that dc2

dt ≥
1
2
dϵ2

dt . Since c ≤ ϵ, this implies that ϵ2 ≥ ∥β∥ before convergence. Suppose that
starting from time t2, ϵ2 grows until time t′ by an additional amount s. Then we
have

s = ϵ(t′)2 − ϵ(t2)
2 (I.79)

=

∫ t′

t2

dϵ(t)2

dt
(I.80)

≤
∫ t′

t2

2
dc(t)2

dt
(I.81)

= 2(c(t′)2 − c(t2)
2). (I.82)
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In other words, c2 must have grown by at least half that amount. Since ϵ(t2)2 ≤ ∥β∥
4

and therefore ϵ(t′)2 ≤ ∥β∥
4 + s, even if c(t′)2 is the minimum possible value of

s
2 we must have at convergence s

2 = c2 = ∥β∥2
ϵ2
≥ ∥β∥2

∥β∥
4

+s
. This is a quadratic in

s and solving tells us that we must have s ≥ 5
4∥β∥. Therefore, c(t′)2 ≥ 5

8∥β∥ is
guaranteed to occur. Noting our derivation of the loss Hessian, this implies the
sharpness must reach at least 5

8α∥β∥ for each dimension of bo.
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I.8 Additional Samples Under Various Architectures/Seeds

To demonstrate the robustness of our finding we train a ResNet-18, VGG-11,
and a Vision Transformer for 1000 steps with full-batch GD, each with multiple
random initializations. For each run, we identify the 24 training examples with
the most positive and most negative change in loss from step i to step i + 1, for
i ∈ {100, 250, 500, 750}. We then display these images along with their label
(above) and the network’s predicted label before and after the gradient step (below).
The change in the network’s predicted labels display a clear pattern, where certain
training samples cause the network to associate an opposing signal with a new class,
which the network then overwhelmingly predicts whenever that feature is present.

Consistent with our other experiments, we find that early opposing signals tend
to be “simpler”, e.g. raw colors, whereas later signals are more nuanced, such as the
presence of a particular texture. We also see that the Vision Transformer seems to
learn complex features earlier, and that they are less obviously aligned with human
perception—this is not surprising since they process inputs in a fundamentally
different manner than traditional ConvNets.
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Figure I.40: (ResNet-18, seed 1) Images with the most positive (top 3 rows) and
most negative (bottom 3 rows) change to training loss after steps 100, 250, 500, and
750. Each image has the true label (above) and the predicted label before and after
the gradient update (below).
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Figure I.41: (ResNet-18, seed 2) Images with the most positive (top 3 rows) and
most negative (bottom 3 rows) change to training loss after steps 100, 250, 500, and
750. Each image has the true label (above) and the predicted label before and after
the gradient update (below).
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(d) Step 750 to 751

Figure I.42: (ResNet-18, seed 3) Images with the most positive (top 3 rows) and
most negative (bottom 3 rows) change to training loss after steps 100, 250, 500, and
750. Each image has the true label (above) and the predicted label before and after
the gradient update (below).
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Figure I.43: (VGG-11, seed 1) Images with the most positive (top 3 rows) and most
negative (bottom 3 rows) change to training loss after steps 100, 250, 500, and 750.
Each image has the true label (above) and the predicted label before and after the
gradient update (below).
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Figure I.44: (VGG-11, seed 2) Images with the most positive (top 3 rows) and most
negative (bottom 3 rows) change to training loss after steps 100, 250, 500, and 750.
Each image has the true label (above) and the predicted label before and after the
gradient update (below).
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Figure I.45: (VGG-11, seed 3) Images with the most positive (top 3 rows) and most
negative (bottom 3 rows) change to training loss after steps 100, 250, 500, and 750.
Each image has the true label (above) and the predicted label before and after the
gradient update (below).
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Figure I.46: (ViT, seed 1) Images with the most positive (top 3 rows) and most
negative (bottom 3 rows) change to training loss after steps 100, 250, 500, and 750.
Each image has the true label (above) and the predicted label before and after the
gradient update (below).
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Figure I.47: (ViT, seed 2) Images with the most positive (top 3 rows) and most
negative (bottom 3 rows) change to training loss after steps 100, 250, 500, and 750.
Each image has the true label (above) and the predicted label before and after the
gradient update (below).
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Figure I.48: (ViT, seed 3) Images with the most positive (top 3 rows) and most
negative (bottom 3 rows) change to training loss after steps 100, 250, 500, and 750.
Each image has the true label (above) and the predicted label before and after the
gradient update (below).
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Mattia Segù, Alessio Tonioni, and Federico Tombari. Batch normalization em-
beddings for deep domain generalization. arXiv preprint arXiv:2011.12672,
2020.

Seonguk Seo, Yumin Suh, Dongwan Kim, Geeho Kim, Jongwoo Han, and Bo-
hyung Han. Learning to optimize domain specific normalization for domain
generalization. arXiv preprint arXiv:1907.04275, 2019.

D. Serre. Matrices: Theory and Applications. Graduate Texts in Mathematics.
Springer, 2010. ISBN 9781441930101.

Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning
attacks on neural networks. In Advances in Neural Information Processing
Systems 31, pages 6103–6113. 2018.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth
Netrapalli. The pitfalls of simplicity bias in neural networks. Advances in Neural
Information Processing Systems, 33:9573–9585, 2020.

Han Shao, Avrim Blum, and Omar Montasser. Strategic classification under un-
known personalized manipulation. In Advances in Neural Information Processing
Systems, volume 36, 2023.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Accessorize
to a crime: Real and stealthy attacks on state-of-the-art face recognition. In
Proceedings of the 2016 acm sigsac conference on computer and communications
security, pages 1528–1540, 2016.

Yanyao Shen and Sujay Sanghavi. Learning with bad training data via iterative

394



trimmed loss minimization. In Proceedings of the 36th International Conference
on Machine Learning, volume 97, pages 5739–5748, Long Beach, California,
USA, 09–15 Jun 2019.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by
weighting the log-likelihood function. Journal of statistical planning and infer-
ence, 90(2):227–244, 2000.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation
for deep learning. Journal of Big Data, 6(1):60, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin
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